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Abstract

Recent advancements in semi-supervised learning
have focused on a more realistic yet challeng-
ing task: addressing imbalances in labeled data
while the class distribution of unlabeled data re-
mains both unknown and potentially mismatched.
Current approaches in this sphere often presup-
pose rigid assumptions regarding the class dis-
tribution of unlabeled data, thereby limiting the
adaptability of models to only certain distribu-
tion ranges. In this study, we propose a novel
approach, introducing a highly adaptable frame-
work, designated as SimPro, which does not rely
on any predefined assumptions about the distribu-
tion of unlabeled data. Our framework, grounded
in a probabilistic model, innovatively refines the
expectation-maximization (EM) algorithm by ex-
plicitly decoupling the modeling of conditional
and marginal class distributions. This separation
facilitates a closed-form solution for class distri-
bution estimation during the maximization phase,
leading to the formulation of a Bayes classifier.
The Bayes classifier, in turn, enhances the quality
of pseudo-labels in the expectation phase. Re-
markably, the SimPro framework not only comes
with theoretical guarantees but also is straightfor-
ward to implement. Moreover, we introduce two
novel class distributions broadening the scope of
the evaluation. Our method showcases consis-
tent state-of-the-art performance across diverse
benchmarks and data distribution scenarios. Our
code is available at https://github.com/
LeapLabTHU/SimPro.
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(a) Previous studies: assuming some distributions for unlabeled data

(b) Our SimPro: a simple probabilistic framework for a more realistic
scenario, making no assumption on the unlabeled data distribution

Realistic Long-tailed semi-supervised learning (ReaLTSSL)
Unlabeled data distribution is inconsistent with labeled data and unknown

Figure 1. The general idea of SimPro addressing the ReaLTSSL
problem. (a) Current methods typically rely on predefined or
assumed class distribution patterns for unlabeled data, limiting
their applicability. (b) In contrast, our SimPro embraces a more
realistic scenario by introducing a simple and elegant framework
that operates effectively without making any assumptions about
the distribution of unlabeled data. This paradigm shift allows for
greater flexibility and applicability in diverse ReaLTSSL scenarios.

1. Introduction
Semi-supervised learning (SSL) offers a viable solution
to the scarcity of labeled data by leveraging unlabeled
data (Tarvainen & Valpola, 2017; Berthelot et al., 2019b;
Miyato et al., 2018; Sohn et al., 2020). Common SSL algo-
rithms typically generate pseudo-labels for unlabeled data
to facilitate model training (Lee et al., 2013). However,
real-world data often adheres to a long-tailed distribution,
leading to a predominant focus on majority classes and re-
sulting in imbalanced pseudo-labels (Liu et al., 2019; Kang
et al., 2020; Du et al., 2024). This phenomenon, known
as long-tailed semi-supervised learning (LTSSL), presents
significant challenges in the field. Traditional LTSSL meth-
ods (Lai et al., 2022; Lee et al., 2021; Wei et al., 2022; 2021;
Kim et al., 2020) assume consistency in class distributions
between labeled and unlabeled data, an often unrealistic
premise. In practice, class distributions can be inconsis-
tent and unknown, especially as new data are continuously
collected or from different tasks. This ongoing integration
process can lead to significant shifts in class distributions.
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In response to these challenges, the concept of realistic long-
tailed semi-supervised learning (ReaLTSSL), which aims at
addressing the unknown and mismatched class distributions,
has garnered significant attention (Kim et al., 2020; Wei
et al., 2021; Oh et al., 2022; Wei & Gan, 2023). Notably,
recent works ACR (Wei & Gan, 2023) and CPE (Ma et al.,
2024) pre-define anchor distributions for unlabeled data
(Fig. 1 (a)). The ACR estimates the distributional distance
to adapt consistency regularization, while CPE involves
training multiple classifiers, each tailored to a specific class
distribution. However, this approach presupposes certain
knowledge about the unlabeled data distribution, prevent-
ing its applications in real-world scenarios where anchor
distributions may not represent all possible distributions.
Furthermore, the prevailing techniques often employ multi-
branch frameworks and introduce additional loss functions,
adding complexity and limiting their generality.

To address these limitations, we propose a Simple
Probabilistic (SimPro) framework for ReaLTSSL. We re-
visit pseudo-label-based SSL techniques through the lens
of the Expectation-Maximization (EM) algorithm. The EM
algorithm, a well-known iterative method in statistical mod-
eling, is particularly relevant in SSL for handling unob-
served latent variables, such as pseudo-labels of unlabeled
data. The E-step entails generating pseudo-labels with the
model, while the M-step involves model training using both
labeled and unlabeled data. In the context of unknown and
mismatched class distributions, the E-step may produce
biased pseudo-labels, diminishing the algorithm’s effective-
ness. Our SimPro avoids fixed assumptions about the unla-
beled data distribution, instead of innovatively extending
the EM algorithm for ReaLTSSL. Specifically, we explicitly
decouple the modeling of conditional and marginal distri-
butions. Such separation enables a closed-form solution for
the marginal distribution in the M step. Subsequently, this
solution is employed to train a Bayes classifier. This Bayes
classifier, in turn, improves the quality of pseudo-labels
generated in the E-step. Not only does SimPro offer high
effectiveness, but it is also easy to implement, requiring
minimal code modifications.

Moreover, we expand upon existing evaluation methods (Oh
et al., 2022), which primarily focus on three known class
distributions (consistent, uniform, and reversed), by intro-
ducing two novel realistic scenarios: middle and head-tail
distributions (Fig. 1 (b)). The middle distribution represents
a concentration of classes in the middle range of labeled
data’s classes, whereas the head-tail distribution indicates
a concentration at both extremes. Notably, our method is
theoretically general enough to handle any other distribution
patterns, since no prior assumptions are required.

We summarize our contributions as follows:

1. We present SimPro, a simple probabilistic framework tai-

lored for realistic long-tailed semi-supervised learning. This
framework does not presuppose any knowledge about the
class distribution of unlabeled data. It hinges on the explicit
estimation and utilization of class distributions within the
EM algorithm. SimPro effectively mitigates the challenges
posed by unknown and mismatched class distributions, step-
ping towards a more realistic LTSSL scenario.

2. We introduce two novel class distribution patterns for
unlabeled data, complementing the existing three standard
ones. This expansion facilitates a more comprehensive and
realistic evaluation of ReaLTSSL algorithms, bridging the
gap between theoretical models and practical applications.

3. Comprehensive experiments on five commonly used
benchmarks (CIFAR10/100-LT, STL10-LT, and ImageNet-
127/1k) and five distinct class distributions validate that our
SimPro consistently achieves SOTA performance.

2. Related Work
Semi-supervised learning (SSL) has gained prominence
through a subset of algorithms that use unlabeled data to
enhance model performance. This enhancement primarily
occurs through the generation of pseudo-labels, effectively
forming a self-training loop (Miyato et al., 2018; Berthelot
et al., 2019a;b; Huang & Du, 2022; Wang et al., 2023).
Modern SSL methodologies, such as those presented in
(Berthelot et al., 2019a; Sohn et al., 2020), integrate pseudo-
labeling with consistency regularization. This integration
fosters uniform predictions across varying representations
of a single image, thereby bolstering the robustness of deep
networks. A notable example, FixMatch (Sohn et al., 2020),
has demonstrated exceptional results in image recognition
tasks, outperforming competing SSL approaches.

The efficacy of SSL algorithms heavily relies on the quality
of the pseudo-labels they generate. However, both labeled
and unlabeled data follow a long-tailed class distribution
in the LTSSL scenario. Conventional SSL methods are
prone to produce biased pseudo-labels, which significantly
downgrade their effectiveness.

Long-tailed semi-supervised learning has garnered consid-
erable interest due to its relevance in numerous real-world
applications. In this domain, DARP (Kim et al., 2020) and
CReST (Wei et al., 2021) aim to mitigate the issue of biased
pseudo-labels by aligning them with the class distribution
of labeled data. Another notable approach (Lee et al., 2021)
employs an auxiliary balanced classifier, which is trained
through the down-sampling of majority classes, to enhance
generalization capabilities. These algorithms have markedly
improved performance but operate under the assumption of
identical class distributions for labeled and unlabeled data.

In addressing Realistic LTSSL challenges, DASO (Oh et al.,
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2022) innovates by adapting the proportion of linear and
semantic pseudo-labels to the unknown class distribution of
unlabeled data. Its success largely depends on the discrimi-
native quality of the representations, a factor that becomes
less reliable in long-tailed distributions. ACR (Wei & Gan,
2023), on the other hand, attempts to refine consistency reg-
ularization by pre-defining distribution anchors and achieves
promising results. CPE (Ma et al., 2024) trains multiple an-
chor experts where each is tasked to model one distribution.
However, such anchor distribution-based approaches might
not encompass all potential class distribution scenarios, and
their complexity could hinder the broader application.

3. Method
In this section, we first introduce the problem formulation
of ReaLTSSL (Sec. 3.1), setting the stage for our method.
Subsequently, we delve into the proposed simple and prob-
abilistic framework, SimPro (Sec. 3.2). We provide imple-
mentation details in Sec. 3.3 to elucidate SimPro further.

3.1. Preliminaries

Problem formulation. We begin by outlining the formu-
lation for the realistic long-tailed semi-supervised learn-
ing (ReaLTSSL) problem, laying the groundwork for our
approach. The setup involves a labeled dataset Dl =
{(xi, yi)}Ni=1 and an unlabeled dataset Du = {xi}Mi=1,
where xi ∈ Rd represents the i-th data sample and yi ∈
{0, 1}K is the corresponding one-hot label, with K denot-
ing the number of classes. The objective of ReaLTSSL is to
train a classifier Fθ : Rd 7→{0, 1}K , parameterized by θ.

Assumption 1. We assume a realistic scenario where la-
beled, unlabeled, and test data share the same conditional
distribution P (x|y), yet may exhibit distinct marginal distri-
butions P (y). Crucially, the marginal distribution P (y) of
the unlabeled data remains unknown.

Further, we consider five diverse distributions for the unla-
beled data (Fig. 1), reflecting various real-world situations.

The EM algorithm in semi-supervised learning. In SSL,
pseudo-labeling is a key technique for leveraging unlabeled
data. This involves creating pseudo-labels for the unlabeled
data using the model and then training the model with both
the pseudo-labeled and ground-truth data. This aligns with
the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977), where the E-step generates pseudo-labels, and
the M-step updates the parameters using the pseudo-labels,
maximizing the likelihood function.

Our method builds on a popular algorithm FixMatch (Sohn
et al., 2020), which integrates consistency regularization
in the standard SSL setting. Pseudo-labels are created
via weakly-augmented unlabeled data and applied to train

strongly-augmented samples based on a confidence thresh-
old. The loss for unlabeled data is

Lu(xi) = I(max(qω) ≥ t) · H(argmax(qω), qΩ), (1)

where qω and qΩ represent the prediction logits for weakly
and strongly augmented samples, respectively, H denotes
the cross-entropy loss, and t is the confidence threshold.

Long-tailed learning. In typical SSL scenarios, the as-
sumption of identical distributions for labeled, unlabeled,
and test data often prevails. However, long-tailed learning
tasks usually involve imbalanced training sets and balanced
test sets, leading to discrepancies in the prior distribution of
P (y) between training and testing data. Some studies (Ren
et al., 2020; Menon et al., 2021; Hong et al., 2021) tackle
this via Bayesian inference, introducing a prior distribution
over class labels:

Ll(x) = − logP (y|x;θ,π)

= − log
P (y;π)P (x|y;θ)

P (x)

= − log
ϕy exp(fθ(x, y))∑
y′ ϕy′ exp(fθ(x, y′))

, (2)

where ϕy denotes the class frequency in the training or
test set, π is the class distribution parameter and θ is the
parameter of P (x|y)/P (x). Here we omit the parameter of
P (x) for simplicity. The detailed mathematical derivation
is provided in App. A.

While supervised learning allows for a known distribution
parameter π, enabling a direct application to model P (y)
and explicit decoupling from θ, ReaLTSSL poses a greater
challenge as the prior π for unlabeled data is unknown. This
necessitates innovative approaches to adapt to the imbal-
anced data while maintaining model efficacy.

3.2. SimPro Framework

Framework overview. In the realistic semi-supervised
learning (ReaLTSSL) context, the conventional assumption
of independent and identically distributed (i.i.d.) labeled and
unlabeled data is no longer valid. Moreover, the marginal
(class) distribution P (y) of the unlabeled data may be incon-
sistent with that of the labeled data and remains unknown,
which challenges the traditional SSL frameworks.

To overcome this, we introduce SimPro, an elegant and
effective probabilistic framework adapted for the unique
ReaLTSSL setting. Illustrated in Fig. 2, SimPro distinctively
decouples π and θ, unlike traditional SSL methods (Sohn
et al., 2020). In the E-step, we generate pseudo-labels using
the parameters π and θ obtained from the previous M-step.
The M-step then models the conditional distribution P (x|y)
using network parameters θ, which are optimized through
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Figure 2. The SimPro Framework Overview. This framework distinctively separates the conditional and marginal (class) distributions. In
the E-step (top), pseudo-labels are generated using the current parameters θ and π. In the subsequent M-step (bottom), these pseudo-labels,
along with the ground-truth labels, are utilized to compute the Cross-Entropy loss (refer to Eq. (13)), facilitating the optimization of
network parameters θ via gradient descent. Concurrently, the marginal distribution parameter π is recalculated using a closed-form
solution based on the generated pseudo-labels (as detailed in Eq. (7)).

gradient descent. Simultaneously, we derive a closed-form
solution for the class distribution P (y), represented by π.

It is worth noting that the treatment of the π in our frame-
work is not heuristic. It is firmly rooted in probabilistic
modeling and the principles of the EM algorithm, providing
theoretical soundness as substantiated in Props. 1 and 2.

Probabilistic model. In addressing the ReaLTSSL chal-
lenge, we adopt an Expectation-Maximization (EM) ap-
proach, underpinned by a robust probabilistic model. The
model is governed by the fundamental principles of condi-
tional probability, as shown in:

P (y,x;θ,π) = P (y|x;θ,π)P (x). (3)

Here, we do not explicitly parameterize P (x), as per the
independence of parameters through conditional parameter-
ization (Koller & Friedman, 2009). Thus, when x is not a
condition, the parameters of the relevant notions omit the
parameters of P (x), such as P (x), P (x|y), P (x, y), etc.
According to Eq. (2), this may lead to a potential misun-
derstanding, as the equation P (x) =

∑
y P (x|y;θ)P (y;π)

seems to suggest that P (x) is parameterized by θ and π,
which is not the case. The detailed mathematical derivation
is provided in App. A.

We focus on estimating the parameters θ and π, pivotal for
learning a discriminative model. Consequently, we concen-
trate on those terms dependent on θ and π, sidelining those
independent of these parameters.

The complete data log-likelihood is thus articulated as:

P (y|x;θ,π) =
N∏
i=1

P (yi|xi;θ,πl)

M∏
j=1

P (yj |xj ;θ,πu), (4)

where π = {πl,πu} signifies the class distributions for
labeled and unlabeled data, respectively, with N and M
representing the number of labeled/unlabeled samples.

E-step (generating pseudo-labels). By Eq. (4), the ex-
pected complete data log-likelihood Q function is derived
from the preceding iteration’s parameters, θ′ and π′:

Q(θ,π;θ′,π′) = Ey|x;θ′,π′ [logP (y,x;θ,π)] (5)

=
∑
i

logP (yi|xi;θ,πl)

+
∑
j,y

P (y|xj ;θ
′,π′) logP (y|xj ;θ,πu).

The E-step involves generating soft pseudo-labels
P (y|xj ;θ

′,π′) under the current θ′ and π′. These soft
pseudo-labels are specifically defined by Eq. (10), which is
detailed in Prop. 2. In the subsequent M-step, these pseudo-
labels are used alongside the one-hot labels of the labeled
data to compute the cross-entropy loss.

M-step (optimizing θ and π). The M-step focuses on
optimizing the expected complete data log-likelihood Q-
function concerning the parameters θ and π.
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(a) Optimization of π: The closed-form solution for π can be
derived directly from the Q-function (Eq. (5)). Specifically,
the terms involving π in Q(θ,π;θ′,π′) are given by∑

i

logP (yi;πl) +
∑
j,y

P (y|xj ;θ
′,π′) logP (y;πu). (6)

Proposition 1 (Closed-form Solution for π). The optimal
π̂ that maximizes Q(θ,π;θ′,π′) is

π̂l =
1

N

N∑
i=1

yi, π̂u =
1

M

M∑
j=1

P (y|xj ;θ
′,π′). (7)

(b) Optimization of θ: The network parameters θ, unlike
π which have a closed-form solution, are optimized using
standard stochastic gradient descent (SGD). Combining with
Eq. (2), the terms involving θ in Q(θ,π;θ′,π′) are

(
∑
i

+
∑
j,y

P (y|xj ;θ
′,π′)) log

P (x|y;θ)
P (x)

(8)

=(
∑
i

+
∑
j,y

P (y|xj ;θ
′,π′)) log

exp(fθ(x, y))∑
y′ ϕy′ exp(fθ(x, y′))

,

which simplifies to the supervised scenario in Eq. (2) by
treating P (y|xj ;θ

′,π′) as soft labels. Maximizing Eq. (8)
corresponds to minimizing the cross-entropy loss. Here, ϕy′

is interpreted as the estimated overall frequency of class y′.
The optimization of model parameters θ using the overall
frequency vector ϕ is crucial for learning a Bayes classifier.
Proposition 2 (Bayes Classifier). In conjunction with the
high-confidence filtering (Eq. (1)), the optimal ϕ̂ for learn-
ing a Bayes classifier is mathematically derived as:

ϕ̂ = [ϕ̂1, ϕ̂2, · · · , ϕ̂K ]

=
1

N +M
(
∑
i

yi +
∑
j

P (y|xj ;θ
′,π′)). (9)

Subsequently, with the model parameter θ which is opti-
mized using the ϕ̂, the corresponding Bayes classifier for
unlabeled or test dataset with estimated or uniform class
distribution is defined by the equation:

P (y|x;θ; π̂) = P (y; π̂) exp(fθ(x, y))∑
y′ P (y′; π̂) exp(fθ(x, y′))

, (10)

or P (y|x;θ) = exp(fθ(x, y))∑
y′ exp(fθ(x, y′))

. (11)

Building upon Prop. 2, it is crucial to acknowledge that
the parameter vector ϕ is vital for learning Bayes classi-
fiers. Consequently, to delve deeper into the theoretical
foundations, we evaluate the impact of ϕ on the model’s
performance. In line with the principles of online decision
theory, we establish a regret bound for the decision error
rate on the test set, denoted as P (e;ϕ). Our analysis is sim-
plified by concentrating on a binary classification scenario,
where the labels y belong to {−1,+1}.

Algorithm 1 Pseudocode of SimPro in a PyTorch-like style.

# N_e: (K,), where N_e[k] denotes the number of
labeled data in class k in one epoch

# pi_u: (K,), the class distribution parameters of
unlabeled samples

# phi: (K,), the overall class frequency
# f: deep network parameterized by theta
# alpha, tau, m: hyper-parameters
# CE: CrossEntropyLoss
# aug_w, aug_s: weak and strong augmentation
pi_u.init(uniform)
phi.init(consistent)
for epoch in range(epochs):

pi_e = zeros(K) # temporary estimation of pi_u
# load labeled and unlabeled samples
for (x_l, y_l), x_u in zip(loader_l, loader_u):

# E step: generating pseudo labels
lgt_l = f.forward(aug(x_l))
lgt_w = f.forward(aug_w(x_u)).detach()
lgt_s = f.forward(aug_s(x_u))
# Bayes classifer
psd_lbs = softmax(lgt_w + tau*log(pi u), dim=-1)
# filter out pseudo labels with high confidence
mask = max(psd_lbs, dim=-1)[0].ge(t)

# M step: solving pi and phi, optimizing theta
# solve pi_u with Eq. (7)
pi e += sum(psd lbs[mask], dim=0)
# optimize f (theta) with Eq. (11)
loss_l = CE(lgt_l + tau * log(phi), y_l)
loss_u = mean(CE(lgt_s + tau * log(phi),

psd_lbs, reduction=’none’) * mask)
loss = alpha * loss_l + loss_u
loss.backward()
update(theta)

# update pi_u and phi
phi_e = (pi_e + N_e) / sum(pi_e + N_e) # Eq. (9)
# moving average
phi = m * phi + (1 - m) * phi_e
pi_u = m * pi_u + (1 - m) * pi_e / sum(pi_e)

Proposition 3 (Regret Bound). Let ϕ∗ denote the vector
ϕ obtained in Eq. (9) when pseudo-labels are replaced by
ground-truth labels. For the decision error rate P (e;ϕ) on
the test set, the regret bound is expressed as:

P (e; ϕ̂)− inf
ϕ

P (e;ϕ) ≤ 1

2ϕ∗
+1ϕ

∗
−1

|ϕ̂− ϕ∗|, (12)

where |ϕ̂− ϕ∗| = |ϕ̂+1 − ϕ∗
+1| = |ϕ̂−1 − ϕ∗

−1|.
Prop. 3 illustrates that the regret bound is primarily gov-
erned by the first-order term of the estimation deviation.
Additionally, it is inversely proportional to the ground truth
ϕ∗, highlighting the learning challenges associated with
imbalanced training data from a regret-bound perspective.

3.3. Implementation Details

Training objective for optimizing θ. In SimPro, the E-
step primarily involves generating pseudo-labels using pa-
rameters θ and π. Consequently, in the M-step, we first
focus on optimizing the network parameter θ guided by
Eq. (8) via Stochastic Gradient Descent (SGD). Building
on the FixMatch algorithm (Sohn et al., 2020), the overall
training objective is formulated as:

L = αLl + Lu, (13)
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Table 1. Top-1 accuracy (%) on CIFAR10-LT (N1 = 500,M1 = 4000) with different class imbalance ratios γl and γu under five different
unlabeled class distributions. † indicates we reproduce ACR without anchor distributions for a fair comparison.

consistent uniform reversed middle head-tail

γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100

γu = 150 γu = 100 γu = 1 γu = 1 γu = 1/150 γu = 1/100 γu = 150 γu = 100 γu = 150 γu = 100

FixMatch (Sohn et al., 2020) 62.9±0.36 67.8±1.13 67.6±2.56 73.0±3.81 59.9±0.82 62.5±0.94 64.3±0.63 71.7±0.46 58.3±1.46 66.6±0.87
w/ CReST+ (Wei et al., 2021) 67.5±0.45 76.3±0.86 74.9±0.80 82.2±1.53 62.0±1.18 62.9±1.39 58.5±0.68 71.4±0.60 59.3±0.72 67.2±0.48
w/ DASO (Oh et al., 2022) 70.1±1.81 76.0±0.37 83.1±0.47 86.6±0.84 64.0±0.11 71.0±0.95 69.0±0.31 73.1±0.68 70.5±0.59 71.1±0.32
w/ ACR† (Wei & Gan, 2023) 70.9±0.37 76.1±0.42 91.9±0.02 92.5±0.19 83.2±0.39 85.2±0.12 73.8±0.83 79.3±0.30 77.6±0.20 79.3±0.48

w/ SimPro 74.2±0.90 80.7±0.30 93.6±0.08 93.8±0.10 83.5±0.95 85.8±0.48 82.6±0.38 84.8±0.54 81.0±0.27 83.0±0.36

Table 2. Top-1 accuracy (%) on CIFAR100-LT and STL10-LT with different class imbalance ratios γl and γu. Due to the unknown
ground-truth labels of the unlabeled data for STL10, we conduct the experiments by controlling the imbalance ratio of the labeled data. †
indicates we reproduce the results of ACR without anchor distributions for fair comparison.

CIFAR100-LT (γl = 20, N1 = 50,M1 = 400) STL10-LT (γu = N/A)

γu = 20 γu = 1 γu = 1/20 γu = 20 γu = 20 N1 = 450, M = 1×105

consistent uniform reversed middle head-tail γl = 10 γl = 20

FixMatch (Sohn et al., 2020) 40.0±0.96 39.6±1.16 36.2±0.63 39.7±0.61 38.2±0.82 FixMatch (Sohn et al., 2020) 72.4±0.71 64.0±2.27
w/ CReST+ (Wei et al., 2021) 40.1±1.28 37.6±0.88 32.4±0.08 36.9±0.57 35.1±1.10 w/ CReST+ (Wei et al., 2021) 71.5±0.96 68.5±1.88
w/ DASO (Oh et al., 2022) 43.0±0.15 49.4±0.93 44.1±0.25 43.1±1.20 43.8±0.43 w/ DASO (Oh et al., 2022) 78.4±0.80 75.3±0.44
w/ ACR† (Wei & Gan, 2023) 40.7±0.57 50.2±0.82 44.1±0.14 42.4±0.47 41.1±0.09 w/ ACR (Wei & Gan, 2023) 83.0±0.32 81.5±0.25

w/ SimPro 43.1±0.40 52.2±0.16 45.5±0.34 43.6±0.35 44.8±0.56 w/ SimPro 84.5±0.39 82.5±0.25

where Ll and Lu represent the losses on labeled and unla-
beled data, respectively. The hyper-parameter α acts as a
scaling factor, the specifics of which are elucidated later.

For Ll, we modify it (originally the standard cross-entropy
loss) following Eq. (8):

Ll = − 1

B

B∑
i=1

log
exp(fθ(xi, yi))∑

y′ ϕτ
y′ exp(fθ(xi, y′))

, (14)

where τ is a hyper-parameter for enhancing adaptability to
long-tail distributions (Menon et al., 2021). B is batch size.

For Lu, we implement the standard SSL format (Eq. (1))
and adapt it for ReaLTSSL:

Lu = − 1

µB

µB∑
j=1

I(maxy(qy)) ≥ t)
∑
y

qy log py, (15)

where µ controls the number of unlabeled samples, and t is
a confidence threshold. The pseudo-label of weak augmen-
tation ω from the Bayes classifier (Eq. (10)) is denoted by

qy = P (y|ω(xj);θ, π̂), (16)

and the actual prediction py is obtained using strong aug-
mentation Ω and calibrated with ϕ as shown in Eq. (8):

py =
exp(fθ(Ω(xj), y))∑

y′ ϕτ
y′ exp(fθ(Ω(xj), y′))

. (17)

Moreover, in practical situations, the size of the unlabeled
dataset M is generally larger than that of the labeled dataset
N . To ensure a balanced sample size in each iteration, we

usually set µ=M/N in Eq. (15). In specific scenarios, we
further adjust the balance factor in Eq. (13) to α=µ·N/M<
1. This methodology effectively mitigates overfitting to the
labeled data (see Tabs. 6 and 7).

Closed-form solution of π. As discussed in Sec. 3.2, the
parameter π of marginal distribution P (y), has a closed-
form solution in the M-step. Therefore, unlike θ, which
requires SGD optimization, π (Eq. (7)) and ϕ (Eq. (9)) are
computed and updated via a moving average during training.

Extended EM algorithm and pseudo-code. Based on
the previous analysis, Our SimPro framework can be sum-
marized as an extended EM algorithm, which includes:

· E-step (Eq. (10)): Generating pseudo-labels using model
parameters θ and estimated distribution parameters π;

· M-step: Optimizing network parameters θ via SGD using
Eq. (8) (actually using Eq. (13)), and solving distribution
parameters π and hyper-parameters ϕ by Eq. (7) and Eq. (9).

For further clarity, the pseudo-code of SimPro is provided
in Alg. 1. The modifications we made to the core training
code, in comparison to FixMatch, are highlighted in bold.
In the SimPro, we incorporate just a single additional line of
code in the M-step to compute the closed-form solution of
π (Prop. 1). Furthermore, only four lines of code need to be
modified to construct a Bayes classifier (Prop. 2) and to bal-
ance the loss between labeled and unlabeled data (denoted
as α). These minor yet crucial adjustments demonstrate that
our SimPro framework is not only grounded in rigorous the-
oretical derivation but is also straightforward to implement
in practice, exemplifying both simplicity and elegance.
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Table 3. Top-1 accuracy (%) on ImageNet-127 (γl = γu ≈
286, N1 ≈ 28k, and M1 ≈ 250k) and ImageNet-1k (γl = γu =
256, N1 = 256,M1 = 1024) with different test class imbalance
ratios γt and image resolutions. † indicates we reproduce ACR
without anchor distributions for a fair comparison. The results of
γt ≈ 286 are sourced from ACR (Wei & Gan, 2023).

γt ≈ 286

ImageNet-127 32× 32 64× 64

FixMatch (Sohn et al., 2020) 29.7 42.3
w/ DARP (Kim et al., 2020) 30.5 42.5
w/ CReST+ (Wei et al., 2021) 32.5 44.7
w/ CoSSL (Fan et al., 2022) 43.7 53.9
w/ ACR (Wei & Gan, 2023) 57.2 63.6

w/ SimPro 59.1 67.0

ImageNet-127 γt = 1

FixMatch (Sohn et al., 2020) 38.7 46.7
w/ ACR† (Wei & Gan, 2023) 49.5 56.1
w/ ACR (Wei & Gan, 2023) 50.6 57.3

w/ SimPro 55.7 63.8

ImageNet-1k γt = 1

FixMatch (Sohn et al., 2020) – –
w/ ACR† (Wei & Gan, 2023) 13.2 23.4
w/ ACR (Wei & Gan, 2023) 13.8 23.3

w/ SimPro 19.7 25.0

4. Experiments
In this section, we first present the main results on vari-
ous ReaLTSSL benchmarks in Sec. 4.1. More analysis,
including the ablation studies and the visualization results,
is presented in Sec. 4.2 to further evaluate the effective-
ness of our SimPro. For detailed information regarding the
experimental setup, please refer to App. B.

4.1. Results

We first conduct experiments on the four representative
benchmark datasets with different class imbalance ratios.
We denote the class imbalance ratio of labeled, unlabeled,
and test data as γl, γu, and γt, respectively. Our method is
compared with five competitive baseline approaches, i.e.,
FixMatch (Sohn et al., 2020), CReST+ (Wei et al., 2021),
DASO (Oh et al., 2022), ACR (Wei & Gan, 2023), and
CPE (Ma et al., 2024). Note that for a fair comparison, we
first compare with ACR in the ReaLTSSL setting, where the
unlabeled class distribution is unknown and inaccessible.
Specifically, we compare our vanilla SimPro with ACR’s
variant that removes its pre-defined anchor distributions,
denoted as ACR†. Then we implement SimPro⋆ by also al-
leviating the anchor distributions in our SimPro framework,
comparing SimPro⋆ with the original ACR and CPE.

Main results and comparison with SOTA baselines.
The results are presented in Tab. 1 (for CIFAR10-LT),

Table 4. The impact of the predefined anchor distribution in ACR
and CPE (Ma et al., 2024) on CIFAR10-LT with γl = 150, N1 =
500, and M1 = 4000. ⋆ denotes that we use the predefined anchor
distributions to estimate P (y|π) in our SimPro. See more analysis
in the main text and more results in App. C.

γu = 150 γu = 1 γu = 1/150 γu = 150 γu = 150

consistent uniform reversed middle head-tail

CPE 76.8 81.0 80.8 – –
ACR 77.0 91.3 81.8 77.9 79.0

SimPro 74.2 93.6 83.5 82.6 81.0
SimPro⋆ 80.0 94.1 85.0 – –

Tab. 2 (for CIFAR100-LT and STL10-LT), and Tab. 3 (for
ImageNet-127/1k). It can be concluded that our method con-
sistently outperforms the competitors across all distributions
of unlabeled data and achieves SOTA performance. Notably,
SimPro exhibits significant performance improvements on
our two newly introduced distributions of unlabeled data:
middle and head-tail. This substantiates the robust general-
ization capabilities of SimPro across various distributions
that could potentially appear in real-world scenarios.

It is worth noting that compared to CIFAR10/100-LT,
STL10-LT is a more challenging dataset that mirrors the real-
world data distribution scenarios: an unknown distribution
for the unlabeled data. The results in Tab. 2 demonstrate the
significant improvements of SimPro over baseline methods.

Moreover, we also conduct experiments on ImageNet-127,
whose test dataset is imbalanced and consistent with the la-
beled data and unlabeled data. However, this is not suitable
as a benchmark for long-tail learning, as biased classifiers
tend to perform well in such scenarios, which is precisely
what we aim to avoid. Therefore, we resample it to achieve a
uniform test distribution (γt = 1). The results highlight that
our SimPro achieves substantial performance enhancements
when evaluated against this balanced test dataset. Beyond
this, we further conduct experiments on ImageNet-1k to val-
idate the performance of our method across a broader range
of classes. The results in Tab. 3 demonstrate that our SimPro
achieves state-of-the-art performance on ImageNet-1k.

The results of SimPro⋆ using anchor distributions. To
investigate the impact of the anchor distributions in ACR
and CPE (Ma et al., 2024), we also incorporate them into
our approach, referred to as SimPro⋆. Instead of calculating
the distribution distance and adjusting the consistency regu-
larization as in ACR or employing multiple anchor experts
as in CPE, our usage of these anchors is more straightfor-
ward: after training for five epochs, we calculate the distance
between our estimated distribution P (y|π) and the three an-
chor distributions (i.e. consistent, uniform, and reversed).
This calculation helps us predict the actual distribution and
construct the Bayes classifier. Then we fix the marginal
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Figure 3. Test the performance under more imbalance ratios on
CIFAR10-LT with γl = 150, N1 = 500, and M1 = 4000.

Table 5. Ablation study of estimating the marginal distribution
P (y|π) in M-step (Eq. (7)) and using it for constructing Bayes
classifier in E-step (Eq. (5)). We conduct the experiments on
CIFAR10-LT with γl = 150, N1 = 500, and M1 = 4000.

Distribution Estimation γu = 150 γu = 1 γu = 1/150 γu = 150 γu = 150

E-step M step consistent uniform reversed middle head-tail

✗ ✗ 40.7 35.3 43.2 27.1 47.7
✗ ✓ 64.1 92.6 78.6 64.9 74.8

✓ ✓ 74.2 93.6 83.5 82.6 81.0

distribution parameters π in the remainder of the training.

The results in Tab. 4 indicate that (1) the usage of anchor
distributions can significantly enhance the performance of
SimPro⋆, consistently outperforming the original ACR and
CPE; (2) our estimation for π is accurate (Fig. 5 further vali-
dates the accurate estimation of π); (3) when the pre-defined
anchors fail to cover the evaluated distributions (middle and
head-tail), SimPro outperforms ACR by a large margin; (4)
even compared to the original ACR, SimPro exhibits en-
hanced performance across all scenarios except the consis-
tent distribution. This demonstrates the superior robustness
and generalization ability of our method. We believe these
advantages guarantee a better adaptable nature for SimPro
in real applications and are more valuable than the accuracy
improvements when using the anchor distributions.

Evaluation under more imbalance ratios. Fig. 3 reports
the performance of SimPro under more imbalance ratios
of unlabeled data. The results indicate that our method
consistently outperforms ACR across all imbalance ratios,
further substantiating the robustness of our method.

4.2. Analysis

Ablation Study. We conduct a series of ablation studies to
validate the effectiveness of different components in SimPro.

(a) Marginal distribution estimation. We first investigate the
impact of the estimation for P (y|π) (M-step, Prop. 1) and

Table 6. Ablation study of µ = M/N (Eq. (15)) on CIFAR10-
LT with γl = 150, N1 = 500, and M1 = 4000. For the baseline
methods without our Bayes classifier, the performance drops sig-
nificantly when we set µ=M/N = 8. This large µ leads to an
imbalance between labeled and unlabeled samples in each mini-
batch. In contrast, our SimPro is not affected by such imbalance
thanks to the Bayes classifier (Prop. 2). Moreover, we effectively
leverage the large number of unlabeled data for a more accurate
estimate of the marginal distribution parameters π.

γu = 150 γu = 1/150 γu = 150 γu = 150

µ=M/N consistent reversed middle head-tail

FixMatch ✗ 62.9 59.9 64.3 58.3
✓ 40.7 43.2 27.1 47.7

w/ ACR ✗ 70.9 83.2 73.8 77.6
✓ 68.7 58.9 69.7 72.4

w/ SimPro ✗ 52.7 78.8 58.8 71.5
✓ 75.2 83.5 82.6 81.0

Table 7. Abalation study of α for balancing loss (Eq. (13)). The
results indicate that α substantially improves the model’s perfor-
mance and prevents the model from overfitting to labeled data.

CIFAR10-LT (γu = 1) CIFAR100-LT (γu = 1) STL10-LT (γu = N/A)

N1 = 500,M1 = 4000 N1 = 50,M1 = 400 N1 = 450,M = 1×105

α γl = 150 γl = 100 γl = 20 γl = 20 γl = 10

✗ 92.1 91.2 49.4 76.4 80.0

✓ 93.6 93.8 52.2 83.0 85.2

its usage in building the Bayes classifier for pseudo-label
generation (E-step, Prop. 2). The results in Tab. 5 substanti-
ate the high effectiveness and the necessity of this estimation
in driving the success of our approach, thereby validating
our methodology both theoretically and practically.

(b) More unlabeled samples (larger µ) in each iteration.
As mentioned in the experimental setup, we manually set
the ratio between unlabeled and labeled samples in each
training iteration as µ=M/N (Eq. (15)). In ACR or Fix-
match, this ratio is set as 2. To investigate the impact of
this adjustment, we adopt our setting of µ=M/N =8 for
ACR and Fixmatch. The results in Tab. 6 demonstrate that
our method can effectively leverage the unlabeled data for
a more accurate estimation of the marginal distribution pa-
rameters π. However, the baseline methods suffer from an
imbalanced number of labeled/unlabeled samples, because
of the absence of our Bayes classifier derived in Prop. 2.

(b) Scaling factor α. As elucidated in Sec. 3.3, we introduce
a scaling factor α=µ ·N/M (Eq. (13)) to mitigate the risk
of overfitting. This measure is primarily due to memory and
training environment limitations, which restrict the feasible
batch size and µ, when M ≫ N . In the test configurations
detailed in Tab. 7, the ratio M/N is about 30 for CIFAR and
67 for STL10-LT. An insufficient µ results in a dispropor-
tionately high number of labeled data within a mini-batch,
potentially leading to overfitting. Hence, we incorporate
the α to balance the losses between labeled and unlabeled
data. Our empirical findings demonstrate that the use of this
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with γl=150, N1=500, and M1=4000. The optimal performance is consistently achieved across different settings when the threshold
is set at t = 0.2 and 0.95, respectively.
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Figure 5. Visualization of the quality of the estimated distribution on CIFAR10-LT with γl=150, N1=500, and M1=4000. The KL
distances reduce to near-zero values after very few epochs.

simple parameter α can significantly enhance model perfor-
mance, particularly STL10-LT, where there is a substantial
disparity between the sizes of labeled and unlabeled data.

Hyperparameter Sensitivity. As outlined in App. B, we
discover that reducing the threshold value improves perfor-
mance for the CIFAR100-LT dataset. The rationale behind
adjusting the confidence threshold is based on the obser-
vation that an increase in the number of classes typically
results in a corresponding decrease in the confidence of the
predictions. Consequently, it becomes necessary to lower
the threshold to accommodate this change in confidence
levels. Sensitivity analysis regarding the threshold value
is presented in Fig. 4. It is consistently observed across
different settings that the optimal performance is achieved
when the threshold is set at t = 0.2 and t = 0.95 for the
CIFAR100-LT and CIFAR10-LT, respectively. Moreover, to
compare with ACR, we also conduct a sensitivity analysis
of the confidence threshold t for ACR. The results in Fig. 6
of App. C demonstrate that lowering the threshold does not
improve performance for ACR.

Visualization of Estimation Quality. Our study includes
a visualization of the estimated distribution quality in Fig. 5.
The vertical axis quantifies the Kullback-Leibler (KL) di-
vergence, which measures the deviation of the estimated
distribution from the ground truth. The results indicate a
significant improvement in estimation accuracy after only a

few training epochs. This empirical evidence validates the
effectiveness of the theoretically derived estimation method
of distribution, as outlined in Prop. 1.

5. Conclusion
In this paper, we introduce SimPro, a novel probabilistic
framework for realistic long-tailed semi-supervised learn-
ing (ReaLTSSL). This framework represents a pioneering
advancement in the field by innovatively enhancing the
Expectation-Maximization (EM) algorithm. The key innova-
tion lies in the explicit separation of the estimation process
for conditional and marginal distributions. In the M-step,
this separation allows for the derivation of a closed-form
solution for the marginal distribution parameters. Addition-
ally, SimPro optimizes the parameters of the conditional
distribution via gradient descent, facilitating the learning of
a Bayes classifier. In the E-step. the Bayes classifier, in turn,
generates high-quality pseudo-labels. SimPro is character-
ized by its elegant theoretical underpinnings and its ease
of implementation, which requires only minimal modifica-
tions to existing codebases. Furthermore, we incorporate
two innovative class distributions specifically for unlabeled
data. These distributions provide a more comprehensive and
realistic evaluation of ReaLTSSL algorithms. Empirical evi-
dence from various benchmarks demonstrates that SimPro
consistently delivers state-of-the-art performance, highlight-
ing its robustness and superior generalization capabilities.
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A. Details of the Probabilistic Model
We provide a detailed derivation and analysis to demonstrate that the probabilistic model is correctly defined with an
explicit parameterization of p(x; ξ). Given the independence of parameters through conditional parameterization (Koller &
Friedman, 2009), we can decompose the joint probability distribution as follows:

p(x, y; θ, π, ξ) = p(x; ξ)p(y|x; θ, π) = p(y;π)p(x|y; θ, ξ). (18)

Applying Bayes’ rule, we obtain:
p(y|x; θ, π)
p(y;π)

=
p(x|y; θ, ξ)
p(x; ξ)

. (19)

It is evident that π and ξ appear only on the left and right sides of the equation, respectively, indicating that the equation is
neither a function of π nor ξ but is parameterized solely by θ. We define the above equation as g(x, y; θ), that is:

p(x|y; θ, ξ)
p(x; ξ)

=
p(y|x; θ, π)
p(y;π)

= g(x, y; θ). (20)

Returning to the equation in the main paper, we have:

p(y|x; θ, π) = p(y;π)p(x|y; θ, ξ)
p(x; ξ)

= p(y;π)g(x, y; θ). (21)

Although we explicitly parameterize p(x; ξ), it is clear that p(y|x; θ, π) is parameterized solely by θ and π, and is independent
of ξ. In fact, the fitting target of the network parameters θ is g(x, y; θ) = p(x|y; θ, ξ)/p(x; ξ).

Since we did not explicitly parameterize p(x) in our framework, when x is not a condition, the parameters of the relevant
notions omit the parameters of p(x), such as p(x), p(x|y), p(x, y), etc. This may lead to a potential misunderstanding, as:

p(x) =
∑
y

p(x|y; θ)p(y;π) (22)

suggests that p(x) seems to be parameterized by θ and π. However, if we recover the omitted parameter of p(x), we have:

p(x; ξ) =
∑
y

p(x|y; θ, ξ)p(y;π) = p(x; ξ)
∑
y

g(x, y; θ)p(y;π) = p(x; ξ)
∑
y

p(y|x; θ, π) = p(x; ξ), (23)

which is consistent with the explicit parameterization of p(x; ξ).

Therefore, the probabilistic model is correctly defined without the explicit parameterization of p(x).

B. Experimental Setup
Datasets. To validate the effectiveness of SimPro, we employ five commonly used SSL datasets, CIFAR10/100 (Krizhevsky
et al., 2009), STL10 (Coates et al., 2011), ImageNet-127 (Fan et al., 2022) and orginal ImageNet-1k (Deng et al., 2009).
Following the methodology described in ACR (Wei & Gan, 2023), we denote the number of samples for each category in the
labeled, unlabeled dataset as N1≥· · ·≥NK , M1≥· · ·≥MK , respectively, where 1, · · · ,K are the class indices. We define
γl, γu, and γt as the class imbalance ratios for labeled, unlabeled, and test data, respectively. We specify ‘LT’ for those
imbalanced variants. These ratios are calculated as γl=N1/NK and γu=M1/MK . The sample number of the k-th class

follows an exponential distribution, expressed as Nk=N1 · γ
− k−1

K−1

l for labeled and Mk=M1 · γ
− k−1

K−1
u for unlabeled data.

As illustrated in Fig. 1, for the CIFAR10/100 datasets, we constructed five class distributions to test the performance of
different algorithms under more general settings. Regarding the STL10 dataset, due to the unknown ground-truth labels of
the unlabeled data, we approach the experiments by controlling the imbalance ratio of the labeled data.

For ImageNet-127, we follow the original setting in Fan et al. (2022) (γl=γu=γt ≈ 286). Nevertheless, this approach
does not serve as an appropriate benchmark for long-tail learning. In these scenarios, biased classifiers often exhibit high
performance, which is exactly the outcome we seek to prevent. Consequently, we also resample the test dataset to ensure
a uniform distribution (γt =1). Following Fan et al. (2022), we reduce the image resolution to 32 × 32 and 64 × 64 in
response to resource constraints.
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Training hyper-parameters. Our experimental setup mainly follows FixMatch (Sohn et al., 2020) and ACR (Wei & Gan,
2023). For example, we employ the Wide ResNet-28-2 (Zagoruyko & Komodakis, 2016) on CIFAR10/100 and STL10, and
ResNet-50 (He et al., 2016) on ImageNet-127. All models are optimized with SGD. Several settings are slightly different
from those in ACR: as outlined in Sec. 3.3, to achieve a balanced training, we set the ratio between unlabeled and labeled
samples in each batch as µ=M/N (8 on CIFAR, 16 on STL10-LT, and 2 on ImageNet-127, ), where M,N are the total
sample numbers of unlabeled/labeled data. In contrast, µ is set as 2 for all datasets in ACR. The effectiveness of this
adjustment is validated in Tab. 6.

The batch size for labeled data is 64 on CIFAR10/100 and STL10-LT, and 32 on ImageNet-127. To ensure a fair comparison,
the training epochs are reduced to 86 on CIFAR10/100 and STL10-LT, and 500 on ImageNet-127. The initial learning
rate η is linearly scaled to 0.17 on CIFAR10/100 and STL10-LT, and 0.01 on ImageNet-127, which decays with a cosine
schedule (Loshchilov & Hutter, 2017) as in ACR.

Regarding the hyperparameter τ used in Eq. (14), we follow the guidelines from Menon et al. (2021) and set τ=2.0 and 1.0
for CIFAR10-LT/STL10-LT and CIFAR100-LT/ImageNet-127, respectively.

For the confidence threshold t in Eq. (1)), we set t=0.95 on CIFAR10-LT/STL10-LT following Sohn et al. (2020). We
adjust it to 0.2 on CIFAR100-LT/Imagenet-127, as we observe that reducing the threshold enhances performance (Fig. 4).

Specifically, the settings on ImageNet-1k are identical to those on ImageNet-127.

C. More Experimental Results

Table 8. The impact of the predefined anchor distribution in
ACR (Wei & Gan, 2023) on CIFAR10-LT with γl = 100, N1 =
500, and M1 = 4000. ⋆ denotes that we use the predefined anchor
distributions to estimate P (y|π) in our SimPro.

γu = 150 γu = 1 γu = 1/150 γu = 150 γu = 150

consistent uniform reversed middle head-tail

ACR 81.6 92.1 85.0 73.6 79.8

SimPro 80.7 93.8 85.8 84.8 83.0
SimPro⋆ 82.7 94.3 86.0 – –

Table 9. The impact of the predefined anchor distribution in
ACR (Wei & Gan, 2023) on CIFAR100-LT with γl = 20, N1 =
50, and M1 = 400. ⋆ denotes that we use the predefined anchor
distributions to estimate P (y|π) in our SimPro.

γu = 150 γu = 1 γu = 1/150 γu = 150 γu = 150

consistent uniform reversed middle head-tail

ACR 44.9 52.2 42.3 42.6 42.6

SimPro 43.1 52.3 45.5 43.6 44.8
SimPro⋆ 45.9 53.8 46.0 – –
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Figure 6. Sensitive analysis of the confidence threshold t for ACR (Wei & Gan, 2023) on CIFAR100-LT with γl = 20, N1=50, and
M1=400 and CIFAR10-LT with γl=150, N1=500, and M1=4000. The optimal performance is achieved across different settings
when the threshold is set at 0.95.
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D. Proof of Proposition 1
Proof. We employ the method of Lagrange multipliers to find the optimal values of π̂l and π̂u that maximize the Q function
subject to the constraints of probability distributions (i.e., the elements of πl and πu must sum to 1). Let λl and λu be the
Lagrange multipliers for these constraints. The Lagrangian L can be formulated as 1:

L(πl,πu, λl, λu) =
∑
i

logP (yi;πl) +
∑
j,y

P (y|xj ;θ
′,π′) logP (y;πu)

− λl

(∑
y

πly − 1

)
− λu

(∑
y

πuy − 1

)
. (24)

The partial derivatives of L with respect to πl and πu are calculated as follows:

∂L
∂πl

=
∂

∂πl

(∑
i

logP (yi;πl)

)
− λl

∂

∂πl

(∑
y

πly − 1

)
, (25)

∂L
∂πu

=
∂

∂πu

∑
j,y

P (y|xj ;θ
′,π′) logP (y;πu)

− λu
∂

∂πu

(∑
y

πuy − 1

)
. (26)

Due to fact that P (y;π) is a categorical distribution, the derivatives are:

∂L
∂πly

=
∑
i

1{yi=y}

πly
− λl, (27)

∂L
∂πuy

=
∑
j

P (y|xj ;θ
′,π′)

1

πuy
− λu. (28)

Setting these partial derivatives to zero and solving for πly and πuy:

π̂ly =

∑
i 1{yi=y}

λl
, (29)

π̂uy =

∑
j P (y|xj ;θ

′,π′)

λu
. (30)

Applying the constraint that the sum of probabilities equals 1, we get:

∑
y

π̂ly = 1 ⇒ λl =
∑
y

∑
i

1 = N, (31)

∑
y

π̂uy = 1 ⇒ λu =
∑
y

∑
j

P (y|xj ;θ
′,π′) = M. (32)

Therefore, the optimal solutions are:

1y is the one-hot label, but when y is the subscript of a variable, it represents the y-th category, that is, ϕy = ϕargmax y . we omit this
difference without affecting the understanding.
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π̂l =
1

N

N∑
i=1

yi, π̂u =
1

M

M∑
j=1

P (y|xj ;θ
′,π′). (33)

E. Proof of Proposition 2
Proof. We structure our proof in two parts: First, we validate the proposition when training exclusively with labeled
data. Then, we extend our analysis to include scenarios incorporating unlabeled data. This approach stems from our
threshold-based strategy for filtering low-confidence pseudo labels in the training process. Initially, only labeled data are
used, gradually integrating unlabeled data as training progresses.

Case 1: Labeled Data Only

Our proof begins by revisiting the definition of Q(θ,π;θ′,π′) with respect to θ:

Q(θ) =
∑
i

log
exp(fθ(xi, yi))∑

y′ ϕy′ exp(fθ(x, y′))

=
∑
i

(
log

ϕyi
exp(fθ(xi, yi))∑

y′ ϕy′ exp(fθ(x, y′))
− log ϕy

)
. (34)

Ignoring the constant term, maximizing Q(θ) is equivalent to minimizing the empirical risk:

Remp(θ) = − 1

N

∑
i

log
ϕyi exp(fθ(xi, yi))∑
y′ ϕy′ exp(fθ(x, y′))

. (35)

The empirical risk serves as an approximation of the expected risk, with Dl denoting the distribution of labeled data:

Rexp(θ) = −E(x,y)∼Dl
logQ(y|x)

= −
∫
x

∑
y

P (y|x) logQ(y|x) dx

=

∫
x

H(P (y|x)) +DKL(P (y|x)||Q(y|x)) dx, (36)

where Q(y|x) is defined as:

Q(y|x) = ϕy exp(fθ(x, y))∑
y′ ϕy′ exp(fθ(x, y′))

. (37)

With the non-negativity and zero-equality conditions of KL divergence, minimizing the expected risk implies:

ϕy exp(fθ(x, y))∑
y′ ϕy′ exp(fθ(x, y′))

= P (y|x) = πlyP (x|y)
Pl(x)

. (38)

We aim to validate the Bayes classifier:

P (y|x;θ,π) = P (y;π) exp(fθ(x, y))∑
y′ P (y′;π) exp(fθ(x, y′))

, (39)

which leads to the formulation:
πyP (x|y)
P̂ (x)

=
πy exp(fθ(x, y))∑
y′ πy′ exp(fθ(x, y′))

. (40)

Integrating Eq. (38) with Eq. (40) yields:

ϕy∑
y′ ϕy′ exp(fθ(x, y′))

=
πlyP̂ (x)

Pl(x)
∑

y′ πy′ exp(fθ(x, y′))
. (41)
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Summing over y in Eq. (41) leads to:

∑
y

ϕy = C =
P̂ (x)

∑
y′ ϕy′ exp(fθ(x, y

′))

Pl(x)
∑

y′ πy′ exp(fθ(x, y′))]
. (42)

Substituting Eq. (42) into Eq. (41) results in:
ϕy = Cπly. (43)

As the constant C becomes irrelevant in the logarithmic term of Q(θ), in light of Prop. 1, we deduce the optimal ϕ̂:

ϕ̂ =
1

N

N∑
i=1

yi. (44)

Case 2: Labeled and Unlabeled Data

Expanding our proof to include both labeled and unlabeled data, our optimization objective remains consistent: maximizing
Q(θ) by minimizing the empirical risk:

Remp(θ) = − 1

N +M
(
∑
i

+
∑
j,y

P (y|xj ;θ
′,π′)) logQ(y|x). (45)

This risk approximates the expected risk over D:

Rexp(θ) = −E(x,y)∼D logQ(y|x), (46)

where D represents the mixture distribution of both labeled and unlabeled data and its density is:

PD(x, y) =
N

M +N
Pl(x, y) +

M

M +N
Pu(x)P (y|x;θ′,π′). (47)

Acknowledging that P (y|x;θ′,π′) is a Bayes classifier, we conclude:

PD(x, y) =

(
N

M +N
πly +

M

M +N
πuy

)
P (x|y), (48)

which leads to the formulation:

PD(y) =
N

M +N
πly +

M

M +N
πuy, PD(x|y) = P (x|y). (49)

Following the same logic as in the labeled data case:

ϕy exp(fθ(x, y))∑
y′ ϕy′ exp(fθ(x, y′))

= PD(y|x) =
PD(y)P (x|y)

PD(x)
. (50)

This results in:
ϕy = C · PD(y). (51)

In accordance with Prop. 1, we determine the optimal ϕ̂ as:

ϕ̂ =
N

M +N
π̂l +

M

M +N
π̂u

=
1

N +M
(
∑
i

yi +
∑
j

P (y|xj ;θ
′,π′)). (52)
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F. Proof of Proposition 3
Proof. We begin by examining P (e; ϕ̂). The decision error rate is mathematically defined as follows:

P (e) =

∫
x

P (e|x)P (x) dx, P (e|x) =

{
P (−1|x) if decision is + 1;

P (+1|x) if decision is − 1.
(53)

This formulation quantifies the error in decision-making by integrating the conditional error rates across all possible
outcomes.

Building upon the Bayes optimal classifier as outlined in Eq. (11), the posterior probability essential for decision-making on
the test set is expressed as:

Pd(y|x) ∝ exp(fθ(x, y)). (54)

Here, fθ(x, y) represents the model’s discriminative function, parameterized by θ, for decision outcome y given an input x.

The ground truth distribution, as approximated by parameters ϕ̂ and θ, is denoted by P (y;ϕ∗) and P (x|y), respectively.
The formal relationship between the estimated and true distributions is expressed as follows:

ϕ̂y exp(fθ(x, y))∑
y′ ϕ̂y′ exp(fθ(x, y′))

=
ϕ∗
yP (x|y)∑

y′ ϕ∗
y′P (x|y′)

, (55)

indicating a proportional relationship between the model’s estimation and the true data distribution.

Integrating the formulation of posterior probability with the relationship between estimated and true distributions allows us
to derive the following expression:

Pd(y|x) ∝ exp(fθ(x, y))

∝
ϕ∗
y

ϕ̂y

P (x|y)

∝
ϕ∗
y

ϕ̂y

P (y|x), (56)

where the final step is justified by the fact that the class distribution in the test set is uniform.

The decision criterion is thus formulated as:

decision =

{
+1 if l(x) ≥ λ;

−1 if l(x) ≤ λ,
(57)

where

l(x) =
P (+1|x)
P (−1|x)

, λ =
ϕ̂+1ϕ

∗
−1

ϕ̂−1ϕ∗
+1

. (58)

We assume λ ≤ 1 without loss of generality, due to the symmetric nature of the decision problem.

The decision error rate is then expressed as:

P (e; ϕ̂) =

∫
x

P (e|x; ϕ̂)P (x) dx, P (e|x; ϕ̂) =

{
P (−1|x) if l(x) ≥ λ;

P (+1|x) if l(x) ≤ λ.
(59)

Minimizing the decision error rate is achieved when ϕ̂ = ϕ∗, leading to the Bayes decision error rate, which is the theoretical
lower bound of error rates across all possible distributions.

inf
ϕ

P (e;ϕ) = P (e;ϕ∗) =

∫
x

P (e|x;ϕ∗)P (x) dx, P (e|x;ϕ∗) =

{
P (−1|x) if l(x) ≥ 1;

P (+1|x) if l(x) ≤ 1.
(60)
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Finally, comparing P (e; ϕ̂) with the optimal decision error rate, we explore the difference:

P (e; ϕ̂)− inf
ϕ

P (e;ϕ) =

∫
λ≤l(x)≤1

|P (−1|x)− P (+1|x)|P (x) dx

=

∫
λ≤l(x)≤1

|1− l(x)|P (−1|x)P (x) dx

≤ (1− λ)

∫
λ≤l(x)≤1

P (−1, x) dx

≤ (1− λ)

∫
x

P (−1, x) dx

= (1− λ)P (−1)

=
1− λ

2

=
ϕ̂−1 − ϕ∗

−1

2ϕ∗
+1ϕ̂−1

≤ 1

2ϕ∗
+1ϕ

∗
−1

(ϕ̂−1 − ϕ∗
−1)

=
1

2ϕ∗
+1ϕ

∗
−1

|ϕ̂− ϕ∗|, (61)

where the final inequality is justified by the condition that ϕ̂−1 ≥ ϕ∗
−1 due to λ ≤ 1.
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