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Abstract

Large language models (LLMs) often solve problems using step-by-step Chain-of-1

Thought (CoT) reasoning, yet these intermediate steps are frequently unfaithful or2

hard to interpret. Inspired by the Uniform Information Density (UID) hypothesis3

in psycholinguistics – which posits that humans communicate by maintaining a4

stable flow of information – we introduce entropy-based metrics to analyze the5

information flow within reasoning traces. Surprisingly, across three challenging6

mathematical benchmarks, we find that successful reasoning in LLMs is globally7

non-uniform: correct solutions are characterized by uneven swings in information8

density, in stark contrast to human communication patterns. This result challenges9

assumptions about machine reasoning and suggests new directions for designing10

interpretable and adaptive reasoning models.11

1 Introduction12

Chain-of-Thought (CoT) reasoning has emerged as a central technique for improving large language13

models (LLMs) on complex reasoning tasks [1–3]. By generating step-by-step rationales, CoT14

allows models to decompose problems and produce more interpretable outputs [4, 5]. However,15

recent studies have highlighted the fragility of this approach [6]. Specifically, despite generating16

longer reasoning traces, LLMs often fail to generalize, and their intermediate steps can be logically17

inconsistent or incoherent [7]. This raises an important question: how can we tell when LLMs are18

reasoning effectively, rather than merely generating superficially coherent text?19

Human communication provides a potential clue. A psycholinguistic theory suggests that effective20

communication relies on a uniform flow of information[8, 9], where ideas are expressed at a stable21

rate to match human cognitive processing limits. When information is delivered too unevenly,22

understanding breaks down. We hypothesize that a similar principle applies to LLM reasoning: just23

as humans produce language with balanced information flow, effective reasoning traces may exhibit24

comparable uniformity. To explore this link, we draw on cognitive science and psycholinguistics; for25

instance, Bhambri et al. [10] shows that reasoning paths interpretable to humans are also easier for26

models to generate and learn, suggesting a shared structure between human cognition and machine27

reasoning. To illustrate, a well-reasoned math solution might show consistent step-level progress,28

where each step builds smoothly on the previous one, while an incoherent solution might jump29

between overly trivial and overly complex steps.30

We analyze the information flow of LLM-generated reasoning traces on challenging mathematical31

benchmarks. We define per-step measurements of information density, and examine by answer32

correctness. Then, we introduce three complementary metrics that quantify the uniformity entire33

reasoning trace, using entropy-based per-step measurement. Our experiments reveal a clear pattern:34

unlike human communication, reasoning traces with low global uniformity tend to produce correct35

answers. This suggests that effective reasoning balances local uniformity and low global uniformity.36
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Overall, our contributions are threefold:37

◦ To our knowledge, we are the first to introduce information-theoretic metrics for quantifying38

reasoning structure at both the step and trace level.39

◦ We find that reasoning patterns characterized by low global uniformity, correlate with reasoning40

success on challenging mathematical reasoning benchmarks.41

◦ We show that deviations from such patterns can serve as an internal signal for predicting failure42

cases, enabling potential improvements in LLM reasoning and evaluation.43

2 Related Work44

2.1 Fragility of CoT and the role of individual reasoning steps45

CoT prompting improves reasoning but remains fragile [1, 6]. Small, seemingly irrelevant per-46

turbations in the reasoning chain can sharply reduce accuracy [11, 12], suggesting that models47

often produce the appearance of reasoning rather than logically sound traces [7]. Moreover, longer48

reasoning steps do not necessarily reflect the true difficulty of the problem, and many intermediate49

steps can be altered or even removed without changing the final answer [13]. This raises doubts about50

the necessity and faithfulness of these step-by-step explanations. Another line of recent research51

takes a different perspective: rather than viewing all steps as equally important, it suggests that a52

small subset of pivotal steps within CoT traces disproportionately drives predictions [14]. Attribution53

methods and their frameworks identify and highlight these critical steps, emphasizing the need to54

understand how individual steps shape outcomes[4, 15, 16]. Despite these advances, there remains55

no clear interpretation of what constitutes a truly good reasoning pattern.56

2.2 Intrinsic signals in LLM reasoning57

Research on LLM reasoning has increasingly turned to internal model signals to gain insights into58

how reasoning unfolds. Many approaches use these signals to improve performance, such as using59

self-consistency [17], self-certainty [18, 19], or confidence to refine outputs, or using entropy-based60

measures to encourage diverse reasoning paths [20–23]. We shift focus from controlling reasoning61

with internal signals to understanding it through their structure. We ground our analysis in long-62

standing psycholinguistic theory to understand the structure of reasoning itself by revealing how63

information is introduced, transformed, and propagated through the reasoning process. Our step-level64

focus provides a deeper understanding of what constitutes a coherent reasoning trace, going beyond65

prior approaches that emphasize performance gains over interpretability.66

3 Exploring the UID Hypothesis in Reasoning Models67

3.1 Background: Uniform information density hypothesis68

The Uniform Information Density (UID) hypothesis models language as a signal transmitted through69

a noisy channel with limited capacity [8, 9]. It posits that speakers aim to convey information70

efficiently without overwhelming the listener’s processing resources. Let an utterance u = [u1,u2, . . . ,71

uN ] be a sequence of N linguistic units, such as words, subwords, or characters, depending on the72

granularity of representation. For each unit un, we can define surprise as the unexpectedness of a73

unit, given its previous context. Formally, surprisal is defined as:74

s(un) = − logP (un | u<n),

where P (un|u<n) is the probability of seeing unit utterance un after the earlier sequence u<n =75

[u1, . . . , un−1]. High surprisal of the unit denotes that it is very unexpected and hard to process for76

the person receiving the information, while units with lower surprisal are easier to process. In this77

sense, surprisal can be perceived as information content. To capture the overall cognitive load of a78

message, we aggregate this surprisal across all units in the sequence. Given a sequence of utterance79

u, the total processing effort can be expressed as:80

ProcessingEffort(u) ∝
N∑

n=1

s(un).
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If information is concentrated in a few highly surprising units, the receiver experiences sharp spikes81

in processing difficulty; if it is too sparse, communication becomes inefficient. The high-level82

intuition of the UID hypothesis is that the most efficient strategy is to distribute surprisal as evenly as83

possible across the sequence, maintaining a stable level of processing effort. This tendency has been84

empirically observed across syllables, words, syntax, and discourse.85

While UID has been extensively validated in human language, its implications for machine reasoning86

remain unexplored. LLMs, or more specifically, recent reasoning models such as Deepseek-R1 [24]87

and Qwen3 [25] generate CoT traces step-by-step, much like how human speech unfold over time. If88

we treat each reasoning step zi like a unit with surprisal s(zi), a single reasoning trace z = [z1, z2,89

. . . , zN ] can be analyzed in the same way to have the total effort:90

ReasoningEffort(z) ∝
N∑

n=1

s(zn).

Here, a natural question arises: does UID hypothesis hold for good reasoning patterns in LLMs? A91

smooth, uniform surprisal profile may reflect clear and logical reasoning, while sharp spikes may92

signal confusion or errors. We extend UID hypothesis beyond psycholinguistics to probe the structure93

of CoT reasoning of LLMs, offering a new lens on why reasoning models succeed or fail.94

3.2 Preliminary analysis with per-step information density scores of reasoning traces95

We start by defining the step-level information density IDi for a reasoning trace z = [z1, . . . , zN ]96

with N steps, where each reasoning step zi is composed of Mi tokens, i.e., zi = [x1, . . . , xMi
]. We97

divide the reasoning steps of a single trace of a reasoning model, Qwen3-8B, by \n\n, following98

Lightman et al. [26]. Then, let pt(v) be the predictive distribution over the vocabulary at the token99

position t, and lt = log pt(xt) the log-probability of the generated token xt. To characterize IDi, we100

consider three metrics over tokens in each step, as defined below.101

3.2.1 Three metrics of IDi102

In this work, we consider three metrics for IDi: (1) log-probability LPi as a confidence signal,103

composed from the average token log-probability over step i, (2) entropy Hi as an uncertainty signal,104

and (3) confidence gap Di as divergence signal defined as the difference between the log-probability105

of the current and the previous step. Details of the metrics are given in Appendix C.1.106

(a) Correct Traces (b) Incorrect Traces

Figure 1: Averaged ID scores ranging of correct and incorrect traces on AIME2025 test set tracked
with step-level information density.

3.2.2 Interpretation of the three metrics of IDi across a reasoning trace107

Figure 1 compares the evolution of the three metrics – log-probability LPi, entropy Hi, and confidence108

gap Di – and its composite metric, across reasoning traces for correct and incorrect solutions on109

AIME2025. For correct traces (Figure 1a), Hi remains consistently low, while LPi and Di steadily110

decrease, forming a smooth trajectory that culminates in a sharp drop of the composite IDi near the111

final steps, to IDi score of 0.0. Incorrect traces (Figure 1b) starts higher, at average of higher than 1.0112

IDi scores and show elevated and unstable LPi and Di, with erratic fluctuations and sudden drops.113
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3.3 Measuring the uniformity of information density in reasoning trace114

To measure the uniformity of information density in a reasoning trace, we first clarify what "uniform"115

means. Prior psycholinguistic theory offers two perspectives [8, 27]. Global uniformity maintains a116

stable surprisal rate across the trace, while local uniformity smooth, gradual step-level changes.117

Grounded in these perspectives, we explore three UID metrics for LLM reasoning traces. (1) Variance118

measures how much the surprisal values diverges from the mean. High variance means the reasoning119

process is globally unstable, with large swings in information load across steps. (2) Gini coefficient120

captures how unevenly the total information is distributed. A high Gini score means a few steps121

dominate the process, creating potential reasoning bottlenecks. (3) Shannon evenness measures how122

balanced the information distribution is, normalized to account for sequence length. High Shannon123

evenness reflects a smooth, well-balanced reasoning process. Together, these metrics distinguish124

between reasoning where uncertainty (entropy) is globally unstable (high variance) and unevenly125

concentrated (high Gini, Shannon evenness). Full definitions are in Appendix C.3.126

4 Unlike Human Communication, Global Non-uniform Information127

Distribution Predicts Reasoning Success in LLMs128

Table 1: Main Results. Accuracy results averaged over three random seeds. The best and second-best
scores are bold-faced and underlined, respectively. See Appendix D for more details.

Category Method AIME 2025 HMMT 2025 Minerva Math

Baselines Mean Accuracy 0.673 0.433 0.326
Self-Certainty 0.689 0.467 0.332
CoT-Decoding 0.678 0.444 0.330
Highest Confidence 0.633 0.389 0.328
Lowest Entropy 0.633 0.378 0.331

UID Measurement

Variance Highest UID Score (non-uniform) 0.722 0.456 0.342
Lowest UID Score (uniform) 0.644 0.433 0.322

Among the IDi metrics presented, we use entropy to compute the UID score. Among the three UID129

metrics, global uniformity, measured by variance, emerges as the strongest predictor of reasoning130

success. Selecting traces with the highest variance (low global uniformity) achieves 0.722 accuracy131

on AIME and 0.342 on Minerva Math, representing absolute improvements of +4.9% and +1.6% over132

the best-performing baseline (Self-Certainty: 0.689 on AIME, 0.332 on Minerva Math). On HMMT,133

high-variance traces reach 0.456 accuracy, which is +2.3% higher than the Mean Accuracy baseline134

(0.433). These results indicate that reasoning success is closely tied to low global uniformity, where135

models exhibit large, deliberate swings in information density throughout their thought process rather136

than maintaining a stable, uniform progression. Variance demonstrates consistent, cross-dataset gains,137

making it the most reliable signal. Overall, our findings suggest that reasoning is most effective when138

the model’s information flow is globally diverse, allowing it to shift focus dynamically and explore139

alternative reasoning paths, leading to stronger final answers. Experiment details are in Appendix B.140

5 Conclusion141

Results show that low global uniformity strongly predicts correct reasoning, while local uniformity142

exhibits mixed effects. This indicates that while reasoning traces share structural similarities with143

natural language, their dynamics do not strictly adhere to the UID hypothesis. Instead, effective144

reasoning appears to rely on irregular, globally non-uniform patterns, reflecting moments of abrupt145

insight or decisive leaps. These findings highlight that the internal signals embedded in the structure146

of reasoning traces can offer valuable guidance for model design. Future work could explore how to147

harness these signals—rather than enforcing strict uniformity—to develop methods that adaptively148

leverage the natural ebb and flow of reasoning, ultimately improving the robustness and interpretability149

of reasoning models.150
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Karina Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Lar-192

son, Sam McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan,193

Timothy Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan,194

Jan Brauner, Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought195

reasoning, 2023. URL https://arxiv.org/abs/2307.13702.196

[14] Paul C. Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm197

reasoning steps matter?, 2025. URL https://arxiv.org/abs/2506.19143.198

5

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2310.09343
https://arxiv.org/abs/2310.09343
https://arxiv.org/abs/2310.09343
https://arxiv.org/abs/2212.07919
https://arxiv.org/abs/2304.10703
https://arxiv.org/abs/2304.10703
https://arxiv.org/abs/2304.10703
https://arxiv.org/abs/2508.01191
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2109.11635
https://arxiv.org/abs/2109.11635
https://arxiv.org/abs/2109.11635
https://arxiv.org/abs/2410.16062
https://arxiv.org/abs/2508.16695
https://arxiv.org/abs/2508.16695
https://arxiv.org/abs/2508.16695
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2305.14825
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2506.19143


[15] Skyler Wu, Eric Meng Shen, Charumathi Badrinath, Jiaqi Ma, and Himabindu Lakkaraju.199

Analyzing chain-of-thought prompting in large language models via gradient-based feature200

attributions, 2023. URL https://arxiv.org/abs/2307.13339.201

[16] Eric Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text202

generation, 2024. URL https://arxiv.org/abs/2412.07961.203

[17] Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen204

Zhang, Xinwei Long, Ermo Hua, Biqing Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning205

Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning, 2025. URL https://arxiv.206

org/abs/2504.16084.207

[18] Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language208

models via self-certainty, 2025. URL https://arxiv.org/abs/2502.18581.209

[19] Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to210

reason without external rewards, 2025. URL https://arxiv.org/abs/2505.19590.211

[20] Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question212

is already half the answer: Fully unsupervised llm reasoning incentivization, 2025. URL213

https://arxiv.org/abs/2504.05812.214

[21] Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable215

effectiveness of entropy minimization in llm reasoning, 2025. URL https://arxiv.org/216

abs/2505.15134.217

[22] Zitian Gao, Lynx Chen, Haoming Luo, Joey Zhou, and Bryan Dai. One-shot entropy minimiza-218

tion, 2025. URL https://arxiv.org/abs/2505.20282.219

[23] Dongseok Lee, Jimyung Hong, Dongyoung Kim, and Jaehyung Kim. Training-free llm verifica-220

tion via recycling few-shot examples, 2025. URL https://arxiv.org/abs/2506.17251.221

[24] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin222

Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,223

Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan224

Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,225

Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli226

Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng227

Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,228

Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian229

Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean230

Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan231

Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,232

Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong233

Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan234

Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting235

Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,236

T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,237

Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao238

Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,239

Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang240

Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.241

Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao242

Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang243

Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,244

Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong245

Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,246

Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan247

Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,248

Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,249

and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement250

learning, 2025. URL https://arxiv.org/abs/2501.12948.251

6

https://arxiv.org/abs/2307.13339
https://arxiv.org/abs/2412.07961
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2502.18581
https://arxiv.org/abs/2505.19590
https://arxiv.org/abs/2504.05812
https://arxiv.org/abs/2505.15134
https://arxiv.org/abs/2505.15134
https://arxiv.org/abs/2505.15134
https://arxiv.org/abs/2505.20282
https://arxiv.org/abs/2506.17251
https://arxiv.org/abs/2501.12948


[25] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang252

Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,253

Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin254

Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,255

Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui256

Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang257

Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger258

Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan259

Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.260

[26] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan261

Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL262

https://arxiv.org/abs/2305.20050.263

[27] MX Collins. Information density and dependency length as complementary cognitive mod-264

els. Journal of Psycholinguistic Research, 43(5):651–681, October 2014. doi: 10.1007/265

s10936-013-9273-3. URL https://doi.org/10.1007/s10936-013-9273-3.266

[28] Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024. URL267

https://arxiv.org/abs/2402.10200.268

A Implementation Details269

A.1 Hyperparameters and GPU Setup.270

For all our main results, we use Qwen3-8B thinking mode. We set the temperature to 0.6, top-p to271

0.95, and top-k to 20, as stated in the Qwen3 Technical Report. We use 4xA6000 GPUs for all our272

experiments.273

B Experiment Setup274

B.1 Evaluation and Benchmarks275

We use accuracy for evaluation, and use three particularly challenging mathematical benchmarks,276

AIME2025, HMMT2025, and Minerva Math. We sample each questions five times before the final277

evaluation.278

B.1.1 AIME 2025.279

The American Invitational Mathematics Examination (AIME) is a prestigious US high school math280

contest consisting of challenging integer-answer questions. The AIME 2025 benchmark uses281

problems from the 2025 contests to evaluat an LLM’s mathematical reasoning by requiring a single282

correct integer answer. The set used in our analysis contains of 30 questions.283

B.1.2 HMMT 2025.284

The Harvard-MIT Mathmematics Tournament (HMMT) is a renowned competition featuring diverse285

problems in algebra, geometry, combinatorics, and number theory. The HMMT 2025 benchmark286

uses newly released problems from the February 2025 tournament, providing a broader variety of287

tasks than AIME. The set used in our analysis contains of 30 questions.288

B.1.3 Minverva Math.289

The Minerva Math benchmark consists of advanced quantitative problems sourced from290

university-level STEM courses, including physics, chemistry, and higher mathematics. The set used291

in our analysis contains of 272 questions.292

B.2 Baseline Implementation293

We re-implemeted all logic using vllm, unlike some of the codes initially released.294
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B.2.1 Mean Accuracy295

This is the mean accuracy of all answers, which are sampled by 5 for each question.296

B.2.2 Self-Certainty297

This is the implementation of Kang et al. [18], where it first measures the confidence of each sampled298

answer and select one via borda-voting.299

B.2.3 CoT-Decoding300

This is the implementation of the path selection strategy used in Wang and Zhou [28]. This method,301

called CoT-decoding, identifies reasoning paths that contain CoT steps by measuring the model’s302

confidence in the final answer tokens. It computes the average probability margin between the top-1303

and top-2 tokens during answer decoding, denoted as ∆. Decoding paths with higher ∆ values are304

strongly correlated with correct CoT reasoning, enabling reliable extraction of CoT paths even when305

they are not the most probable or majority paths.306

B.2.4 Highest Confidence307

This selects the path with the highest overall token confidence in the reasoning trace.308

B.2.5 Lowest Entropy309

This selects the path with the lowest overall token entropy in the reasoning trace.310

C Details of ID and UID Operationalizations311

C.1 Details of IDi metrics312

Log-probability LPi of a step is the average token log-probability over step i313

LPi =
1

bi − ai + 1

bi∑
t=ai

ℓt

Given token-level entropy Ht as314

Ht = −
∑
v∈V

pt(v) log pt(v),

Step-level entropy Hi is defined as315

Hi =
1

bi − ai + 1

bi∑
t=ai

Ht

Log-probability gap Di is defined as316

Di = LPi − LPi−1

Using the three metrics above, we build a composite IDi score, defined as317

IDi = wLPLP i − wHHi + wDDi

where all weights are equally set as 1/3 at our current setting.318

C.2 Averaged ID scores of correct and incorrect traces on HMMT2025 and Minerva Math319

C.3 Mathematical Formulations of UID Operationalizations320

Let a reasoning trace z have N steps. Define the (non-negative) information density vector321

UID(z) = u = (ID1, ID2, . . . , IDN ), IDi ≥ 0
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C.3.1 Operationalizing UID(z) as Variance322

To bound IDi ∈ [0, 1], u is normalized with min-max normalization to map the non-negative323

sequence to [0, 1].324

Let325

m = min
1≤i≤Nmin

IDi, M = min
1≤i≤Nmax

IDi

Then, the normalized ID′
i values are326

ID′
i =

IDi −m

M −m
, i = 1, . . . , N.

and their corresponding vector form for UID′(z) = ũ = (ID′
1, . . . , ID

′
N ):327

Define328

S =

T∑
i=1

ID′
i, µ =

1

T

T∑
i=1

ID′
i, pi =

ID′
i

S
(when S > 0)

Then, the population variance of the entries are329

Var(ũ) =
1

T

T∑
i=1

(ID′
i − µ)

2

C.3.2 Operationalizing UID(z) as Gini Coefficient330

Sort IDi values from smallest to largest, where the sorted ID′
1 ≤ · · · ≤ ID′

N Then, the Gini331

coefficient can be calculated as332

G(u) =
1

µT

T∑
i=1

(2i− T − 1) IDi, (µ > 0).

C.3.3 Operationalizing UID(z) as Shannon Evenness333

First compute Shannon entropy of the probability normalization pi =
IDi

S .334

H(u) = −
T∑

i=1

pi ln pi (S > 0),

with maximum Hmax = lnN . Then, Shannon evenness can be calculated as335

J ′(u) =
H(u)

lnT
∈ [0, 1].

D Additional Experiment Results336

D.1 Main Results with Different Seeds337

While other measures of local uniformity such as the Gini coefficient and Shannon evenness also338

show competitive performance, their effectieveness is limited and more dataset-dependent.339

D.2 Scaling models amplifies the role of global non-uniformity340

As shown in Table 3, scaling model size from 1.7B to 8B reveals a clear trend where variance becomes341

an increasingly strong predictor of reasoning success, outperforming all baselines at 8B.342
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Table 2: Main results across various seeds. Performance based on accuracy across three mathemati-
cal benchmarks: AIME 2025, HMMT 2025, and Minerva Math. The final sub-column will report
the mean and standard deviation across seeds. The best and second-best scores are bold-faced and
underlined, respectively.

Category Method AIME 2025 HMMT 2025 Minerva Math
Seed 42 Seed 1234 Seed 2025 Avg Seed 42 Seed 1234 Seed 2025 Avg Seed 42 Seed 1234 Seed 2025 Avg

Baselines Mean Accuracy 0.680 0.680 0.660 0.673 0.453 0.420 0.427 0.433 0.329 0.325 0.324 0.326
Self-Certainty 0.700 0.633 0.733 0.689 0.433 0.500 0.467 0.467 0.346 0.331 0.320 0.332
CoT-Decoding 0.667 0.667 0.700 0.678 0.500 0.400 0.433 0.444 0.335 0.335 0.320 0.330
Highest Confidence 0.667 0.600 0.633 0.633 0.400 0.367 0.400 0.389 0.349 0.320 0.316 0.328
Lowest Entropy 0.667 0.600 0.633 0.633 0.367 0.367 0.400 0.378 0.349 0.320 0.324 0.331

Three Measures of UID
Variance Highest UID Score (non-uniform) 0.700 0.733 0.733 0.722 0.467 0.433 0.467 0.456 0.338 0.338 0.349 0.342

Lowest UID Score (uniform) 0.633 0.667 0.633 0.644 0.433 0.433 0.433 0.433 0.335 0.319 0.313 0.322
Gini Coefficient Highest UID Score (non-uniform) 0.667 0.667 0.633 0.656 0.433 0.333 0.467 0.411 0.338 0.316 0.320 0.325

Lowest UID Score (uniform) 0.667 0.700 0.667 0.678 0.433 0.433 0.367 0.411 0.324 0.320 0.346 0.330
Shannon Evenness Highest UID Score (uniform) 0.700 0.667 0.667 0.678 0.433 0.367 0.400 0.400 0.320 0.324 0.331 0.325

Lowest UID Score (non-uniform) 0.633 0.700 0.600 0.644 0.500 0.500 0.433 0.478 0.335 0.320 0.320 0.325

Table 3: Performance across different model sizes. Performance across Qwen3-1.7B, 4B, and
8B on AIME 2025. Each model is evaluated with three random seeds (42, 1234, 2025). The last
column within each model block shows the average across seeds. The best and second-best scores
are bold-faced and underlined, respectively.

Baselines 1.7B 4B 8B
Seed 42 Seed 1234 Seed 2025 Avg Seed 42 Seed 1234 Seed 2025 Avg Seed 42 Seed 1234 Seed 2025 Avg

Mean Accuracy 0.367 0.353 0.353 0.358 0.680 0.653 0.667 0.667 0.680 0.680 0.660 0.673
Self-Certainty 0.367 0.400 0.400 0.389 0.633 0.767 0.667 0.689 0.700 0.633 0.733 0.689
CoT-Decoding 0.333 0.300 0.300 0.311 0.767 0.633 0.700 0.700 0.667 0.667 0.700 0.678
Highest Confidence 0.333 0.367 0.367 0.356 0.600 0.567 0.633 0.600 0.667 0.600 0.633 0.633
Lowest Entropy 0.333 0.367 0.367 0.356 0.567 0.567 0.633 0.589 0.667 0.600 0.633 0.633

Three Measures of UID
Variance Highest UID Score (non-uniform) 0.433 0.333 0.333 0.366 0.667 0.667 0.700 0.678 0.700 0.733 0.733 0.722

Lowest UID Score (uniform) 0.267 0.367 0.367 0.334 0.633 0.667 0.633 0.644 0.633 0.667 0.633 0.644
Gini Coefficient Highest UID Score (non-uniform) 0.300 0.400 0.400 0.367 0.667 0.700 0.667 0.678 0.667 0.667 0.633 0.656

Lowest UID Score (uniform) 0.367 0.300 0.300 0.322 0.700 0.667 0.700 0.689 0.667 0.700 0.667 0.678
Shannon Evenness Highest UID Score (uniform) 0.367 0.267 0.267 0.300 0.667 0.567 0.633 0.622 0.700 0.667 0.667 0.678

Lowest UID Score (non-uniform) 0.300 0.400 0.400 0.367 0.667 0.667 0.667 0.667 0.633 0.700 0.600 0.644
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