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Abstract

Large language models (LLMs) often solve problems using step-by-step Chain-of-
Thought (CoT) reasoning, yet these intermediate steps are frequently unfaithful or
hard to interpret. Inspired by the Uniform Information Density (UID) hypothesis
in psycholinguistics — which posits that humans communicate by maintaining a
stable flow of information — we introduce entropy-based metrics to analyze the
information flow within reasoning traces. Surprisingly, across three challenging
mathematical benchmarks, we find that successful reasoning in LLMs is globally
non-uniform: correct solutions are characterized by uneven swings in information
density, in stark contrast to human communication patterns. This result challenges
assumptions about machine reasoning and suggests new directions for designing
interpretable and adaptive reasoning models.

1 Introduction

Chain-of-Thought (CoT) reasoning has emerged as a central technique for improving large language
models (LLMs) on complex reasoning tasks [1-3]. By generating step-by-step rationales, CoT
allows models to decompose problems and produce more interpretable outputs [4, 5]. However,
recent studies have highlighted the fragility of this approach [6]. Specifically, despite generating
longer reasoning traces, LLMs often fail to generalize, and their intermediate steps can be logically
inconsistent or incoherent [7]. This raises an important question: how can we tell when LLMs are
reasoning effectively, rather than merely generating superficially coherent text?

Human communication provides a potential clue. A psycholinguistic theory suggests that effective
communication relies on a uniform flow of information[8, 9], where ideas are expressed at a stable
rate to match human cognitive processing limits. When information is delivered too unevenly,
understanding breaks down. We hypothesize that a similar principle applies to LLM reasoning: just
as humans produce language with balanced information flow, effective reasoning traces may exhibit
comparable uniformity. To explore this link, we draw on cognitive science and psycholinguistics; for
instance, Bhambri et al. [10] shows that reasoning paths interpretable to humans are also easier for
models to generate and learn, suggesting a shared structure between human cognition and machine
reasoning. To illustrate, a well-reasoned math solution might show consistent step-level progress,
where each step builds smoothly on the previous one, while an incoherent solution might jump
between overly trivial and overly complex steps.

We analyze the information flow of LLM-generated reasoning traces on challenging mathematical
benchmarks. We define per-step measurements of information density, and examine by answer
correctness. Then, we introduce three complementary metrics that quantify the uniformity entire
reasoning trace, using entropy-based per-step measurement. Our experiments reveal a clear pattern:
unlike human communication, reasoning traces with low global uniformity tend to produce correct
answers. This suggests that effective reasoning balances local uniformity and low global uniformity.
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Overall, our contributions are threefold:

o To our knowledge, we are the first to introduce information-theoretic metrics for quantifying
reasoning structure at both the step and trace level.

o We find that reasoning patterns characterized by low global uniformity, correlate with reasoning
success on challenging mathematical reasoning benchmarks.

o We show that deviations from such patterns can serve as an internal signal for predicting failure
cases, enabling potential improvements in LLM reasoning and evaluation.

2 Related Work

2.1 Fragility of CoT and the role of individual reasoning steps

CoT prompting improves reasoning but remains fragile [1, 6]. Small, seemingly irrelevant per-
turbations in the reasoning chain can sharply reduce accuracy [11, 12], suggesting that models
often produce the appearance of reasoning rather than logically sound traces [7]. Moreover, longer
reasoning steps do not necessarily reflect the true difficulty of the problem, and many intermediate
steps can be altered or even removed without changing the final answer [13]. This raises doubts about
the necessity and faithfulness of these step-by-step explanations. Another line of recent research
takes a different perspective: rather than viewing all steps as equally important, it suggests that a
small subset of pivotal steps within CoT traces disproportionately drives predictions [14]. Attribution
methods and their frameworks identify and highlight these critical steps, emphasizing the need to
understand how individual steps shape outcomes[4, 15, 16]. Despite these advances, there remains
no clear interpretation of what constitutes a truly good reasoning pattern.

2.2 Intrinsic signals in LLM reasoning

Research on LLM reasoning has increasingly turned to internal model signals to gain insights into
how reasoning unfolds. Many approaches use these signals to improve performance, such as using
self-consistency [17], self-certainty [18, 19], or confidence to refine outputs, or using entropy-based
measures to encourage diverse reasoning paths [20-23]. We shift focus from controlling reasoning
with internal signals to understanding it through their structure. We ground our analysis in long-
standing psycholinguistic theory to understand the structure of reasoning itself by revealing how
information is introduced, transformed, and propagated through the reasoning process. Our step-level
focus provides a deeper understanding of what constitutes a coherent reasoning trace, going beyond
prior approaches that emphasize performance gains over interpretability.

3 Exploring the UID Hypothesis in Reasoning Models

3.1 Background: Uniform information density hypothesis

The Uniform Information Density (UID) hypothesis models language as a signal transmitted through
a noisy channel with limited capacity [8, 9]. It posits that speakers aim to convey information
efficiently without overwhelming the listener’s processing resources. Let an utterance u = [uq,us, ...,
u ] be a sequence of N linguistic units, such as words, subwords, or characters, depending on the
granularity of representation. For each unit u,,, we can define surprise as the unexpectedness of a
unit, given its previous context. Formally, surprisal is defined as:

s(un) = —log P(uy, | ucy),

where P(uy,|u<y,) is the probability of seeing unit utterance u,, after the earlier sequence u.,, =
[t1,...,u,—1]. High surprisal of the unit denotes that it is very unexpected and hard to process for
the person receiving the information, while units with lower surprisal are easier to process. In this
sense, surprisal can be perceived as information content. To capture the overall cognitive load of a
message, we aggregate this surprisal across all units in the sequence. Given a sequence of utterance
u, the total processing effort can be expressed as:

N
ProcessingEffort (u) o Z s(ty).

n=1
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If information is concentrated in a few highly surprising units, the receiver experiences sharp spikes
in processing difficulty; if it is too sparse, communication becomes inefficient. The high-level
intuition of the UID hypothesis is that the most efficient strategy is to distribute surprisal as evenly as
possible across the sequence, maintaining a stable level of processing effort. This tendency has been
empirically observed across syllables, words, syntax, and discourse.

While UID has been extensively validated in human language, its implications for machine reasoning
remain unexplored. LLMs, or more specifically, recent reasoning models such as Deepseek-R1 [24]
and Qwen3 [25] generate CoT traces step-by-step, much like how human speech unfold over time. If
we treat each reasoning step z; like a unit with surprisal s(z;), a single reasoning trace z = 21, 22,
..., zZN] can be analyzed in the same way to have the total effort:
N
ReasoningEffort(z) o Z s(zn)-
n=1

Here, a natural question arises: does UID hypothesis hold for good reasoning patterns in LLMs? A
smooth, uniform surprisal profile may reflect clear and logical reasoning, while sharp spikes may
signal confusion or errors. We extend UID hypothesis beyond psycholinguistics to probe the structure
of CoT reasoning of LLMs, offering a new lens on why reasoning models succeed or fail.

3.2 Preliminary analysis with per-step information density scores of reasoning traces

We start by defining the step-level information density I D, for a reasoning trace z = [z1, ..., z2n]
with NV steps, where each reasoning step z; is composed of M; tokens, i.e., z; = [z1, ..., 2] We
divide the reasoning steps of a single trace of a reasoning model, Qwen3-8B, by \n\n, following
Lightman et al. [26]. Then, let p;(v) be the predictive distribution over the vocabulary at the token
position ¢, and I; = log p;(x;) the log-probability of the generated token x;. To characterize ID;, we
consider three metrics over tokens in each step, as defined below.

3.2.1 Three metrics of I D;

In this work, we consider three metrics for ID;: (1) log-probability LP; as a confidence signal,
composed from the average token log-probability over step 4, (2) entropy H; as an uncertainty signal,
and (3) confidence gap D; as divergence signal defined as the difference between the log-probability
of the current and the previous step. Details of the metrics are given in Appendix C.1.

Average ID Scores Across Steps - aime test (Correct) Average ID Scores Across Steps - aime test (Incorrect)

1D Score
1D Score

00
Step Index Step Index

(a) Correct Traces (b) Incorrect Traces

Figure 1: Averaged I D scores ranging of correct and incorrect traces on AIME2025 test set tracked
with step-level information density.

3.2.2 Interpretation of the three metrics of I D; across a reasoning trace

Figure 1 compares the evolution of the three metrics — log-probability L P;, entropy H;, and confidence
gap D; — and its composite metric, across reasoning traces for correct and incorrect solutions on
AIME2025. For correct traces (Figure 1a), H; remains consistently low, while L P; and D; steadily
decrease, forming a smooth trajectory that culminates in a sharp drop of the composite I D; near the
final steps, to I D; score of 0.0. Incorrect traces (Figure 1b) starts higher, at average of higher than 1.0
ID; scores and show elevated and unstable L P; and D;, with erratic fluctuations and sudden drops.
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3.3 Measuring the uniformity of information density in reasoning trace

To measure the uniformity of information density in a reasoning trace, we first clarify what "uniform"
means. Prior psycholinguistic theory offers two perspectives [8, 27]. Global uniformity maintains a
stable surprisal rate across the trace, while local uniformity smooth, gradual step-level changes.

Grounded in these perspectives, we explore three UID metrics for LLM reasoning traces. (1) Variance
measures how much the surprisal values diverges from the mean. High variance means the reasoning
process is globally unstable, with large swings in information load across steps. (2) Gini coefficient
captures how unevenly the total information is distributed. A high Gini score means a few steps
dominate the process, creating potential reasoning bottlenecks. (3) Shannon evenness measures how
balanced the information distribution is, normalized to account for sequence length. High Shannon
evenness reflects a smooth, well-balanced reasoning process. Together, these metrics distinguish
between reasoning where uncertainty (entropy) is globally unstable (high variance) and unevenly
concentrated (high Gini, Shannon evenness). Full definitions are in Appendix C.3.

4 Unlike Human Communication, Global Non-uniform Information
Distribution Predicts Reasoning Success in LLMs

Table 1: Main Results. Accuracy results averaged over three random seeds. The best and second-best
scores are bold-faced and underlined, respectively. See Appendix D for more details.

Category Method AIME 2025  HMMT 2025  Minerva Math

Baselines Mean Accuracy 0.673 0.433 0.326
Self-Certainty 0.689 0.467 0.332
CoT-Decoding 0.678 0.444 0.330
Highest Confidence 0.633 0.389 0.328
Lowest Entropy 0.633 0.378 0.331

UID Measurement

Variance Highest UID Score (non-uniform) 0.722 0.456 0.342
Lowest UID Score (uniform) 0.644 0.433 0.322

Among the I D; metrics presented, we use entropy to compute the UID score. Among the three UID
metrics, global uniformity, measured by variance, emerges as the strongest predictor of reasoning
success. Selecting traces with the highest variance (low global uniformity) achieves 0.722 accuracy
on AIME and 0.342 on Minerva Math, representing absolute improvements of +4.9% and +1.6% over
the best-performing baseline (Self-Certainty: 0.689 on AIME, 0.332 on Minerva Math). On HMMT,
high-variance traces reach 0.456 accuracy, which is +2.3% higher than the Mean Accuracy baseline
(0.433). These results indicate that reasoning success is closely tied to low global uniformity, where
models exhibit large, deliberate swings in information density throughout their thought process rather
than maintaining a stable, uniform progression. Variance demonstrates consistent, cross-dataset gains,
making it the most reliable signal. Overall, our findings suggest that reasoning is most effective when
the model’s information flow is globally diverse, allowing it to shift focus dynamically and explore
alternative reasoning paths, leading to stronger final answers. Experiment details are in Appendix B.

5 Conclusion

Results show that low global uniformity strongly predicts correct reasoning, while local uniformity
exhibits mixed effects. This indicates that while reasoning traces share structural similarities with
natural language, their dynamics do not strictly adhere to the UID hypothesis. Instead, effective
reasoning appears to rely on irregular, globally non-uniform patterns, reflecting moments of abrupt
insight or decisive leaps. These findings highlight that the internal signals embedded in the structure
of reasoning traces can offer valuable guidance for model design. Future work could explore how to
harness these signals—rather than enforcing strict uniformity—to develop methods that adaptively
leverage the natural ebb and flow of reasoning, ultimately improving the robustness and interpretability
of reasoning models.
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A Implementation Details

A.1 Hyperparameters and GPU Setup.

For all our main results, we use Qwen3-8B thinking mode. We set the temperature to 0.6, top-p to
0.95, and top-k to 20, as stated in the Qwen3 Technical Report. We use 4xA6000 GPUs for all our
experiments.

B Experiment Setup

B.1 Evaluation and Benchmarks

We use accuracy for evaluation, and use three particularly challenging mathematical benchmarks,
AIME2025, HMMT2025, and Minerva Math. We sample each questions five times before the final
evaluation.

B.1.1 AIME 2025.

The American Invitational Mathematics Examination (AIME) is a prestigious US high school math
contest consisting of challenging integer-answer questions. The AIME 2025 benchmark uses
problems from the 2025 contests to evaluat an LLM’s mathematical reasoning by requiring a single
correct integer answer. The set used in our analysis contains of 30 questions.

B.1.2 HMMT 2025.

The Harvard-MIT Mathmematics Tournament (HMMT) is a renowned competition featuring diverse
problems in algebra, geometry, combinatorics, and number theory. The HMMT 2025 benchmark
uses newly released problems from the February 2025 tournament, providing a broader variety of
tasks than AIME. The set used in our analysis contains of 30 questions.

B.1.3 Minverva Math.

The Minerva Math benchmark consists of advanced quantitative problems sourced from
university-level STEM courses, including physics, chemistry, and higher mathematics. The set used
in our analysis contains of 272 questions.

B.2 Baseline Implementation

We re-implemeted all logic using vllm, unlike some of the codes initially released.


https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2305.20050
https://doi.org/10.1007/s10936-013-9273-3
https://arxiv.org/abs/2402.10200
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B.2.1 Mean Accuracy

This is the mean accuracy of all answers, which are sampled by 5 for each question.

B.2.2 Self-Certainty

This is the implementation of Kang et al. [18], where it first measures the confidence of each sampled
answer and select one via borda-voting.

B.2.3 CoT-Decoding

This is the implementation of the path selection strategy used in Wang and Zhou [28]. This method,
called CoT-decoding, identifies reasoning paths that contain CoT steps by measuring the model’s
confidence in the final answer tokens. It computes the average probability margin between the top-1
and top-2 tokens during answer decoding, denoted as A. Decoding paths with higher A values are
strongly correlated with correct CoT reasoning, enabling reliable extraction of CoT paths even when
they are not the most probable or majority paths.

B.2.4 Highest Confidence
This selects the path with the highest overall token confidence in the reasoning trace.

B.2.5 Lowest Entropy

This selects the path with the lowest overall token entropy in the reasoning trace.

C Details of /D and U D Operationalizations

C.1 Details of 1 D; metrics

Log-probability LP; of a step is the average token log-probability over step ¢

b.

1 i
LP=—— N ¢
bi—ai—I—lt;‘ t

Given token-level entropy H; as

Hy = — Zpt(”) log py(v),

veV
Step-level entropy H; is defined as

b.

1 i
H=—"S H,
bi—ai—i-lz t

t=a;

Log-probability gap D; is defined as

D;=LP,—LP_,
Using the three metrics above, we build a composite I D; score, defined as

ID;, =wrpLP; —wygH; +wpD;

where all weights are equally set as 1/3 at our current setting.
C.2 Averaged I D scores of correct and incorrect traces on HMMT2025 and Minerva Math
C.3 Mathematical Formulations of U /D Operationalizations
Let a reasoning trace z have N steps. Define the (non-negative) information density vector

UID(z) =u= (IDy,ID,,...,IDy), ID;>0
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C.3.1 Operationalizing UID(z) as Variance

To bound I D; € [0, 1], u is normalized with min-max normalization to map the non-negative
sequence to [0, 1].

Let

m= min ID;, M= min ID;
1<i<Nonin 1<6< Ninax

Then, the normalized I D; values are

et L
M—m' '

D) = N.

geeey

and their corresponding vector form for UID’(z) = u = (ID,...,IDy):

Define

a 1 & D]
S=> 1IDj, ,u:?ZID;, pi = —* (when S > 0)
=1 =1

S

Then, the population variance of the entries are
1 X
~N\ / 2
Var(® = 73 (D! -

C.3.2 Operationalizing UID(z) as Gini Coefficient

Sort I D; values from smallest to largest, where the sorted [ D} < --- < I Dy Then, the Gini
coefficient can be calculated as

T

G(u) = ;%T > (@i-T-1)ID;, (u>0).

i=1

C.3.3 Operationalizing U D(z) as Shannon Evenness

First compute Shannon entropy of the probability normalization p; = £ g L,

T
H(u) = —Zpi Inp; (S>0),
i=1

with maximum H,, = In N. Then, Shannon evenness can be calculated as
H(u)
InT

J' (u) = € [0,1].

D Additional Experiment Results

D.1 Main Results with Different Seeds

While other measures of local uniformity such as the Gini coefficient and Shannon evenness also
show competitive performance, their effectieveness is limited and more dataset-dependent.

D.2 Scaling models amplifies the role of global non-uniformity

As shown in Table 3, scaling model size from 1.7B to 8B reveals a clear trend where variance becomes
an increasingly strong predictor of reasoning success, outperforming all baselines at 8B.



Table 2: Main results across various seeds. Performance based on accuracy across three mathemati-
cal benchmarks: AIME 2025, HMMT 2025, and Minerva Math. The final sub-column will report
the mean and standard deviation across seeds. The best and second-best scores are bold-faced and
underlined, respectively.

Category Method AIME 2025 HMMT 2025 Minerva Math
Seed 42 Seed 1234 Seed 2025 Avg Seed42 Seed 1234 Seed 2025 Avg Seed42 Seed 1234 Seed 2025  Avg
Baselines Mean Accuracy 0.680 0.680 0.660 0.673 0453 0.420 0.427 0433 0329 0.325 0.324 0.326
Self-Certainty 0.700 0.633 0.733 0.689 0433 0.500 0.467 0467  0.346 0.331 0.320 0.332
CoT-Decoding 0.667 0.667 0.700 0.678  0.500 0.400 0.433 0444 0335 0.335 0.320 0.330
Highest Confidence 0.667 0.600 0.633 0.633  0.400 0.367 0.400 0.389  0.349 0.320 0316 0.328
Lowest Entropy 0.667 0.600 0.633 0.633  0.367 0.367 0.400 0378 0.349 0.320 0.324 0.331
Three Measures of UID
Variance Highest UID Score (non-uniform)  0.700 0.733 0.733 0722 0.467 0.433 0.467 0456  0.338 0.338 0.349 0.342
Lowest UID Score (uniform) 0.633 0.667 0.644 0433 0.433 0.433 0433 0335 0.319 0313 0.322
Gini Coefficient Highest UID Score (non-uniform)  0.667 0.667 0.656  0.433 0.333 0.467 0411 0338 0.316 0.320 0.325
Lowest UID Score (uniform) 0.667 0.700 0678  0.433 0.433 0.367 0411 0324 0.320 0.346 0.330
Shannon Evenness Highest UID Score (uniform) 0.700 0.667 0.667 0.678  0.433 0.367 0.400 0400  0.320 0.324 0.331 0.325
Lowest UID Score (non-uniform)  0.633 0.700 0.600 0.644  0.500 0.500 0.433 0478 0335 0.320 0.320 0.325

Table 3: Performance across different model sizes. Performance across Qwen3-1.7B, 4B, and
8B on AIME 2025. Each model is evaluated with three random seeds (42, 1234, 2025). The last
column within each model block shows the average across seeds. The best and second-best scores
are bold-faced and underlined, respectively.

Baselines | 1.7B | 4B | 8B

‘ Seed 42 Seed 1234  Seed 2025  Avg ‘ Seed 42 Seed 1234  Seed 2025  Avg ‘ Seed 42 Seed 1234  Seed 2025  Avg

Mean Accuracy 0.367 0.353 0.353 0.358 | 0.680 0.653 0.667 0.667 | 0.680 0.680 0.660 0.673

Self-Certainty 0.367 0.400 0.400 0.389 | 0.633 0.767 0.667 0.689 | 0.700 0.633 0.733 0.689

CoT-Decoding 0.333 0.300 0.300 0311 0.767 0.633 0.700 0.700 | 0.667 0.667 0.700 0.678

Highest Confidence 0.333 0.367 0.367 0.356 | 0.600 0.567 0.633 0.600 | 0.667 0.600 0.633 0.633

Lowest Entropy 0.333 0.367 0.367 0.356 | 0.567 0.567 0.633 0.589 | 0.667 0.600 0.633 0.633

Three Measures of UID |

Variance Highest UID Score (non-uniform) | 0.433 0.333 0.333 0.366 | 0.667 0.667 0.700 0.678 | 0.700 0.733 0.733 0.722
Lowest UID Score (uniform) 0.267 0.367 0.367 0.334 | 0.633 0.667 0.633 0.644 | 0.633 0.667 0.633 0.644

Gini Coefficient Highest UID Score (non-uniform) | 0.300 0.400 0.400 0.367 | 0.667 0.700 0.667 0.678 | 0.667 0.667 0.633 0.656
Lowest UID Score (uniform) 0.367 0.300 0.300 0.322 | 0.700 0.667 0.700 0.689 | 0.667 0.700 0.667 0.678

Shannon Evenness  Highest UID Score (uniform) 0.367 0.267 0.267 0.300 | 0.667 0.567 0.633 0.622 | 0.700 0.667 0.667 0.678
Lowest UID Score (non-uniform) 0.300 0.400 0.400 0.367 | 0.667 0.667 0.667 0.667 | 0.633 0.700 0.600 0.644
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