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Abstract

We present a game-theoretic model of seman-001
tics that we call RECO (for Regularized Con-002
ventions). This model formulates pragmatic003
communication as a game in which players are004
rewarded for communicating successfully and005
penalized for deviating from a shared, “default”006
semantics. As a result, players assign utter-007
ances context-dependent meanings that jointly008
optimize communicative success and natural-009
ness with respect to speakers’ and listeners’010
background knowledge of language. By using011
established game-theoretic tools to compute012
equilibrium strategies for this game, we obtain013
principled pragmatic language generation pro-014
cedures with formal guarantees of communica-015
tive success. Across several datasets capturing016
real and idealized human judgments about prag-017
matic implicature, RECO matches (or slightly018
improves upon) predictions made by Iterated019
Best Response and Rational Speech Acts mod-020
els of language understanding.021

1 Introduction022

Meaning in language is fluid and context-sensitive:023

speakers can use the word blue to pick out a color024

that in other contexts would be described as purple,025

or identify a friend as the one with glasses in a026

room in which everyone is wearing glasses (Fig- 027

ure 1). Such context-dependent meanings can arise 028

as conventions among language users communi- 029

cating repeatedly to solve a shared task (Clark and 030

Wilkes-Gibbs, 1986). But remarkably, they can 031

also arise without any interaction at all, among lan- 032

guage users who share only common knowledge of 033

words’ default meanings (Grice, 1975). 034

What makes this kind of context-dependent prag- 035

matic language use possible? Almost all exist- 036

ing computational models of pragmatics are im- 037

plemented as recursive reasoning procedures, in 038

which listeners interpret utterances by reasoning 039

about the intentions of less-sophisticated speakers 040

(Golland et al., 2010; Degen, 2023). These models 041

have been successful at explaining a number of as- 042

pects of pragmatics. But they can be challenging 043

to fit to real data: because they specify behavior in 044

terms of an algorithm that speakers and listeners 045

implement, rather than an objective that they op- 046

timize, recursive reasoning models can be highly 047

sensitive to implementation-level details (e.g. the 048

number of “levels” of recursive reasoning). 049

We present an alternative model of pragmatic 050

understanding based on equilibrium search rather 051

than iterated response. In this model (which we call 052

Regularized Conventions, or RECO), speakers and 053
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Figure 1: The RECO model. To communicate (or resolve) an intended meaning from a set of possibilities (a), language
users search for distributions over utterances and interpretations that are close to some “default semantics” (b) and close to a
(game-theoretically) optimal signaling convention (d). The resulting “regularized conventions” (c) predict human judgments on
a variety of pragmatic implicature tasks.
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listeners solve communicative tasks like those in054

Figure 1 by searching for utterance–meaning map-055

pings that are both close to a game-theoretically056

optimal communicative convention (a signaling057

equilibrium), and close to a shared initial seman-058

tics (which functions as a regularizer). In Figure 1,059

for example, convention assigns high probability060

to the use of blue to signal the intended color, and061

low (but nonzero) probability to the use of purple062

instead. This strategy is both close to one of many063

optimal conventions (in which every utterance arbi-064

trarily, but uniquely, picks out one color), and close065

to color terms’ standard interpretation (in which066

the target color is improbably, but not impossibly,067

described as blue).068

RECO is by no means the first application of069

game-theoretic tools to model pragmatic language070

understanding (Parikh, 2000; Franke, 2013; Jäger,071

2012)—in fact, many recursive reasoning models072

(e.g. Franke, 2009a) also have a game-theoretic in-073

terpretation. But by leveraging recently developed074

algorithmic tools for computing regularized equi-075

libria of games, RECO can efficiently learn mod-076

els of pragmatic communication from data, while077

providing formal guarantees about communicative078

success and deviation from default semantics. The079

algorithms that compute these equilibria turn out080

to have a very similar structure to some probabilis-081

tic recursive reasoning methods (e.g. Frank and082

Goodman, 2012), offering a bridge between algo-083

rithmic characterizations of pragmatic reasoning084

and RECO’s optimality-based characterization.085

Most importantly, RECO gives a good fit to hu-086

man data: on classic exemplars of pragmatic im-087

plicature, reference tasks eliciting graded human088

judgments, and tasks featuring perceptually com-089

plex meaning spaces, its predictions match (and090

sometimes modestly outperform) standard recur-091

sive reasoning models. These results show that092

game-theoretic approaches offer a viable founda-093

tion for expressive, learned models of pragmatic094

communication, and highlight the usefulness of the095

modern game-theoretic toolkit in more general sys-096

tems for language production and comprehension.097

2 Background and Preliminaries098

Consider again the example in Figure 1. We wish to099

understand the process by which a SPEAKER might100

use blue to refer to the second color in the second101

row, and by which a LISTENER might resolve it102

correctly.103

2.1 Signaling Games 104

The problem depicted in Figure 1 has often been 105

formulated as a signalling game (Lewis, 1971), 106

which features two players: the SPEAKER and the 107

LISTENER. In this game, a target meaning (rep- 108

resenting a communicative need) is first sampled 109

from a space of possible meanings m ∈ M with 110

probability p(m). To communicate this meaning, 111

the SPEAKER produces an utterance u ∈ U accord- 112

ing to a policy πS(u | m). Finally, the LISTENER 113

produces an interpretation according to a policy 114

πL(m
′ | u). 115

Informally, communication is successful if the 116

LISTENER’s interpretation is the same as the 117

SPEAKER’s intended meaning. More formally (and 118

somewhat more generally), we may define commu- 119

nicative success in terms of rewards. Consider any 120

(meaning, utterance, interpretation) combination 121

(m,u,m′). The SPEAKER’s reward rS(m,u,m′) 122

in this interaction is the sum of: 123

• an utterance cost −c(u) that the SPEAKER in- 124

curs for producing utterance u (all else equal, 125

they may for example prefer short utterances); 126

and 127

• a success measure, equal to 1 only when m′ 128

matches the target m, that is, 1[m′ = m] (the 129

SPEAKER wishes for the the LISTENER to iden- 130

tify their intended meaning). 131

Together, 132

rS(m,u,m′) := −c(u) + 1[m′ = m]. 133

Most models assume that the LISTENER’s reward 134

rL(m,u,m′) depends only on communicative suc- 135

cess: 136

rL(m,u,m′) = 1[m′ = m]. 137

Having specified rewards for all interactions, 138

the expected utility of each player given policies 139

(πS, πL) for the SPEAKER and LISTENER respec- 140

tively is defined as the expected reward when the 141

meanings m are sampled from a prior distribution 142

p(m), and agents sample from their policies: 143

ūi(πS, πL) := E
m∼p

u∼πS(·|m)
m′∼πL(·|u)

ri(m,u,m′) (1) 144

for i ∈ {S,L}. 145

2.2 Computing Policies for Signaling Games 146

How should a SPEAKER and LISTENER communi- 147

cate to maximize the probability of success? We 148
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call a pair of policies for the SPEAKER and for the149

LISTENER a Nash equilibrium if neither agent is150

incentivized to unilaterally modify their own policy151

given that the other agent’s policy is fixed: for-152

mally,153

πi = argmax
π

ūi(π, π−i) .154

In the bottom row of Figure 1(d), neither the155

SPEAKER nor LISTENER can improve their reward156

by unilaterally deciding that blue refers to a differ-157

ent color.158

Notice that there may in general be multiple such159

policies: returning to Figure 1(d), the bottom row160

shows an equilibrium policy in which the intended161

meaning is called blue and the alternative is called162

purple, but the top row shows a different equilib-163

rium policy in which the former is called purple164

and the latter called green (in clear violation of165

those words’ standard use in English!).166

This fact underlines a major limitation of sig-167

naling games (in their simplest form) as models168

of communication—while they can explain which169

utterance–meaning mappings correspond to stable170

conventions, they cannot explain why particular171

mappings are chosen in particular communicative172

contexts against the background of a shared lan-173

guage. In Figure 1(d), what prior knowledge of lan-174

guage allows us to identify the second row as more175

“natural” than the first one? When a SPEAKER and176

LISTENER communicate for the first time, how can177

they leverage this knowledge to ensure that they178

both identify the same mapping from utterances to179

meanings in context?180

Recursive reasoning methods A popular family181

of approaches answers these questions algorithmi-182

cally. These approaches typically begin from an183

assumption that SPEAKERs’ and LISTENERs’ com-184

mon knowledge of language consists of a literal se-185

mantics (which assigns context-independent mean-186

ings to utterances). Agents then derive policies by187

computing behaviors likely to be successful given188

an interlocutor communicating literally, or given189

an interlocutor themself attempting to respond to190

a literal communicator. Approaches in this fam-191

ily involve (Iterated) Best Response ((I)BR; Jäger,192

2007; Franke, 2009a,b) and the Rational Speech193

Acts model (RSA; Frank and Goodman, 2012).194

(I)BR is an iterative algorithm in which speak-195

ers (listeners) alternatingly compute the highest-196

utility action keeping the listener’s (speaker’s) pol-197

icy fixed: 198

π
(t+1)
L (m′ | u) = 1

[
m′ = argmax

m
π
(t)
S (u | m)

]
199

π
(t+1)
S (u | m) = 1

[
u = argmax

u′
π
(t)
L (m | u′)

]
200

RSA frames communication as a process in which 201

Bayesian listeners and speakers reason recursively 202

about each other’s beliefs in order to choose utter- 203

ances and meanings: 204

π
(t)
L (m | u) ∝ π

(t)
S (u | m) · p(m) 205

π
(t)
S (u | m) ∝

(
π
(t)
L (m | u)/c(u)

)α
206

In both approaches, “good” policies are obtained 207

by assuming that speakers and listeners will run the 208

same inference algorithm from a specific starting 209

point (rather than generically optimizing a shared 210

objective). As a result, a key feature of both algo- 211

rithms is sensitivity to the choice of initial (t = 0) 212

policy and number of iterations; their convergence 213

behavior remains poorly understood in all but the 214

simplest settings (though see (Zaslavsky et al., 215

2021b) for a discussion of the quantity optimized 216

by single-step updates). 217

Hedge and game-solving algorithms While not 218

widely used in the computational linguistics or nat- 219

ural language processing literature, techniques for 220

directly optimizing for communicative success, as 221

in Equation (1), may be found in the vast body of 222

work on online optimization and learning in games. 223

Hedge (Littlestone and Warmuth, 1994; Freund 224

and Schapire, 1997) is a popular iterative algorithm 225

in this family that converges to a coarse correlated 226

equilibrium (Hannan, 1957) and to a Nash equi- 227

librium in the special case of two-player zero-sum 228

games. However, in general it provides no guaran- 229

tees about which equilibrium will be found when 230

multiple such equilibria exist. This presents a chal- 231

lenge not just in signaling, but in any game where 232

strategies computed by equilibrium search will be 233

used to interact with human players adhering to 234

pre-established conventions. 235

In order to sidestep this issue while retaining 236

the appealing properties of learning in games, Ja- 237

cob et al. (2022) introduced piKL-Hedge, a pro- 238

cedure for finding regularized equilibria that are 239

close to chosen “anchor policies”. piKL-Hedge 240

(discussed in more detail below) has been applied 241

to board games like Diplomacy (FAIR et al., 2022; 242

Bakhtin et al., 2022) to find equilibria that are close 243
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to policies learned via imitation from human play.244

Recently, piKL-Hedge has also been applied to245

language model decoding, with the objective of246

increasing consensus between discriminative and247

generative approaches to language model genera-248

tion (Jacob et al., 2023b).249

3 Our Approach: Pragmatic Inference as250

Regularized Equilibrium Search251

Building on this past work, the key idea underlying252

RECO is to use regularized equilibrium concepts to253

describe pragmatic communication, by modeling254

LISTENERs and SPEAKERs as directly optimizing255

both communicative success and adherence to exist-256

ing linguistic conventions. As noted in Section 2.2,257

simply searching for high-utility equilibria of sig-258

naling games is unlikely to predict the behavior259

of human language users, or result in successful260

communication with new interlocutors: instead, we261

must guide inference toward policies that look like262

natural language. In RECO, we do so by optimiz-263

ing utilities of the following form:264

ũS(πS, πL) := ūS(πS, πL)− λS ·DKL(πS ∥ τS),265

ũL(πS, πL) := ūL(πS, πL)− λL ·DKL(πL ∥ τL).266

Here τS and τL represent the SPEAKER’s and LIS-267

TENER’s prior knowledge of language (independent268

of any specific communicative goal or context). We269

refer to these policies as the default semantics in270

the language used for communication. They play271

a similar role to the literal semantics used by RSA272

and other iterated response models. But here, we273

need not assume that they correspond specifically274

to literal semantics—instead, they model agents’275

prior expectations about how utterances are likely276

to be produced and interpreted in general by prag-277

matic language users.278

The regularization parameters λS and λL control279

the tradeoff between optimizing for communicative280

success and proximity to default semantics τS, τL.281

When the value of λi is large, an agent i ∈ {S,L}282

will consider only policies extremely close to τi;283

conversely, when λi is close to zero, the agent will284

not be penalized for adopting semantics that differ285

significantly from τi.286

3.1 Notation and Representation of Policies287

Before describing how to optimize the utilities288

given above, we first establish some notation that289

will be useful for describing the optimization pro-290

cedure and the policies it produces.291

Each agent’s policy consists of a mapping from 292

that agent’s observations to a distribution over ac- 293

tions. For the SPEAKER, the set of observations 294

coincides with the set of meanings available in a 295

given communicative context, and the set of ac- 296

tions coincides with the set of possible utterances. 297

For the LISTENER, observations are utterances and 298

actions are meanings. See Figure 2 for examples. 299

In order to provide a compact description of the 300

algorithm, as well as an efficient vectorized im- 301

plementation, we represent this mapping as a row- 302

stochastic matrix, with rows indexed by observa- 303

tions and columns indexed by actions. We denote 304

with S(t) ∈ RM×U the policy of the speaker at time 305

t, and with L(t) ∈ RU×M that of the listener repre- 306

sented in this matrix form. We similarly represent 307

the anchor policies (i.e., default semantics) τS, τL 308

in this representation as matrices τS ∈ RM×U and 309

τL ∈ RU×M . Instances of these matrix objects can 310

be seen in Figure 2. 311

3.2 RECO: Computation of Approximate 312

Convention-Regularized Equilibria 313

Given the regularized utilities ũS and ũL defined 314

above, we use the piKL-Hedge algorithm (Ja- 315

cob et al., 2022) to progressively refine a pair of 316

SPEAKER and LISTENER policies toward equilib- 317

rium (in the sense of Section 2.2). Intuitively, piKL- 318

Hedge performs a variant of projected gradient 319

ascent in the geometry of entropic regularization 320

where projections are equivalent to softmax (nor- 321

malized exponentiation). In order to apply piKL- 322

Hedge, we start by computing the gradients of the 323

unregularized utility functions ūS, ūL defined in 324

Equation (1). 325

Let p ∈ RM be the vector whose entries corre- 326

spond to p(m), the prior distribution over mean- 327

ings. Similarly, we let c ∈ RU denote the vector 328

of utterance costs. Finally, let P ∈ RM×M be the 329

diagonal matrix whose diagonal equals p. For 330

notational convenience, define: 331

∇ūS(L) := ∇S(ūS(S,L)) 332

∇ūL(S) := ∇L(ūL(S,L)) 333

With this notation, the gradient of the unregularized 334

utility function ūS of the SPEAKER, is a function 335

of the matrix-form policy L only. 336

∇ūS(L) = −pc⊤ +PL⊤ ∈ RM×U . (2) 337

Similarly, for the LISTENER we have: 338

∇ūL(S) := S⊤P ∈ RU×M . (3) 339

4



With the above gradients, piKL-Hedge (Jacob et al.,340

2022) prescribes the following algorithm for pro-341

gressively refining policies: first, at time 0, we set342

S̄(0) = L̄(0) := 0; (4)343

then, at each time t ≥ 0, the next policy344

S(t+1),L(t+1) is chosen according to the update345

rules:346

S(t+1) row∝ exp

{
∇ūS(L̄

(t)) + λS log τS

1/(ηSt) + λS

}
,347

L(t+1) row∝ exp

{
∇ūL(S̄

(t))⊤ + λL log τL

1/(ηLt) + λL

}
,348

S̄(t+1) =
t

t+ 1
S̄(t) +

1

t+ 1
S(t+1),349

L̄(t+1) =
t

t+ 1
L̄(t) +

1

t+ 1
L(t+1),350

where
row∝ denotes row-wise proportionality and351

exponentiation is performed elementwise. These352

dynamics strike a balance between playing propor-353

tional to the exponential of the utility gradient, and354

remaining in a neighborhood of the default seman-355

tics τ . Concretely, taking the SPEAKER player as356

an example, when λS = 0, then the update rule for357

S(t+1) reduces to S(t+1) row∝ exp{ηS ·t∇ūS(L̄
(t))},358

which corresponds to Hedge. Conversely, in the359

other extreme when λS → ∞, then the update rule360

for S(t+1) reduces to S(t+1) row∝ exp{log τS} = τS,361

that is, the dynamics do not move at all from the362

default semantics.363

piKL-Hedge dynamics have strong guarantees,364

including the following (see Jacob et al., 2022):365

• the average correlated distribution of play of366

SPEAKER and LISTENER converges to the set367

of coarse-correlated equilibria of the game368

defined by the regularized utilities ũS, ũL;369

• for any i ∈ {S,L}, the K-L divergence be-370

tween Player i’s policy and the default seman-371

tics τi scales as approximately 1/λi.372

3.3 Special Case: Uniform Priors, No Costs373

When the prior over the meanings is uniform, and374

utterance costs are all set to zero, the gradients375

∇ūS(L) and ∇ūL(S), defined in (2) and (3), sim-376

plify into:377

∇ūS(L) =
1

|M |
L, ∇ūL(S) =

1

|M |
S.378

Hence, piKL-Hedge reduces to the simple algo- 379

rithm that repeatedly updates and renormalizes pol- 380

icy matrices according to 381

S(t+1) row∝ exp

{
(L̄(t))⊤ + λ̂S log τS

1/(η̂St) + λ̂S

}
, 382

L(t+1) row∝ exp

{
(S̄(t))⊤ + λ̂L log τL

1/(η̂Lt) + λ̂L

}
, 383

where we let λ̂i := |M |λi and η̂i := ηi/|M | for all 384

i ∈ {S,L}. 385

The above procedure has a striking similarity to 386

the Rational Speech Acts model (Frank and Good- 387

man, 2012), a widely used probabilistic iterated 388

response model of pragmatics. In particular, us- 389

ing the same matrix notation from above, we may 390

express RSA (in its simplest form) as: 391

L̄(0) = τL 392

393
S(t+1) row∝ (L̄(t))⊤, S̄(t+1) = S(t+1),

L(t+1) row∝ (S̄(t))⊤, L̄(t+1) = L(t+1).
394

Thus, it is also possible to interpret RECO as an 395

RSA variant in which (1) the final policy at level t 396

is a weighted average of policies computed at lower 397

levels, (2) both speakers and listeners downweight 398

actions that are low-probability under the default 399

semantics. In this interpretation, speakers and 400

listeners incur an additional “communication cost” 401

proportional to the log-probability of a given 402

utterance or interpretation under the prior τ . As we 403

will see, however, the more general formulation of 404

RECO in Section 3.2 enables it to make predictions 405

that are not achievable with RSA in its standard 406

form. 407

408

Having defined the RECO objective and proce- 409

dures for optimizing it, the remainder of this pa- 410

per evaluates whether RECO can successfully pre- 411

dict human judgments across standard test-beds for 412

pragmatic implicature. 413

4 Two Model Problems: Q-implicature 414

and M-implicature 415

We begin with two simple, widely studied “model 416

problems” in pragmatics: Quantity implicature and 417

Manner implicature. The experiments in this sec- 418

tion aim to demonstrate that RECO makes predic- 419

tions that agree qualitatively with key motivating 420

examples in theories of pragmatics. 421
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4.1 Quantity Implicature422

Quantity (or “scalar”) implicatures are those in423

which a weak assertion is interpreted to mean that424

a stronger assertion does not hold. (For example,425

Avery ate some of the cookies +−> Avery did not426

eat all of the cookies, where +−> denotes pragmatic427

implication; Huang, 1991). The reference game we428

use as a model of scalar implicature is adopted from429

Jäger (2012); its associated default semantics is430

shown in Figure 2. Here, the utterances none, some,431

and all are used to communicate meanings none,432

some (not all), and all. Some can (literally)433

denote all (as we may felicitously say Avery ate434

some of the cookies; in fact, Avery ate all of them),435

but is generally understood to implicate not all.436

The policy found by RECO is shown in Figure 2,437

where it can be seen that it makes precisely this438

prediction.439

4.2 Manner Implicature440

Another important class of implicatures are Manner441

implicatures, in which (for example) an atypical442

utterance is used to denote that a situation occurred443

in an atypical way (I started the car +−> The car444

started normally; but I got the car to start +−> The445

car started abnormally; Levinson, 2000). The ref-446

erence game we adopt as a model of such implica-447

tures is due to Bergen et al. (2016). In this model,448

we assume that our language contains two utter-449

ances (short and long) and two meanings (freq450

and rare) satisfying the following properties: (1)451

freq occurs as the intended meaning with probabil-452

ity 2
3 and rare occurs with probability 1

3 ; (2) long453

has production cost of 0.2 and short has a produc-454

tion cost of 0.1; finally (3) either long or short may,455

by default, denote freq or rare. In such situations,456

short is understood to implicate freq and long to457

implicate rare; as noted by Bergen et al. (2016),458

RSA and related theories cannot make these predic-459

tions natively, and require substantial modification460

to derive them.461

When using RECO to perform equilibrium462

search with these costs and priors, it immediately463

predicts the correct set of interpretations (Figure 3).464

5 Probabilistic Human Judgments465

We next study a family of four reference tasks466

introduced by Frank (2016), which we refer to467

as SIMPLE , COMPLEX , TWINS and ODDMAN .468

We refer readers to the original work for the default469

meanings that define each of these tasks. Frank470
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Figure 2: Quantity implicatures in RECO. (Left) Matrices rep-
resenting conditional probabilities that represent the default
semantics τS and τL. (Right) Matrices representing conditional
probabilities that represent the resulting regularized conven-
tions πS and πL. In this setting, RECO is able to predict the
correct set of interpretations.
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conventions πS and πL. By incorporate prior probabilities of
meanings and costs for utterances, RECO is able to predict the
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gathered graded human judgments about the proba- 471

bility that particular utterances might carry particu- 472

lar meanings. As RECO, like RSA-family models, 473
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Figure 4: Pearson’s correlation ρ on the full dataset of graded human judgments from (Frank, 2016). (Left) Correlation for
RECO as a function of λL and λS represented as a contour plot. (Middle) Correlation between RSA at different levels of α and
recursive depth (Right) Correlation between RD-RSA at different levels of α and recursive depth. (Middle, Right) RECO with
the best setting of λL and λS is indicated with a red dashed line. Stars indicate the best α value at different depths.

Literal BR
LISTENER SPEAKER RSA RD-RSA RECO

ALL 73.57% 90.04% 95.07% 94.98% 95.96%

SIMPLE 70.10% 88.16% 96.02% 96.02% 96.02%
COMPLEX 83.86% 97.83% 94.74% 94.35% 98.18%
TWINS 97.61% 93.43% 97.61% 98.98% 97.61%
ODDMAN 94.97% 94.97% 94.97% 94.97% 94.97%

Table 1: Correlation across different methods with graded
human judgements in four reference games Frank (2016) (with
the best hyperparameter settings). RECO performs better than
the alternatives in ALL .

captures probabilistic associations between utter-474

ances and meanings, we evaluate its predictions475

by measuring their correlation between human476

judgments. Specifically, for each task (and all477

tasks jointly), we compute the correlation between478

p(meaning | utterance) predicted by the model,479

and the average p(meaning | utterance) predicted480

by humans (with one data point for each (meaning,481

utterance, context) triple). We refer the reader to482

Frank (2016) for more details about the experimen-483

tal setup.484

Comparisons between RECO, RSA, BR485

SPEAKER (i.e., best-response to a literal speaker)486

and RD-RSA (Zaslavsky et al., 2021a) are shown487

in Table 1, with additional information about pa-488

rameters in Figure 4. In these figures, ALL denotes489

correlations computed across all four tasks. RECO490

modestly improves upon the best predictions of491

RSA-family methods, both overall and on 3/4 tasks492

individually. In addition, it is robust across a wide493

range of speaker hyperparameters.494

6 Complex Referents and Utterances495

Our final experiments focus on Colors in Context496

( CIC ), a dataset of color reference tasks like the497

one in Figure 1 featuring a more complex space of 498

meanings and a larger space of utterances. Another 499

example from the dataset (introduced by Monroe 500

et al., 2017) is given in Table 2. For this task, we 501

use human-generated utterances collected by the 502

authors across 948 games yielding a total of 46,994 503

utterances. We divide this data into 80% / 10% / 504

10% train / validation / test splits. Here, we evalu- 505

ate models by measuring the accuracy with which 506

they can infer the intended meaning produced by a 507

human SPEAKER. 508

Base models Following past work (Monroe et al., 509

2017), we first train a transformer-based literal 510

listener as a model that takes in the three colors 511

and a natural language utterance, and uses these 512

to predict the index of the referent. We also train 513

a transformer-based speaker model, which takes 514

in the context and target referent and generates a 515

natural language utterance. 516

Candidate utterances The set of utterances are 517

produced by first sampling 5 candidate utterances 518

for each of the 3 possible targets from the speaker 519

model along with the produced utterance, for a 520

total of 16 candidates. Model and hyperparameter 521

details can be found in Appendix B. 522

Results are shown in Figure 5 and Table 3. As 523

with past work (McDowell and Goodman, 2019; 524

Monroe et al., 2017), all models aside from BR per- 525

form well (even the literal listener); RECO matches 526

(or perhaps slightly improves upon) these results. 527

7 Conclusion 528

We have presented a model of pragmatic under- 529

standing based on equilibrium search called RECO. 530

In this model, speakers and listeners solve commu- 531

7



10−5 10−2 101

Listener’s λL parameter

10−5

10−3

10−1

101
Sp

ea
ke

r’
s
λ
S

pa
ra

m
et

er
CIC RECO Top-1 accuracy

0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86

0 1 2 3 4 5

Parameter α

0.70

0.75

0.80

0.85

To
p-

1
ac

cu
ra

cy

RECO⋆RECO⋆

CIC RSA

Liter. list.
Depth 1
Depth 2

Depth 3
Depth 4

0 1 2 3 4 5

Parameter α

0.70

0.75

0.80

0.85

To
p-

1
ac

cu
ra

cy

RECO⋆RECO⋆

CIC RD-RSA

Liter. list.
Depth 1
Depth 2

Depth 3
Depth 4

Figure 5: Top-1 accuracy of predicting meanings on the validation set of the Colors in Context task (Monroe et al., 2017). (Left)
Accuracy for RECO as a function of λL and λS represented as a contour plot. (Middle) Accuracy of RSA at different levels of α
and recursive depth (Right) Accuracy of RD-RSA at different levels of α and recursive depth. (Middle, Right) RECO with the
best setting of λL and λS is indicated with a red dashed line. Stars indicate the best α value at different depths.

. Context Utterance

1. purple

2. blue

3. blue

Table 2: Example of the Colors in Context task (Monroe et al.,
2017). The SPEAKER produces an utterance that enables the
LISTENER to distinguish the taraget color (in the black box)
from others in the context.

Literal BR
LISTENER SPEAKER RSA RD-RSA RECO

CIC (val.) 84.88% 75.90% 84.18% 84.18% 85.17%
CIC (test) 83.34% 74.28% 83.41% 83.41% 83.62%

Table 3: Performance of different models on Colors in Context
(Monroe et al., 2017). All approaches aside from BR perform
well on this task – as even literal models have access to all
three referents. RECO performs best on both validation and
test sets.

nicative tasks by searching for utterance-meaning532

mappings that that simultaneously optimize re-533

ward and similarity to a distribution encoding de-534

fault meanings. RECO offers a link between “al-535

gorithmic” models of pragmatic reasoning and536

equilibrium-based models, and accurately predicts537

human judgments across several pragmatic reason-538

ing tasks.539

Looking ahead, RECO can be used as a platform540

for studying related problems in context-dependent,541

multi-party communication. For example, it might542

be possible to study iterated conventions (Hawkins543

et al., 2017), established over multiple rounds of544

communication, by updating the default semantics545

τ to the equilibrium policy at the previous round.546

While our experiments here have focused on single-547

turn interactions, tools for solving extensive-form548

games might similarly be used to model commu- 549

nicative strategies that play out over multiple turns 550

of dialog. More generally, we hope these results 551

highlight the effectiveness of game theoretic tools 552

for understanding and enriching models of prag- 553

matic language production and comprehension. 554

Limitations 555

The algorithms described in this paper assume that 556

communication tasks are defined by a finite set of 557

possible utterances and possible meanings. While 558

tools exist for computing equilibria fo games with 559

combinatorial action spaces, additional work would 560

be required to apply this method to open-ended text 561

generation problems. 562

Ethics Statement 563

We do not anticipate any ethical concerns associ- 564

ated with methods described in this paper. 565
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A Per-task results 693

In Figure 6, we compare RECO, RSA, BR and RD-RSA (Zaslavsky et al., 2021b) across each of the four 694

reference tasks based on graded human judgements that we consider in Section 5.
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Figure 6: Pearson’s correlation ρ on the each of the four reference tasks ( SIMPLE , COMPLEX , TWINS and ODDMAN )
of graded human judgments from (Frank, 2016). (First column) Correlation for RECO as a function of λL and λS represented as a
contour plot. (Second column) Correlation between RSA at different levels of α and recursive depth (Third column) Correlation
between RD-RSA at different levels of α and recursive depth. (Second, Third columns) RECO with the best setting of λL and λS
is indicated with a red dashed line. Stars indicate the best α value at different depths.

695

B Model, Training and Hyperparameter Details 696

The speaker and listener models from Section 6 are based on the transformer architecture. Following 697

past work (Jacob et al., 2023a), the speaker model is based on the T5 model (Raffel et al., 2020) and 698

the listener is based on BERT (Devlin et al., 2019). We use the hyperparameter settings used in Jacob 699

et al. (2023a) for the speaker and listener models. The speaker model was trained with a batch size of 64 700

11



using the Adam optimizer with learning rate 10−4 for 25 epochs. We trained the models using PyTorch701

(Paszke et al., 2019) and Huggingface (Wolf et al., 2020) libraries. These models were trained using a702

single V100 GPU for 3-4 hours. All other experiments were performed on an 8-core Intel CPUs and M2703

Macbook Pro. For experiments in Section 5, RECO was run with 10 seeds and the run with the highest704

sum of regularized utilities of the SPEAKER and LISTENER was used.705
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