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ABSTRACT

This work studies the task of poisoned sample detection for defending against
data poisoning based backdoor attacks. Its core challenge is finding a generaliz-
able and discriminative metric to distinguish between clean and various types of
poisoned samples (e.g., various triggers, various poisoning ratios). Inspired by a
common phenomenon in backdoor attacks that the backdoored model tend to map
significantly different poisoned and clean samples within the target class to similar
activation areas, we introduce a novel perspective of the circular distribution of the
gradients w.r.t. sample activation, dubbed gradient circular distribution (GCD).
And, we find two interesting observations based on GCD. One is that the GCD of
samples in the target class is much more dispersed than that in the clean class. The
other is that in the GCD of target class, poisoned and clean samples are clearly sep-
arated. Inspired by above two observations, we develop an innovative three-stage
poisoned sample detection approach, called Activation Gradient based Poisoned
sample Detection (AGPD). First, we calculate GCDs of all classes from the model
trained on the untrustworthy dataset. Then, we identify the target class(es) based
on the difference on GCD dispersion between target and clean classes. Last, we
filter out poisoned samples within the identified target class(es) based on the clear
separation between poisoned and clean samples. Extensive experiments under vari-
ous settings of backdoor attacks demonstrate the superior detection performance
of the proposed method to existing poisoned detection approaches according to
sample activation-based metrics.

1 INTRODUCTION

It is well known that deep neural networks (DNNs) are vulnerable to backdoor attacks (Wu et al.,
2023)), where the adversary could inject a particular backdoor into the DNN model through manipu-
lating the training dataset or training process. Consequently,the backdoored model will produce a
target label when encountering a particular trigger pattern, leading to unexpected security threats in
practice. Protecting DNNs from backdoor attacks is an urgent and important task.

Here we focus on defending against the data-poisoning based backdoor attacks by filtering out the
potential poisoned samples from a untrustworthy training dataset, i.e., poisoned sample detection
(PSD). One of the main challenges for PSD is the information lack of the potential poisoned samples,
such as the trigger type, the target class(es), the number of poisoned samples, etc. Some seminal
works have been developed by exploring some discriminative metrics based on the intermediate
activation or predictions of poisoned and clean samples in the backdoored model trained on the
untrustworthy dataset, such as activation clustering (AC) (Ma et al.,|2023a)), STRIP (Gao et al.| 2019),
SCAn (Tang et al.|[2021). However, the assumption that poisoned and clean samples can be distinctly
separated in activation space has been challenged in some recent backdoor attacks (Qi et al., [2023).

In this work, we introduce a novel perspective that distinguishes the behavior of poisoned and clean
samples by tracking their activation gradients (i.e., the gradient w.r.t. activation). It is inspired by the
phenomenon that a backdoored model tends to map both poisoned and clean samples within the target
class to similar areas in its activation space (Huang et al., [2022), such that they can be predicted as
the same label. Considering the significant discrepancy between poisoned and clean samples in their
original input space, their mapping directions should be significantly different, while the mapping
direction could be reflected by the activation gradient direction. Thus, we define a new concept called
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gradient circular distribution (GCD) (introduced in Sec. [3), to capture the distribution of activation
gradient directions. Take Fig. E] as the example, given a trained model, we calculate one GCD of
training samples in each class. There are two interesting observations:

* Observation 1 on GCD dispersion: Given one backdoored model (see middle/right sub-figures),
the target GCD is much more dispersed than GCDs of all clean classes.

* Observation 2 on sample separation in target GCD: In the GCD of target class, poisoned and
clean samples are clearly separated (see the black and blue arcs in middle/right sub-figures), and
they locate at two separated clusters.

Motivated by above two observations, we de- Clean Blended SSBA
velop an innovative poisoned sample detection N ™~ N
approach, called Activation Gradient based \ \
Poisoned sample Detection (AGPD), which ™
consist of three stages. First, we train a DNN /

model based on the untrustworthy dataset, and N | N
calculate GCDs of all classes. Second, we iden-
tify the target class(es) according to a novel
class-level metric that measures the dispersion
of each class’s GCD (corresponding to the first
observation). Last, within the identified target
class(es), we gradually filter out poisoned sam-
ples according to a novel sample-level metric
that measures the closeness to the clean ref-
erence sample (corresponding to the second
observation). Moreover, we conduct extensive
evaluations under various backdoor attacks and various datasets, and show that the activation gradient
is more discriminative than the activation to distinguish between poisoned and clean samples, which
explains the superior.
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Figure 1: Gradient circular distributions (GCDs)
across four classes of CIFAR-10, on the clean model
(left), Blended attacked model (middle), and SSBA
attacked model (right), respectively. The value
along with each arc indicates the CVBT value. The
GCD of the target class (covering both black and
blue arcs). Note that we moved three clean classes’
arcs to different quadrants to avoid visual overlap.

In summary, the main contributions of this work are three-fold. (1) We introduce a novel perspective
for poisoned sample detection, called gradient circular distribution (GCD), and present two interesting
observations based on GCD. (2) We develop an innovative approach by sequentially identifying the
target class(es) and filtering poisoned samples for the poisoned sample detection task, based on GCD
and two novel metrics about GCD. (3) We conduct extensive evaluations and analysis to verify the
superiority of the proposed approach to existing activation-based detection approaches.

2 RELATED WORK

Backdoor attack. BadNets (Gu et al.l 2019) is the pioneering work that introduces the concept of
backdoor attack into Deep Neural Networks (DNNs), in which the adversary manipulates training
samples by adding a small patch with specific patterns and changing their labels to a target label.
Following this, the variety of triggers expanded significantly, including a cartoon image used in
Blended (Chen et al.,2017), a universal adversarial perturbation with only low-frequency components
utilized in Low-Frequency (Zeng et al., |2021), and a sinusoidal signal employed in SIG (Barni
et al.,[2019), etc, which use same trigger across different poisoned samples. Sample-specific triggers
have been designed, such as WaNet (Nguyen & Tran| 2021)), Input-Aware (Nguyen & Tranl [2020),
SSBA (Li et al., 2021b)), CTRL (L1 et al., 2023), TaCT (Tang et al.l 2021)), and Adap-Blend (Q1
et al.| 2023). These attacks use more complex and dynamic triggers, posing significant challenges for
poisoned sample detection. Additionally, some attacks explore various attack settings regarding the
number of triggers and target classes, such as all-to-all attack (e.g., BadNets-A2A (Gu et al.| [2019)),
multi-target and multi-trigger attack (e.g., c-BaN (Salem et al.| 2022)). These diverse settings further
complicate the detection of poisoned samples.

Backdoor defense. According to the accessible information, several different branches of backdoor
defense methods have been developed, such as the pre-training backdoor defense (e.g., (Ma et al.|
2023aj|Tran et al.,|2018; |Al Kader Hammoud et al.| 2023)) if given a untrustworthy training dataset,
in-training backdoor defense (e.g., (Huang et al.|[2022; |Li et al., [2021a; (Chen et al., [2022} [Mu et al.,
2023} |Gao et al.,[2023)) if the training process can be controlled by defender, as well as post-training
backdoor defense (e.g., (Liu et al., [2018}; |Zhu et al.| [2023bja; |Wei et al., [2023; [Wang et al.; [Wu
& Wang, 2021} Zeng et al., [2022; Zheng et al., [2022b} |(Chai & Chen, 2022} Zheng et al., 2022a)))
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if given a backdoored model. Due to space limitations, we will only review existing methods of
poisoned sample detection (PSD), which belongs to pre-training backdoor defense. Most existing
PSD methods aim to construct discriminative metrics between poisoned and clean samples based
on intermediate activations, final predictions, or loss values. For activation-based methods, such as
activation clustering (AC) (Ma et al.|[2023a), Beatrix (Ma et al.,[2023b)), SCAn (Tang et al.}|2021)), and
Spectral (Tran et al.,2018), they utilize dimensionality reduction and clustering techniques, such as
K-means clustering, Gram matrix analysis, two-component decomposition, and SVD, to distinguish
poisoned and clean samples. For input-based methods, STRIP (Gao et al.,|2019) uses the entropy of
predictions on perturbed inputs to identify poisoned samples, while CD (Huang et al., |2023)) measures
the L; norm of the learned masks on inputs to detect poisoned samples. For loss-based methods, like
ABL (Li et al.,[2021a) and ASSET (Pan et al.||2023)), they observed that the loss of poisoned samples
decreases quickly during the early training epochs, leveraging this phenomenon to identify poisoned
samples.

3 PRELIMINARY: GRADIENT CIRCULAR DISTRIBUTION

Task setting. Given a DNN-based classification model f, : X — Y, with X € R being the input
sample space and Y = {1, 2, ..., K} being the output space with K candidate classes, as well as a
dataset D = {(@;,y;) }",, we investigate their gradients of f,,.

3.1 DEFINITION OF GRADIENT CIRCULAR DISTRIBUTION

Here we introduce the definitions of Activation Gradient and Gradient Circular Distribution (GCD),
as described in Definition [I|and Definition 2] respectively.

Definition 1 (Activation Gradient) Given a model f,, for a sample x labelled as vy, we denote its
activation map at the l-th layer as h(zl) S RC(”XH(”XW”), where CO, HO WO are its depth
(number of channels), height and width, respectively. Then, we define the channel-wise activation

gradient g (z,y) € RE" as
HO w®
(l) c®
w (Z,Y) l)W(l ; Zla . eR™, M

where [ fu, ()], is the logit w.r.t. class y and [h(ml)]:,hyw € RC(” is the activation sliced at height h
and width w over all channels. For simplicity, if no special specifications are required, hereafter we
will refer to it as g'» (x) for each layer I.

Definition 2 (Gradient Circular Distribution (GCD)) Given a model f.,(+), a set of samples D =
{(x;,y:) Y, and a basis sample pair (xg, yo), we firstly calculate the activation gradient of each
sample for each layer 1, i.e., g (z;) i = 0,1,... n. Then, take g"")(x;) as the (unnormalized)
basis vector, the angle of each sample in D is calculated as follows:

9" (@) - gV (o)
lg® (@) [llg® (o)l
where - denotes dot product, and || - || returns the magnitude. The distribution of the angle set

{e(wﬂi (x;)}1, is called as the gradient circular distribution (GCD) of D, denoted as Pélg (D) for
each layer [.

Zo

00 (x;) = arccos < ) [0,27m),i=1,...,n, (2)

3.2 CHARACTERISTICS OF GRADIENT CIRCULAR DISTRIBUTION

To accurately capture the characteristics of P;Sfo) (D) observed in Fig.|l{and Sec. |1} we introduce the
following two metrics.

Dispersion and separation metric of PSU) (D). To measure the dispersion and separation of
;‘(3 (D) for each layer I, we design a novel metric called Cosine similarity Variation towards
Basis Transition (CVBT). Specifically, given {Hm() ()}, we firstly pick the activation gradient

9" (,,+) corresponding to the largest angle, i.e., n* = argmax;c(i 9&0 (z;). In other words,
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gV (x,,+) is the farthest activation gradient vector from the original basis vector g(*) (). Then,
by settmg g (xz,-) as a new basis vector, we calculate {Hc(c)v (z;)}7 1 using Eq. ( ' Based on
{9%( )}, and {Gm ()}, we formulate the CVBT metric of Pmo (D) as follows:

P (D) = (iz (cos(0) () — cos(6%) (%)))2)2 € [0,2], (3)

where cos(6) returns the cosine value of an angle §. Note that p;’}, (D) is positively proportional

to dispersion and separation, i.e., larger ,o( >(D) indicates larger dispersion and larger separation of
Pé]o) (D). More in-depth analysis will be presented later.

Sample-level closeness metric based on ngl?( D). Given {Hm(, (x;)}" 4 and {9(’) ()}, we

design a novel metric to measure the closeness of each sample x; to the reference sample x, as
follows: o
1 — cos Hm N i
Sgg (:1}’) _ (]) (Ob( n (w)) (]) c [0H 1) (4)
(1 — cos(6). (1)) + (1 — cos(0%) ()
()

Note that larger s, (x;) indicates greater closeness of x; to x. For example, if (/) (x;) has

the same direction with g (z,,.) while the opposite direction with g (z), then s\ (z;) = 0,

implying the farthest from xo. In contrast, if (") (2:;) has the opposite direction with g(*) (z,,- ) while
the same direction with g (), then s (z;) = 1, implying the closest to z.
Remark. Note that the single basis vector g(’)(z,,-) in above two metrics could be extended to

be a set of basis vectors, i.e., G,, = {g“)(wn;)}j:l,w,,,,, by picking the activation gradients of

top-m largest angles among {HwO (z;)}i=1... n. Correspondingly, above two metrics are adjusted by
replacing each basis vector to the original metrics, then calculating the average. This extension’s
effect will be analyzed in later evaluations about adaptive attacks.

4  ACTIVATION GRADIENT BASED POISONED DETECTION METHOD

4.1 PROBLEM SETTING

Threat model. We consider the threat model of data poisoning based backdoor attack. The
adversary generates a poisoned dataset D4, containing a clean subset D, = {(x;,y;)};<, and a
poisoned subset D, = {(Z;,t)}.%,. «,& € X denotes the clean and poisoned sample with trigger,
respectively. y,¢ € ) indicates the ground-truth and target label, respectively. We denote r = n;fnp
as the poisoning ratio. Note that there could be multiple triggers (i.e., multi-trigger) and multiple
target labels (i.e., multi-target) in the poisoned subset.

Defender’s goal. The defender aims to identify poisoned samples from the untrustworthy dataset
Dyq. We assume that the defender has access to Dypq, and a small set of additional clean samples D,_.,
which contains at least one clean sample for each class, as suggested in previous works (Ma et al.,
2023b)(Tang et al.} 2021)(Gao et al.,[2019)). Besides, the defender has the capability to train a DNN
model fy,, : X — ) based on Dy,.

4.2 POISONED SAMPLE DETECTION METHOD

Inspired by the two observations demonstrated in Sec. [T] and Fig. [I] we develop an innovative
poisoned sample detection method by utilizing GCD and the corresponding metrics (see Sec. [3),
called Activation Gradient based Poisoned Detection (AGPD). As illustrated in Fig. |Z|, AGPD
consists of three stages, as detailed below.

Stage 1: Calculating activation gradient distribution. We denote the samples of class &k in Dyq
as DY, = {(x;, k)}*,. Given the model f,,, trained on Dy, (the training details will be provided in

Appendlxm) and picking one clean sample pair (%, k) € D, as the reference, we can calculate
the GCD of D}, according to Egs. H and H Consequently, we obtain {’P(l (DE)Y l . 1.1- Note
that as defined in Eq. . the superscript (1) indicates that we adopt the actlvatlon gradients of the
[-th layer in f,,,, to calculate GCD. For simplicity, hereafter we denote Pilg (D;fd) as P,gl).
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Figure 2: Illustrations of gradient circular distribution (GCD) and two metrics, and the pipeline
of the proposed APGD method which consists of three stages: 1) calculating activation gradient
distribution, 2) identifying target class(es), and 3) filtering out poisoned samples within the identified
target class(es).

Stage 2: Identifying target class(es). According to the aforementioned first observation, the GCD
of the target class is likely to be more dispersed than that of the clean class. Thus, we firstly calculate
the dispersion value p(ml,z (Dl’fd) (for simplicity, we denote it as p,(f)) of each P,El), according to the
CVBT metric (see Eq. ). As shown in Fig. [2] since pg) of target class(es) is likely to be larger ,
while those of clean classes are likely to be small, we can adopt the anomaly detection technique to
identify target class(es), such as the absolute robust Z-score (Iglewicz & Hoaglin| |1993). Specifically,

we calculate Z-score of p,(f) as follows:

l -
z(l) B p( ) p(l)
l b)
v x MAD({p{" 1))

&)

where MAD({p(l)}) = median({] pg) — p¥]}) indicates the median-absolute-deviation (MAD),

and 5(!) denotes the median value of { p,(cl)}le. ~ is a statistical constant valued at 1.4826. Larger

z,gl) indicates larger likelihood of anomaly. We firstly choose the layer with the largest Z-score, i.e.,

I* = arg max; (maxy z,gl)). Then, if z,(j*) exceeds a threshold 7, (specified later), i.e., z,(cl*) > T,

k is identified as a target class, otherwise clean class.

Stage 3: Filtering out poisoned samples within the identified target class(es). Inspired by the
second observation mentioned in Sec.[I] that the poisoned sample is likely to be far from the clean
sample in GCD, here develop a novel algorithm which gradually filters out poisoned samples with
the identified target class(es). Specifically, as illustrated in Fig. 2] when obtained the identified target
class k*, we firstly pick one clean sample pair of class k* from D,.. as the reference (o, k*), then
we conduct the following three steps iteratively, until a stopping criteria is satisfied:

1. For the set DF,, we calculate its GCD according to Deﬁnition ie, P,

2. We calculate sample-level closeness value sg, (;) for each x; € D{f;;

3. If the closeness value of one sample is lower than threshold 7, (specified in experiments), i.e.,
Sz (@;) < Ts, then this sample is identified as poisoned, as it is far from the clean reference .

Then, D,’f; is updated by removing these identified poisoned samples.

In terms of the stopping criteria, we propose to firstly conduct the above iterations until D,’f; becomes a
null set. At each iteration, we calculate the distribution of {sg, ()}, epy» and the Jensen—Shannon
(JS) divergence between the current and its previous distribution. Then, we adopt a trace-back strategy
by checking the JS divergence value of all iterations, and the iteration that its JS divergence locates at
the stable and low region could be set as the stopping iteration. Due to the space limit, more details
of the whole algorithm, as well as the stopping criteria, will be presented in Appendix
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Table 1: The detection performance of AGPD and compared detectors on CIFAR-10 and Tiny
ImageNet, respectively, with the model Preact-ResNet18.

No defense AC Beatrix SCAn Spectral STRIP ABL CcD ASSET AGPD (Ours)
ACC/ASR |TPRT FPR| FI1 |TPRT FPR| FIt |TPRT FPR| FI1 |TPRT FPR| FIT |[TPRT FPR| FI1 |TPRT FPR| FIt |TPRT FPR| FIt |TPRT FPR| FI1 |TPRT FPR| FIT

BadNets  [91.82/93.79] 0.00 0.00 0.00 |87.24 8.95 65.15(96.04 0.00 97.98|16.76 1.30 26.09|90.16 10.19 63.97|89.74 1.14 89.74|78.02 43.87 27.24| 3.16 47.66 1.19 [90.06 0.03 94.65
Blended  [93.69/99.75| 0.00 0.00 0.00 |47.60 5.07 49.28 2 0.00 99.81(28.04 0.05 43.64|61.42 11.31 46.67|82.14 1.98 82.14(85.06 49.62 26.93| 3.70 12.66 3.40 (99.98 0.02 99.88
LF 93.01/99.05| 0.00  0.00 0.00 | 0.00 10.72 0.00 |95 0.01 97.71|0.04 3.16 0.06 [86.92 10.09 62.59(45.48 6.06 45.48|88.44 24.33 43.42| 3.80 10.28 3.87 |99.80 0.07 99.60
SSBA 92.88/97.06| 0.00 0.00 0.00 [10.26 8.54 10.97 0.01 98.60|27.14 0.15 42.24|77.42 11.71 54.75|67.38 3.62 67.38/91.30 3.76 81.12| 3.56 46.36 1.37 |99.62 0.04 99.63
SIG 93.40/95.43| 0.00 0.00 0.00 | 0.00 0.00 0.00 99.74| 0.00 1.58 0.00 |99.44 9.68 51.88|90.80 5.75 60.53|85.88 21.28 45.51| 0.48 3273 0.13 [100.0 0.04 99.66
CTRL | 95.52/98.8 | 0.00 9.92 0.00|0.00 626 0.00|0.00 500 000|040 1577 0.20 [99.80 9.47 52.57(90.32 5.77 60.21|99.44 055 97.31|67.88 51.60 11.82|99.76 0.01 99.78
‘WaNet 89.68/96.94| 0.00 277 0.00 | 0.92 9.74 0.94 (87.39 0.07 92.96/ 0.90 297 1.38|1.22 9.13 1.28 |18.92 9.08 18.31(86.88 79.77 19.20( 0.55 122 1.01 (97.80 0.31 97.40
Input-Aware  [90.82/98.17| 0.00 3.31 0.00 | 0.41 10.92 0.39 {99.15 0.47 97.36| 1.51 290 234 |0.81 9.07 086 |0.17 11.02 0.17 |82.85 18.99 46.84| 2.82 60.13 0.90 |88.25 1.13 88.61
TaCT  {9321/95.95 0.00 0.00 0.00 |75.94 19.98 42.69|100.0 0.00 99.99|29.76 0.03 45.78/67.60 8.59 55.20|33.80 7.36 33.80/80.52 53.90 24.19| 7.74 59.90 2.64 |100.0 0.07 99.68
Adap-Blend [92.87/66.17| 0.00 0.00 0.00 | 462 833 5.14|99.16 1.15 94.66|24.34 0.47 37.85(14.66 11.82 13.27( 0.08 11.10 0.00 | 0.00 0.00 0.00 |97.22 39.52 37.88|89.32 0.33 92.89
BadNets-A2A[91.93/74.40|28.76 4.51 33.96/40.28 9.25 36.04| 0.00 0.00 0.00 [ 0.00 1.67 0.00 | 1.80 17.08 1.41 | 248 10.84 2.48 (67.20 45.72 23.23| 3.32 331 4.99 (97.32 0.02 98.57
SSBA-A2A [93.46/87.84[50.02 2.66 57.51/19.04 526 22.88/ 0.00 0.00 0.00 | 0.00 1.67 0.00 [12.74 9.87 12.64| 0.08 11.00 0.96 |75.54 44.43 26.26|48.74 49.56 16.39|98.06 0.02 98.95
Avg. 6.57 193 7.62|23.86 8.58 19.46|72.82 0.56 73.23 10.74 2.64 16.63|51.17 10.67 34.76 43.45 7.06 38.43|76.76 32.18 38.44|20.25 34.58 7.13 96.66 0.17 97.44

Dataset|  Attack

CIFAR-10

BadNets  |56.12/99.90| 0.00 0.40 0.00 | 1.I11 9.64 1.18 [100.0 0.00 100.0(14.04 0.18 24.28100.0 11.51 65.89|95.49 0.50 95.49(66.91 51.31 21.28(95.11 38.62 35.05(99.90 0.16 99.24
Blended  [55.53/97.57| 0.00 126 0.00 [ 0.53 10.06 0.55[99.85 0.00 99.92|11.45 0.47 19.80({96.51 11.89 63.59{90.18 1.09 90.1893.29 9.94 66.00|78.53 60.74 21.66(100.0 0.05 99.78
LF 55.21/98.51(15.05 1.26 23.82(19.36 9.15 19.20(63.86 0.00 77.94|11.35 0.48 19.62|85.97 9.72 62.88|87.44 1.40 87.44(9522 6.65 74.65(54.28 50.69 17.78(100.0 0.10 99.56
SSBA 55.97/97.69| 0.00 1.05 0.00 | 0.45 870 0.50 [59.11 0.00 74.30(13.97 0.19 24.15(99.96 11.20 66.46|95.24 0.53 95.24(88.07 20.94 46.78(26.90 57.36 8.37 (99.89 0.04 99.75
WaNet  [58.33/90.35|13.73 0.80 22.60|75.94 11.88 52.23|62.72 0.00 77.09|11.37 045 19.65| 6.38 11.11 597 |94.40 127 91.35/76.73 20.18 42.83| 0.00 15.12 0.00 [99.77 0.12 99.30
Input-Aware | 57.5/99.75 | 0.00 0.68 0.00 |64.97 10.30 49.13{99.65 0.00 99.82|12.92 0.29 22.32(12.02 11.08 10.97|72.52 3.53 70.18|80.22 28.93 36.41| 3.07 597 3.97 |99.89 0.04 99.73
TaCT 54.93/91.25| 0.00 1.02 0.00 [45.51 10.13 38.45(100.0 0.00 100.0|15.48 0.03 26.75|80.03 16.37 48.90|32.25 7.53 32.25/99.58 99.45 18.19(35.77 56.31 12.20(99.99 0.43 98.11
Adap-Blend [54.55/96.35| 0.00 0.82 0.00 | 9.56 9.39 9.85 [47.24 0.05 63.98|15.14 0.06 26.18|77.73 15.85 48.52| 8.97 10.11 8.97 |73.69 39.65 27.77|71.95 49.92 25.19|99.96 0.17 99.24
Avg. 3.60 091 5.80|27.18 9.91 21.39|79.05 0.01 86.63 13.21 0.27 22.84|69.83 12.34 46.65 72.06 3.24 71.39|84.21 34.63 41.74|45.70 41.84 15.53 99.92 0.14 99.34

Tiny ImageNet

5 EXPERIMENTS
5.1 EXPERIMENTAL SETUP

Attack settings. To evaluate the performance of our detection method, we conduct 10 state-of-the-
art (SOTA) backdoor attacks that cover 4 categories: 1) non-clean label with sample-agnostic trigger,
such as BadNets (Gu et al.l 2019), Blended (Chen et al.,[2017), LF (Zeng et al.,|2021); 2) clean-label
with sample-agnostic trigger, like SIG (Barni et al., 2019); 3) clean-label with sample-specific trigger,
such as CTRL (Li et al., |2023)), an attack based on self-supervised learning; and 4) non-clean label
with sample-specific trigger, including SSBA (L1 et al.l |2021b), WaNet (Nguyen & Tran| [2021]),
Input-Aware (Nguyen & Tran, [2020), TaCT (Tang et al.,2021), and Adap-Blend (Qi et al., 2023).
These attack settings follow BackdoorBench (Wu et al.,|2022) for a fair comparison. The poisoning
ratio in our main evaluation is 10% for non-clean label attacks and 5% for clean label attacks. The
target label ¢ is set to O for all-to-one backdoor attack, while target labels are set to ¢t = (y + 1)
mod K for all-to-all backdoor attack. The detailed experimental setting are provided in Appendix

Detection settings. We compare AGPD with eight detection methods, categorized into three groups:
1) activation-based, including AC (Ma et al.| 2023a), Beatrix (Ma et al., 2023b), SCAn (Tang
et al.}2021), and Spectral (Tran et al.,2018)); 2) input-based, such as STRIP (Gao et al.| 2019) and
CD (Huang et al.}2023)); 3) loss-based, represented by ABL (Li et al.| 2021a)) and ASSET (Pan et al.}
2023)). For a fair comparison, we maintain that the number of clean samples per class is 10, extracted
from the test dataset. The threshold used in AGPD 7, and 7, are e? and 0.05, respectively.

Datasets and models. We use CIFAR-10 (Krizhevsky et al., [2009) and Tiny ImageNet (Le &
Yang| 2015)) as primary datasets to evaluate the detection performance. Additionally, we expand our
evaluation to the datasets that are closer to real-world scenarios, such as ImageNet (Deng et al.,[2009)
subset (200 classes), DTD (Cimpoi et al.|[2014), and GTSRB (Houben et al.,|2013), of which results
are provided in Appendix [C.3] Our study employs two model architectures: Preact-ResNet18 (He
et al.l 2016a) and VGG19-BN (Simonyan & Zisserman, 2014). The results of VGG19-BN are

provided in Appendix [C.4.1]

Evaluation metrics. In this work, the metrics evaluating the performance of backdoor attacks are
Accuracy (ACC) and Attack Success Rate (ASR). The metrics used by the defender are True Positive
Rate (TPR), False Positive Rate (FPR), and F1 score. In the tables presenting our results, the top
performer is highlighted in bold, and the runner-up is marked with an underline.

5.2 DETECTION EFFECTIVENESS EVALUATION

All-to-one & all-to-all attacks. Tab. [T|showcases the detection performance of AGPD with eight
compared methods against 12 backdoor attacks on Preact-ResNet18. For all-to-one attacks and
all-to-all attacks, AGPD can achieve averaged TPR of 96.66% on the CIFAR-10 and 99.92% on the
Tiny ImageNet, exceeding the runner-up by 18.23% and 11.8% respectively. The averaged FPR of
AGPD not only ranks within the top-2 lowest among all detection methods but also approaches a near
0% level. Meanwhile, its average F1 score is 12.71% higher than that of the second-best method.
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For the activation-based methods, like Beatrix, SCAn and Spectral, we find that they effectively
identifies the majority of poisoned samples in attacks where poisoned and clean samples are separated
in the activation space. However, its performance deteriorates when this separation is not present,
such as CTRL (see t-SNE results in Appendix [F)). The failure of AC could be caused by the high
poisoning ratio. For input-based method like STRIP, they exhibit low TPRs in attacks such as
WaNet and Input-Aware. This underperformance is likely because the perturbed inputs generated by
a poisoned sample also display high entropy in their predictions, similar to those of a clean sample,
thereby complicating the distinction between them. CD shows relatively good detection effectiveness
across most attacks with an average TPR of 76.76%, although it also suffers from higher FPRs. The
reason could be that the masks derived from cognitive distillation for poisoned and clean samples
are too similar under L1 norm, leading to misclassification of some clean samples as poisoned. For
loss-based method like ABL, they perform well in attacks with attacks such as BadNets, Blended,
SIG, and CTRL. However, their effectiveness decreases when facing attacks with dynamic triggers,
such as WaNet, Input-Aware, and Adap-Blend. These attacks require more training epochs for models
to learn the connection between trigger and target label, which means that the loss of poisoned
samples does not significantly decrease in the early epochs (Wu et al.||2022). Regarding the ASSET
method, we observed potential impacts on detection performance due to differences in the model used
compared to the original work. Thus, we provide the results of ASSET on ResNet18 in Appendix [E]
The evaluation of the model trained on the dataset filtered by AGPD, as well as the detection results
under different poisoning ratios on PreActResNet-18, are respectively provided in Appendix and

Appendix[C.2]

Table 2: The detection performance of AGPD and the compared methods against multi-target attacks
on CIFAR-10. The model structure is Preact-ResNet18. S-T means single trigger, and M-T means
multi-trigger.

No defense AC Beatrix SCAn Spectral STRIP ABL cD ASSET AGPD
ACC/ASR |TPRT FPR| FI1 |TPRT FPR| FIf [TPRf FPR| FIt|TPRT FPR| FIf [TPRf FPR| FIf |[TPRT FPR| FIt |[TPRT FPR FIt [TPRT FPR| FIt |[TPR FPR| FIf
BadNets 91.38/80.34[97.46 0.70 9564|1938 0.96 30.28 0.00 0.00 0.00] 542 16.06 4.34 | 2.78 13.01 2.53 | 1.22 1098 1.2 [47.42 31.62 21.95(22.84 20.79 14.74|98.50 0.08 98.89
Blended 93.57/91.60(79.72 0.25 87.61(11.76 4.34 15.59| 0.00 0.00 0.00[14.90 1501 11.92| 0.18 649 023 | 2.08 10.88 2.08 |74.66 55.91 22.03[19.64 8.70 19.85/98.48 0.01 99.20
LF 93.54/93.82(99.72 0.03 99.71(2040 2.33 28.86/ 0.00 0.00 0.00[33.78 12.91 27.02| 5.32 7.88 6.04 | 1.82 10.91 182(62.02 41.63 23.11{ 024 066 0.4599.20 0.01 99.55
SSBA 93.28/92.38(99.44 0.04 99.52 450 079 8.07|0.00 0.00 0.00[32.36 13.07 25.89|48.26 15.65 33.39| 1148 9.84 11.48(72.56 25.16 36.37|13.52 8.02 14.56|98.92 0.02 9936

M-T | BadNets+Blended+LF+SSBA+SIG| 91.62/92.10[58.06 0.08 73.15] 2.92 2.60 4.62 | 0.00 0.00 0.00|14.64 15.05 11.71|22.72 13.27 18.77|50.10 5.54 50.10[63.20 18.60 38.23|56.86 54.68 17.52|92.02 0.18 95.06
Avg. 86.88 0.22 91.13|11.79 220 17.48| 0.00 0.00 0.00{20.22 14.42 16.18 15.85 11.26 12.19[13.34 9.63 13.34 63.97 34.58 28.34|22.62 18.57 13.42(97.42 0.06 98.41

Type Attack

ST

Multi-target attacks. Tab. [2|summarizes the performance of AGPD and the compared methods
in a multi-target attack scenario. In our experiment setting, {5, 6,7, 8,9} are chosen as the source
class and the target labels are setto t = (y + C') mod K, where C equals 5. Single-trigger attack
and multi-trigger attack are two categories of multi-target attack. In single-trigger attacks, the same
trigger injected into samples from different source classes is classified into their corresponding target
classes. In the multi-trigger attack, we use five triggers from different backdoor attacks (i.e., BadNets,
Blended, LF, SSBA, and SIG), and each trigger added to the samples in the corresponding class
will be classified into its designated target class. We observed that for activation-based methods,
the multi-trigger attack poses a greater challenge than single-trigger attacks, whereas loss-based
methods seem more robust against multi-trigger attacks. Additionally, the failure of SCAn might
be caused by their anomaly detection for target class(es) is not effective in the multi-target attacks.
However, compared with baseline methods, AGPD achieves good performance in both single-trigger
and multi-trigger attacks, with averages of TPR, FPR, and F1 score at 97.42%, 0.06%, and 98.41%,
respectively.

5.3 ANALYSIS

Analysis of CVBT. To substantiate the capability of the CVBT metric (i.e., pz, (D) in capturing
the characteristics of the circular distribution (i.e., Py, (D)), here we simulate different circular
distributions with varying degrees of dispersion and separation. (1) As shown in the left four sub-plots
in Fig. 3] while keeping similar low separation (i.e., one single cluster), the dispersion increases
from left to right, i.e., the distribution range increases. Correspondingly, the CVBT score increases.
(2) As shown in the right four sub-plots in Fig. 3] while keeping similar dispersion (i.e., similar
the distribution range), the separation increases from left to right, as two clusters get more distant
gradually. Correspondingly, the CVBT score increases. Thus, the claim that the CVBT score (i.e.,
Pz, (D)) is positively proportional to the dispersion and separation of Py, (D) (see Sec. is
verified. A comparison of the capabilities of CVBT and variance in measuring the characteristics of
the circular distribution is also provided in Appendix
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Figure 3: CVBT scores of different GCDs with varying dispersion and separation.

Statistic of metrics. In Fig. 4] we present the statistical results of CVBT metric (p) and its Z-score
(2) for both all-to-one and all-to-all attacks. In the left of Fig. 4} p of the target class are significantly
higher than those for clean classes for both attacks. Since clean classes are absent in all-to-all attacks,
using z to detect the outliers for identifying the target class could be ineffective. If z doesn’t pinpoint
the target class, we use a 0.3 threshold as a boundary to identify it, shown as a dashed line in Fig.
and validated by the left two images in Fig. |4} where p values for target classes surpass this limit
in all-to-all attacks. The mid-right image of Fig. 4] displays the distribution of z for the target and
clean classes in the all-to-one attacks, clearly separated by the dashed line, which represents the
threshold when identifying the target class. Moreover, the right image of Fig. ] illustrates the mean
and standard deviation curves of z of target classes across different convolutional layers of the model.
We observe that z tend to be higher in the later intermediate convolutional layers, indicating a stronger
separation between poisoned and clean samples at these layers.

150 All-to-one 150 All-to-all All-to-one w
[ Target class [ Target class . 3 Target class
1.25 =3 Clean class 125 3 Clean class [ Clean class 20
1.00 1.00 o
= %I ? 2 a0 o
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Class Class Class Convolutional Layer

Figure 4: Statistical analysis of p and z across classes and convolutional layers using the CIFAR-10
and Preact-ResNet18. Left: p values for all classes in both all-to-one and all-to-all attacks. Mid-right:
z for all-to-one attacks. Right: Mean and standard deviation of the maximum z across all layers in
multiple backdoored models.

Accuracy of target class identification. We compare the accuracy of target class identification of
AGPD with other three detection methods which are Beatrix (Ma et al., 2023b), SCAn (Tang et al.,
2021)), and NC (Wang et al.). To evaluate their performance, we trained 120 backdoor models on
CIFAR-10. The attack methods contain 8 non-clean label backdoor attacks, where the poisoning ratio
ranges from 1% to 10%, and the target label is from O to 4. The results of detection accuracy are
shown in Fig.[5al Note that the accuracy of target class identification of AGPD is higher than the
compared method under different poisoning ratios.

Analysis of activation gradient To illustrate the advantages of activation gradient in sample
detection, we also analyze the discriminative characteristics of the activation gradient for the poisoned
sample and clean sample in Appendix[D.3]

5.4 SENSITIVITY TEST

Influence of the number of clean samples. In this part, we explore the influence of the size of the
additional clean dataset on the detection performance of AGPD. We also consider the scenario that
the additional dataset collected by the defender is out of distribution (OOD). We collect the OOD
dataset of CIFAR-10 from the same 10 classes of CIFAR-5m (Nakkiran et al.l [2020), and we extract
10 samples from each class. The additional clean dataset which is in distribution (ID) is collected
from the test dataset. Fig.[5b|shows the results of our method with different sizes of the additional
clean dataset. We found that a large number of clean samples can help AGPD decrease FPR close
to zero. However, AGPD can still achieve high TPR even in extreme cases, such as one sample per
class or even OOD samples. When the number of clean samples in each class is one, the TPR values
of AGPD on many attacks are above 90%. In summary, our method necessitates a smaller additional
clean dataset.

Influence of threshold 7,. In the poisoned sample filtering stage, we aim to eliminate samples
scoring below 7, at each iteration until no samples remain in the target class. To better understand
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Figure 5: Left: Accuracy of AGPD and three compared methods on identifying target class(es).
Middle: Detection performance of AGPD with varying numbers of clean samples. Right: Means
and standard deviations of TPR and FPR at different threshold 7.

the impact of 75, we design an experiment with varying 7, from 0.01 to 0.1. According to Fig.
the TPR of AGPD is relatively low with significant variability at smaller 75 values, yet it stabilizes
at 100% with increasing 75, while the FPR remains consistently low throughout the variation of 7.
Moreover, it can ensure stable detection performance of AGPD across a broad range of values.

5.5 DETECTION EFFECTIVENESS AGAINST ADAPTIVE ATTACKS

Setup of adaptive attacks. Here we evaluate AGPD’s effectiveness against adaptive attacks, i.e.,
when the adversary knows its detection strategy. Specifically, the core point in AGPD is the observed
characteristic of the gradient circular distribution Py, (D), i.e., dispersion and separation of the
target GCD (see Sec.[I)). Thus, the adaptive adversary aims to break this characteristic. To that end,
we design two adaptive attacks. (1) Adaptive attack 1: Weak clean-label attack for reducing
dispersion and separation. The poisoned samples are constructed based on blending trigger image
with target clean images, such that poisoned images are closer to clean images, leading to closer in
GCD. This adaptive attack is denoted as Blended},, being « being the alpha blending coefficient
of the trigger image. (2) Adaptive attack 2: Attacking with inserting noisy samples into the
target class for disturbing the target GCD. We insert some noisy samples into the target class, i.e.,
randomly picking some clean samples from other classes and changing their labels to target label. As
both noisy and poisoned samples are significantly different with target clean samples, the target GCD
may vary due to noisy samples. All evaluations are conducted on CIFAR-10 with Preact-ResNet18.

0 bendedio, snsiasn  sencest, wsnsssze 1ADlE 31 AGPD  detection results
== =5 against Blended}, (adaptive attack 1),
with different numbers of basis vectors

\ \ \\ in G, i.e., m = 1/m = 200.

Blended (ASR:99.75%) Blended.,; (ASf
%)

EHY - roisoned
}
- Cean

N

\

Attack | ASR% |  Z-score TPR% FPR%
Blended 99.75 | 21.34/112.89  99.98/99.98  0.02/0.02

. A . . s : Blended,_ 1205 | 0.89/2.01 0.0/0.0 0.0/1.22
Figure 6: Gradient circular distributions of the target class o Yeur06 000952 001697

under Blended and the adaptive Blended?, attack. Blendeds—o; 34UES0 009996 00086

Results & Analysis of adaptive attack 1. We firstly present the GCDs and attack performance
(without defense) of Blended,_ ;, Blended},_ ,, Blended},_ 5, respectively, in Fig.[6] It shows
that the attack performance is positively proportional to the dispersion and separation of GCD.
The detection results of are shown in Tab.[3] When m = 1 (i.e., using one single basis vector
in G,,,), the Z-score is too small to identify the target class, leading to low TPR and low FPR.
However, as demonstrated in Sec. the basis vector g(x,+) could be extended to a basis set
Gm = {g(mn; )}j=1,....m- When m = 200, the Z-scores are much larger. Consequently, even when

the attack is weak (i.e., ASR 51% of Blended?,_ 5), AGPD still shows high TPR and low FPR. It

demonstrates that increasing the number of basis vectors in G,,, could enhance AGPD’s robustness to
adaptive weak backdoor attacks.

o o

51.16
88.33

Results & Analysis of adaptive attack 2. As shown
in Tab. ] AGPD still performs very well against the
Blended attack with varying noisy samples, and has
very high Z-scores. The GCDs of the corresponding
poisoned datasets are shown in Fig. [7}Left. It shows that

Table 4: AGPD detection results against
Blended attack with noisy samples (i.e.,
adaptive attack 2).

Noisy samples | ASR(%) | Z-score TPR FPR

: . 0 99.75 | 2134  99.98 0.02
noisy samples may have large angles in GCD, thus the 10 008 | 4873 999 004
dispersion and separation are still large, leading to high 100 9971 | 2331 998 02

1000 99.68 | 3575 100 18

Z-scores. However, when 1,000 noisy samples exist,
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the separation degrades, which may affect the sample

filtering of Stage 3 in AGPD (see Sec.[d.Z). Thus, we analyze the trend of the identified far-ending
sample @,,- in all iterations. As shown in Fig. [7}Right, we record the proportions of noisy and
poisoned samples in all accumulated @,,»s. When there are many noisy samples (e.g., 100 or 1,000
noisy samples), noisy samples are identified as «,,~ in early iterations, while poisoned samples are
gradually identified as «,,~ in later iterations. Consequently, both noisy and poisoned samples could
be identified as the far-ending basis vector, leading to filtering out of both noisy and poisoned samples.
This explains the good performance of AGPD against the adaptive attack with noisy samples.

In summary, AGPD shows good performance against above two adaptive attacks, i.e., weak clean-
label attack, and attack with noisy samples.

Blended (with 10 noisy samples) Blended (with 100 noisy samples) Blended (with 1000 noisy samples) Blended (with 10 noisy samples) ~ Blended (with 100 noisy samples) ~Blended (with 1000 noi

276 2 2 2
@® Class 0 (target class) ® Class2 @ Poisoned B ettt B bestastasasea
eration reration [
Class 1 ® Class3 Noisy sample erste

Figure 7: Left: The gradient circular distribution of the poisoned dataset with noisy samples of the
Blended attack. Right: The proportions of noisy or poisoned samples in the accumulated set of
far-ending samples x,,~ along with the sample filtering iterations.

6 CONCLUSION

In this paper, we introduce a novel perspective of gradient circular distribution (GCD). Based on GCD,
we observe that the dispersion of GCD of target class is larger, and poisoned samples are separated
from clean ones. Inspired by the observation, we propose two practical metrics and design a novel
detection method, AGPD. Our experiments demonstrate that this method successfully identifies target
class(es) under various backdoor attack scenarios, including all-to-one, all-to-all, and multi-target
attacks. Extensive experimental results show that our method achieves good performance on the task
of poisoned sample detection. Finally, we believe that the novel perspective of GCD deserves more
future explorations, such as its usage in other tasks (e.g., the training-based backdoor defense) and
other characteristics.

Ethics & Reproducibility statements. This work reveals a common observation of existing back-
door attacks, and provides an advanced backdoor defense method. It will not bring in negative impact
to the community. All evaluations are conducted on widely used datasets for image classification, no
involvement of ethic issues. Besides, we have provided all important implementation details in Ap-
pendix to ensure the reproducibility of all reported results. Our code is based on Backdoorbench(Wu
et al.,|2022), and we provide a demo of AGPD in the supplementary materials, along with the method
of operation, and we promise to release all codes once acceptance.
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A OVERVIEW OF APPENDIX

There are additional materials presented in the Appendix

* Appendix [B} Experiment setting details.
- Appendix BT} Details of datasets.
- Appendix [B.2} Hyperparameter settings of model training.
- Appendix [B:3} Hyperparameter settings of Backdoor attacks.
* Appendix [C}Additional experimental results
- Appendix [C.T}Performance on the model trained by filtered data.
- Appendix [C.2} Different poisoning ratios under PreactResNet-18 on CIFAR-10.
- Appendix [C.3} Evaluations on more datasets.
- Appendix [C.4} Evaluations on more models.
* Appendix [D} Additional analysis of AGPD.

- Appendix [D.T} Details of algorithm and stopping criteria.
- Appendix [D.2} Comparison between CVBT and variance.
- Appendix D3} Analysis of the discriminative degree of activation gradient.
- Appendix D4} Computation overhead.
* Appendix [E} The results of the compared ASSET on ResNet18.
* Appendix [F} t-SNE results
* Appendix [G} Results for adaptive attacks
Appendix [H} Results for clean-label attacks

Appendix[I} Results for noisy and poisoned samples

B EXPERIMENT SETTING DETAILS

B.1 DATASETS

We evaluate the performance of AGPD on five popular datasets and two model structures. In main
paper, we have provide the results of two datasets, including CIFAR-10 (Krizhevsky et al.,2009) and
Tiny ImageNet (Le & Yang| |2015). Besides, we extend our evaluations to the datasets which are
closer to real-world scenarios, such as ImageNet(subset)-200 (Deng et al., 2009)), the Textures dataset
DTD (Cimpoi et al.,2014), and the traffic signs dataset GTSRB (Houben et al.,|2013)). The results of
these datasets are provided in Appendix [C.3] The details of all datasets are illustrated in Tab. [3].

Table 5: The information about five datasets.

Dataset ‘ Categories ‘ Image size ‘ Training samples ‘ Testing samples
CIFAR-10 10 32 x 32 50,000 10,000
Tiny ImageNet 200 64 x 64 90,000 10,000
ImageNet(subset200) 200 224 x 224 90,000 10,000
GTSRB 43 32 x 32 39,209 12,630
DTD 47 224 x 224 3,760 1,880

B.2 HYPERPARAMETER SETTINGS OF MODEL TRAINING
There are some common training hyperparameters across these attack methods, such as training

epoch, learning rate, and optimizer. We display the setting of these common hyperparameters for
each datasets in Tab.
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Table 6: The common hyperparameters for training across five datasets.

Dataset ‘ Epoch ‘ Learning rate | Batch size | Optimizer
CIFAR-10 100 0.01 128 SGD
Tiny ImageNet 200 0.01 128 SGD
ImageNet(subset200) | 200 0.1 64 Adam
GTSRB 50 0.01 128 SGD
DTD 100 0.01 64 SGD

B.3 HYPERPARAMETER SETTINGS OF BACKDOOR ATTACKS.

The hyperparameters used in various backdoor attacks are listed in Tab. [/} For illustration purposes,
we use CIFAR-10 as an example. If the attack does not have any specific hyper-parameters, we will

denote this with ‘/’. We show the poisoned samples of various backdoor attacks in Fig.

Table 7: The hyper-parameters of implemented backdoor attacks for CIFAR-10.

Category Attack Parameters Usage Value
non-clean label with BadNets / / /
sample-agnostic Blended «a the transparency of 0.2
trigger the trigger.
LF et fooling rate 0.2
clean label with A to generate 40
L SIG - , .
sample-agnostic trigger f sinusoidal signal. 6
clean label with CTRL c trigger channel [2,1]
sample-specific trigger 1 trigger location (12,27)
SSBA / / /
All-to-one non-clean label with s —class |the trigger will be alist
sample-specific TaCT added to samples in
trigger s — class and change
their labels to the tar-
get label.
¢ —class |samples in ¢ — class alist
will only be added the
trigger.
c control the number of 0.1
samples in ¢ — class
Adap-Blend m the probability of the 0.5
area being masked.
s warping strength 0.5
k rid scale 4
non-clean label with WaNet gric sc - - .
ini Pa backdoor probability | =poisoning ratio
training control . -
P the noise probability 0.1
Ndiv the diversity enforce- 1
Input-Aware ment regularisation.
Py the backdoor proba-|=poisoning ratio
bility.
Pe the cross-trigger prob- 0.1
ability.
non-clean label with BadNets-A2A - to compute target
All-to-all sample-agnostic K labels. 10
trigger
non-clean label with SSBA-A2A
sample-specific
trigger
non-clean label with BadNets
. . N sample-agnostic Blended y to compute target
Single-trigger Attack trigger F C labels 5
non-clean label with SSBA
sample-specific
trigger
non-clean label with | BadNets+Blended+SSBA+ LF+ SIG the ratio of poisoned 0.02
Multi-trigger Attack | Sample-agnostic r samples from each type
trigger of trigger

14
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BadNets Blended SSBA CTRL

PP o

WaNet Input-Aware TaCT Adap-Blend

e

Figure 8: Examples of poisoned samples in various backdoor attacks.

Table 8: The detection performance of AGPD based on the model, which is trained on the filtered
dataset, on CIFAR-10 with Preact-ResNet18.

dataset ‘ ‘BadNets‘Blended‘ LF ‘SSBA‘SIG(S%)‘WaNet‘Input-Aware‘TaCT‘Adap-Blend
. ACC| 91.82 | 93.69 |93.01{92.88| 934 | 89.68 91.35 93.21 92.87
Poisoned data
ASR| 93.79 | 99.75 [99.05/97.06| 95.43 | 96.94 98.17 95.95| 66.17
. ACC| 919 91.52 192.02| 91.7 | 9191 | 89.98 91.14  190.71 91.25
Filtered data
ASR| 141 2.11 1.6 | 09 0.01 0.86 9.67 0.55 4.4

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 PERFORMANCE ON THE MODEL TRAINED BY FILTERED DATA

We also use the ACC/ASR of the model trained on the filtered dataset as a metric to evaluate the
effectiveness of the model detection. In Tab.[8] we present the ACC/ASR results of the poisoned
dataset under different attacks after being filtered and trained using the AGPD method on CIFAR-10
and PreActResNet-18. Our preliminary evaluations on CIFAR-10 and PreAct-ResNet-18 demonstrate
that training on the dataset filtered by AGPD can achieve high ACC and low ASR. The AGPD method
thus ensures the model’s performance while resisting backdoor attacks.

C.2 DIFFERENT POISONING RATIOS UNDER PREACTRESNET-18 OoN CIFAR-10

BadNets Blended LF SSBA
100 = 100 83,4&———3\—(»3 U —— 100
80 80 80 / \\ 80 f/_ﬂ?
R 60 60 60 60
&
& a0 Y W 40
20 20 20 20
0l ol ola ol olg 0 r»/
05% T 10% 05% 1% % 10% 05% 1% 5% 10% 05% 1% 5% 10%
Poisoning ratio
K20 ‘ zoj ‘ 20 ‘ zoj ‘
z 2
RS- = 0 ol =8 o B
0.5% 1%, 5% 10% 0.5% 1% 5% 10% 0.5% 1% 5% 10% 0.5% 5% 10%
WaNet Input-Aware TaCT Kgap—BIend
100 100 = 100 100
80 80 80 80 ’3\8“3/—’53
R 60 60 60 \ 60
E \
= £ 40 40
20 of 20 \ 20
0 bl o 0 0

05% ) 0% os% 1% % 10% 05% 1% % 10% 05% % % 10%
Poisoning ratio

—— TPR - FPR o AC SCAn STRIP ABL % AGPD(Ours)

Figure 9: Detection performance of AGPD and the compared detectors with poisoing ratios ranging
from 0.5% to 10%.

We evaluated the detection effectiveness of AGPD and four other methods, chosen from activation-
based, input-based, and loss-based detection methods, under varying poisoning ratios. There are four
poisoning ratios used: {0.5%, 1%, 5%, 10%}, covering a range from low to high poisoning ratios. As
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illustrated in Fig.[9] the performance of most detectors is notably influenced by the poisoning ratio.
Particularly, a low poisoning ratio (e.g., 0.5%) presents a substantial challenge for most detectors, with
the TPRs of AC and SCAn almost nearing zero. However, our method can achieve good performance
in this situation, with TPR around 90% and FPR lower than that of other detectors under most attacks.
And with the poisoning ratio increased, the performance of our method is still stable.

C.3 EVALUATIONS ON MORE DATASETS

In this section, we present the results of AGPD and the compared methods on these datasets, including
DTD (Cimpoi et al.|[2014), GTSRB (Houben et al., 2013)), and ImageNet subset (200 classes) (Deng
et al., [2009). The datasets can be categorized into two types: balanced datasets (e.g., DTD and
ImageNet subset (200 classes)) and imbalanced datasets (e.g., GTSRB). In balanced datasets, each
category has the same number of samples. For example, DTD has 376 samples per class, and
ImageNet-200 has 500 samples per class. In contrast, the number of samples per category in
GTSRB varies from 210 to 2,250. Besides, We use Preact-ResNet18 (He et al.,[20164al) as the model
architecture when training on DTD and GTSRB, and adopt ResNet50 (He et al.|[2016b) for ImageNet
subset (200 classes). Specifically, we compare AGPD with four detection methods: activation-based
method (e.g., SCAn (Tang et al.| 2021))), input-based method (e.g., STRIP (Gao et al.,[2019)), and
loss-based methods (e.g., ABL (Li et al.,[2021a) and ASSET (Pan et al., 2023)) on DTD and GTSRB.
The results are shown in Tab. E} Besides, the results of AGPD on ImageNetsubset (200 classes), are
displayed in Tab.

Table 9: The detection performance of AGPD and compared detectors on DTD and GTSRB. The
results are evaluated on Preact-ResNet18.

No defense SCAn STRIP ABL ASSET AGPD
ACC/ASR |TPR{ FPR| FIt |TPRT FPR| FIf |TPRt FPR| FI{ |TPRt FPR| FI{ |TPR} FPR| FIt
BadNets |51.97/98.32190.43 0.21 94.05|83.78 12.71 56.20(76.33 2.63 76.43|96.01 8.16 71.15]99.47 1.60 93.03
Blended |51.86/94.62|82.18 0.30 88.76(95.74 13.21 60.74|88.83 1.24 88.95| 0.80 3.04 1.25 |100.0 1.89 92.27
WaNet |42.71/26.41|86.08 1.06 88.01|77.84 14.03 51.14| 0.28 11.00 0.27 | .70 2.33 2.61 |100.0 1.88 92.27
Input-Aware [45.85/85.54| 0.00 0.00 0.00 | 13.07 12.91 1138|2045 892 20.19| 0.00 0.72 0.00 |98.58 0.59 96.73
Adap-Blend |49.41/85.65(77.13 092 83.21|32.18 16.19 23.01| 691 10.34 6.67 | 426 2.99 6.49 |100.0 1.18 95.07
Avg. 67.16 0.50 70.81 60.52 13.81 40.50|38.56 6.83 38.50|20.55 3.45 16.30 99.61 1.43 93.88

Dataset |  Attack

DTD

BadNets |96.35/95.02|94.62 4.00 82.06|95.54 1539 57.20|73.71 292 73.71|100.0 47.79 31.74|100.0 0.27 98.80
Blended |98.17/100.0 | 83.47 7.54 66.42|100.0 11.58 65.74|80.54 2.16 80.55|99.36 41.33 34.77|95.87 0.30 96.57
WaNet |97.05/96.16| 60.83 0.00 75.63| 7.83 14.3¢ 6.59 | 0.00 11.03 0.00 |44.07 64.79 12.12]100.0 0.20 99.12
Input-Aware [97.91/95.64 | 52.15 0.00 68.54| 1.99 1044 2.03 | 0.00 11.03 0.00 | 3.07 59.18 0.96 [79.60 0.00 88.64

GTSRB

Adap-Blend | 97.66/80.42 | 50.74 3.95 54.48|20.48 12.40 17.63| 0.00 11.11 0.00 |81.10 22.48 42.30|93.44 0.23 95.58
Avg. 68.36 3.10 69.43 45.17 12.83 29.84|30.85 7.65 30.85|65.52 47.12 24.38 93.78 0.20 95.74

Table 10: The detection performance of AGPD on ImageNet-200. The results are evaluated on
Preact-ResNetl18.

No defense
ACC/ASR | TPRT FPR| Fl11

BadNet 78.57/80.03 | 94.62 0.00 97.24
Blended 79.95/99.93 | 100.0 047 9793
Adap-Blend | 72.3/93.17 | 9998  0.59  99.19
Avg. 98.20 035 98.12

Dataset ‘ Attack ‘

>
Q
o)
o

ImageNet-200

As shown in Tables [|and [I0] AGPD achieves high performance on these datasets, with average TPRs
0f 99.61%, 93.78%, and 98.20%, respectively. Meanwhile, the average FPRs are 1.43%, 0.2%, and
0.35%. The experimental results demonstrate that our method is adaptable not only to balanced and
imbalanced datasets but also to datasets with various image sizes.

Regarding the compared detection methods, we draw conclusions similar to those reported in our
main paper. Specifically, SCAn fails when the distinction between poisoned and clean samples in
the activation space is not obvious. STRIP struggles to effectively identify poisoned samples in the
training dataset under attacks such as WaNet and Input-Aware. Similarly, ABL encounters challenges
in achieving satisfactory detection performance against complex triggers, including those used in
WaNet, Input-Aware, and Adap-Blend attacks.
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C.4 EVALUATIONS ON MORE MODELS

C.4.1 EVALUATIONS ON VGG19-BN

All-to-one & all-to-all attacks. The results of VGG19-BN under all-to-one and all-to-all attacks are
shown in Tab. [TT] It can be seen that even changing the model architecture, the detection performance
of our method is still stable, achieving 96.46% TPR on CIFAR-10 and 97.75% on Tiny ImageNet,
higher than that of the second-best 16.55% and 7.89%, respectively. Besides, the F1 score of AGPD
are 90.90% on CIFAR-10 and 98.36% on Tiny ImageNet, exceeding the runner-up by 33.59% and
16.27%, respectively. The results indicate the dispersion of the activation gradients of poisoned
samples and clean samples could exist across model structures, demonstrating the robust adapt ability
of our method.

For the compared methods, we found that the model architecture significantly influences activation-
based methods. For instance, AC can identify a small portion of poisoned samples in all-to-one attacks
with a 10% poisoning ratio. Beatrix performs better on VGG19-BN, with the average TPR 20.78%
higher and the F1 score 17.39% greater than on Preact-ResNet18. Conversely, SCAn struggles to
detect a large number of poisoned samples in WaNet and Input-Aware attacks on the VGG19-BN.

Table 11: The detection performance of AGPD and compared detectors on CIFAR-10 and Tiny
ImageNet. The results are evaluated on VGG19-BN.

Datase] At | No defense AC Beatrix SCAn Spectral STRIP ABL cD ASSET AGPD
ACC/ASR |TPRT FPR| FI1 |TPRT FPR| FIf |TPRT FPR| FIf |[TPRT FPR| FIf [TPRT FPR| FIt |[TPRT FPR| FIt |[TPR FPR| FIt |TPRT FPR| FIt |TPRT FPR| FIf
BadNets  |91.82/93.79[ 0.00 642 0.00 5290 344 57.55[68.90 035 80.08[2828 0.02 44.02[82.88 10.84 59.10|76.68 2.59 76.68[72.98 13.46 49.62| 454 233 7.24[99.72 6.90 76.16
Blended  [93.69/99.75| 0.00 1479 0.00 [99.22 9.97 68.68[96.72 0.00 98.33|28.50 0.00 44.36|47.06 10.74 38.61|78.08 244 78.0899.94 99.87 18.19( 0.20 52.35 0.07 [99.96 0.02 99.90
LE 93.01/99.05[ 0.00 6.76 0.00 (9946 640 77.39|83.22 0.00 90.8328.50 0.00 44.36(89.80 8.28 67.94|40.80 658 40.80( 0.10 0.03 020 | L74 097 3.15|99.50 0.03 99.62
SSBA  [92.88/97.06] 474 14.08 4.10[0.10 619 0.13 8976 080 9115 2.18 292 339 |7238 12.33 51.0825.16 832 25.1684.78 60.67 2320/ 0.00 0.00 0.00 |98.94 4.81 8160
SIG  [93.40/95.43( 0.00 13.84 0.00 [100.0 356 74.70(94.80 0.00 97.33|30.00 0.00 46.15(98.96 6.20 62.47|94.84 553 63.23|88.24 48.16 28.39/100.0 4735 18.19[99.60 0.02 99.62
< CTRL | 95.52/98.8 |15.52 17.08 7.06 2220 4.79 20.83|5.80 0.00 10.96|23.20 14.57 11.60|94.36 10.19 48.64(86.72 5.96 57.81|88.16 23.29 4433|1000 581 64.42[90.84 2.06 78.99
E WaNet [89.68/96.94| 0.00 20.48 0.00 | 245 9.64 251|000 0.00 0.00 [29.03 0.06 4481 192 12.02 1.76 [13.18 9.67 12.76|98.85 98.54 1821] 0.00 3857 0.00 8535 0.09 91.67
T | mputAware [90.82/98.17/10.52 7.01 1180|203 563 2.59 |65.04 0.03 78.60| 188 2.86 290 [ 098 8.60 107 [1483 9.50 14.35(8426 58.53 23.70( 0.06 10.01 0.7 [92.96 0.06 96.09
TaCT  [9321/9595/0.00 646 0.00|97.24 679 7529|99.22 0.00 99.61|30.00 0.00 46.15(75.30 14.19 49.70|26.94 8.12 26.94|83.42 74.00 19.64| 0.42 0.66 079 [100.0 025 98.90
Adap-Blend [92.87/66.17| 4.68 16.07 375|022 721 027 [29.68 180 40.68( 1.36 3.03 2.12|7.34 1131 7.02|0.02 1111 0.02[100.0 1000 18.18| 0.00 0.01 0.00]99.92 817 73.07
BadNets-A2A[91.93/74.40|79.46 0.02 $8.49|2842 6.66 30.17| 0.00 0.00 0.00 [0.00 1.67 0.00 | 154 1172 149 | 486 10.57 4.86 [58.16 20.01 34.39| 5.86 3.67 844 |9592 0.02 97.83
SSBA-A2A |93.46/87.84/99.36 093 95.66|31.44 7.17 32.08| 0.00 0.00 0.00 | 000 1.67 0.00 1998 16.14 1507| 118 1098 1.18 |99.98 99.96 18.18 024 0.11 047 [9482 0.02 97.27
Ave. 17.86 1033 17.57|44.64 645 3685|5276 0.25 5731 1691 223 24.15[49.38 11.05 33.66 38.61 7.61 33.49|79.91 58.04 24.69 17.76 1349 8.57 |96.46 187 90.90
BadNets  [56.12/99.90] 0.10 20.08 0.07 [97.73 9.37 69.30[99.88 0.00 99.94|15.67 0.00 27.09|99.99 11.24 66.41|96.66 0.37 96.66(96.43 9.16 69.15|100.0 48.50 31.42[99.67 0.12 99.30
Blended  |55.53/97.57| 0.00 7.47 0.00 [92.85 4.40 79.90(78.26 0.00 87.80|15.67 0.00 27.09[95.55 13.88 59.63(96.78 0.36 96.78/82.38 34.19 33.62| 1.32 465 184[99.99 0.03 99.85
] LF 5521/98.51(0.00 574 000 [22.73 202 3226|5225 0.00 68.64|15.67 0.00 27.09(21.00 11.82 18.55|48.83 5.60 48.8396.43 10.55 66.18(99.08 17.03 56.2499.92 0.03 99.84
3 SSBA  [55.97/97.69| 0.00 8.88 0.00 [42.53 3.96 47.73/78.05 0.00 87.6715.67 0.00 27.09(99.92 11.77 65.33(89.65 1.15 89.63(93.11 19.00 51.14|100.0 47.66 31.80/99.94 0.02 99.86
H WaNet  [58.33/90.35 0.02 562 003|000 151 0.00(99.94 0.00 99.96|13.93 0.19 24.08|17.65 11.57 1538|83.54 2.39 80.85(99.09 0.30 98.19(100.0 0.73 97.28(99.97 0.12 99.40
Z | Input-Aware | 57.5/99.75 [ 005 564 007|053 290 0.83 [98.11 0.00 99.05(1572 0.00 27.17|15.49 12.35 13.19|64.97 431 62879588 836 70.73|97.18 15.79 58.19(82.54 0.00 9043
= TaCT  [54.93/9125) 000 8.16 0.00 |54.87 2.62 61.50|44.87 0.00 61951505 0.08 26.00{99.91 17.27 56.24|56.75 4.81 56.75|74.04 42.16 26759935 51.83 31.05{99.99 024 98.94
Adap-Blend |54.55/96.35(25.95 2118 16.39| 0.68 10.67 0.69 [34.92 0.01 51.73(1493 0.08 25.81|67.20 15.69 43.58 1.09 10.99 1.09 |81.50 23.87 41.12[100.0 57.36 30.35/99.99 0.16 99.27
Avg. 327 1035 2.07[38.99 4.68 36.53|73.28 0.00 82.00 1529 0.04 26.43[64.60 13.20 4229 67.28 3.76 66.69|89.86 18.45 57.11 87.12 30.44 42.27|97.75 0.09 98.36

Performance of AGPD with VGG19-BN under various poisoning ratios. We estimate the
detection performance of AGPD against various backdoor attacks with different poisoning ratios and
compare our method with four detectors. The results are displayed in Fig.[I0] It can be seen that our
method achieves a higher TPR under most attacks compared to other methods, which also maintain
relatively low FPR.

D ADDITIONAL ANALYSIS OF AGPD

D.1 DETAILS OF ALGORITHM AND STOPPING CRITERIA
D.1.1 THE DESCRIPTION OF ALGORITHM

The statement of the algorithm we used in Stage3 is described in Algorithm[I} An example of JS
divergence across iterations is provided in Fig. [TT] Assuming ground truth is known for samples
in the target class, we can obtain True Positives (TP) and False Positives (FP) for each iteration. It
can be observed that an optimal iteration exists where JS divergence is minimal and stabilizes. The
rationale behind the trends in JS divergence is that in the early stages of filtering, the far-end basis
is primarily updated by genuinely poisoned samples, effectively guiding the identification of such
samples. As the process progresses into the middle stages, most poisoned samples have been filtered
out, and the influence of the far-end basis on the remaining clean samples becomes minimal, resulting
in little change in trust scores and small JS divergence. However, as the process extends into later
stages, and more clean samples are inevitably filtered, the far-end basis is updated by these clean
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Figure 10: Detection performance of AGPD and the compared detectors with poisoning ratios ranging
from 1% to 10%.

samples, leading to significant changes in the distribution of trustworthiness scores and an increase in
JS divergence.
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Figure 11: Trends of TP, FP, and JS divergence according to the iteration ¢.

D.1.2 THE STOPPING CRITERIA

To find an appropriate stopping iteration t*, we utilize the sliding window method to analyze the
changes in JS divergence across all iterations. Our goal is to identify the iteration ¢ where the JS
divergence is minimal and stabilizes. Let the width of the window be w, and let the JS divergence at
each iteration ¢ be JS(t), where ¢ € {0,...,T — 1}. The average p.,, and standard deviation o, of
each window starting at position m are defined as follows:
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Algorithm 1 Filtering out poisoned samples within the identified target class(es).

Input: The identified target class £*, the subset Dl’f;, selected layer [*, the reference (x, k*), and
filtering threshold 7.
Output: Suspected set DF,
1: Compute the GCDs of the set Df,, referred to {0, (x;)}*;, corresponding to the reference

(0, k*), , according to Eq.(2).

and purified set DF,\DF,

sus*

2: Find the farthest activation gradient g(a,- ) according to n* = arg maX;c(1,... n,. } Vo (%i)-
3: Set Dfus = (), JS = {}, and iteration ¢t = 0.

4. while D}, \D¥  # () do

5. Calculate the distribution of {sg, (%)}, epy: according to Eq.

6:  Add samples (x;, k*) whose s4, (;) is smaller than 7, to D¥, , and remove them from D}, .
7. ift > 0 then

8: Calculate the JS divergence between the distribution of {54, (%)}, €Dk in the iteration ¢

and ¢ — 1.

9: Add the JS divergence to J.S.
10:  end if
11: t=t+1.

12: end while
13: Find an appropriate iteration ¢* according to the stopping criteria.

14: Remain samples (x;, y) filtered out before the iteration ¢* in Dfu o

Each window can be represented by a score .S, that combines the value of the average with the
standard deviation. Since we are mainly focusing on stabilization, we design a metric as described in
Eq. [/} which amplifies the contribution of the standard deviation.

Sm = tim + Bom. @)

After computing the score of all windows, we choose the window starting at m with the minimum
score:

m* = argmin S,,. ®)

The stopping iteration is the middle of the optimal window, which is t* = m* + . In our method,
we adopt w = 10 and 5 = 5.

D.2 COMPARISON BETWEEN CVBT AND VARIANCE

To compare the capabilities of CVBT and variance on identifying the target class, we provide the
values of CVBT and variance for different labels under various attacks and also present the Z-score
estimate for the target label in Fig. The disparity between CVBT and circular distribution variance
is notably pronounced within the target category while on other clean labels, CVBT is only slightly
larger than variance. This also results in the Robust Z-score corresponding to CVBT, the statistical
measure for detecting the target category, being greater than the value corresponding to variance,
further proving that CVBT more accurately reflects the anomalies of the target category compared to
variance.

D.3 ANALYSIS OF THE DISCRIMINATIVE DEGREE OF ACTIVATION GRADIENT.
D.3.1 GCDs FOR VARIOUS ATTACKS ON CIFAR-10

Fig. [I3]and Fig. [T4] present the GCDs for all classes in CIFAR-10 under eight backdoor attacks with
10% poisoning ratio, based on the model structures of Preact-ResNet18 and VGG19-BN, respectively.
It can be noticed that the target class (covering both black and blue arcs) occupies a longer arc on the
circle compared with the clean classes across different model structures and backdoor attacks. Note
that we moved all clean classes’ arcs to different areas on the circle to avoid visual overlap.
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Figure 12: CVBT and circular distribution variance on CIFAR-10 with PreAct-ResNet18 across
different labels.
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Figure 13: Gradient circular distributions (GCDs) of multiple backdoor attacks on CIFAR-10 with
Preact-ResNet18.

D.3.2 THE SEPARATION BETWEEN POISONED AND CLEAN SAMPLES

Fig. [I5]displays the cosine similarities of samples in the target class with a clean basis, which are
computed in activation gradient and activation spaces, respectively. We exhibit the distributions of
cosine similarities of four convolutional layers. If a sample is clean, the cosine similarity should be
large. As shown in Fig.[T3] the separation of the distribution of cosine similarities between clean
and poisoned samples is larger in the activation gradient space, which can be observed in many
convolutional layers.

D.3.3 ACTIVATION VS. ACTIVATION GRADIENT.

To demonstrate that the separations of clean and poisoned samples differ in activation gradient and
activation spaces, we show the distribution of cosine similarities between samples and the clean basis

20



Under review as a conference paper at ICLR 2025

BadNets Blended LF SSBA
90 % 90" ’9_0
/ ' \ / \ / \
18 " 0 18qQ° o 18q° 0 18‘!' o
AN ’ / .
- 270‘1 576" 5 ~ls76™

Véloa'Net Input:, Aware ;I;qCT Ad%E;Blend
189" \ NG J \ la" i .

~— —— T 75" - ﬁﬁov/

W Poisoned WM Class 0 (Ours) W Classl @M Class2 WM Class3 e Class4  mmm Class 5 Class6  mmm Class 7 Class8 mmm Class 9

Figure 14: Gradient circular distributions (GCDs) of multiple backdoor attacks on CIFAR-10 with
VGGI19-BN.
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Figure 15: The distribution of the cosine similarities of samples from the target class with a clean
sample in multiple convolutional layers. The model structure is Preact-ResNet18. The purple
represents poisoned samples, while the blue represents clean ones.

from both spaces. Due to the space limitation, we provide the results in Appendix[D.3.2] To quantify
the separation, we utilize Silhouette Score (Rousseeuw}, [1987) to measure the distance between two
clusters in both spaces across all convolutional layers. The range of the Silhouette Score is between
-1 and 1, with higher values indicating better separability between the two clusters. Considering that
different depths of convolutional layers correspond to different separations, Tab. [I2] presents the
maximum Silhouette Scores among all convolutional layers for eight backdoor attacks, from which
we find that Silhouette Scores are larger in activation gradient space.

D.4 COMPUTATION OVERHEAD
Tab. [[3]illustrates the computation complexity and time (based on RTX A5000 GPU) of AGPD and

the compared detection method under eight backdoor attacks with 10% poisoning ratio on CIFAR-10.
We record the average of running time with standard deviation in bracket.
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Table 12: Silhouette scores of the target class under eight attacks, measured in activation and activation
gradient spaces, using Preact-ResNet18.

BadNets Blended LF SSBA

Activation 0.529 0.485 0.472 0.497

Activation Gradient 0.664 0.696 0.610 0.623
WaNet  Input-Aware TaCT Adap-Blend

Activation 0.544 0.457 0.379 0.403

Activation Gradient 0.605 0.466 0.515 0.491

Table 13: Computation complexity and time of AGPD and the compared methods on CIFAR-10.
The value in the bracket represents the standard deviation. General setting: Epoch E; Samples V;
Perturbation samples N,,; Feature Dimension D; Class K; Forward F'; Backward B

AC Beatrix SCAn Spectral STRIP ABL CD ASSET AGPD

Complexity |O((F + D)N) O((D®+ F)N) O((F + D)N) O(NF + K(N/K)?D) O((NpF + K)N) O((F + B)EN) + O(FN) O((F + B)EN) O((3+ F + 2+ B)EN) + O(FN) O((F + B+ D)N)
Time (minute) |  1.02(0.01) 8.92(0.38) 1.27(0.02) 1.73(0.06) 3.29(0.02) 10.06(0.09) 20.42(0.02) 206.43 (12.63) 5.02(0.03)

E THE RESULTS OF THE COMPARED ASSET ON RESNETI18

In our above experiment, we found that detection performance of ASSET is deviated from the results
reported in the paper (Pan et al.;2023), such as BadNets and Blended attacks. Therefore, we decided
to replicate these detection results using the recommended model structure, ResNet18. We tested six
different attacks, including BadNets, Blended, WaNet, Input-Aware, TaCT, and Adap-Blend. The
experiments were conducted on the CIFAR-10 dataset with 10% poisoning ratio. The corresponding
results are shown in Tab. [T4 When changing the model structure from Preact-ResNet18 to ResNet18,
we discovered that the detection performance of ASSET becomes better, such as the TPRs of BadNets,
Blended, and TaCT. However, when the form of the trigger is too complex and dynamic, which
requires the model to spend more epochs learning it, this poses a greater challenge for the loss-based
method, like ABL and ASSET. The work (Wu et al., 2022)) provides more analysis of quick learning
of backdoors.

Table 14: The results of ASSET on CIFAR-10 with ResNet18.

BadNets Blended WaNet Input-Aware TaCT Adap-Blend

TPR 90.70 9990 1.88 0.25 100.00 54.58
FPR  0.18 9.43 1.69 0.22 0.00 38.90
FI 9432 6997 3.55 0.48 100.00 23.43

F 71-SNE RESULTS

In this section, we provide the t-SNE visualizations of ten backdoor attacks conducted on CIFAR-10
with Preact-ResNet18 in Fig. [I6] The activations are extracted from the last convolutional layer
(layerd.1.conv2). From Fig[16] it is evident that the dispersion of activations of poisoned and clean
samples is significant in some attacks, such as BadNets and Blended. Consequently, most activation-
based methods perform well against these attacks. Additionally, the dispersion of activations of the
target class is relatively small in CTRL attacks, where these methods fail.

G RESULTS FOR ADAPTIVE ATTACKS

In this section, we present the results and analysis for adaptive attacks in which adversaries also added
perturbations to clean samples used by defenders. The performance of AGPD under these conditions
is summarized in Tab[I3] Additionally, we visualize the distribution of cosine similarities among
poisoned, noisy, and clean samples in the activation gradient space under two modes, as shown in
Fig[T7]and Fig[I8] respectively, to further demonstrate the effectiveness of our method.
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Figure 16: t-SNE visualization of ten backdoor models trained on poisoned CIFAR-10 under 10%
poisoning ratio for non-clean label attacks and 5% poisoning ratio for clean label attacks. The model
architecture is Preact-ResNet18.

Experimental setup: The poisoned dataset consists of 10% poisoned samples and 10% clean
samples with added noise. In these clean samples, noise is inserted into the images of the blending
ratio 0.2 without altering the labels. There are two modes of adding noise: in the Random mode, all
noise is generated randomly, while in the Fixed mode, half of the noise is fixed, and the other half
is generated randomly. We evaluated the effectiveness of AGPD in detecting various attacks on the
CIFAR-10 dataset using the PreactResNet-18 architecture.

Analysis: we observed that in both two noise modes, the distribution of noise samples closely
resembles that of clean samples. Despite these samples with noise, they can retain their original
features, resulting in similar gradients to those of clean samples. This observation underscores
the robustness of AGPD in distinguishing between clean and poisoned samples, even when clean
samples are added with noise. The preservation of original features in noisy samples ensures that
their gradients remain unaffected, allowing AGPD to effectively detect poisoned samples without
interference from noise. Additionally, we offered the performance of AGPD against adaptive attacks
in Tab. [T3] It can be seen that the proposed method maintained high TPR and relatively low FPR
across different backdoor attacks and both noise-adding modes.
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Figure 17: The distribution of the cosine similarities of samples from the target class (above) and
samples from one non-target class (below) in activation space for Random mode across multiple

convolutional layers. The purple represents poisoned samples, the blue represents clean ones, and the
green represents noise ones.
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Figure 18: The distribution of the cosine similarities of samples from the target class (above) and
samples from one non-target class (below) in activation space for Fixed mode across multiple
convolutional layers. The purple represents poisoned samples, the blue represents clean ones, and the
green represents noise ones.

Table 15: Performance of AGPD against adaptive attacks with different attacks under poisoning
ratio=10% on CIFAR-10 and ResNet-18.

Attack | Mode | TPR | FPR | Fl
Random | 86.68 | 0.01 | 92.83

BadNets | “piooq | 8724 | 0.18 | 85.42
Blended Random | 99.88 | 0.00 | 99.93
Fixed | 99.56 | 0.00 | 99.76

¢ | Random | 9924 | 0.01 | 9959
Fixed | 9936 | 0.01 | 99.62

Random | 99.42 | 0.03 | 99.56

SSBA | "kixed | 9952 | 0.03 | 99.63

H RESULTS FOR CLEAN-LABEL ATTACKS

In this section, we provide a visualization of the cosine similarity distribution for samples in the target
class to illustrate AGPD’s detection capability against clean-label attacks, as shown in Fig[T9] It is
evident that there is a clear separation between the two types of samples in the activation gradient
space, even though the poisoned and clean samples belong to the same class.

I RESULTS FOR NOISY AND POISONED SAMPLES

Considering adversaries are able to inject noisy samples to further improve the attack stealthiness, we
provide the visualization of the distribution of cosine similarities for noisy and clean samples sharing
the same label under three backdoor attacks in Fig[20}

Experimental setup: We create a noisy sample by adding noise to a poisoned sample and reverting
it to its original label.

Analysis: We found that the gradient distributions of noisy samples and clean samples are almost
identical. This is because the noisy sample retains the class information and has not been altered to
the target label, so the inherent clean information of the model predominantly influences the gradient.
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Figure 19: The distribution of the cosine similarities of samples from the target class.
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Figure 20: The visualization of cosine similarities for noisy and clean samples. The blue represents
the clean ones and the green represents noisy ones.
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