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Abstract

We propose a new task for assessing machines’001
skills of understanding fictional characters in002
narrative stories. The task, TVSHOWGUESS,003
builds on the scripts of TV series and takes the004
form of guessing the anonymous main charac-005
ters based on the backgrounds of the scenes and006
the dialogues. Our human study supports that007
this form of task covers comprehension of mul-008
tiple types of character persona, including un-009
derstanding characters’ personalities, facts and010
memories of personal experience, which are011
well aligned with the psychological and liter-012
ary theories about the theory of mind (ToM) of013
human beings on understanding fictional char-014
acters during reading. We further propose new015
model architectures to support the contextu-016
alized encoding of long scene texts. Experi-017
ments show that our proposed approaches sig-018
nificantly outperform baselines, yet still largely019
lag behind the (nearly perfect) human perfor-020
mance. Our work serves as a first step toward021
the goal of narrative character comprehension.022

1 Introduction023

Stories have two essential elements, plots and char-024

acters (McKee, 1997). Character comprehension025

has been widely recognized as key to understand-026

ing stories, by psychology, literary and education027

research (Bower and Morrow, 1990; Kennedy et al.,028

2013; Currie, 2009; Paris and Paris, 2003; Dymock,029

2007). When reading stories, humans can build030

mental models for characters based on their per-031

sona, which helps people to explain a character’s032

emotional status (Gernsbacher et al., 1998), iden-033

tity, understand her future behaviors (Mead, 1990),034

and even make counterfactual inference for her own035

story for that character (Fiske et al., 1979).036

The ultimate goal of character comprehension037

is to equip machines with these human abilities038

which has direct practical significance. For exam-039

ple, persona can facilitate story generation (Riedl040

and Young, 2010) and chatbots building (Mairesse041

Figure 1: A scene example from TVSHOWGUESS. The
character Amy can be determined within the scene or with the
fact of her relationship; while guessing Sheldon would require
memory of the character from previous episodes.

and Walker, 2007; Zhang et al., 2018; Urbanek 042

et al., 2019). More importantly, understanding the 043

persona of a particular person can help chatbots to 044

understand the intention behind this person’s lan- 045

guage (Bender and Koller, 2020), which can lead 046

to better services and ultimately give AI the ability 047

to empathize. For instance, Amy’s last sentence 048

in Figure 1 is a joking braggadocio to remind her 049

boyfriend to value her more. Only when Sheldon 050

understood the facts of their relationship as a cou- 051

ple and Amy’s temporary show-off mentality could 052

he see her true intentions. 053

Despite the importance, there has been limited at- 054

tention to modeling characters in stories in the nat- 055

ural language processing (NLP) community.1 Most 056

existing character-centric prediction tasks have the 057

input sources in expository text such as synopsis 058

(summaries) of stories (Brahman et al., 2021) or 059

non-narrative dialogues (Zhang et al., 2018; Ur- 060

banek et al., 2019; Li et al., 2020). A few excep- 061

1In contrast, plot comprehension is a popular NLP topic,
especially on event structures (Finlayson, 2012; Elsner, 2012;
Sims et al., 2019; Lal et al., 2021; Han et al., 2021).
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tions work on stories, but focus on limited aspects062

of persona, such as facts for coreference resolu-063

tion (Chen and Choi, 2016), personality (Bam-064

man et al., 2013; Flekova and Gurevych, 2015)and065

character relationships (Iyyer et al., 2016), with066

only Chen and Choi (2016); Flekova and Gurevych067

(2015) provided evaluation benchmarks. Besides068

the limited persona aspect coverage, they also lack069

the ability to take into account a theory of mind070

(ToM) which is the knowledge of epistemic men-071

tal states that humans use to describe, predict, and072

explain behavior (Baron-Cohen, 1997).073

In this paper, we propose the first task on char-074

acter comprehension in stories, to assess the ability075

of mental model construction in NLP. A character’s076

words is her direct reflection to the contexts, condi-077

tioned on her character model (Holtgraves, 2010).078

Our task, TVSHOWGUESS (TVSG), aims to guess079

anonymous speakers using dialogues, scene de-080

scriptions and historical scenes, which requires081

models to interpret the behavior of characters in the082

form of dialogues, which meets the requirements083

for the evaluation of ToMs.084

Through experiments and human studies we085

found: First, the human performance was nearly086

perfect, while the model performed poorly. Sec-087

ond, although our TVSG has a simple task setup,088

it has a surprisingly wide coverage of persona un-089

derstanding skills including the linguistic styles,090

personality types, factoids, personal relations, and091

the memories of characters’ previous experience.092

Third, most of the cases (>60%) require identifi-093

cation and understanding of characters’ historical094

experiences to resolve. Among them, many rely on095

facts of characters that are not explicitly described096

in texts but need to be inferred from history events.097

The wide persona coverage and heavy history de-098

pendency challenge existing NLP techniques; and099

explains the more than 20% accuracy gap between100

our baselines and humans.101

We make the following contributions:102

(1) We propose the direction of character com-103

prehension in stories; with an extended survey (Sec-104

tion 2 and Appendix A) discussing the differences105

and unique challenges compared to related work.106

(2) We propose the first task and dataset for this107

research direction (Section 3).108

(3) We propose a new schema to analysis the109

required evidence for character understanding; and110

conduct human studies to analyze the required111

skills of our task (Section 4 and Appendix C).112

(4) We propose new model architectures as the 113

initial step of this direction; and conduct compre- 114

hensive experiments to provide insights to future 115

work (Section 5 and 6). 116

2 Related Work 117

In this section we mainly discuss and compare re- 118

lated work in the two most relevant directions: the 119

assessment benchmarks to the general narrative 120

comprehension skills; and the tasks specifically de- 121

signed for character-centered predictions over nar- 122

ratives. Table 1 gives a summary of these narrative 123

comprehension tasks, associated with their required 124

skills of comprehension. We also reviewed studies 125

on character-centered tasks over non-narrative texts 126

like synopses and chit-chat (i.e., not story-related) 127

conversations. Detailed rationales of the required 128

skills for each task are discussed in Appendix A. 129

Assessment of Narrative Comprehension There 130

are many forms of reading comprehension tasks 131

such as cloze tests (Bajgar et al., 2016; Ma et al., 132

2018), question answering (Richardson et al., 2013; 133

Kočiskỳ et al., 2018; Yang and Choi, 2019; Lal 134

et al., 2021) and text summarization (Ladhak et al., 135

2020; Kryściński et al., 2021; Chen et al., 2021). 136

Most of these tasks are built on very short stories or 137

can be solved in segments of a story, and therefore 138

present limited challenges to understanding the ele- 139

ments of the story, especially the characters. The 140

exceptions are NarrativeQA (Kočiskỳ et al., 2018) 141

and the three summarization tasks which are mainly 142

event-centric tasks focusing on understanding the 143

plot structures in the stories. The NarrativeQA con- 144

sists a small portion of character-related questions 145

according to the human study in (Mou et al., 2021), 146

but mainly about simple facts of characters like age, 147

place of birth and profession. 148

Character-Centric Prediction over Narratives 149

The task of coreference resolution of story char- 150

acters (Chen and Choi, 2016; Chen et al., 2017a) 151

is most closely related to our TVSHOWGUESS. 152

These tasks focus on identifying the characters 153

mentioned in multiparty conversations, which 154

mainly requires the understanding of discourse re- 155

lations and assess the personal facts. However, it 156

does not assess the modeling of the character’s 157

theory-of-mind, especially the character’s memo- 158

ries, as there are no predictions of character be- 159

haviors involved. The prediction of fiction char- 160

acters’ personality types by reading the original 161

stories (Flekova and Gurevych, 2015) is another 162
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Dataset Task Format Narrative Type Assessed Narrative Comprehension Skills
Source Length Plot Structures Character Facts Character ToMs

MCTest Multi-choice QA Short fiction (Children stories) ∼20∗ ✓
BookTest Cloze test Literature (Excerpt) – ✓
(Ma et al., 2018) Cloze test TV show transcripts (Scenes) ∼20 ✓
NarrativeQA Generative QA Movie Scripts, Literature (Full stories) ∼11K∗ ✓ ✓
FriendsQA Extractive QA TV show transcripts (Scenes) ∼20∗ ✓ ✓
NovelChapters/BookSum Summarization Literature (Chapters or Full stories) ∼4K ✓
SummScreen Summarization TV show transcripts (Scenes) ∼330 ✓
(Chen and Choi, 2016) /

(Chen et al., 2017b) Coref Resolution TV show transcripts (Episodes or scenes) ∼20/260† ✓ ✓

(Flekova and Gurevych, 2015) Classification Literature (Full stories) ∼22K ✓

TVSHOWGUESS Multi-choice TV show transcripts (Full stories) ∼50K ✓‡ ✓ ✓

Table 1: Properties of existing narrative comprehension datasets compared to TVSHOWGUESS. * Numbers are not reported in
the original paper so we calculated them from the dataset. †(Chen et al., 2017b) proposes two settings: single scene and the
whole episode. ‡Our task requires reasoning based on history scenes, which is a form of plot understanding.

character-centric task related to us. These works163

covers only the personality such as the big five and164

the MBTI types which is a single perspective of the165

persona our work considers.166

Character-Centric Prediction over Non-167

Narratives Many tasks do not use the original168

story, but rather a summary of it. For example, the169

textual entailment task LiSCU (Brahman et al.,170

2021) links an anonymous character summary to171

the name appearing in the story’s summary. The172

usage of summaries prevents the ToM modeling, as173

discussed in Appendix A.1. Personalized dialogue174

generation (Mairesse and Walker, 2007; Walker175

et al., 2012; Zhang et al., 2018; Urbanek et al.,176

2019; Li et al., 2020) benchmarks are based on177

daily chit-chats. They usually cover a single aspect178

of the multi-dimensional persona (Moore et al.,179

2017), e.g., personal facts (Zhang et al., 2018) or180

personality types (Mairesse and Walker, 2007; Li181

et al., 2020). The LIGHT environment (Urbanek182

et al., 2019) covers both facts and personalities.183

None of the above covers a comprehensive persona184

like ours, especially on how a character’s past185

experience builds her ToM.186

3 Our TVSHOWGUESS Benchmark187

3.1 Task Definition188

TVSG adopts a multi-choice setting. The goal is189

to guess the anonymous speakers who are the main190

characters (maximum number of 6 for each show)191

in the scene. The models are provided with an192

anonymous scene’s textual description that con-193

sists of n lines S̃(t) = {s̃(t)1 , s̃
(t)
2 , ..., s̃

(t)
n } (t stands194

for the t-th scene in the entire show). Each line195

s̃i can be either a dialogue turn or the background196

description. When the line is a dialogue turn, it197

is associated with a speaker ID, which can be198

either the anonymous ID (with the form of Px,199

1 ≤ x ≤ 6) of a main character our task studies,200

or the real name of a supporting character. Sim- 201

ilarly, we introduce the notation of the standard 202

scene S(t) = {s(t)1 , s
(t)
2 , ..., s

(t)
n }, which has the 203

same definition as the anonymous scenes, with the 204

only difference that the dialogue turns always have 205

their real names of speakers associated. 206

The anonymous scene S̃(t) is associated with a 207

candidate set C(t) = c
(t)
1 , ..., c

(t)
k , k ≤ 6, with each 208

character c(t)j is a main character who appears in 209

S . The goal is thus predicting each Px’s actual role 210

c
(t)
j , i.e., a match π(·) from the anonymous IDs to 211

the real characters, conditioned on the scene S̃(t) 212

and all the previous scenes S(1:t−1): 213

P (Px = c
(t)
j |S̃(t), S(1:t−1)) (1) 214

3.2 Dataset Collection 215

We collect scenes from the scripts of five popular 216

TV series, including Friends, The Big Bang Theory 217

(TBBT), The Office, Frasier and Gilmore Girls. 218

Data Cleaning Our data consists of character di- 219

alogues and backgrounds descriptions. The char- 220

acters’ dialogues start with the characters’ names. 221

One or more rounds of dialogue between characters 222

form a scene. Scenes are separated by short back- 223

grounds that begin with markers such as location 224

(e.g. “Howard’s car”, “Kingman Police Station”), 225

special words (e.g., “Scene”, “Cut”), or symbols 226

(e.g. “[ ]”). To extract information related to our 227

task (i.e., independent scenes) in a structured form, 228

we created a rule-based parser which splits the con- 229

tent of an episode into multiple independent scenes 230

using scene separation markers. 231

Character Recognition and Anonymization We 232

used main character’s names to identify their di- 233

alogues within each scene and randomly labeled 234

them as speaker IDs (i.e., P0, P1). Since different 235

names of the characters, such as nicknames, first 236

names and last names, are used in a mixed way to 237
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Show train dev test #tokens per utterance #tokens per scene #tokens per character

avg max avg max avg max

Friends 2,418 210 211 21 350 862 6,817 190,932 516,191
TBBT 1,791 130 130 19 364 414 6,051 167,027 183,748
Frasier 1,368 140 141 16 363 812 14,276 165,483 475,372
Gilmore_Girls 1,495 141 142 19 336 360 4,572 105,723 214,779
The_Office 3,699 198 199 19 338 123 1,660 58,676 132,992

total 10,771 819 823 18 364 371 14,276 137,568 516,191

Table 2: Statistics of our TVSHOWGUESS.

mark the dialogues. To match lines with the right238

speakers, we first identified the main characters in239

each TV show by consulting Fandom’s cast lists.240

Then, we calculated the speaking frequency to find241

names referring to the same main character.242

4 Analysis of Our Benchmark243

We propose the first comprehensive schema of per-244

sona types for the machine narrative comprehen-245

sion. The schema facilitates the analysis of the246

challenges in our task; and provides insights of247

the deficiency in current narrative comprehension248

models, by allowing a decomposition of model249

performance to the dimensions of categories (Sec-250

tion 6).251

4.1 Our Annotation Schema for Human Study252

Two researchers with backgrounds in psychology,253

linguistics, and education conducted an induc-254

tive coding method derived from grounded the-255

ory (Glaser and Strauss, 2017). They conducted256

three rounds of independent annotation and discus-257

sion of the evidence needed to identify the charac-258

ters, using 10 randomly selected scenes for each259

round. After each discussion, they updated the260

codebook accordingly. The codebook reached satu-261

ration during the process. Then the two researchers262

coded a total of 318 characters from 105 scenes of263

Friends and The Big Bang Theory. The annotation264

interface is attached in Appendix B.265

This schema categorizes the required evidence266

to resolve the task into four persona types: lin-267

guistic style, personality, fact, memory. Table 4268

reports inter-rater reliability calculated by Cohen’s269

Kappa (Cohen, 1960). The kappa values are 0.82270

for coarse-grained evidence types showing almost271

perfect agreement (0.81–0.99) (Viera et al., 2005),272

reflecting the rationality of our scheme.273

We also have one additional type inside-scene,274

refers to the tasks that can be resolved within local275

contexts, thus do not require persona understand-276

ing. Furthermore, to better depict how these pieces277

of evidence are used in human rationales, we added 278

two complementary category scheme: (1) how the 279

task instance relies on the history scenes (2) when 280

there are multiple pieces of evidence required, what 281

types of reasoning skills are used to derive the an- 282

swer from the evidence (Section C). Table 6 shows 283

the definitions of each evidence type. We provide 284

examples of each evidence type in Section B.2. 285

4.1.1 Major Evidence Types 286

Linguistic style The personalized language pat- 287

terns which reflect individual differences in self 288

expression and is consistently reliable over time 289

and situations (Pennebaker and King, 1999). 290

Personality The stable individual characteris- 291

tics (Vinciarelli and Mohammadi, 2014) which can 292

distinguish “internal properties of the person from 293

overt behaviors” (Matthews et al., 2003). 294

Memory The character’s episodic memory of 295

events from previous episodes and the semantic 296

memory2 inferred from events. 297

Fact The truth about characters as opposed to 298

interpretation, which can usually be represented as 299

knowledge triples. 300

• Attribute All explicitly provided factual charac- 301

ter identity information in the TV series setting, 302

such as race, occupation, and education level. 303

• Relationship Relationship includes social rela- 304

tionships (e.g., husband and wife) and dramatic 305

relationships (e.g., arch-enemy). When talking 306

to people with different relationships, characters 307

change their identity masks by using different 308

words (Gergen, 1972). 309

• Status The emotional or psychological status of 310

a character when facing a specific situation. 311

Inside-Scene The textual evidence inside the 312

scene, independent from the characters’ persona. 313

2Semantic memory is the characters’ general world knowl-
edge that they accumulates over time (Reisberg, 2013).
Episodic memory, on the other hand, is the characters’ mem-
ory of specific experiences in their lives (Tulving, 2002)
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• Background Background introduction and de-314

scriptions in other character dialogues.315

• Mention The character’s name or alias is called316

by the others. Although mention is persona-317

independent, it still has challenging cases. Since318

in a multi-person multi-round chat, common319

sense of conversational coherence is needed to320

determine which speaker is being referred to.321

Exclusion A guessing technique for elimination322

using a given list of characters which is neither evi-323

dence nor inference, but it depends on the character324

list provided within the scene, so we include it as a325

subcategory of inside-scene evidence.326

4.1.2 Dependence of History327

To understand how much we rely on memory to328

identify a character, we annotated whether the evi-329

dence necessary to solve the task depends directly330

on historical events or whether it depends indirectly331

on history by abstracting from historical events.332

Direct Dependency Characters that can only be333

identified through events that are explicitly ex-334

pressed in previous episodes.3335
Background: (from TBBT) [The stairwell]
Candidates: {Leonard, Penny}
P0: There’s something I wanted to run past you.
P1: What’s up?
P0: Mm, the guys and I were thinking about investing in
Stuart’s comic book store. Is that okay?
P1: Why are you asking me?
Answer: P0 → Leonard
Rationale: In a previous scene, Leonard and his friends
discussed about investing in Stuart’s store, so he is the only
one between the two who has this memory.

336

Indirect Dependency Characters can only be337

identified with evidence that is not explicitly ex-338

pressed in previous episodes, but can be inferred339

from previous events. For example, Personality can340

be inferred from the character’s previous behavior.4341
Background: (from Friends) [Central Perk]
Candidates: {Joey, Rachel, Ross}
P0: Here you are (Hands Rachel a cup of coffee)
P1: Thank you Joey. You know what? I’m not even sure I
can have caffeine.
P2: I went thru this with Ben and Carol. One cup of coffee
won’t affect your milk.
P1: Yeah. Just to be sure I’m gonna call Dr. Wiener.
Answer: P2 → Ross
Rationale: There is not an actual scene on Ross going
through this with Carol; the answer is inferred according to
Ross’ relations to Ben (parent-child) and Carol (ex-spouse).
Thus the evidence is facts about Ross and has indirect
dependency on the history scenes.

342

3If a character can be identified with evidence of both Mem-
ory and Inside-Scene, it will be labeled as No-Dependency.

4The annotation of indirect dependency is very subjective
as different annotators may have memory of previous scenes
and use different evidence to guess the character.

Evidence Type Friends(%) TBBT(%)

(a
)

Ling. Style 0.66 9.93
Personality 7.28 21.85
Fact 20.53 33.12

(Attribute) 2.65 8.61
(Relation) 16.56 22.52
(Status) 1.32 1.99

Memory 36.42 27.15
Inside-Background 33.11 12.58
Inside-Mention 15.23 15.23
Exclusion 8.61 22.52

Dependence of Hist. Friends(%) TBBT(%)

(b
)

No Dep. 53.64 32.45
Direct Dep. 26.49 36.42
Indirect Dep. 19.87 31.13

Table 3: Percentage of the required evidence types in the two
TV shows, Friends and The Big Bang Theory.

Figure 2: Visualization of the flow from the required evidence
types to their dependence of history.

Indirect Dependency If the answer can be in- 343

ferred within the scene, like answering P0 → Joey 344

in the above example. We have a special rule on the 345

Exclusion evidence type – If a character can only 346

be inferred on the basis of other characters being 347

solved, it should have dependency type labeled if 348

any of the other character has a history dependency. 349

In other words, when guessing the identity with 350

Exclusion requires history dependency on another 351

character, the dependency type is transitive. 352

4.2 Analysis 353

Main statistics Table 3 shows the proportions 354

of the required evidence types and dependency of 355

history. According to the statistics, history is an 356

important factor in guessing the characters. 46.36% 357

of the examples from Friends and 67.55% examples 358

from the Big Bang Theory needs history. 359

Human performance in Accuracy One annota- 360

tor (who has not watched the evaluating seasons) 361

reports nearly perfect accuracy in guessing the char- 362

acters in FRIENDS (98.68%), and a lower but still 363

good accuracy in TBBT (89.82%). A second anno- 364

tator (who has watched all episodes thus is consid- 365

ered an expert) confirmed that most the error cases 366

are unsolvable given the scenes. We list the unsolv- 367

able cases and human mistakes in Appendix E. 368
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Category κ(%)

Evidence type
Coarse-grained types 81.53
Fine-grained types 80.99

Dependence of history
Direct dependence only 82.02
All dependency types 75.51

Reasoning Type† 87.21

Table 4: Annotation agreement. †: see our extended study in
Appendix C. We list the number for reference.

Correlation between evidence types and history369

dependence Figure 2 visualizes the flow from370

evidence types to the dependency of history. Most371

of them are correlated. Personality and history372

dependency are most closely related.373

5 Methods374

Inspired by the successes of applying pre-trained375

Transformers to reading comprehension tasks, we376

benchmark our TVSHOWGUESS by building base-377

line solutions on top of these pre-trained models.378

The key challenge of our TVSHOWGUESS is that379

the prediction relies on how a character reacts to the380

scenario with her/his words, therefore the embed-381

ding of each utterance should be highly context-382

aware. This requires to handle the long inputs of383

scenes, which are usually over the limits of BERT-384

style models. We propose two solutions. The first is385

to encode the whole scene with a Transformer with386

sparse attention (specifically, Longformer (Beltagy387

et al., 2020)). Then we conduct attentive pool-388

ing for each character over the contextualized em-389

beddings of all her utterances. The second is to390

organize each utterance with its necessary history391

context (as one row), and have a BERT model to en-392

code each relatively short utterance independently393

and use an attention module to summarize the rows394

of the same masked character for final prediction.395

5.1 Transformers with Character-Pooling396

Our first approach (the top in Figure 3) is denoted397

as Longformer-Pooling (or Longformer-P).398

Scene Encoding The input S̃ to the model in-399

cludes the concatenation of all the utterances in an400

anonymous scene. Each utterance is prefixed by401

a speaker ID token and suffixed by a separation402

token, i.e.,403
Ti = [Pxi

] ⊕ Ui ⊕ [SPLIT]

S̃ = T0 ⊕ T1 ⊕ ...⊕ TN ,
404

where Ui is the i-th utterance and [Pxi
] is its405

speaker ID (e.g., [P0] and [P1]). [SPLIT] is a spe-406

cial token. ⊕ denotes concatenation. We use a 407

Longformer to encode the whole S̃, to make the 408

embedding of each utterance token context-aware, 409

i.e., H = Longformer(S̃) ∈ RL×D. 410

Character-Specific Attentive Pooling For each 411

character ID Px, we have a mask Mx ∈ RL×1 412

that has value Mx[j] = 1 if the j-th word belongs 413

to an utterance of Px; and 0 otherwise. For each 414

character Px, we then collect the useful information 415

from all her utterances as masked by Mx as 416

A = Attention(H), αx = Softmax(A⊙Mx). 417

The character-specific attention αx is then used to 418

pool the hidden states to summarize a character 419

representation in the input scene S̃ and make the 420

prediction: P (Px = c|S̃) = fk(H
Tαx). Here 421

fk : Rd×1 −→ RC×1 is the character classifier for 422

the k-th TV show. 423

5.2 Multi-Row BERT 424

The second approach (the bottom in Figure 3) is 425

denoted as the multi-row BERT (MR. BERT). We 426

split the long scene S̃ into multiple segments {s̃i}. 427

Encoding the segments reduces the overall com- 428

plexity from O(L2) to O(RL2
s), where Ls is the 429

maximum segment length and Ls ≪ L. For the 430

construction of each segment, we take an utter- 431

ance Ti in Eq. (2), concatenated with the history 432

utterances Ti′(i
′ < i) until arriving the maximum 433

length Ls. We sample R such segments to make 434

sure each Px have at least one segment. During 435

sampling we also use a trick to focus more on the 436

end of the scene, as these utterances have more 437

histories so they will cover more contents from the 438

scene (the reverse trick). 439

{s̃i} =

 Tt1 ⊕ [SEP] ⊕ Tt1−1 ⊕ Tt1−2 · · ·
Tt2 ⊕ [SEP] ⊕ Tt2−1 ⊕ Tt2−2 · · ·

· · ·
TtR ⊕ [SEP] ⊕ TtR−1 ⊕ TtR−2 · · ·

 . 440

Then we encode the {s̃i} with a BERT encoder: 441

442H = BERT({s̃i}) ∈ RR×L×D. 443

Finally, similarly to Longformer-P, we have a 444

mask of rows Mx ∈ RR for each character ID Px, 445

with Mx[j] = 1 if the j-th row is an utterance of Px. 446

Then we apply the same attentive pooling technique 447

and make the prediction as in Longformer-P. 448

6 Experiments 449

6.1 Baselines and Implementation Details 450

We also compare with the vanilla pre-trained Trans- 451

former baseline, Vanilla Longformer Classifier. 452
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Figure 3: Our two proposed model architectures for the character prediction task.

System FRIENDS TBBT Frasier Gilmore_Girls The_Office Overall
dev test dev test dev test dev test dev test dev test

Random 35.23 31.59 33.08 37.79 34.74 31.61 36.43 38.90 44.30 46.71 36.79 36.59
Vanilla Longformer 67.79 60.63 61.58 63.95 85.11 82.06 79.84 74.52 70.92 71.60 72.55 69.72

repl with BERT 65.60 59.58 61.58 58.43 85.11 84.30 81.91 70.41 67.56 68.54 71.65 67.76

Our MR. BERT 77.01 73.20 62.60 62.50 90.07 82.51 83.98 78.63 70.92 74.41 76.82 74.52
- context 62.92 57.19 59.54 63.95 81.64 76.23 74.42 67.12 66.00 67.37 68.33 65.54
- reverse trick 70.81 68.71 52.42 59.01 79.40 81.39 78.04 73.97 66.22 68.31 69.45 70.52
- fill-empty trick 74.33 68.56 58.27 63.37 86.10 78.48 72.87 69.86 68.90 73.71 72.28 70.92

Our Longformer-P 77.01 69.91 63.87 66.57 90.32 87.67 82.17 75.07 71.81 76.29 76.95 74.97
maxlen=1000 74.16 66.77 63.36 64.24 86.10 85.65 79.33 72.05 73.83 76.06 75.25 72.74
repl with BERT 68.12 58.83 61.32 63.95 82.63 76.91 68.48 65.75 72.48 71.83 70.49 66.79

Human∗ 98.68 – 89.82 – – – – – – –

Table 5: Overall performance (%) on our TVSHOWGUESS task. (*) Human evaluation was conducted on a subset of the dataset.

The model conducts direct classification over the453

concatenation of a character’s utterances in the454

scene. It can be viewed as a discriminative lan-455

guage model of the characters’ lines.456

We include the implementation details of the457

baseline and our models in Appendix G.458

6.2 Results459

Overall results Table 5 compares different mod-460

els on our TVSHOWGUESS. Our proposed archi-461

tectures beat our vanilla character classifier with462

large margins (4-5%). However, human perfor-463

mance is significantly (21-26%) better than the best464

models , showing models are still far from reaching465

human level of character understanding.466

Among all the shows, TBBT is the most challeng-467

ing one, while Frasier and Gilmore Girls468

are relatively simpler. Given that there is no cor-469

relation between performance and scene lengths470

(Table 2), this shows the difficulties of the tasks471

mainly come from the persona modeling, inference472

and reasoning. Specifically, the Inside-Scene evi-473

dence requires less persona understanding. There-474

fore, the relatively smaller amount of Inside-Scene475

cases makes TBBT more difficult. Also the existing476

models are not good at resolving the related mem-477

ory or facts from the history, thus the high ratio478

Figure 4: Learning curves of the two TV shows with increas-
ing training data from other shows.

of history dependent cases in TBBT also leads to 479

lower performance. 480

6.3 Analysis 481

Learning Curves We plots the learning curves of 482

Friends and TBBT, with increasing number of 483

shows used as training data (Figure 4). The curves 484

become flat with all shows added, showing that our 485

task has sufficiently data for training. 486

Impact of the dependence on history The bar 487

charts in Figure 5 show the performance on dif- 488

ferent history dependence types. The performance 489

of cases that require history supports is in general 490

harder for most of our models (∼20% lower com- 491
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Figure 5: Performance breakdown according to our schema
(left: Friends, right: The Big Bang Theory).

pared to the cases without dependency of history).492

The results indicate that to further improve the493

model performance, the models are required to bet-494

ter model the history events associated with each495

character. This perfects aligns with the theories that496

past experience is an important fact to build charac-497

ters’ ToM, showing that our TVSHOWGUESS does498

serve as a good benchmark for the in-depth study499

of character comprehension from stories.500

Another interesting finding is that the cases re-501

quiring indirect history dependence (usually Per-502

sonality and Facts) are even more challenging. Hu-503

mans can build a structured profile of characters504

when reading stories. The neural models represent505

each character as a single vector (i.e., the weight506

vector in the output layer), with different items in507

one’s profile mixed. This indicates a promising508

future direction of constructing structured persona509

representations (e.g., based on our schema of evi-510

dence) for more accurate character modeling.511

Breakdown to evidence types The wind-rose512

charts (bottom) in Figure 5 provide performance513

breakdown onto our evidence categories. We omit514

the type of Linguistic style because there are only515

two cases in Friends so the results are not stable.516

As expected, the cases that can be resolved517

locally without character understanding (Inside-518

Mention) are relatively easier. All of Personality,519

Fact and Memory cases have much lower perfor-520

mance as they correspond to heavy dependency on521

the modeling of history.522

The type Exclusion gives the worst overall per-523

formance on the two shows. However, this does524

not indicate difficulty of character understanding –525

According to the definition, these cases cannot be526

directly resolved with the scene inputs, but require527

the model to have specific strategy to exclude some528

incorrect answers first. 529

It is surprising that the Inside-Background type 530

poses difficulties to our models, because it looks 531

to human annotators mostly standard textual infer- 532

ence.5 We identify two possible reasons: (1) As 533

discussed in the introduction, some cases require 534

pragmatic understanding from the surface form to 535

intention, only on which textual inference can be 536

performed (2) The portion of this type is relatively 537

smaller so the model may fail to recognize the re- 538

quired textual inference skills during training. 539

Effect of Scene Contexts Finally, the vanilla char- 540

acter classifier has a quite different behavior com- 541

pared to the other models. Because it cannot make 542

use of contexts within scenes, there is a great drop 543

on the Inside-Mention type (hence the drop on the 544

No Dep type). However, it does not suffer from 545

significant drop on the other types. This indicates 546

none of the current models have clear advantage 547

on modeling persona; and our task is in general 548

challenging to existing NLP techniques. 549

Challenges of History Retrieval Our experiments 550

show that the history dependency challenges ex- 551

isting models. Finding the evidence from history 552

scenes is a retrieval task (but without groundtruth). 553

To see how it brings new challenges to existing se- 554

mantic search, we applied a state-of-the-art model 555

to retrieve the history scenes and conducted an ad- 556

ditional human study to evaluate the results. Our 557

study shows that on our identified cases with Direct 558

Dependency, the top-3 results (from in total 20 can- 559

didates) of a state-of-the-art semantic search model 560

only give a recall of 35.5%. The result confirms 561

that our task requires further advances on semantic 562

retrieval. The detailed setting and our discussions 563

can be found in Appendix F. 564

7 Conclusion 565

In this paper, we present the first task and dataset 566

for evaluating machine reading comprehension 567

models for understanding characters in narratives. 568

Based on linguistic, education, and psychology the- 569

ories, we propose a new schema and conduct two 570

human studies to analyze the types of evidence 571

and reasoning required in understanding characters. 572

We further design a new model architecture and 573

conduct comprehensive experiments to serving as 574

a testbed for future studies.6 575

5In NLP community, people usually agree that textual
inference is within the realm of pre-trained LMs.

6We will release our data and data (under MIT license).
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A A Detailed Survey of Related Work808

We first gave an in-depth analysis on the difference809

between narrative and synopsis, from both the em-810

pirical challenges in NLP studies and the linguistic811

theory from (Morrow, 1985). Then we provide812

detailed discussion on how we summarize related813

work in Table 6.814

A.1 Background: Narrative versus Synopsis815

As our work focuses on narrative comprehension,816

following the setups like (Kočiskỳ et al., 2018;817

Kryściński et al., 2021; Chen et al., 2021), it is818

necessary to make the difference clear between819

comprehension of the original narrative stories ver-820

sus comprehension of their synopses (the human-821

written plot summaries), e.g., from the story’s822

Wikipedia page.823

Narrative stories are told by creating scenes,824

with the goal of making readers directly experience825

events as they occur, and empathize with the story826

characters in relation to their own experiences. To827

engage the readers, story writers usually use com-828

plex narrative clues (e.g., character activities, event829

development, scenery changes); variable narrative830

sequence (e.g., narrative, flashback, interpolation);831

and a variety of expressions (e.g., argument, lyri-832

cism, narrative, description, illustration). By com-833

parison, a synopsis is a descriptive summary of the834

main idea of a story while keeping the language835

simple. It contains only the main characters, time,836

place, important plot, and ending, rather than al-837

lowing the story to unfold through the actions of838

the characters. The goal is to inform the readers839

what happened without much involvement of the840

original story.841

Therefore, comprehension of narrative stories842

requires more sophisticated skills to understand the843

complex clues and expressions, in order to finally844

build a narrative representation from a sequence845

of scene comprehension and empathize with the846

characters based on the understanding of their men-847

tal models (Morrow, 1985). A synopsis can be848

regarded as the processed results from the above849

skills from a (experienced) human reader, thus re-850

ducing the major parts of narrative understanding.851

A.2 Assessment of Narrative Comprehension852

We summarize the related tasks people use for as-853

sessment of general narrative comprehension skills.854

Cloze Test Cloze tests take a snippet of the origi-855

nal text with some pieces (usually entities) masked856

as blanks, with the goal of filling these blanks from 857

a list of candidates. The cloze tests can be automat- 858

ically constructed, resulting in an advantage of easy 859

to get large scale datasets. Examples of cloze tests 860

for narrative comprehension assessments are Book- 861

Test (Bajgar et al., 2016) and (Ma et al., 2018). 862

Both datasets are based on excerpts of books or 863

scenes of TV shows. As the machines are only 864

provided with short paragraphs, there are not suf- 865

ficient information to infer complex character set 866

via reading the stories. Therefore, these datasets 867

cover few questions assessing the understanding of 868

characters.7 869

Moreover, when built on short snippets, the cloze 870

tests is known to prone to mostly local inference 871

but not much reasoning and commonsense knowl- 872

edge, as pointed by studies in the NLP community 873

suggested (Chen et al., 2016). On the other hand, 874

although our task also has form similar to cloze 875

style, it requires information about the characters 876

from previous stories, which is not only about un- 877

derstanding the characters, but also requires global 878

inference of the story (see Figure 1). 879

Question Answering The most popular form 880

of narrative comprehension evaluation is through 881

question answering, starting from the early work 882

of MCTest (Richardson et al., 2013), to the 883

more recent crowd-sourced tasks like Narra- 884

tiveQA (Kočiskỳ et al., 2018), FriendsQA (Yang 885

and Choi, 2019), and TellMeWhy (Lal et al., 2021). 886

Among them, the MCTest and TellMeWhy con- 887

duct multi-choice question answering on short sto- 888

ries. As the machines are only provided with 889

short paragraphs, there are not sufficient infor- 890

mation to infer complex character set via read- 891

ing the stories. Therefore, these datasets cover 892

few questions assessing the understanding of char- 893

acters. The TellMeWhy has a specific focus on 894

why-questions assessing the causal knowledge be- 895

tween states and events. The inputs are short sto- 896

ries from the ROCStories dataset (Mostafazadeh 897

et al., 2016). MCTest covers much wider classes 898

of reading skills, as it bases on complete stories, 899

and generates questions with the goal of assessing 900

7There may be a possible confusion of these tasks and ours,
as they also require to fill the anonymous character names in
the blanks. However, in these tasks, the required answers are
also anonymized character IDs that appear in the inputs, and
the IDs for the same character are random across different
scenes. Therefore the character’s information is not available
for learning by design. In other words, their design of tasks
deliberately prevent the task of character understanding.
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Dataset Task Format Narrative Type Assessed Narrative Comprehension Skills Assessed Commonsense Knowledge
Source Length Plot Structures Character Facts Character ToMs Concepts Events/States Story Flows

MCTest Multi-choice QA Short fiction
(Children stories)

∼20∗ ✓ ✓ ✓ ✓

BookTest Cloze test Literature
(Excerpt)

- ✓

(Ma et al., 2018) Cloze test TV show transcripts
(Scenes)

∼20 ✓

NarrativeQA Generative QA Movie Scripts, Literature
(Full stories)

∼11K∗ ✓ ✓ ✓

FriendsQA Extractive QA TV show transcripts
(Scenes)

∼20∗ ✓ ✓

TellMeWhy Multi-choice QA Short fiction
(ROCStories)

5 ✓

NovelChapters/BookSum Summarization Literature
(Chapters or Full stories)

∼4K ✓ ✓

SummScreen Summarization TV show transcripts
(Scenes)

∼330 ✓ ✓

(Chen and Choi, 2016) /
(Chen et al., 2017b) Coref Resolution TV show transcripts

(Episodes or scenes)
∼20/260† ✓ ✓ ✓ ✓

(Flekova and Gurevych, 2015) Classification Literature
(Full stories)

∼22K ✓

TVSHOWGUESS Multi-choice TV show transcripts
(Full stories)

∼50K ✓(indirect) ✓ ✓ ✓ ✓ ✓

Table 6: Properties of existing narrative comprehension datasets compared to TVSHOWGUESS . We organize the datasets
according to the following dimensions related to narrative understanding: Source of the texts for reading comprehension; Length
of the texts from the source that makes the task solvable, we report the numbers of sentences or utterances for books and scripts
respectively; whether the task assesses the ability of understanding plot structures in the stories; whether the task assesses the
ability of understanding basic character facts like personality, profession, etc; whether the task assesses the ability of building
character theory-of-mind (ToM); whether the task assesses the commonsense knowledge of concepts, events and states; and
whether the task assesses the additional commonsense about the narrative development, including the knowledge about the
coherence among non-verbal narratives and dialogues, and how they form the story/plot flow. * Numbers are not reported in the
original paper so we calculated them from the dataset. †(Chen et al., 2017b) proposes two settings with single scene and the
whole episode as inputs respectively. Different from ours, their include of episode is not to support the in-scene prediction with
necessary history, but mostly increase the difficulty level of the co-ref task.

children’s reading comprehension over both story901

plots and commonsense.902

NarrativeQA and FriendsQA conduct natural903

question answering tasks. NarrativeQA aims to904

infer free-form answers to questions about a spe-905

cific book or movie script. According to the human906

study from (Mou et al., 2021), the major part of the907

dataset is event-centric questions, which queries908

the explicit plots from the original books thus do909

not require a significant amount of commonsense910

reasoning. The study also reveals that NarrativeQA911

consists of a small portion of character-related ques-912

tions. These questions mainly query the simple913

facts of characters, such as age and profession. The914

more complexity character persona types, like per-915

sonality, emotional/psychological status and his-916

tory experience studied in our work, are not cov-917

ered. Similar to NarrativeQA, FriendsQA is a QA918

task over TV show scripts. The dataset consists919

of six types of questions: who, what, when, where,920

why, and how. The who questions target on ask-921

ing speaker names of utterance contents or par-922

ticipants of events, therefore are mainly assessing923

understanding of plot structures (i.e., participant924

arguments of events).925

Both NarrativeQA and FriendsQA have human-926

written questions with a reference of the plot sum-927

mary, which require evidence explicitly exists in928

the original story texts, thus do not have much929

requirement of reasoning. The FriendsQA ques- 930

tions are based on scene summaries, thus require 931

mostly local evidence; the NarrativeQA questions 932

are based on the book-level summary, thus some- 933

times require the ability to bridge the gap between 934

coarse-grained and fine-grained event descriptions 935

(i.e., commonsense of sub-events). 936

Summarization There is a recent trend to eval- 937

uate model’s understanding of stories via summa- 938

rization, including NovelChapters (Ladhak et al., 939

2020), BookSum (Kryściński et al., 2021) and 940

ScreenSum (Chen et al., 2021). These works pro- 941

vide a good research opportunity to future story 942

reading research, by showing that book-level or 943

chapter-level summarization is challenging to exist- 944

ing machine reading models. However, it is more 945

difficulty to identify the specific required reading 946

skills by these tasks, as there exist many factors 947

beyond reading skills to generate a good summary, 948

such as encoding and generating long narrative 949

texts. Intuitively, story summarization is largely 950

plot-related instead of character-related; and re- 951

quires the knowledge to understand the story flow. 952

A.3 Character-Centric Prediction over 953

Narratives 954

Our task can be seen as a character-centered under- 955

standing of the narrative, where the understanding 956

of the character deepens the understanding of the 957
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story and makes the narrative engaging. There958

are limited studies on understanding characters’959

persona from reading stories. In this section we960

review some existing character-centric prediction961

tasks over narrative texts, and discuss the relations962

and differences.963

Character Name Linking The task of corefer-964

ence resolution for story characters (Chen and Choi,965

2016; Chen et al., 2017b) is closely related to our966

TVSHOWGUESS. These coreference resolution fo-967

cuses on identifying the characters mentioned in968

multiparty conversations from TV shows scripts.969

The goal of these tasks is to resolve the corefer-970

ence of pronouns and character-indicating nomi-971

nals (e.g., you and Mom) in dialogues of the char-972

acter names that appear in the local context. It also973

covers linking a named entity (e.g., Ross) to the974

character, which is more on name matching instead975

of character understanding.976

The task form of coreference resolution mainly977

requires the understanding of discourse relations.978

It does not assess the modeling of character theory-979

of-mind, especially the character’s memories, as980

there are no predictions of character behaviors in-981

volved. The major character persona type it as-982

sesses is character facts, since the resolution of983

nominals requires the understanding of the target984

characters’ occupations and relationships.985

The lack of ToM modeling and complex reason-986

ing of the coreference resolution task also makes987

it relatively easier – on Friends and The Big988

Bang Theory, a CNN model gives a >90% av-989

erage accuracy. By comparison, our task, although990

solvable by humans with a ∼95% accuracy, is chal-991

lenging to neural models as the best BERT-based992

model gives a ∼65% average accuracy on the same993

two shows with even smaller candidate sets.994

Personality Prediction Our work is also related995

to the prediction of fiction characters’ personality996

types by reading the stories (Flekova and Gurevych,997

2015). Specifically, the tasks require to predict a998

fiction character’s MBTI personality types (Myers999

and McCaulley, 1988) rooted from Jung’s theory,1000

based on the character’s verbal and non-verbal nar-1001

ratives in the original stories. Compared to the1002

aforementioned character-centric prediction tasks,1003

these studies require to read and comprehend the1004

original long stories, but the prediction task are rel-1005

atively simpler since they only focus on personality1006

which is a single perspective of persona.1007

A.4 Character-Centric Prediction over 1008

Non-Narratives 1009

Character name linking between story synopses 1010

Recently Brahman et al. (2021) propose the LiSCU, 1011

which is a novel textual entailment task linking an 1012

anonymous summative descriptions of story char- 1013

acter to the name appearing in the story’s plot sum- 1014

mary. Similarly to (Chen and Choi, 2016), the 1015

task assess the resolution of names and events in- 1016

stead of the ToM modeling. This is because the 1017

task does not involve much explicit behavior pre- 1018

dictions, since the task form is entailment between 1019

two given statements rather than predicting the pos- 1020

sibility of new contents. The usage of synopses 1021

over original stories reduces the challenges in nar- 1022

rative understanding; and further prevents the char- 1023

acter comprehension from stories, as pointed out by 1024

(Kočiskỳ et al., 2018), the summaries themselves 1025

are humans’ comprehension results of the stories. 1026

Personalized Dialogue Generation Finally, our 1027

work is also related to personalized dialogue gener- 1028

ation, for which datasets (Mairesse and Walker, 1029

2007; Walker et al., 2012; Zhang et al., 2018; 1030

Li et al., 2020) and models (Li et al., 2016; 1031

Mazaré et al., 2018; Qian et al., 2018; Zheng 1032

et al., 2020) are proposed for generating dialogues 1033

for speakers with persona features. These bench- 1034

marks usually cover a single aspect of the multi- 1035

dimensional persona (Moore et al., 2017). For ex- 1036

ample, PERSONA-CHAT (Zhang et al., 2018) fo- 1037

cuses on personal facts such as “I’m a writer” and 1038

“I live in Springfield”; other works mainly focus on 1039

learning language styles from speakers’ personality 1040

types, such as the Big Five traits of the extraversion 1041

personality in PERSONAGE (Mairesse and Walker, 1042

2007), and the personality types derived from TV 1043

tropes (e.g. jealous girlfriend, book doom, anti 1044

hero) in ALOHA (Li et al., 2020). 1045

LIGHT (Urbanek et al., 2019) is a crowd- 1046

sourced dataset for text game adventure research. 1047

It includes natural language descriptions of fantasy 1048

locations, objects and their affordances, characters 1049

and their personalities, dialogue and actions of the 1050

characters. The biggest difference between ours 1051

and LIGHT is that LIGHT is based on the local 1052

environment of the conversation, rather than on a 1053

story. Examples from the LIGHT dataset are in- 1054

dependent conversations and the context in which 1055

they occur. Crowd workers created the dialogues 1056

of characters by a given setting and a persona. The 1057

persona is modeled by the Persona-Chat dataset 1058
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which is defined as a set of three to five profile1059

sentences describing their personal facts such as “I1060

am a part of a group of travelers” and “I go from1061

town to town selling food to the locals”.1062

To the best of our knowledge, none of the1063

existing studies cover a comprehensive multi-1064

dimensional persona like in our work, especially on1065

how a character’s past experience builds her ToM.1066

B Supplementary for the Dataset Analysis1067

B.1 Summary of the Annotation Schema1068

We include a summary of our annotation schema1069

in Figure 6.1070

B.2 Examples of each evidence types1071

Linguistic style1072
Background: (from TBBT) [Amy’s car]
Candidates: {Leonard, Penny, Sheldon, Amy}
P0: Whatever. You can’t even go on a date without check-
ing your relationship agreement.
P1: If you’ve got a problem basing a relationship on a
contract, I’d like to tell you about 13 plucky colonies that
entered a relationship agreement called the U.S. Constitu-
tion. And it may not be cool to say so, but I think that love
affair is still pretty hot today.
Answer: P1 → Leonard
Rationale: (Shelton’s language is characterized by the
use of long, difficult sentences and references to historical
stories.)

1073

Personality1074
Background: (from TBBT) [The cafeteria]
Candidates: {Leonard, Howard, Sheldon, Raj}
P0: And you love the sound of your own voice.
P1: Yeah, well, of course I do. Listen to it. It’s like an
earful of melted caramel.
Answer: P1 → Sheldon
Rationale: (Sheldon is a self-centered person so he will
praise his own voice.)

1075

Memory1076
Background: (from TBBT) [The stairwell]
Candidates: {Leonard, Penny}
P0: There’s something I wanted to run past you.
P1: What’s up?
P0: Mm, the guys and I were thinking about investing in
Stuart’s comic book store. Is that okay?
P1: Why are you asking me?
Answer: P0 → Leonard
Rationale: (In a previous scene, Leonard and his friends
discussed about investing in Stuart’s store, so he is the only
one between the two who has this memory.)

1077

Fact1078

• Attribute1079

Background: (from TBBT) [Amy’s lab]
Candidates: {Amy, Penny}
P0: Hey. Ready to go to lunch?
P1: Just give me a minute. I’m stimulating the pleasure
cells of this starfish. I just need to turn it off.
Answer: P1 → Sheldon
Rationale: (Sheldon is Amy’s boyfriend. After identify
P0 is Amy, based on the relationship between Amy and
Sheldon, P1 can be identified as Sheldon.)

1080

1081

• Relationship 1082

Background: (from TBBT) [Amy’s lab]
Candidates: {Amy, Penny, Sheldon}
· · ·
P0: Hey, boyfriend.
P1: Can’t talk. Spitball. Probably gonna die.
Answer: P1 → Sheldon
Rationale: (Sheldon is Amy’s boyfriend. After identify
P0 is Amy, based on the relationship between Amy and
Sheldon, P1 can be identified as Sheldon.)

1083

• Status 1084

Background: (from TBBT) [The pub]
P0: So when do you guys plan on getting married?
P1: Uh, we’re not sure. But I want to wait long enough
to prove to my mother I’m not pregnant.
P2: May I have one of your fries?
P1: Of course. Can I have a bite of your burger?
P2: Absolutely not.
P3: Some perfect couple. He won’t even share his food
with her.
Answer:P3 → Leonard
Rationale: (The aforementioned failure to determine
Leonard’s marriage led him to ridicule couples in har-
monious relationships.)

1085

1086

Inside-Scene 1087

• Background 1088
Background: (from TBBT) [Penny’s apartment]
Candidates: {Amy, Penny}
Bernadette: Nah, you got this. Let’s go for a drink. I’ll
call Amy.
P0: Okay, good. She seemed like she really wanted to
go out tonight.
P1 (phone ringing, running down stairs from outside
penny’s door): Hey, girl.
Answer: P1 → Amy
Rationale: (Bernadette said she will call Amy and P1 is
the person who answers the phone.)

1089

1090

• Mention 1091

Background: (from TBBT) [The apartment]
Candidates: {Raj, Leonard, Sheldon, Amy}
P0: Mmm, I love how they put a waterfall at centre
field. It really ties the whole stadium together.
P1: This is fun, huh? We get to see our friend throw
out the first pitch, have a hot dog, watch the game.
P2: Whoa. Nobody said anything about watching
the game.
P3: Sheldon, what did you expect?
Answer: P2 → Sheldon
Rationale: (P3 mentioned the name of the person
being questioned which is “Sheldon”)

1092

1093
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Evidence Type Description

Linguistic style
Linguistic style refers to a character’s individualized speech pattern. It consists of a selection of linguistic
features such as vocabulary, syntactic patterns, rhythm, and tone. It also includes the use of elements such
as direct or indirect, metaphor and irony.

Personality
Personality is a person’s stable attitude toward objective facts and the habitual way of behavior that is
compatible with it. We adopt a wider definition of personal traits as in (Li et al., 2020).

Fact

Attributes Fact of a character’s attributes in the TV series setting, such as race, profession, education level etc.

Relations
A character’s relationship with others that truly exist in the TV series setting, including both social relations
and drama role relations.

Status Facts of a character’s temporal emotional or psychological status in the time period when the scene happens.

Memory
The episodic memory about history events a character has in the previous show scenes. This also includes
a rare case of a knowledge fact (i.e. the semantic memory) a character acquires from history scenes, which
cannot be inferred from the facts of the character.

Inside-scene

Background
The character’s identity can be inferred from the background introduction of scene, or from the description
of the other characters’ words.

Mention The character’s name or alias is called by the other people.

Exclusion
The character’s identity can be determined from the presence of characters in the scene and the other
resolved characters.

Figure 6: The definitions of evidence types.

Exclusion1094
Background: (from Friends) [Scene: Outside
the Janitor’s Closet, there are people having s*x and
Mr. Geller is trying to give them some pamphlets.]
Candidates: {Monica, Chandler}
Mr. Geller: Kids, I spoke to a doctor and picked up
this pamphlets on how to get pregnant. (He slides
them under the door.
P0: (walking by with Chandler.) Hey dad!
P1: Hey.
Mr. Geller: (pause) Sorry to bother you again, but
could you pass my pamphlets back? (They do so.)
Thank you.
Answer: P1 → Chandler
Rationale: (Monica is Mr. Geller’s daughter. P0
called Mr. Geller dad so she is Monica. There are
only two candidate so the other one is Chandler)

1095

C Extended Study of Required Reasoning1096

Types on our TVSHOWGUESS1097

This section provides an in-depth analysis of the1098

types of reasoning used to infer evidence when1099

guessing characters.1100

C.1 Our Annotation Schema of Reasoning1101

Types1102

We define the following reasoning types with ex-1103

amples provided. A summary of our annotation1104

schema of reasoning types can be found in Fig-1105

ure 7.1106

Multi-hop on Characters Reasoning on the ba-1107

sis of other characters that have already been1108

guessed. Using the already guessed character as a1109

bridge, users can employ history event or the rela-1110

tionship between characters to make guesses about 1111

the target character.The difference between multi- 1112

hop character and exclusion is that after identifying 1113

the other characters, the exclusion technique relies 1114

only on the list of characters provided for guessing, 1115

however, multi-hop character reasoning requires 1116

additional evidence such as relationship to infer the 1117

target character. 1118

Background: (from TBBT) [Angels Stadium]
Candidates: {Raj, Leonard, Sheldon, Amy}
P5: Hey, I hear you’re a dermatologist.
Emily: Uh, yeah, I’m a resident at Huntington Hospital.
...
P5: I have some odd freckles on my buttocks. Can I make
an appointment for you to look at them?
Emily: Um, okay, I guess.
P0: I’m with him three years, nothing. She’s with him two
minutes, and he’s taking his pants off.
Answer: P0 → Amy
Rationale: (Using P5 (Sheldon) as a bridge and the couple
relationship between Amy and him, we can identify P0 is
Amy.)

1119

Multi-hop on Textual Evidence Some evi- 1120

dences are not directly presented in the scene but 1121

can be inferred from the descriptions of context and 1122

dialogues. Using the inferred evidences as bridges 1123

people can multihop over personality, or fact, or 1124

event inferred from the text to guess the characters. 1125
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Reasoning Type Description

Default Conjunction
No single piece of evidence can solve the task, hence the conjunction among multiple pieces of evidence
is required. This is the default reasoning type if there are multiple evidence types labeled but no other
reasoning types are labeled.

Multihop-Character
Task needs to be solved with the guessing results of other characters, then using the target person relation
to or memory about the guessed ones to make the answer, i.e., multihop with guessed characters as bridges.

Multihop-Textual
Task needs to be solved with the persona/fact/event not directly described in the scene but can be inferred
from the context, i.e., multihop over persona/fact/event inferred from dialog and scene context.

Commonsense
attributes/relations of
concepts/events

Task requires additional commonsense knowledge of attributes of daily concepts or social events, or their
relations like causal relations between events. Those refer to the specific types of commonsense covered in
ConceptNet- or Atomic-style KBs.

Figure 7: The definitions of reasoning types.

Background: (from TBBT) [The apartment ]
Candidates: {Amy, Leonard, Raj, Howard’, Penny, Shel-
don}
Bernadette: I like your suit.
P0: Oh, thanks. Got a couple new outfits for work.
P1: How does it feel knowing your fiancée’s job is to go
out and flirt with doctors, looking like that, while you sit
here, you know, looking like this?
...
Answer: P0 → Penny
Rationale: (P0 has a new job can be inferred from the
textual evidence “Got a couple new outfits for work”. Plus
we know that Penny has a new job, we can determine that
P0 is Penny )

1126

Commonsense of Concepts/Events Task re-1127

quires additional commonsense knowledge of at-1128

tributes of daily concepts or social events, or their1129

relations including causal/effect relations between1130

an event and a social state or social relation. We1131

restrict this category to be the aforementioned com-1132

monsense knowledge types, to distinguish from1133

other relatively under-studied commonsense knowl-1134

edge, such as the commonsense of dialogue flow1135

required to work with our inside-scene evidence1136

defined in Figure 6.1137
Background: (from TBBT) [Capital Comics]
Candidates: {Howard, Sheldon}
...
P0: I know that if I had a wife or a fiancée, I’d ask her first
before I invested money in a comic book store.
P1: He’s right.
Answer: P1 → Howard
Rationale: (A married or engaged person will answer
“He’s right”. Howard is married. )

1138

Default Conjunction A single piece of evidence1139

will not solve this task; a combination between1140

multiple pieces of evidence is needed to identify1141

the person.1142

C.2 Analysis of the Human Annotation1143

Correlation between the Human Annotated1144

Schema Categories Figure 2 visualizes the flow1145

between (a) evidence types and the dependency of1146

history and (b) evidence types and the reasoning1147

Reasoning Type Friends(%) TBBT(%)

Default 16.56 28.48
Multihop(Character) 3.97 13.91
Multihop(Textual) 5.30 5.30
Commonsense 4.64 0.66
No Complex Reasoning 69.54 51.66

Table 7: Percentage of the required reasoning types in the
two TV shows, Friends and The Big Bang Theory.

Figure 8: Visualization of the flow from the required evidence
types to their required reasoning types.

types. Most evidence types correlate with history 1148

dependency. Personality and history dependency 1149

are most closely related. Default conjunction is the 1150

reasoning type that accounts for the largest percent- 1151

age. 1152

C.3 Experiments: Performance 1153

Decomposition on the Reasoning Types 1154

We further studied the impact of the required rea- 1155

soning types on the performance (the right column 1156

in Figure 9). In general there is a clear gap (on av- 1157

erage ∼10%) between cases that require complex 1158

reasoning with those do not. The Multihop-Textual 1159

type is most challenging, because it requires both 1160

deep understanding of what the texts implies and 1161

multihop reasoning. There is not a clear perfor- 1162

mance difference between Multihop-Character and 1163

Default Conjunction, though the former is concep- 1164

tually harder. We hypothesize this is because both 1165
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Figure 9: Performance breakdown according to our
reasoning schema (left: Friends, right: The Big Bang
Theory).

#Unsolvable #Human Mistakes

TBBT Friends TBBT Friends

4882 2500 4921
4895 4894
4907 4910
4908

Table 8: Human Errors

types are beyond the reasoning ability of the model1166

so the predictions largely rely on fuzzy matching1167

of evidence – recall that we predict identities of1168

main characters, so there can be a statistical bias1169

of their context co-occurrence. The results on the1170

Commonsense type fluctuate due to the relatively1171

smaller ratio.1172

D Interface for the Human Study1173

Figure 10 shows the interfaces of the human study.1174

1175

E Examples of Human Errors1176

Table 9 provides an example of unsolvable cases1177

and Table 10 provides an example of human1178

mistakes. The human mislabeled characters are1179

marked as red.1180

We further provide all the scene IDs on which1181

our human tester makes incorrect predictions in1182

Table 8.1183

F Details of Human Study and1184

Discussions on the Challenges of1185

History Retrieval1186

Our experiments show that the history dependency1187

challenges existing models. Finding the evidence1188

history scenes for such cases is essentially a re-1189

trieval task (but without groundtruth). To see how it1190

brings new challenges to existing semantic search,1191

we applied a state-of-the-art model to retrieve the1192

history scenes and conducted an additional human1193

study to evaluate the results.1194

(a) Introduction page of human study.

(b) Task 1: character guessing task

(c) Task 2:identifying used evidence types.

(d) Task 3: identifying used reasoning types .

Figure 10: interfaces of human studies.

Task We conduct the study on scenes in our human 1195

annotation sets that have the Memory type labeled. 1196

With each scene as a query, we retrieve from a win- 1197

dow of 20 previous scenes with a state-of-the-art 1198

model8 The window size is decided so as to guar- 1199

8We use the all-mpnet-base-v2 model from
https://sbert.net/ that reports the top-1 performance
on 14 sentence embedding tasks and 6 semantic search tasks.
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Unsolvable Case

08x02 4882
Background: (from TBBT) [the Apartment]
Candidates: {Howard, Sheldon, Raj, Amy, Leonard, Penny}
P0 : I recently read that during World War Two, Joseph Stalin had a research program to create supersoldiers by having
women impregnated by gorillas.
P1 : What a sick use of science.
P2 : Hey, as long as the baby’s healthy.
P3 : I wonder if Stalin considered any other animals.
P4 : Hippos are the deadliest creature. A half-human, half-hippo soldier would be pretty badass.
P1 : Yes, but when they’re hungry-hungry, you can stop them with marbles.
P0 : Yeah, the correct animal for interspecies supersolider is koala. You would wind up with an army so cute it
couldn’t be attacked.
P2 : But half-man, half-owl could fly...
P0 : The answer is cuddly soldiers with big flat noses. Moving on.
P1 : So, Penny, when’s the new job start?
P5 : Next Monday.
Bernadette : Did you get a chance to look over the materials I gave you?
P5 : Uh, not yet, but I will.
Bernadette : Great. When?
P5 : I said I’ll get to it.
P0 : I’m sensing awkwardness, am I right?
P3 : Yes.
P0 : Swish.
Bernadette : I don’t want to be pushy, but you’ve never done pharmaceutical sales before. It seems like you could use this
time to get a head start.
P5 : Well, the first few weeks will be all training. They’ll tell me everything I need to know.
Bernadette : But imagine how impressed they’d be if you showed up already familiar with the material.
P5 : Okay, so what, you want me to be like a teacher’s pet?
Bernadette : Couldn’t hurt.
P4 : Mm, I don’t know. Who here has ever been hurt because they were the teacher’s pet?
P0 : It was like the rest of the class wanted Ms. McDonald to forget the quiz.
Answer: P0: Sheldon, P1: Howard, P2: Raj, P3: Amy, P4: Leonard, P5: Penny

Table 9: Example of unsolvable case.

Mistake

08x04 4921
Background: (from TBBT) [Penny’s partment]
Candidates: {Raj, Penny}
P0 : I’m so glad we could work this all out.
P1 : Yeah, me, too.
Emily : You know, we should have dinner one night with you and Leonard.
P1 : Oh, we would love that.
P0 : Great.
background : (both chuckle)
P1 : Okay, good night, guys.
Emily : All right, night.
P1 : Bye.
Emily and Penny (simultaneously) : I hate her.
Answer: P0: Raj, P1: Penny

Table 10: Example of mistake.
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antee that at least one required memory appears1200

in the window, according to our human annotation1201

process. The task of human study is to recognize1202

whether the top-3 returned scenes contain at least1203

one related history scene.1204

Results The same annotators working on the study1205

in Section 4 are asked to evaluate the retrieved1206

scenes. The results show that the recall of the top-31207

results from this state-of-the-art model is very low1208

(35.5%). We observe the following major reasons1209

for this difficulty in scene retrieval: (1) the queries1210

are scenes with structures, which leads to different1211

query formats from standard IR tasks; (2) many1212

relevant scenes are not similar to the query scenes1213

in the semantic space, but is associated with the1214

query in specific aspects or even forms analogy to1215

the query scene; (3) some scenes require a multi-1216

hop retrieval, especially when combined with ToM1217

modeling (reasoning about what the others knows).1218

All these challenges are non-trivial, and calls for1219

further studies on semantic search to address.1220

G Model Checklist1221

We implement our baselines based on Hug-1222

gingFace Transformers.9 We use the pre-1223

trained allenai/longformer-base-40961224

and bert-base-uncased models. We train all1225

the models with the Adam optimizer.1226

We train our model on a single A100 GPU. It1227

takes around 1 hour and 40 minutes to train a1228

Longformer-based model. It takes around 2 hour1229

and 10 minutes to train a multi-row BERT model.1230

For all the models, we train in total 40 epochs. But1231

the models usually converge in less than 20 epochs.1232

Hyperparameters We set the number of rows1233

in MR. BERT to 12, to maximize the usage of1234

GPU memory. We set the maximum length of1235

Longformer to 2000, which can handle the lengths1236

of most of the input scenes. The window size is set1237

to 256. We set the learning rate to 2e-5.1238

We report our result with a single run. How-1239

ever, for each model we run twice; and we found1240

the average development accuracy varies less than1241

0.5%.1242

9https://github.com/huggingface/transformers
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