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ABSTRACT

Gradient descent dynamics in deep linear networks has been studied under a wide
range of settings. These studies have reported some negative results on the role of
depth, in that, gradient descent in deep linear networks: (i) can take exponential
number of iterations to converge, (ii) can exhibit sigmoidal learning, i.e., almost
no learning in initial phase followed by rapid learning, (iii) can delay convergence
with increase in depth. Some of these results are also under stronger assumptions
such as whitened data and balanced initialisation. These messages from prior
works suggest that depth hurts the speed of convergence.
In this paper, we argue that the negative role of depth in the prior works is due
to certain pitfalls which can be carefully avoided. We give a positive message
on the role of depth, i.e., seen as a additional resource, depth can always be used
to speed up convergence. For this purpose, we consider scalar regression with
quadratic loss. In this setting, we propose a novel aligned gradient descent (AGD)
algorithm for which we show that (i) linear convergence is always possible (ii)
depth accelerates the speed of convergence. In AGD, feature alignment happens
in first layer and the deeper layers accelerate by learning the right scale. We
show acceleration in AGD happens in finite time for unwhitened data. We provide
insights into the acceleration mechanism and also show that acceleration happens
in phases. We also demonstrate the acceleration due to AGD on synthetic and
benchmark datasets. Our main message is not to propose AGD as a new algorithm
in itself, but to demonstrate that depth is an advantage in linear networks thereby
dispelling some of the past negative results on the role of depth.

1 INTRODUCTION

Deep learning has been successful in a wide variety of machine learning tasks. There are two key
ingredients to this success namely (i) as the depth increases, deep models can express a rich class of
non-linear functions and (ii) most often that not, the right function from this rich class can be found
by gradient descent, a simple algorithm. As a result, analysing the dynamics of gradient descent in
deep models has turned out to be an important question in machine learning. However, this analysis
is quite challenging due to the presence of non-linearity.

Deep linear networks have been widely studied in the literature Arora et al. (2018a;b); Bartlett et al.
(2018); Ji & Telgarsky (2018); Ziyin et al.; Saxe et al. (2014); Atanasov et al. (2021), mainly as an
analytical surrogate for deep non-linear networks. In the case of linear networks, increasing depth
does not help in increasing the expressivity. However, the dynamics of gradient descent is non-
linear, and exhibits similar phenomena observed in deep non-linear networks. At the same time, due
to the absence of non-linear activation functions, the analysis of deep linear networks turn out to be
simpler than the non-linear counterparts.

Analysis of gradient descent dynamics in deep linear models also is a steep task. Some of the results
are under restrictive assumptions such as whitened data Saxe et al. (2014); Arora et al. (2018a);
Bartlett et al. (2018) and balanced initialisation Arora et al. (2018b); Atanasov et al. (2021) and
small learning rate Saxe et al. (2014); Arora et al. (2018b). Even under such restrictions, the results
in the literature paint a rather negative picture of of the role of depth. To elaborate, it has been
observed that gradient descent in deep linear networks: (i) can take exponential number of iterations
to converge Shamir (2018), (ii) can exhibit sigmoidal learning, i.e., almost no learning in initial
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phase followed by rapid learning Saxe et al. (2014), (iii) can delay convergence with increase in
depth Saxe et al. (2014); Arora et al. (2018b). Given that such phenomena are empirically observed
in deep non-linear networks as well, the overall belief is that depth hurts convergence even in linear
networks.

In this paper, we decouple the analysis of gradient descent in deep linear networks from its utility in
serving as an analytical surrogate for deep non-linear networks. Instead, our aim is to understand the
role of depth when compared to one layer shallow linear networks. While increasing depth in linear
networks increases the computational overhead, the question is whether it is possible speed up the
convergence. In other words, we investigate the extra computations vs faster convergence trade-off.
For the problem of scalar linear regression with quadratic loss, under minimal assumptions on the
data, we ask and answer the following question:

Can a deep linear network achieve faster convergence in finite time than a shallow one layer linear
network? If so, what is the extra computational overhead?

Contributions: In this paper, we provide a positive answer to the above question, that is, depth
helps in increasing the speed of convergence. Our specific contributions are

• We propose a novel algorithm called aligned gradient descent (AGD) (Algorithm 1) for
deep linear networks and prove (Theorem 1) that it achieves faster convergence in finite
time than gradient descent on a shallow one layer linear network.

• AGD provides instance-wise acceleration, in that, for any learning learning rate that is sta-
ble for the shallow linear network, AGD achieves faster convergence in deep linear network
for the same learning rate.

• We show that AGD requires only 5L extra computations (per iteration and per example)
when compared to one layer shallow linear network. This is only a negligible increase in
the computations when the number of input dimension is much larger than L.

• We provide insights into the mechanism underlying acceleration and demonstrate empiri-
cally that AGD achieves acceleration in phases one for each eigenvector component.

• We demonstrate via numerical experiments on synthetic and standard datasets that our AGD
on deep linear networks indeed converges faster than the one layer shallow linear network.

Organisation: In Section 2, we present the setting and the basic convergence result for gradient
descent in one layer shallow linear networks. In Section 3, we discuss briefly the negative results
on the role of depth reported in prior works. We point out the possible pitfalls which cause such
negative results. In Section 4, we present our aligned gradient descent algorithm, present its finite
time convergence result and discuss how it avoids the pitfalls in the prior works. In Section 4, we also
discuss the acceleration mechanism in AGD (Section 4.3), demonstrate its instance-wise speed up
property and study its role of depth (Section 4.2), and demonstrate that it achieves faster convergence
(in comparison to GD in shallow network) on standard datasets (Section 4.5). In Section 5 we review
the related works and make concluding remarks in Section 6.

Our Message: While AGD indeed speeds up convergence, our goal is far from selling AGD as a
better optimisation method for scalar linear regression. Rather, via AGD our aim is to demonstrate
that some of the apparently negative results on the role of depth are not an inherent property of depth
but are due to some pitfalls which are carefully avoided in AGD. In other words, our goal is to show
that depth as a resource works to our advantage in linear networks, and AGD is one of the ways to
achieve it.

2 SETUP AND GRADIENT DESCENT IN SHALLOW LINEAR NETWORK

In this section, we present the setup, assumptions, and state the finite time analysis of gradient
descent for shallow linear network (Proposition 1).

Notation: We use [m] to denote the set {1, . . . ,m}. We use Θ = {Θ(l), l ∈ [L]} ∈ Rdnet , where
Θ(l) ∈ Rdl−1×dl are weights of layer l ∈ [L]. Θ(−l) = {Θ(i) : i ∈ [L], i ̸= l} denotes the weights of
all layers other than layer l. ∇Θ and ∇Θ(l) respectively denote the gradient with respect to weights
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of the entire network and the gradient with respect to the weights of layer l. For n × n matrices
B1, . . . , Bt,

∏t
s=1 Bs = BtBt−1 · · ·B1. We use Θ(l:L) =

∏L
l′=l Θ

(l′) to denote the effective
weight matrix from layer l to L.

Assumption 1 For the dataset (xi, yi)
n
i=1 ∈ Rd×R, let X = [x1, . . . , xn] ∈ Rd×n be the data ma-

trix . We assume (i) Bounded Labels: |yi| ≤ 1, ∀i ∈ [n] and (ii) Full Rank: Rank(X)=min{n, d}.

Linear Networks: We consider linear networks of depth L and dl hidden units in each layer with
scalar output. When L = 1, we call it a shallow one layer linear network, and for L > 1 we call
it a deep linear network. The input dimension is d0 = d, and output dimension is dL = 1. For the
input feature vector x ∈ Rd, the hidden layer outputs x(l), l ∈ [L] are given by: x(0)

Θ = x, x
(l)
Θ =

Θ(l)x
(l−1)
Θ and the final output is given by ŷ(x; Θ) = x

(L)
Θ = Θ(L) · · ·Θ(1)x. We consider quadratic

loss which is given by L(Θ) = 1
n

∑n
i=1

1
2 (ŷ(xi; Θ)− yi)

2
= 1

n

∑n
i=1

1
2

(
Θ(L) · · ·Θ(1)xi − yi

)2
.

Definition 1 Let λi ∈ Rn be the eigenvalues of a n×n real symmetric positive semi-definite matrix
A. Define λeff

min(A) = min
i∈[n]:λi ̸=0

λi as the minimum eigenvalue which is greater than 0. For the

matrix I − A, define the spectral radius to be ρ(I − A)
def
= max

i∈[n]
|1 − λi|, and the effective spectral

radius to be ρeff(I −A)
def
= max

i∈[n]:λi ̸=0
|1− λi|.

Definition 2 Let Y∗ = (yi, i ∈ [n]) ∈ Rn and ŶΘ = (ŷ(xi; Θ), i ∈ [n]) ∈ Rn be the vectors of

true and predicted outputs. For n > d, define Y sol
∗

def
= X⊤(XX⊤)−1XY∗, and for n ≤ d, define

Y sol
∗

def
= Y∗. Define the error vectors EΘ

def
= Y∗ − ŶΘ and Esol

Θ

def
= Y sol

∗ − ŶΘ.

Proposition 1 For gradient descent in shallow one layer linear network with fixed constant learning
rate of η > 0, we have

EΘt+1
=
(
I − η

n
X⊤X

)
EΘt

(1)∥∥∥Esol
Θt+1

∥∥∥
2
≤ ρeff

(
I − η

n
X⊤X

)∥∥Esol
Θt

∥∥
2

(2)

Proof: Please refer to any standard textbook on optimisation Boyd & Vandenberghe (2004).

Corollary 1 If ρeff(I − η
nX

⊤X) < 1, then

∥ŶΘt
∥2 < 2∥Y∗∥2

Proof: ∥Ŷt∥2 ≤ ∥Esol
t ∥2 + ∥Y sol

∗ ∥2 < ∥Esol
0 ∥2 + ∥Y sol

∗ ∥2 = 2∥Y sol
∗ ∥2 ≤ 2∥Y∗∥2.

Choice of Learning Rate: If we know λmax(X
⊤X) and λeff

min(X
⊤X), then the optimal learning

rate is η∗ = 2
λmax(X⊤X)+λeff

min(X
⊤X)

. However, when such knowledge is absent, we can find η via

hyper-parameter tuning to ensure ρeff
(
I − η

nX
⊤X
)
< 1, i.e., to ensure stable convergence.

Effective spectral radius ρeff is used in the case when n > d and the matrix X⊤X has n− d zero
eigenvalues. Thus, even for the optimal choice of learning rate ρ(I − η

nX
⊤X) = 1 due to the n− d

zero eigenvalues of X⊤X . However, ρeff captures the convergence to Y sol
∗ .

3 PRIOR WORK : ROLE OF DEPTH IN LINEAR NETWORKS

Understanding gradient descent (GD) dynamics in deep non-linear networks is an important prob-
lem in machine learning. However, given the difficulty of this problem, many works have studied
gradient descent dynamics on deep linear networks for the following reasons:

• Even though the output is a linear function of the input, the dynamics of gradient descent
in deep linear networks is still non-linear.
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• Deep linear networks exhibit many phenomena also found in deep non-linear networks
such as long plateaus followed by fast transition to lower error solutions Saxe et al. (2014).

• In linear networks increasing depth does not alter their expressivity. Hence the role of depth
in optimisation can be clearly separated Arora et al. (2018b).

Even analysing gradient descent in deep linear networks in the most general setting is a steep task.
Thus, many works make several restrictive assumptions such as small learning rates Arora et al.
(2018a;b), whitened data Arora et al. (2018a), balanced initialisation Arora et al. (2018b); Ji &
Telgarsky (2018); Atanasov et al. (2021), near identity initialisation Bartlett et al. (2018), lp losses
for p > 2 Arora et al. (2018b) to provide some useful insights. Such restrictive assumptions for
linear networks are not a deterrent as long as one can replicate and obtain insights into phenomena
occurring in deep non-linear counterparts. That said, some of the messages in the past works appar-
ently seem to suggest that depth hurts speed of convergence even in deep linear networks. In what
follows, we review some of those results.

3.1 PLATEAUED CONVERGENCE: NUMBER OF ITERATIONS SCALES EXPONENTIAL IN DEPTH

Shamir (2018) considered the gradient descent dynamics in one-dimensional (i.e., dl = 1,∀l ∈ [L])
networks, i.e., the problem of learning ŷ(x; Θ) = Θ(L) · · ·Θ(1)x where the weights are all scalars
(∀l ∈ [L],Θ(l) ∈ R). It was shown that for small enough learning rate, for Xavier (Theorem
2,Shamir (2018)) and near-identity initialisation (Theorem 3, Shamir (2018)) for gradient descent
to converge, the number of iterations required scales exponentially in depth. It was demonstrated
empirically that such phenomena also occur in multi-dimensional networks. The essence of their
argument is captured in the following example.

Consider a two layer network with one hidden unit whose output is given by ŷ(x) = Θ(2)Θ(1)x.
The dataset has only one data point, which is x = 1, y = 1. The loss function is L(Θ) =
(Θ(2)Θ(1) − 1)2. In this example, for Θ0(1) = 1,Θ0(2) = −1 and infinitesimally small learning
rates, it can be shown via simple calculations that, ∀t ≥ 0,Θt(1) = −Θt(2),Θt(1) > 0,Θt(2) < 0,
and Θt(1) → 0+ and Θt(2) → 0−, i.e., the output ŷ(x) → 0−. For finite but small learning rates,
the loss hits a plateau and stays there for exponentially large number of iterations.

Possible Pitfall and Our Fix: The key issue here is that at initialisation itself the network output
is aligned in the wrong direction with respect to the target. We fix this issue in our aligned gradient
descent algorithm (Algorithm 1), by ensuring that in iteration, the alignment of the output of the
deep linear network with the target is as good as the alignment in a shallow one layer network.

3.2 SIGMOIDAL CONVERGENCE : DEPTH DELAYS CONVERGENCE

Saxe et al. (2014) showed that deep linear networks incur a delay in convergence when compared to
shallow linear networks. Saxe et al. (2014) also considered the one-dimensional problem of learning
ŷ(x; Θ) = Θ(L) · · ·Θ(1)x, in the dataset is given by x = 1, y1 = y∗. The output of the network
is given by ŷt = Θ

(L)
t · · ·Θ(1)

t , and the loss is given by L(Θt) = 1
2 (y∗ − ŷt)

2. To simply the
analysis they considered a small initialisation for all the weights i.e., ∀l ∈ [L],Θ

(l)
0 = ϵ′ > 0.

Let et = y∗ − yt, then for an infinitesimally small learning rate, the error dynamics in continuous
time can be given by ėt = −L(yt)2(

L−1
L )et. However, in discrete time we have to choose a small

but finite learning rate which results in stable dynamics. This learning rate is shown decay with
depth as O( 1

Ly2
∗
). To see why this causes a delay in convergence as depth increases, we can set

y∗ = 1, y0 = ϵ, η = η′

L . Let e(L)
t be the error dynamics of a network of depth L. The approximate

(discrete time) progress in the first iteration is given by

e
(L)
1 = (1− η′ϵ2(

L−1
L ))e

(L)
0 (3)

While it is true that as t → ∞, e(L)
t → 0, from the fact that ϵ2(

L−1
L ) decreases as L → ∞, it

is also follows that e(1)1 < e
(2)
1 . . . < e

(l)
1 and hence e

(1)
t < e

(2)
t . . . < e

(l)
t i.e., the error at any

time t is smaller in the shallow networks. In other words, increasing the depth delays the speed of
convergence.

4
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Possible Pitfall and Our Fix: The key issue here is managing scale of the output during training,
in that, O( 1

Ly2
∗
) is too conservative. We fix this issue in our aligned gradient descent algorithm

(Algorithm 1), in two ways: (i) we initialise the first layer weights to be all 0 and the weights of the
rest of the layers to be 1 (this takes care of the scale at t = 0), (ii) we use adaptive learning rates that
are based on the growth of the weights (this takes care of the managing the scale during training,
i.e., t > 0).

3.3 DEPTH SPEEDS UP CONVERGENCE FOR lp LOSS ONLY WHEN p > 2 AND NOT FOR p = 2

Arora et al. (2018b) show that gradient descent in deep linear network is equivalent to gradient
descent in shallow linear network with a preconditioning scheme. It is argued that depth acts like
momentum with adaptive learning rates, in that, increasing depth promotes movement along direc-
tions already taken by optimisation. In particular, Arora et al. (2018b) argue that in shallow networks
have no “communication” between the weights which can hurt the optimisation in case of lp loss
(for p ∈ 2N, p > 2). For this, they consider the example dataset x1 = (1, 0)⊤, x2 = (0, 1)⊤ and
labels y1, y2. For a shallow network ŷ(x; Θ) = x(1)Θ(1) + x(2)Θ(2) and the loss is given by
Lp(Θ) = 1

p (Θ(1)− y1)
p+ 1

p (Θ(1)− y2)
p. Let et(i) = yi− ŷ(xi; Θt) be the error whose dynamics

for small learning rate η > 0 is given by et+1(i) ← (1 − η(et(i))
p−2)et(i). Say Θ0(1),Θ0(2)

are initialised close to 0, then e0(1) ≈ −y1 and e0(2) ≈ −y2. So for stable convergence we need
η < 2

yi
p−2 . Now, for p = 2 the yp−2

i term in denominator has no role to play in the choice of the
learning rate. However, when p > 2, the learning rate is determined by max{y1, y2} and the least of
the two coordinates converges slowly. It is argued that deep linear networks can alleviate this issue,
in that, since their weights are tied to one another, there is communication between them, and such
communication results in an adaptive preconditioning.

Arora et al. (2018b) also observe in their experiments on a linear regression problem with quadratic
loss deeper networks converge slowly than shallow ones.

Possible Pitfall and Our Fix: The key issues are (i) only dynamics of the weights is analysed and
not the features, (ii) for the quadratic case, it is argued that a problem dependent information cannot
be used in the choice of the learning rate. We fix this in our aligned gradient descent algorithm (Al-
gorithm 1) by explicitly controlling the features learnt which in turn helps us to choose an adaptive
learning rates.

4 OUR WORK : ALIGNED GRADIENT DESCENT

In this section, we propose aligned gradient descent (AGD) Algorithm 1 which achieves a linear
rate of convergence. In AGD, all the hidden units are aligned to the same feature direction; key
idea is to let the first layer to align to the right feature direction and the deeper layers accelerate in
the feature direction aligned in the first layer. In order to keep the learning stable, AGD also uses
adaptive learning rates which are implicitly derived from the iterates of the algorithm itself. In what
follows, we present AGD and describe its key ingredients and state its finite time convergence result
in Theorem 1.

The key ingredients of AGD in Algorithm 1 are

•Width is 1: This reduces the computational overhead. We argue in Appendix B in comparison to
GD on one layer shallow network, AGD requires only 5L extra multiplication and L extra addition
operations.

• Initialisation, Scale and Alignment: We also initialise the first layer weights to be all 0 and the
rest of the layer weights to be 1. The first layer aligns, i.e., learns the one-dimensional feature Θ(1)x
and the rest of the layers just scale, i.e., xl = Θ(l)x(l−1) (since width is 1, for l = 2 to L, Θ(l) are all
scalars). Thus the output of the deep linear network is aligned with respect to the target at the very
first gradient step itself and this alignment continues during the entire course of training.

• Adaptive Learning Rates: Let K
(l)
Θ

def
=
∑

i,j x
(l−1)(j) × Θ(l+1:L)(1, i) denote the feature

Gram matrix, i.e., kernel matrix corresponding to layer l. It can be easily shown that K(1)
Θt

=

5
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Algorithm 1 Aligned Gradient Descent

Initialise : Θ(1)
0 = 01×d,∀l = 2, . . . , L,Θ

(l)
0 = 1

for t = 0, 1, . . . , T do
Θ

(1)

t+ 1
L

← Θ
(1)
t −

η(
Θ

(2:L)
t

)2∇Θ(1)L(Θt)

Θ
(−1)

t+ 1
L

← Θ
(−1)
t

for l = 2, . . . , L do

Θ
(l)

t+ l
L

← Θ
(l)

t+ l−1
L

− 1
2

(
Θ

(l)

t+ l−1
L

)2
∇Θ(l)L(Θt)

Θ
(−l)

t+ l
L

← Θ
(−l)

t+ l−1
L

end for
end for
return ΘT

(
Θ

(2:L)
t

)2(
X⊤X

)
and K

(l)
Θ

t+ l−1
L

= 1(
Θ

(l)

t+ l−1
L

)2 (ŶΘ
t+ l−1

L

)(ŶΘ
t+ l−1

L

)⊤. Thus the updates in Al-

gorithm 1 can be seen to choose adaptive learning rates of η(1)t = η(
Θ

(2:L)
t

)2 in the first layer, and

η
(l)
t = 1

2

(
Θ

(l)

t+ l−1
L

)2
for layers l = 2 to L.

• Round Robin Updates: Algorithm 1 updates only one layer at a time. Thus, each of the update
is equivalent to learning in a one layer shallow network with the hidden features of that layer. This
enables us to invoke Equation (1) after updating each layer (see Equations (4) and (6)).

Theorem 1 In Algorithm 1, let η > 0 be any stable learning rate for gradient descent in one layer
shallow network. It follows that (we drop Θ in Θt for the sake of clarity)

Et+ 1
L
=

(
I − η

n
X⊤X

)
Et (4)∥∥∥Esol

t+ 1
L

∥∥∥
2
≤ ρeff

(
I − η

n
X⊤X

)∥∥Esol
t

∥∥
2

(5)

Et+ l
L
=

(
I − 1

2n
(Ŷt+ l−1

L
)(Ŷt+ l−1

L
)⊤
)
Et+ l−1

L
(6)∥∥∥Esol

t+ l
L

∥∥∥
2
<
∥∥∥Esol

t+ l−1
L

∥∥∥
2

(7)∥∥Esol
t+1

∥∥
2
< ρeff

(
I − η

n
X⊤X

)∥∥Esol
t

∥∥
2

(8)

Proof: We argue the under-parameterised (n < d) and over-parameterised (n ≥ d) cases separately.

• Convergence in under parameterised regime: For n > d, let Θ∗ = (XX⊤)−1XY∗ be the
unique solution. Now, Y sol

∗ = X⊤Θ∗ ∈ Rn and ŶΘ = X⊤Θ lies in the column span of the
matrix X⊤. Thus Equations (4) and (5) are same as Equations (1) and (2) and AGD makes as much
progress as gradient descent does in a one layer shallow network. The update in layers l = 2 to L

(Equation (6)) only reduces the error in the component of Ŷt+ l−1
L

. From Corollary 1, it follows that∥∥∥Ŷt+ l−1
L

∥∥∥2
2
< 2n, and hence ρeff

(
I − 1

2n (Ŷt+ l−1
L
)(Ŷt+ l−1

L
)⊤
)

< 1. Now, since Ŷt+ l−1
L

also lies in

the column span of X⊤ we have Equation (7). Combining everything we have Equation (8). Thus,
Esol

t → 0, and since X is full rank, we can infer that Θ(1:L)
t → Θ∗.

Convergence in over parameterised regime: For n ≤ d, let Θ∗ ∈ Rd be the least norm solution
which is the unique solution which belongs to the subspace spanned by the features, i.e., Θ∗ ∈
Span({xi, i ∈ [n]}). Since the matrix X⊤X is full rank Et → 0. Further, the first layer weights

6
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Figure 1: In the left most plot, the setting is the same as the one described in Section 3.1 and the
algorithms are run with η = 0.1. Here, the blue and red dotted line corresponds to plateaued and
sigmoidal convergence respectively. The black solid line corresponds to AGD. The explanation for
the second, third and fourth plots (from the left) can be found in the text in Section 4.2.

Θ
(1)
t are linear combination of the features xi ∈ Rn and since the weights of layers l = 2 to L are

scalars, the effective weight Θ(1:L)
t ∈ Span({xi, i ∈ [n]}),∀t ≥ 0 . Thus Θ(1:L)

t → Θ∗.

4.1 DISCUSSION OF ALGORITHM 1 AND THEOREM 1

Avoiding the pitfalls in prior work and achieving linear rate: The round robin updates ensure
that at every iteration AGD aligns its output to the target as well as a gradient descent update in
a one layer shallow network. This avoids the plateauing phenomena reported in Shamir (2018).
Further, by properly bookkeeping the scales, AGD uses adaptive learning rates which ensure that
the depth dependent delay phenomena of Saxe et al. (2014) is avoided. These are demonstrated in
left most plot of Figure 1. Further, Arora et al. (2018b) considered whitened data and argued that the
communication between the weights in a deep linear network helps faster convergence. However,
we show (see Section 4.4) that for unwhitened data such communication can actually cause unstable
behaviour the gradient descent dynamics. We also show (see Section 4.4) how our AGD avoids such
unstable behaviour.

Acceleration in AGD: The rank-one correction in the direction of the predicted output vector as
show in Equation (6) speeds up the convergence of AGD when compared to GD on one layer shal-
low network. The mechanism of acceleration is explained in Section 4.3. Also, the speed up in
AGD is instance-wise, i.e., for any learning rate η > 0 which is stable for gradient descent in one
layer network, AGD for the same η speeds up the convergence of the deep linear counterpart. This
instance-wise speed up, the effect of depth and comparison with GD in deep linear networks with
other initialisation scheme is discussed in Section 4.2

4.2 INSTANCE-WISE SPEED, EFFECT OF DEPTH, OTHER INITIALISATION

In this subsection, we consider a dataset with d = 2 and n = 2, where x1 = (
√
2, 0)⊤ and x2 =

(0,
√
2× 0.01)⊤ and y1 = 1, y2 = 1.

Instance-wise speed up is shown in Figure 1 (the second from left plot) for three different learning
rates namely η1 = η∗ = 2

1+0.01 , η2 = 10−1, η3 = 10−3. The GD runs are shown in dotted lines and
the AGD runs (for the same learning rates) on a 2 layer network are shown in solid lines. Here, AGD
converges to zero loss faster than the corresponding GD runs for all the three instances η1, η2, η3.
Note that η1 = η∗ is the optimal learning rate for GD in a shallow one layer network and AGD
outperforms it, i.e., the best AGD in a deep networks is better than the best GD in a shallow one
layer linear network.

Effect of Depth: For η = 0.1, the performance of deep linear networks of depth L = 2, 4, 8 trained
with AGD and one layer shallow linear network trained with GD are shown in Figure 1 (the second
plot from right). We observe that the advantage of depth diminishes as depth increases. This is
because, layers 2 to L can speed up learning only in the output direction and the advantage of such
speed up diminishes in the later layers if the initial layers itself learn the right scale.

Comparison with other initialisation: We compared the performance of AGD and GD with stan-
dard initialisation schemes for two layer network. For each of these schemes, we tuned for the best
learning rate, and for AGD we chose η∗ = 2

1+0.01 . The results are shown in the right most plot of
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Figure 2: The left most cartoon illustrates how AGD speeds up convergence in its layers 2 to L.
The middle plot shows the effective parameter Θ

(1:2)
t (1) and Θ

(1:2)
t (2). It can be seen that the

accelerated trajectory takes a curved path in comparison to the GD trajectory. The right most plots
show the alignment of the output and error to explain their role in acceleration in AGD.

Figure 1. The GD runs are shown in dotted lines and AGD in solid line. We see that AGD performs
better than GD with standard initialisation. Further, we see from the plots that for the normal and He
initialisations, gradient descent has unstable behaviour, in that, the loss reduces first and then it over-
shoots and again converges to zero. This unstable behaviour of GD in deep networks is explained in
Section 4.4.

4.3 ACCELERATION IN AGD : MECHANISM AND PHASES (FIGURE 2)

We continue with the same dataset described in Section 4.2 and the results are in Figure 2.

Acceleration Through Layers (left most cartoon in Figure 2): At time t, layer 1 update corrects
the output as Ŷt+ 1

L
= Ŷt +

η
n (X

⊤X)Et. Subsequent layers l = 2, . . . , L correct the output as

Ŷt+ l
L
= Ŷt+ l−1

L
+

1

2n

(
(Ŷt+ l−1

L
)(Ŷt+ l−1

L
)⊤
)
Et+ l−1

L
=

(
1 +

1

2n
⟨Ŷt+ l−1

L
, Et+ l−1

L
⟩
)
Ŷt+ l−1

L

In other words, layers l = 2, . . . , L progressively accelerate the output in the same direction. For
the case of L = 2 and η

(2)
t = 1

∥Ŷ ∥2
2

ensures full correction, i.e., Ŷt+1 is the projection of Y∗ in the

direction given by Ŷt+ 1
2

.

Acceleration Phases Through Time (right most plots in top and bottom in Figure 2: For accel-
eration to happen due to layers l = 2, . . . , L, we need the factor |⟨Ŷt+ l−1

L
, Et+ l−1

L
⟩| to be significant

i.e., vectors Ŷt+ l−1
L

and Et+ l−1
L

have to be aligned sufficiently. As the learning progresses, the

network output Ŷ learns components in eigenvector directions corresponding to the increasing or-
der of |1 − ηλi|. At the same time, the error due to these components diminish in the error term
E = Y∗ − Ŷ . In the whitened case, since all |1 − ηλi| are same, there is only one acceleration
phase. However, in the unwhitened case, depending on the spread of the |1 − ηλi| the acceleration
manifests as phases; utmost one phase each for each eigenvalue. Since the unwhitened case is more
general we will illustrate it via the following example.

Consider AGD in a two layer network with 1 hidden unit, and the same dataset as in Section 4.2.
Here, 1

nX
⊤X = diag(λ1, λ2), where λ1 = 1 and λ2 = 0.01. In the first phase of Ŷ (2) ≈ 0 and the

network learns Ŷ (1) ↑ Y∗(1), and hence Ê(1) ↓ 0 (see right most top plot in Figure 2 from iterations
0 to 50). Thus in the first phase, the quantity ⟨Ŷ , E⟩ ≈ Ŷ (1)E(1) is first small, then increases, and
then decreases again (see right most bottom plot in Figure 2 from iterations 0 to 50). In the next
phase (iterations 50 to 250), Ŷ (2) ↑ Y∗(2), and E(2) ↓ 0, and in this phase E(1) ≈ 0. Similar to
the previous phase, the quantity ⟨Ŷ , E⟩ ≈ Ŷ (2)E(2) is small, then increases in the middle of the
phase and then decreases.
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Figure 3: These plots that demonstrate that gradient descent in deep networks for unwhitened data
can have unstable behaviour. It is also shown here that AGD does not suffer from such unstable
behaviour. Please refer to the text in Section 4.4 for an explantion of these plots.

Figure 4: Shows the performance of AGD for various depths in MNIST and CIFAR. Please see
Section 4.5 for a description of the plots.

4.4 STABILITY ON UNWHITENED DATA : AGD VS GD

AGD Algorithm 1 avoids unstable (ρeff > 1) behaviour: Prior works have looked at gradient
descent dynamics in deep linear networks with the assumption that the data is whitened Saxe et al.
(2014); Arora et al. (2018a). We show that violating this assumption might cause undesirable con-
vergence behaviour of the gradient descent even in a two layer network for reasonably small learning
rate. We consider the network whose output given by ŷ(x; Θ) = Θ(1)Θ(3)x(1) + Θ(2)Θ(3)x(2)
(here, Θ(1),Θ(2) are first layer weights and Θ(3) is the second layer weight). For this network, we
consider the dataset with n = 2, d = 2 and x1 = (

√
2, 0)⊤, x2 = (0,

√
2×0.02)⊤ and y1 = 1, y2 =

1, and we set η = 0.1. Here, 1
nX

⊤X =

[
λ1 0
0 λ2

]
, λ1 = 1, λ2 = 4 × 10−4 and I − η

nK
(1) =[

1− ηλ1Θ(3)2 0
0 1− ηλ2Θ(3)2

]
, I − η

nK
(2) =

[
1− ηλ1Θ(1)2 −η

√
λ1λ2Θ(1)Θ(2)

−η
√
λ1λ2Θ(1)Θ(2) 1− ηλ2Θ(2)2

]
.

To minimise the loss, as t → ∞ we need Θ(1)Θ(3) → 1√
2

and Θ(2)Θ(3) → 50√
2

. ŷ1 =
√
2Θ(1)Θ(3) being associated with the largest eigenvalue is learnt first. This happens by itera-

tion 40 as shown in Figure 3. Now, in the second phase, the network learns ŷ2 =
√
2Θ(2)Θ(3),

which causes the magnitude of Θ(3) to increase. Note that for convergence to be stable, we need
|1− ηλ1Θ(3)2| < 1, i.e., Θ(3) <

√
20. However, once Θt(3) >

√
20, the network starts exhibiting

unstable behaviour. AGD (Algorithm 1) avoids this by using η(1) = η
Θ(3)2 . As shown in Figure 2

(second plot from right), the loss profile of GD (black solid line) has too many spikes due to the
unstable behaviour. In contrast, the AGD loss profile (green dotted line) is smooth. We have also
plotted the GD in one layer for the same dataset for ease of comparison. The third and the fourth
plots show that the spectrum of the matrices

(
I − η

nK
(1)
Θt

)
and

(
I − η

nK
(2)
Θt

)
(dotted lines for AGD

and solid lines for GD). As discusses above, in the case of GD, the spectrum of the said matrices
grow in magnitude (greater than 1) which causes the overall unstable behaviour. However, in the
case of AGD, the spectrum never grows in magnitude greater than 1.

4.5 AGD VS GD ON MNIST AND CIFAR-10

We compared GD in shallow one layer network with AGD in deep linear network on standard
datasets namely MNIST and CIFAR-10. Since we consider only the scalar regression setting, for
MNIST we chose only classes {3, 8} and we labelled them −1 and +1 respectively. Similarly, for
CIFAR-10 we chose only {bird, airplanes} and labelled them −1 and +1 respectively. For both
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datasets, we first tuned for the best learning rates for GD in shallow one layer network, i.e., we
found ηMNIST

∗,GD and ηCIFAR
∗,GD . We then used these learning rates to run AGD on deep linear networks of

depth 2, 4, 8. For both datasets, AGD performs better than GD in train as well as test data (Figure 4).

5 RELATED WORK

The literature on deep linear network (DLN) is rich, and of these, works relevant to us are of two
kinds (i) those on gradient descent and (ii) those on neural tangent kernel (NTK) alignment.

Saxe et al. (2014) analysed GD with infinitesimal learning rate. They showed that DLNs too ex-
hibit phenomena found in deep non-linear networks such as plateauing followed by fast transition
to low error solutions. They also showed that deep linear networks incur a delay in learning speed
relative to shallow networks. However, they provided a class of random orthogonal initialisation
under which this delay in learning speed is finite even as the depth of network approached infin-
ity. Arora et al. (2018b) studied the advantage of depth in DLNs because in DLNs depth cannot
help in expressiveness and if any can only can help in optimisation. They showed that in the scalar
regression setting with lp loss (p > 2), under a balanced initialisation of weights, depth helps in
acceleration. They showed that this acceleration due to depth cannot be achieved by other precondi-
tioning schemes. However, in their experiments they also reported that in the l2 case, depth mildly
hurts the speed of convergence. Bartlett et al. (2018) analyse a gradient descent for quadratic loss
and whitened data. They consider a specific sub-class, in that, they consider only linear residual
networks with uniform width across layers. For this setting, they show that gradient descent takes
polynomial (in the depth) iterations to converge an ϵ approximate solution. Arora et al. (2018b)
extended Bartlett et al. (2018) significantly and showed that for l2 over whitened data and balanced
weight initialisation, gradient descent converges at linear rate. Shamir (2018) prove (under mild
assumptions) for one-dimensional network that for standard random initialisation, the number of
iterations required for convergence scales exponentially with the depth. Atanasov et al. (2021) look
at the dynamics of the neural tangent kernel during training of deep non-linear and linear networks
for the case of quadratic loss, under small and balanced weight initialisation and whitened data.
In the case of DLNs, the analytically establish the phenomena of silent alignment wherein, in the
early stage (phase I) of training the NTK aligns (to the final NTK) and during rest of the training
(phase II) the NTK evolves only in scale. This implies that the learnt function equivalent to a kernel
regression solution with the final NTK. They also show that this alignment kernel depends on the
depth. However, they also demonstrate that non-whitened data weakens the silent alignment effect.

Our work: Saxe et al. (2014); Arora et al. (2018b); Shamir (2018) note that depth slows down the
rate of convergence. On the contrary, we show that depth actually speeds up convergence. In com-
parison to Arora et al. (2018a); Bartlett et al. (2018), we do not make any whitening assumption and
our results hold for any general data matrix. Our initialisation scheme also differs from the afore-
mentioned works which either use randomised or balanced or near identity initialisation. Another
important aspect of our results is that it is finite time. Atanasov et al. (2021) only analyse alignment
in the case of whitened data and do not use alignment in an algorithm. In contrast, in our work, we
use alignment (even for unwhitened data) to propose an algorithm which speeds up convergence.

6 CONCLUSION

Gradient descent (GD) in deep linear networks have been widely studied in literature mainly as
a surrogate to deep non-linear networks. The aim of such study is to throw light on phenomena
that occur in deep non-linear networks. Prior works on deep linear networks have reported that
depth plays a negative role in the convergence of gradient descent in deep linear networks. In this
paper, we argued that such negative results are due to pitfalls which we carefully avoid in our novel
aligned gradient descent algorithm (AGD). We presented finite time guarantees for AGD and showed
that it achieves accelerated convergence when compared to GD on a shallow one layer network in
theory as well as experiments on synthetic and benchmark datasets. We discussed the acceleration
mechanism of AGD. We also show pointed out how GD for deep linear networks can lead to unstable
convergence when data is unwhitened, and we showed that AGD does not suffer from such unstable
behaviour. We conclude that depth is an advantage and helps to speed up convergence in deep linear
networks.
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Op. η
(1)
t ∇Θ

(1)
t
L Θ

(1)

t+ 1
L

x
(1)

t+ 1
L

ŷt+ 1
L

η
(l)
t ∇Θ(l)L Θ

(l)

t+ l
L

x
(l)

t+ l
L

ŷt+ l
L

Θ
(l:L)
t+1 Total∗

Mul 2d 0 d 1 3 0 1 1 L− 1 3d+ 5L
Add d d (d− 1) 0 0 1 0 0 0 3d+ L

Table 1: Addition and Multiplication operations in AGD for the simpler dhid = 1 architecture. Here,
l = 2, . . . , L. Total∗ is an upper bound for the total number of operations.

A APPENDIX

B EXTRA COMPUTATIONS DUE TO ROUND ROBIN UPDATES IN AGD

Note that, due to our initialisation, at t = 0, the forward pass computations are trivial, i.e., ŷ(x) = 0,
and Θ(l:L) = 1,∀l = 2, . . . , L. Further, as we proceed through t+ l

L for l = 1, . . . , L, at each step
we have to perform forward pass (ŷt+ l

L
) backward pass (η(l)t ∇Θ(l)L) and weight update (Θ(l)

t+ l
L

) —
these have been accounted for in Table 1. The total computations are upper bounded by 3d + 5L
multiplications and 3d+ L additions.

In a shallow one layer network, we need (i) multiplications: d in the forward pass and 2d in the
backward pass, (ii) additions: d − 1 in the forward pass, d for backward pass and d for weight
update. Thus, the total computations are 3d multiplications and 3d− 1 additions.

Depth Overhead: From the above arguments, it is clear that computational overhead of going deep
is upper bounded by 5L multiplications and L additions per example and per update (i.e., from t to
t+ 1 when updating all layers).
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