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Abstract

In reinforcement learning, pre-trained low-level skills have the potential to greatly
facilitate exploration. However, prior knowledge of the downstream task is required
to strike the right balance between generality (fine-grained control) and specificity
(faster learning) in skill design. In previous work on continuous control, the sensi-
tivity of methods to this trade-off has not been addressed explicitly, as locomotion
provides a suitable prior for navigation tasks, which have been of foremost interest.
In this work, we analyze this trade-off for low-level policy pre-training with a new
benchmark suite of diverse, sparse-reward tasks for bipedal robots. We alleviate the
need for prior knowledge by proposing a hierarchical skill learning framework that
acquires skills of varying complexity in an unsupervised manner. For utilization on
downstream tasks, we present a three-layered hierarchical learning algorithm to
automatically trade off between general and specific skills as required by the respec-
tive task. In our experiments, we show that our approach performs this trade-off
effectively and achieves better results than current state-of-the-art methods for end-
to-end hierarchical reinforcement learning and unsupervised skill discovery. Code
and videos are available at https://facebookresearch.github.io/hsd3.

1 Introduction

A promising direction for improving the sample efficiency of reinforcement learning agents in com-
plex environments is to pre-train low-level skills that are then used to structure the exploration in
downstream tasks [23, 19, 27, 13, 30]. This has been studied in particular for the control of (simulated)
robots, where there is a natural hierarchical decomposition of the downstream tasks into low-level con-
trol of the robot’s actuators with a skill policy, and a high-level control signal that specifies a direction
or target robot configuration with coarser temporal resolution. The large body of work on unsuper-
vised skill or option discovery in hierarchical reinforcement learning (HRL) for continuous control
relies, explicitly or implicitly, on prior knowledge that low-level skills should control the center of
mass of the robot [26, 17, 13, 43, 6]. This nicely fits a wide range of benchmark tasks that are variants
of navigation problems, but the benefit of such hierarchical setups outside this problem class is unclear.

The prior knowledge embedded in a pre-trained skill defines a specific trade-off between sample
efficiency and generality. Skills that severely constrain the high-level action space to elicit specific
behavior (e.g., translation of the center of mass) are likely to provide the largest gains in sample effi-
ciency, but are unlikely to be useful on a diverse set of downstream tasks. Conversely, low-level skills
that expose many degrees of freedom are more widely applicable but less useful for guiding explo-
ration. There is, thus, no single universally superior pre-trained skill. Depending on the downstream
task, different skills might also be useful to efficiently explore in different parts of the environment.

In this paper, we aim to acquire skills that are useful for a variety of tasks while still providing
strong exploration benefits. We propose to pre-train a hierarchy of skills of increasing complexity
which can subsequently be composed with a high-level policy. In the context of simulated robots,
each skill consists of controlling a part of the robot configuration over a short time horizon, such
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as the position of the left foot of a humanoid, or the orientation of its torso. Skills of increasing
complexity are constructed by jointly controlling larger portions of the configuration. These skills are
modelled with a shared policy and pre-trained in an environment without rewards and containing
the robot only. Subsequently, skills are used in downstream tasks within a three-level hierarchical
policy: the highest level selects the skill (which specifies a goal space), the second level the target
configuration within that skill (the goal), and the pre-trained skill performs the low-level control to
reach the goal. Compared to standard approaches involving a single static pre-trained skill [13, 43],
our approach offers increased flexibility for structuring exploration and offloads the issue of selecting
prior knowledge from pre-training to downstream task learning. As a result, our skills can be acquired
once per robot and applied to many different tasks.

We perform an experimental analysis of our hierarchical pre-training on a new set of challenging
sparse-reward tasks with simulated bipedal robots. Our experiments show that each task is most
efficiently explored by a distinct set of low-level skills, confirming that even on natural tasks, where
locomotion is of primal importance, there is no overall single best pre-trained skill. We further show
that dynamic selection of goal spaces with a three-level hierarchy performs equally or better than a
generic skill on all tasks, and can further improve over the best single skills per task.

The main contributions of our work are summarized as follows:

• We propose a novel unsupervised pre-training approach that produces a hierarchy of skills
based on control of variable feature sets.

• We demonstrate how to automatically select between different skills of varying complexity
with a three-level hierarchical policy that selects skills, goals, and native actions.

• We introduce a benchmark suite of sparse-reward tasks that allows for consistent and
thorough evaluation of motor skills and HRL methods beyond traditional navigation settings.

• We study the implications of prior knowledge in skills experimentally and showcase the
efficacy of our hierarchical skill framework on the proposed benchmark tasks, achieving
superior results compared to existing skill discovery and HRL approaches [13, 33, 53].

2 Related Work

The success of macro-operators and abstraction in classic planning systems [14, 40] has inspired
a large body of works on hierarchical approaches to reinforcement learning [8, 46, 3, 50, 33, 39].
While the decomposition of control across multiple levels of abstraction provides intuitive benefits
such as easier individual learning problems and long-term decision making, recent work found that
a primary benefit of HRL, in particular for modern, neural-network based learning systems, stems
from improved exploration capabilities [21, 35]. From a design perspective, HRL allows for separate
acquisition of low-level policies (options; skills), which can dramatically accelerate learning on
downstream tasks. A variety of works propose the discovery of such low-level primitives from
random walks [26, 52], mutual information objectives [17, 13, 43, 6], datasets of agent or expert
traces [37, 2, 25], motion capture data [36, 31, 42], or from dedicated pre-training tasks [15, 27].

In order to live up to their full potential, low-level skills must be useful across a large variety of
downstream tasks. In practice, however, a trade-off between generality (wide applicability) and
specificity (benefits for specific tasks) arises. A large portion of prior work on option discovery and
HRL resolved this trade-off, explicitly or implicitly, in favor of specificity. This can be exemplified
by the choice of test environments, which traditionally revolve around navigation in grid-world
mazes [46, 8, 10]. In recent work on simulated robotics, navigation problems that are similar in
spirit remain the benchmarks of choice [12, 33, 13, 27, 2]. In these settings, directed locomotion,
i.e., translation of the robot’s center of mass, is the main required motor skill, and the resulting
algorithms require a corresponding prior. This prior is made explicit with skills partitioning the
state space according the agent’s position [13, 43], or is implicitly realized by high contribution
of position features to reward signals [33, 34, 2] (Appendix G). Similarly, works that target non-
navigation environments acquire skills with tailored pre-training tasks [38] or in-domain motion
capture data [36, 31, 32]. In contrast, our work is concerned with learning low-level skills without
extra supervision from traces or pre-training task design, and which do not prescribe a fixed trade-off
towards a particular type of behavior.
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Figure 1: Illustration of our proposed hierarchical skill learning framework. Left Low-level policies
are learned in an empty pre-training environment, with the objective to reach random configurations
(goal g) of a sampled skill (goal space G

F defined over a feature set F ). Examples of goal space
features are translation along the X-axis or the position of a limb. Right Learning on downstream
tasks with a three-level hierarchical policy to select a goal space, a goal and finally a native action
at with the pre-trained low-level policy. The low-level policy acts on proprioceptive states sp, while
high-level policies ⇡f and ⇡g leverage extra task-specific information via s+.

3 Hierarchical Skill Learning

3.1 Overview

In this work, we propose an approach where we first acquire low-level policies that are able to carry
out a useful set of skills in an unsupervised manner, i.e., without reward signals from the main tasks
of interest. We subsequently employ these skills in a hierarchical reinforcement learning setting
(Figure 1). The pre-training environment consists solely of the robot. In downstream tasks, additional
objects may be present besides the robot; these may be fixed (e.g., obstacles) or only indirectly
controllable (such as a ball).

Crucially, the usefulness of a skill policy stems from providing additional structure for effective
exploration. In order to provide benefits across a wide range of tasks, skills need to support both
fast, directed exploration (e.g., locomotion) as well as precise movements (e.g., lift the left foot
while bending down). We propose to fulfill these requirements with short-horizon, goal-directed
low-level policies that are trained to achieve target configurations of robot-level state features such as
the position or orientation of its torso or relative limb positions. We denote this feature space with S

g.
This allows the definition of a hierarchy of skills by controlling single features and their combinations,
resulting in varying amounts of control exposed to high-level policies. Each skill is trained to reach
goals in a goal space G

F defined over a set of features F of Sg, yielding policies of the form
�
⇡lo
F : Sp

⇥ G
F
! A

 
F2F

with proprioceptive observations Sp (Figure 1, left). Goal-directed skill policies are trained without
task-specific rewards, relying solely on state features related to the specific robot and the prescribed
hierarchy of goal spaces.

On downstream tasks, high-level policies operate with a combinatorial action space as the skill policy
⇡lo is conditioned on both a feature set F and a concrete goal g 2 G

F . State spaces are enriched with
task-specific features S+, s.t. S = S

p
[ S

+, that contain information regarding additional objects
in the downstream task. This enriched state space is only available to the high-level policy. We model
the high-level policy in a hierarchical fashion with two policies

⇡f : S ! F , ⇡g : S ⇥ F ! G
F ,

that prescribe a goal space and a goal, respectively (Figure 1, right). With a task- and state-dependent
policy ⇡f , it is possible to not only select the required set of skills for a given environment, but also
to switch between them within an episode. In this three-level hierarchy, the higher-level policy ⇡f

explores the hierarchy of goal spaces and dynamically trades off between generality and specificity.
Temporal abstraction is obtained by selecting new high-level actions at regular intervals but with
a reduced frequency compared to low-level actions. We term the resulting learning algorithm HSD-3,
emphasizing the three different levels of control (goal spaces, goals and native actions) obtained
after our hierarchical skill discovery phase.
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3.2 Unsupervised Pre-Training

During pre-training, skill policies act in an MDP M with proprioceptive states sp, native actions
a, transition probabilities and initial states sp0 2 S

p
0 drawn from a distribution P0 [45, for example],

but without an extrinsic reward function. The skill policies are trained to reach goals in a goal space
defined over Sg consisting of robot-level sensor readings, which may include non-proprioceptive
information.

Critically, each skill ⇡lo
F aims to achieve goals defined over a variable-sized subset of features F of

Sg. To avoid learning a combinatorial number of independent policies, we follow the principle of
universal value function approximators [41] and share the parameters of each skill. We augment
the policy’s input with goal and goal space information, and learn a single set of parameters ✓,
leading to ⇡lo

✓ : Sp
⇥ F ⇥ G ! A, where F := {F : F ✓ S

g
} and G := {G

F : F ✓ S
g
}.

For ease of modeling, F is provided to ⇡lo
✓ as a bag-of-words input where a coordinate is set to

1 if its respective feature is included in F and to 0 otherwise. Also, the low-level policy receives
goals relative to the current values of the sg. Thus, at each time step, the input goal to the policy is
updated to reflect the progress towards the goal. As a learning signal, we provide a distance-based
reward as R(sg, a, sg

0
, F, g) := ||!F (sg)� g||2 � ||!F (sg

0
)� g||2, where !F : Sg

! G
F is a fixed

transformation that selects the subset F of goal space features and applies a suitable normalization.
The selection of features for Sg and transformations !F represents the prior knowledge that we
utilize for unsupervised pre-training. We discuss examples for bipedal robots in our experiments and
in Appendix B.

During training, features F and goals g are sampled anew for each episode in the environment.
Episodes consist of several dozen steps only, reflecting the fact that we are interested in short-horizon
skills. In-between episodes, we reset the simulation to states drawn from S

p
0 only sporadically to

encourage the resulting policies to be applicable in a wide range of states, facilitating their sequencing
under variable temporal abstractions. Likewise, rewards are propagated across episodes as long as the
simulation is not reset. The low-level policy parameters ✓ can be optimized with any reinforcement
learning algorithm; here, we opt for Soft Actor-Critic (SAC), a state-of-the-art method tailored to
continuous action spaces [18]. Pseudo-code for the pre-training algorithm and further implementation
details are provided in Appendix C.

3.3 Hierarchical Control

After a low-level policy ⇡lo has been obtained via unsupervised pre-training, we employ it to
construct a full hierarchical policy ⇡(a|s) = ⇡f(F |s)⇡g(g|s, F )⇡lo(a|sp, F, g). The hierarchical
policy is applied to downstream tasks, where we are supplied with a reward signal and state
observations S = S

p
[ S

+. While different frequencies may be considered for acting with ⇡f and
⇡g, in this work both high-level actions are selected in lock-step. For jointly learning ⇡f and ⇡g,
we extend the SAC algorithm to incorporate the factored action space F ⇥ G . In particular, it is
necessary to extend SAC to deal with a joint discrete and continuous action space, which we describe
below (see Appendix D for further details and pseudo-code for high-level policy training).

We formulate our extension with a shared critic Q(s, F, g), incorporating both factors of the action
space. Q(s, F, g) is trained to minimize the soft Bellman residual [18, Eq. 5], with the soft value
function V (s) including entropy terms for both policies. Since ⇡f outputs a distribution over discrete
actions (to select from available goal spaces), we compute its entropy in closed form instead of using
the log-likelihood of the sampled action as for ⇡g. We employ separate temperatures ↵ and �F for
the goal space policy as well as for each corresponding goal policy; �F are normalized to account for
varying action dimensions across goal spaces.

V (s) =
X

F2F
⇡f(F |s) E

g⇠⇡g


Q(s, F, g)�

�F

|F |
log ⇡g(g|s, F )

�
+ ↵

�
H(⇡f (·|s))� log |F|

�
.

Compared to the usual SAC objective for continuous actions, we subtract log |F| from the entropy
to ensure a negative contribution to the reward. This matches the sign of the entropy penalty from
⇡g, which is negative in standard hyper-parameter settings1 [18]. Otherwise, the entropy terms for
discrete and continuous actions may cancel each other in Q-function targets computed from V (s).

1The entropy for continuous actions sampled from a Gaussian distribution can be negative since it is based
on probability densities.
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The policy loss [18, Eq. 7] is likewise modified to include both entropy terms. Parameterizing the
policies with � and  and the Q-function with ⇢, we obtain

J⇡f,g (�, ) = E
s⇠B

"
X

F2F
⇡f
�(F |s) E

g⇠⇡g
 


�F

|F |
log ⇡g

 (g|F, s)�Q⇢(s, F, g)

�
� ↵H(⇡f

�(·|s)

#
,

where the replay buffer is denoted with B. The scalar-valued entropy temperatures are updated
automatically during learning to maintain target entropies H

f
and H

g
for both ⇡f and ⇡g. The

following losses are minimized at each training step:

J(↵) = E
s⇠B

h
↵
⇣
H(⇡f(·|s))�H

f
⌘i

J(�) = E
s⇠B

"
�

X

F2F
�F⇡f(F |s) E

g⇠⇡g


1

|F |
log ⇡g(g|s, F ) +H

g
�#

.

We implement temporal abstraction by selecting high-level actions with a reduced frequency. This
incurs a reduction in available training data since, when taking a high-level action every c steps in
an N -step episode, we obtain only N/c high-level transitions. To leverage all available transitions
gathered during training, we adopt the step-conditioned critic proposed by Whitney et al. [52] in our
SAC formulation. The Q-function receives an additional input 0  i  c marking the number of
steps from the last high-level action, and is trained to minimize a modified soft Bellman residual:

JQ(⇢) = E
Ft,gt,i,

st,...,t+c�i,
at,...,t+c�i⇠B

2

64
1

2

0

@Q⇢(st, Ft, gt, i)�

0

@
c�i�1X

j=0

�
�jr(st+j , at+j)

�
+ �c�iV (st+c�i)

1

A

1

A
2
3

75

As in [52], Q(s, F, g, 0) is used when computing V (s) and the policy loss J⇡f,g (�, ).

The factorized high-level action space of HSD-3 has previously been studied as parameterized action
spaces [28, 51], albeit with a small number of discrete actions and not in the context of hierarchical
RL. A possible application of Soft Actor-Critic is described in Delalleau et al. [9]; our approach
differs in that we (a) compute the soft value function as a weighted sum over all discrete actions, and
(b) opt for two separately parameterized actors and a shared critic. These design choices proved to be
more effective in initial experiments.

4 Benchmark Environments

We propose a benchmark suite for comprehensive evaluation of pre-trained motor skills, tailored to
bipedal robots (Figure 2) and implemented for the MuJoCo physics simulator [49, 48]. We selected
tasks that require diverse abilities such as jumping (Hurdles), torso control (Limbo), fine-grained
foot control (Stairs, GoalWall) and body balance (PoleBalance). Besides PoleBalance, all tasks also
require locomotion. The tasks are designed to have a sparse reward that is provided once an obstacle
or step has been passed or a goal has been shot, emphasizing the need for good exploration. As an
exception, PoleBalance provides a constant reward during the entire episode, which ends when the
pole placed on the robot falls over. PoleBalance requires precise motor control, and is, in combination
with its reward structure, chiefly outside of the realm of benchmarks that have been traditionally used
to evaluate HRL techniques. Obstacle position and step lengths are subject to random perturbations,
sampled anew for each episode. We tailor several environment parameters to the concrete robot being
controlled, e.g., the positions of Limbo bars. For the effectively two-dimensional Walker robot, we
limit the movement of objects (ball, pole) to translation along X and Z and rotation around the Y-axis.
In all environments, we label simulation states that would cause the robot to fall over as invalid; these
will terminate the episode with a reward of -1. Appendix A contains full specifications for all tasks.

Variants of some of our benchmark tasks have been proposed in prior works: Hurdles [20, 24, 13, 38],
Stairs [29, 16], Gaps [20, 48], and PoleBalance is inspired by the classical CartPole problem [4].
Our tasks are different from earlier published counterparts in parameterization and in the sparsity
of rewards they provide. All environments are provided via a standard Gym interface [5] with
accompanying open-source code, enabling easy use and re-use.
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(a) Hurdles (b) Limbo (c) Stairs (d) Gaps (e) GoalWall (f) PoleBalance

Figure 2: Benchmark environments for evaluating motor skills for bipedal robots, pictured with the
Walker robot. Hurdle and Limbo bar heights and spacing, as well as stair lengths, are sampled ran-
domly from fixed distributions. We also include a combination of Hurdles and Limbo (HurdesLimbo),
in which both obstacle types alternate.

5 Experimental Results

For our experiments, we first pre-train skill policies as described in Section 3.2 in an empty environ-
ment. The feature set to describe target configurations consists of the robot’s translation along the
X-axis, its position on the Z-axis, torso rotation around the Y-axis and positions of each foot, relative
to the body (Appendix B). With these five features, we obtain a set of 25�1 = 31 skills with a shared
set of policy parameters. We then train separate high-level policies for each benchmark environment,
directing the same set of pre-trained skills. High-level actions are taken every 5 environment steps;
in the PoleBalance environment, which requires short reaction times, all three policies operate at
the same frequency. All neural network policies employ skip connections as proposed for SAC
by Sinha et al. [44]. We show results over 9 seeds for each run; in experiments involving pre-training,
we combine 3 seeds for pre-training with 3 seeds for high-level policy training. Pre-training takes
approximately 3 days on 2 GPUs (V100) and fine-tuning (downstream task training) takes 2 days to
reach 5M samples on 1 GPU. Further details regarding the training setup, hyper-parameters for skill
and high-level policy training, as well as for baselines, can be found in Appendix E.

5.1 Trade-offs for Low-Level Skills

In a first experiment with the Walker robot, we aim to investigate the trade-off between specificity
and generality of low-level skills. For each environment, we train high-level policies directing a fixed

skill within its respective goal space, which for example consists of torso-related features only, or of
feet positions combined with forward translation. At the end of training, we measure average returns
obtained for all 31 skills in a deterministic evaluation setting, and plot quartiles over different seeds
for the best skills in Figure 3. The performance for different fixed skills varies significantly across
environments, and no single skill is able to obtain the best result (shaded) across all environments.
While controlling X, Y and Z features only produces the good hierarchical policies for most tasks,
poor results are obtained in Gaps and GoalWall. Controlling feet positions (LF and RF) is crucial for
GoalWall, although close-to-optimal performance is only achieved in few runs across the respective

Figure 3: Returns achieved after 5M samples on the benchmark tasks with the Walker robot with fixed
low-level policy goal spaces (quartiles). Each row corresponds to a set of features for the respective
goal space. Best skills (marked) differ significantly across tasks.
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Figure 4: Learning curves on benchmark environments with the Walker robot. For clarity, we plot
mean performance over 9 seeds, averaged over 0.5M samples. Full learning curves including error
bands are provided in Appendix F.1.

skills. The most general skill, high-level control of all considered features (bottom row), also allows
for learning progress on all tasks; however, it is generally outperformed by other, more specific skills.

5.2 Skill Selection with HSD-3

We compare HSD-3 against a number of base- and toplines to examine the effectiveness of our
proposed framework for skill learning and hierarchical control. We include state-of-the-art non-
hierarchical RL methods (SAC [18]), end-to-end hierarchical RL algorithms (HIRO [33], HIDIO [53]),
and evaluate DIAYN as an alternative unsupervised pre-training algorithm [13]. For HIRO, we use
SAC for learning both high- and low-level policies (HIRO-SAC). We facilitate the comparison to
DIAYN with a continuous-valued skill variable obtained from an embedding [1] (DIAYN-C). For both
HIRO and DIAYN-C, we provide the same goal space as in our pre-training stage, consisting of the
full feature set, to ensure a fair comparison. We further compare to the Switching Ensemble proposed
in [35], which does not learn a high-level policy but has been shown to improve exploration. Finally,
we examine how our pre-trained skills perform if we use a single goal space only (SD). Without prior
knowledge about the task at hand, this corresponds to the full goal space F = {0, 1, ..., dim(Sg)},
settling for maximum generality. As a topline, we select the best per-task goal spaces from Section 5.1,
denoted with SD*, which required exhaustive training and evaluation with all available goal spaces.

In Figure 4, we plot learning curves over 5M training interactions for HSD-3 as well as base- and
toplines, and list final performances in Table 1. On all tasks, HSD-3 outperforms or matches (Limbo)
the learning speed of a conventional hierarchical policy with a skill defined over the full goal space
(SD). On GoalWall and Stairs, the three-level policy significantly exceeds the mean performance of

single goal space base- and toplines. For Gaps, the variances of the best results in Table 1 (HSD-3,

Method Hurdles Limbo HurdlesLimbo Stairs Gaps GoalWall PoleBalance

SAC 2.2±6.2 -0.1±0.2 -0.0±0.4 5.0±4.8 0.1±0.5 -0.2±0.3 866.8±104.5
Switching Ensemble 0.7±3.0 1.9±4.3 1.6±3.6 7.4±3.8 -0.2±0.3 -0.2±0.3 569.4±230.1
HIRO-SAC 0.4±1.6 0.9±2.2 -0.0±0.1 -0.0±0.0 -0.1±0.2 -0.0±0.0 23.8±12.4
HIDIO -0.1±0.1 -0.1±0.1 -0.2±0.1 -0.2±0.3 -0.2±0.3 -0.3±0.3 117.6±33.8
DIAYN-C 9.5±2.5 7.5±1.3 5.7±1.7 12.5±2.9 3.4±4.1 0.1±0.3 839.9±58.4

SD 15.0±1.4 11.0±1.0 10.8±1.4 15.2±0.9 14.5±9.3 0.4±0.5 789.5±79.1
HSD-Bandit 2.6±1.3 2.4±1.7 2.0±1.5 0.5±0.8 -0.1±0.2 -0.1±0.2 61.0±15.8
HSD-3 15.3±2.0 11.7±0.9 11.8±1.3 17.2±0.7 15.1±8.9 0.9±0.1 876.0±36.9

SD* 15.0±1.0 12.2±1.0 12.7±1.3 16.2±1.3 14.0±11.3 0.5±0.5 868.2±91.1

Table 1: Final performance after 7.5M samples across benchmark tasks with the Walker robot. Mean
and standard deviation reported for average returns over 9 seeds.
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Figure 5: Skills selected by HSD-3 during an episode on the Stairs task. Different skills are utilized
for different sections of the environment: walking upstairs is achieved by controlling the torso position
(X,Z) in a regular pattern, with goals for the rotation (Y) and the right foot being set occasionally. On
the top section, a different pattern is selected for quickly running forwards. When going downstairs,
the right foot of the robot is controlled explicitly to maintain balance.

SD, SD*) are high, hinting at especially challenging exploration problems. A closer look at per-seed
performance (Appendix F.1) reveals learning failure for 2 out of 9 runs for these methods. For
GoalWall, 4 and 5 runs for SD* and SD, respectively, achieve zero return. Per-task goal space
selection with a bandit algorithm (HSD-Bandit) fails on most environments, and achieves low returns
on Hurdles, Limbo and HurdlesLimbo.

These results demonstrate that, without additional task-specific knowledge, our hierarchical skill
framework is able to automatically and efficiently trade off between skills of varying complexity at

training time. In Figure 5, we visualize the goal spaces that are selected across the course of an
episode in the Stairs environment. During different stages of the environment (walking upstairs,
downstairs, and on a planar surface), HSD-3 selects appropriate skills of varying complexity2.

The performance of the remaining baselines underscores the challenges posed by our benchmark
tasks. Standard SAC works well in PoleBalance, which has a dense reward structure compared to
the remaining environments. On most other tasks, learning progress is slow or non-existent, e.g., on
Hurdles, only 2 out of 9 runs achieve a positive return at the end of training. DIAYN-C exhibits subpar
performance across compared our hierarchical pre-training scheme, with the exception of PoleBalance
where learning is fast and returns are higher than for SD. The end-to-end HRL methods HIRO-SAC
and HIDIO are unable to make meaningful progress on any task, which highlights the utility of
skill pre-training in the absence of task-specific priors. The Switching Ensemble is the best baseline
without pre-training (except for the PoleBalance task), but a clear majority of individual runs do not
obtain positive returns (Appendix F.1). On the Stairs task, both SAC and the Switching Ensemble
manage to climb the flight of stairs in several runs, but fail to discover the second, downwards flight
at the end of the platform.

We refer to the supplementary material for further ablation and analysis with the Walker robot.
In Appendix F.2, we demonstrate the efficacy of our proposed hierarchical pre-training method,
compared to pre-training a single skill policy on the full goal space exclusively. In Appendix F.3,
we analyze the exploration the behavior of various methods from Table 1. We find that, in general,
hierarchical methods visit more states compared to SAC. HIRO-SAC and DIAYN-C visit a higher
number of states in the Hurdles, Limbo, HurdlesLimbo and Stairs environments but fail to leverage
this experience for achieving higher returns.

5.3 Evaluation on a Humanoid Robot

To evaluate the scalability of HSD-3 to more complex robots, we perform an additional set of
experiments with the challenging 21-joint Humanoid robot from Tassa et al. [48]. For skill pre-
training, we select a goal space approximately matching the Walker setup, consisting of the translation
along the X-axis of simulation, Z position of the torso, its rotation around the Y axis and three-
dimensional feet positions relative to the robot’s hip location.

In Figure 6, we plot average learning progress across 100M environment steps, comparing HSD-3
to SD (the full goal space), SD* (the best goal space), and a conventional, non-hierarchical SAC
setup. The results align with the observations for the Walker robot in Section 5.2 in that HSD-3

2Videos are available at https://facebookresearch.github.io/hsd3.
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Figure 6: Results on four of the benchmark tasks with a 21-joint Humanoid robot. We show mean
performance over 9 seeds, clipped to 0 and averaged over 2.5M samples. Appendix F.5 contains
learning curves for all seeds and error bands.

matches or surpasses the performance of the full goal space, and can further outperform the best
goal space selected in hindsight. Both HSD-3 and SD make good learning progress on three out
of five tasks used for this evaluation (Hurdles, Stairs, PoleBalance); on Hurdles and Stairs, SD is
in fact the best single goal space. On HurdlesLimbo, which requires both jumping and crouching,
HSD-3 outperforms both SD and SD*. On the Limbo task, HSD-3 is able to learn faster than SD
and achieves a higher return by utilizing the most effective single skills on this task, which control X
translation and leaning forward or backward. This behavior was not discovered by the SD baseline,
which exercises control over all goal space features. In this preliminary study, none of the hierarchical
policies was able to make significant progress on the GoalWall and Gaps tasks, which were already
shown to be difficult with the Walker robot in Section 5.2.

6 Conclusion

Our work is among the first to highlight the specific trade-offs when embedding prior knowledge in
pre-trained skills, and to demonstrate their consequences experimentally in simulated robotic control
settings. We describe a hierarchical skill learning framework that, compared to existing approaches,
allows high-level policies to perform the trade-off between directed exploration and fine-grained
control automatically during training on downstream tasks. Our experiments with a bipedal Walker
robot demonstrate HSD-3’s efficacy on a variety of sparse-reward tasks in which previous approaches
struggle. We further apply our framework to a challenging Humanoid robot, where it learns effective
policies on the majority of tasks.

With this work, we provide a new set of benchmark tasks that require diverse motor skills and pose
interesting challenges for exploration. We release the tasks in a dedicated distribution, with the aim
of spurring further research on motor skills in continuous control settings, and to ultimately broaden
the utility of hierarchical approaches to control to tasks beyond navigation.

Limitations: Our investigations with the Humanoid robot have been performed in limited goal
spaces and hence with significant priors. We believe that further work is required to successfully
acquire a large, exhaustive set of low-level skills in unsupervised environments that work on more
and more complex morphologies.

Acknowledgements: We thank Alessandro Lazaric for insightful discussions, and Franziska Meier,
Ludovic Denoyer, and Kevin Lu for helpful feedback on early versions of this paper.
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