

000 RECASTING TRANSFORMER LAYERS AS ENERGY 001 MODELS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Foundation models rely on sequence-to-sequence mappings parameterized by
010 neural networks, and the design space of these layers continues to expand. Trans-
011 former layers remain the dominant choice due to their strong performance and
012 high parallelism, though many design decisions are still empirically based. We
013 introduce Causal Energy Minimization (CEM), a framework that interprets each
014 transformer layer as an algorithm for solving an energy minimization problem
015 with causal structure. This perspective separates the mathematical interpretation
016 of a layer from its numerical realization, offering a unifying lens for layer de-
017 sign and motivating principled architectural innovations. Within CEM, multi-
018 head attention emerges as a gradient step on an interaction energy under the
019 weight sharing constraint, while gated multilayer perceptrons (MLPs) correspond
020 to element-wise energies. The form of transformer components within CEM sug-
021 gests a weight-sharing scheme in both attention and MLP blocks: we show that
022 this yields parameter-efficient layers with negligible performance loss. Further,
023 the CEM interpretation suggests appealing extensions to the transformer archi-
024 tecture: preconditioner matrices for residual connections, diagonal matrices for
025 inter-token distances in attention, and multiple gradient-steps (a form of layer re-
026 use) for both attention and MLP blocks. We show that these ideas that occur
027 naturally in CEM lead to improvements on language modelling tasks, positioning
028 CEM as a blueprint for principled and extensible architecture design.
029

030 1 INTRODUCTION 031

032 Sequence-to-sequence mappings underlie modern foundation models (Bommasani et al., 2021).
033 Early work employed recurrent (Sutskever et al., 2014; Hochreiter & Schmidhuber, 1997; Cho
034 et al., 2014) and convolutional architectures (Kalchbrenner et al., 2016; Gehring et al., 2017), but
035 these have been largely replaced by Transformer (Vaswani et al., 2017). While alternatives such
036 as structured state-space models have recently emerged (Gu et al., 2022; Gu & Dao, 2023), Trans-
037 former layers, particularly multi-head attentions (MHAs) and gated MLPs, remain the core of to-
038 day’s large language models (LLMs). Yet architectural innovations for transformer continues to be
039 driven mainly by empirical performance and efficiency (Shazeer et al., 2017; Shazeer, 2020; 2019;
040 Ainslie et al., 2023). What is missing is a principled framework that explains why current choices
041 work and provides systematic guidance for future innovation.
042

043 Energy-based models (EBMs) provide such a framework. By assigning a scalar energy $\mathcal{E}(\mathbf{x})$ to
044 each configuration \mathbf{x} , EBMs define computation as the search for low-energy states (LeCun et al.,
045 2006; Hopfield, 1982; Ackley et al., 1985; Krotov & Hopfield, 2016; Ramsauer et al., 2021). This
046 formulation brings two key advantages. First, it offers explicit mathematical objectives: a model’s
047 computation is understood as minimizing a well-defined energy function, rather than applying a
048 black-box transformation. Second, it connects architecture design to the theory of optimization,
049 enabling analysis of stability and convergence. Yet, despite these advantages, standalone EBMs,
050 especially in their classical and associative-memory forms, typically underperform Transformer on
051 large-scale sequence modelling (Du et al., 2021; Qin & Eisner, 2022).

052 We introduce CEM, a framework that formulates each transformer layer as solving an energy min-
053 imization problem with causal structure. CEM separates the semantics of a layer (the energy it de-
054 fines), from its numerical realization (the optimization algorithm used to minimize it). Transformer

054 layers such as MHAs and gated MLPs arise as special cases under weight-tying constraints: MHA
 055 corresponds to gradient steps on interaction energies, while gated MLP corresponds to element-wise
 056 energies (see Sections 2.1 and 2.2).

057 Concretely, to map an input sequence $\mathbf{h}_{1:J}$ to an output sequence $\mathbf{h}'_{1:J}$, CEM defines each output
 058 \mathbf{h}'_i by introducing a variable \mathbf{x}_i , initialized at \mathbf{h}_i , and updating it with an optimization procedure \mathcal{A}
 059 to (approximately) minimize a conditional energy $\epsilon(\mathbf{x}_i \mid \mathbf{h}_{1:i})$, which depends on the causal history
 060 $\mathbf{h}_{1:i}$. The optimized solution then becomes the new hidden state \mathbf{h}'_i . Here, the energy function
 061 interprets sequence processing, while the optimization algorithm specifies the numerical realization.
 062 Stacking such layers yields expressive sequence-to-sequence models.

063 **Contributions.** In this work, we study the Transformer architecture through the lens of CEM and
 064 make the following contributions:

- 066 • We show that MHA with weight sharing can be derived as a gradient step on an interaction
 067 energy, while gated MLP corresponds to an element-wise energy. This view allows weight
 068 sharing between up/down projections in MLPs and between linear projections in attention to
 069 arise naturally, leading to more parameter-efficient designs.
- 070 • Building on the energy optimization perspective, we extend transformer layer design beyond
 071 single gradient updates. We investigate diagonal-plus-low-rank weight matrices, precondi-
 072 tioned updates, multiple recursive steps.
- 073 • We show that CEM layers match the performance of larger Llama components while retaining
 074 interpretability through the energy-minimization framework. Moreover, optimization-driven
 075 design yields performance gains without increasing model size.

076 2 TRANSFORMER LAYERS AS ENERGY UPDATES

079 We start by reframing Transformer layers through the lens of CEM. We introduce two complemen-
 080 tary energy terms: an *interaction term*, which captures dependencies across features for different
 081 tokens, and an *element-wise term*, which assigns energy to each token’s feature vector. Taking
 082 gradient-based updates on these energies naturally recovers standard Transformer layers with weight
 083 sharing: the interaction updates yield multi-head attention, while the element-wise updates yield
 084 gated MLPs. Figure 1 presents an illustration of the weight sharing scheme.

085 2.1 GRADIENT OF INTERACTION ENERGY YIELDS WEIGHT-TIED ATTENTION

087 **Multi-head attention (MHA).** In conventional MHA, the query, key, and value projections for
 088 head k are defined as

$$090 \quad \mathbf{q}_i^k = \mathbf{W}_k^Q \mathbf{h}_i, \quad \mathbf{k}_j^k = \mathbf{W}_k^K \mathbf{h}_j, \quad \mathbf{v}_j^k = \mathbf{W}_k^V \mathbf{h}_j,$$

091 where \mathbf{h}_j denotes j -th token feature vector in the sequence. The attention update then takes the form

$$093 \quad \text{MHA}(\mathbf{h}_{1:i}) = \sum_{k=1}^K \mathbf{W}_k^{O\top} \left(\sum_{j=1}^i \text{softmax}_j \left(\left\{ \frac{1}{\sqrt{D_h}} (\mathbf{k}_{j'}^k)^\top \mathbf{q}_i^k \right\}_{j'=1}^i \right) \mathbf{v}_j^k \right).$$

096 Typically, the per-head outputs are concatenated and followed by a single output projection \mathbf{W}^O .
 097 Equivalently, one may view \mathbf{W}^O as partitioned into head-specific blocks $\{\mathbf{W}_k^O \in \mathbb{R}^{D_r \times D_h}\}_{k=1}^K$,
 098 with contributions summed as written above, where D_h is the feature dimension for \mathbf{h}_i and D_r is
 099 the head dimension where $\mathbf{q}_i^k, \mathbf{k}_j^k, \mathbf{v}_j^k \in \mathbb{R}^{D_r}$. See Appendix A.1 for detailed explanation.

101 **Interaction energy.** MHA can be derived by considering a gradient step on the following simple
 102 interaction energy, similar to that in modern Hopfield networks (Ramsauer et al., 2021):

$$104 \quad \epsilon(\mathbf{x}_i \mid \mathbf{h}_{1:i}) = -\tau \sum_{k=1}^K \log \sum_{j=1}^i \exp \left(\frac{1}{\tau} \boldsymbol{\beta}_{kj}^\top \mathbf{x}_i \right) \quad \text{where} \quad \boldsymbol{\beta}_{kj} = \mathbf{A}_k \mathbf{h}_j. \quad (1)$$

107 Here $\{\mathbf{A}_k \in \mathbb{R}^{D_h \times D_h}\}_{k=1}^K$ are learnable projection matrices, D_h is the feature dimension, and τ
 is a scalar temperature. Our formulation differs from Hopfield networks in two respects: projection

Figure 1: **Comparison of transformer layer parameterisations.** Top left: standard multi-head attention (per head). Top right: gated MLP. Bottom left: CEM-derived attention. Bottom right: CEM-derived MLP. Colors indicate shared weights within each subfigures (See Sections 2.1 and 2.2). Arrows highlight the recursive structure of CEM modules, which implement multiple gradient steps of energy minimization (Equations (16) and (17)), while brown bars denote the optional diagonal term added to the key–query projections (See details in Section 2.3). For the attention heads, W^V maps the hidden state to values, which are then projected back by W^O and scaled by the scalar Softmax weight.

weights are embedded directly in the energy and reappear as tied attention projections, and we perform gradient updates rather than Concave–Convex Procedure (CCCP) iterations (see Appendix C). We now derive the gradient of the interaction energy $\epsilon(\mathbf{x}_i | \mathbf{h}_{1:i})$ with respect to \mathbf{x}_i :

$$\nabla_{\mathbf{x}_i} \epsilon(\mathbf{x}_i | \mathbf{h}_{1:i}) = - \sum_{k=1}^K \sum_{j=1}^i \text{softmax}_j \left(\left\{ \frac{1}{\tau} \beta_{kj}^\top \mathbf{x}_i \right\}_{j'=1}^i \right) \beta_{kj}. \quad (2)$$

Adopting a low-rank factorization $\mathbf{A}_k = \mathbf{W}_k^{Q^\top} \mathbf{W}_k^K$ we obtain $\beta_{kj} = \mathbf{W}_k^{Q^\top} (\mathbf{W}_k^K \mathbf{h}_j)$. If our chosen algorithm is to take a single gradient step, initialized at $\mathbf{x}_i = \mathbf{h}_i$, then we compute:

$$\mathbf{h}'_i = \mathbf{h}_i - \eta_\epsilon \nabla_{\mathbf{x}_i} \epsilon(\mathbf{x}_i | \mathbf{h}_{1:i}) \Big|_{\mathbf{x}_i = \mathbf{h}_i}, \quad (3)$$

with

$$\nabla_{\mathbf{x}_i} \epsilon(\mathbf{x}_i | \mathbf{h}_{1:i}) \Big|_{\mathbf{x}_i = \mathbf{h}_i} = - \sum_{k=1}^K \mathbf{W}_k^{Q^\top} \left(\sum_{j=1}^i \text{softmax}_j \left(\left\{ \frac{1}{\tau} (\mathbf{k}_{j'}^k)^\top \mathbf{q}_i^k \right\}_{j'=1}^i \right) \mathbf{v}_j^k \right). \quad (4)$$

where the value and key projections are shared: $\mathbf{q}_i^k = \mathbf{W}_k^Q \mathbf{h}_i$, $\mathbf{v}_j^k = \mathbf{k}_j^k = \mathbf{W}_k^K \mathbf{h}_j$.

It is therefore clear that the gradient of the interaction energy recovers the MHA form, with the weight-tied parameterization

$$\mathbf{W}_k^K = \mathbf{W}_k^V \quad \mathbf{W}_k^Q = \mathbf{W}_k^O \quad \tau = \sqrt{D_h}. \quad (5)$$

In this view, the residual update corresponds exactly to a single gradient descent step (with step size $\eta^\epsilon = 1$) on the defined interaction energy.

2.2 GRADIENT OF ELEMENT-WISE ENERGY YIELDS WEIGHT-TIED MLPs

Gated MLPs. A gated MLP applies an element-wise transformation to the hidden state $\mathbf{h}_i \in \mathbb{R}^{D_h}$:

$$\text{GatedMLP}(\mathbf{h}_i) = \mathbf{W}^d((\mathbf{W}^g \mathbf{h}_i) \circ \sigma(\mathbf{W}^u \mathbf{h}_i)). \quad (6)$$

Here, the learnable parameters are the *gate* and *up* projections $\mathbf{W}^g, \mathbf{W}^u \in \mathbb{R}^{D_m \times D_h}$ and the *down* projection $\mathbf{W}^d \in \mathbb{R}^{D_h \times D_m}$. The function σ denotes a pointwise nonlinearity (e.g. GELU).

162 **Element-wise energy term.** This energy term assigns energy independently to each token feature
 163 vector, while sharing the same functional form across positions:

$$165 \quad \xi(\mathbf{x}_i | \mathbf{h}_i) = -\boldsymbol{\gamma}_i^\top \phi(\mathbf{V}\mathbf{x}_i), \quad \text{where} \quad \boldsymbol{\gamma}_i = \mathbf{W}\mathbf{h}_i. \quad (7)$$

166 Here, the learnable parameters are the projection matrices $\mathbf{W}, \mathbf{V} \in \mathbb{R}^{D_v \times D_h}$, with projection dimension
 167 D_v not necessarily equal to the hidden dimension D_h . The function ϕ denotes a pointwise
 168 nonlinearity.

170 **Energy-gradient formulation.** For the element-wise energy ξ , the gradient with respect to \mathbf{x}_i is

$$171 \quad \nabla_{\mathbf{x}_i} \xi(\mathbf{x}_i | \mathbf{h}_i) = -\mathbf{V}^\top (\boldsymbol{\gamma}_i \circ \phi'(\mathbf{V}\mathbf{x}_i)). \quad (8)$$

173 Taking one gradient step at $\mathbf{x}_i = \mathbf{h}_i$ yields

$$174 \quad \mathbf{h}'_i = \mathbf{h}_i - \eta_\xi \nabla_{\mathbf{x}_i} \xi(\mathbf{x}_i | \mathbf{h}_i) \Big|_{\mathbf{x}_i=\mathbf{h}_i}, \quad (9)$$

176 with

$$178 \quad \nabla_{\mathbf{x}_i} \xi(\mathbf{x}_i | \mathbf{h}_i) \Big|_{\mathbf{x}_i=\mathbf{h}_i} = -\mathbf{V}^\top ((\mathbf{W}\mathbf{h}_i) \circ \phi'(\mathbf{V}\mathbf{h}_i)). \quad (10)$$

180 Comparing equation 6 and equation 10, the energy-gradient update recovers the structure of gated
 181 MLPs when we identify the parameters as

$$182 \quad \mathbf{W}^{d^\top} = \mathbf{W}^u = \mathbf{V}, \quad \mathbf{W}^g = \mathbf{W}, \quad (11)$$

184 and we set $\phi(x) = \int_{-\infty}^x \sigma(z) dz$.

185 2.3 ENHANCING TRANSFORMER LAYERS FROM AN ENERGY OPTIMIZATION PERSPECTIVE

187 Having shown that Transformer layers, both MHA and MLPs, can be interpreted as gradient updates
 188 on energy functions in Sections 2.1 and 2.2, we next explore how these layers can be enhanced from
 189 the perspective of energy optimization.

191 **Diagonal-plus-low-rank parameterisation**. In Section 2.1, we introduced a low-rank parameterisation
 192 of $\mathbf{A}_k = \mathbf{W}_k^{Q^\top} \mathbf{W}_k^K$ in the interaction energy, recovering the query and key projections
 193 of standard attention. We now ask whether a purely low-rank form is sufficient, and instead propose
 194 a diagonal-plus-low-rank parameterisation for the matrix \mathbf{A}_k :

$$195 \quad \mathbf{A}_k = \text{diag}(\mathbf{d}_k) + \mathbf{W}_k^{Q^\top} \mathbf{W}_k^K, \quad (12)$$

197 where $\mathbf{d}_k \in \mathbb{R}^{D_h}$. This augmented parameterisation captures key–query interactions that low-rank
 198 matrices alone cannot represent, yielding a richer structure for the interaction matrix \mathbf{A}_k . The diagonal
 199 term enriches the interaction matrix but increases computational cost, so we propose sharing it
 200 across heads. A detailed empirical analysis is provided in Figure 3b and more background on this
 201 parameterisation can be found in Appendix A.2.

202 **Learned lightweight preconditioners.** A single gradient descent step is often insufficient to reach
 203 a low-energy state. Second-order methods such as Newton’s method accelerate convergence by scaling
 204 updates with the inverse Hessian, but computing and inverting Hessians is often expensive. We
 205 therefore introduce learned lightweight preconditioners: trainable low-rank positive-definite matrices
 206 that approximate curvature information in diagonal-plus-low-rank form,

$$208 \quad \mathbf{P} = \text{diag}(\text{softplus}(\mathbf{d})) + \mathbf{U}\mathbf{V}^\top + \mathbf{V}\mathbf{U}^\top, \quad (13)$$

209 with $\mathbf{d} \in \mathbb{R}^{D_h}$ and $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{D_h \times R}$, where $R \ll D_h$. Here $\text{softplus}(x) = \log(1 + e^x)$ is applied
 210 element-wise to ensure strictly positive diagonal entries, guaranteeing $\mathbf{P} \succ 0$. For the interaction
 211 energy, we insert per-head preconditioners \mathbf{P}_k , giving the update (contrast with the unpreconditioned
 212 gradient in Equation (2)):

$$214 \quad \Delta \mathbf{x}_i^\epsilon(\mathbf{h}_i | \mathbf{h}_{1:i}) := - \sum_{k=1}^K \mathbf{P}_k \mathbf{W}_k^{Q^\top} \left(\sum_{j=1}^i \text{softmax}_j \left(\left\{ \frac{1}{\tau} (\mathbf{k}_{j'}^k)^\top \mathbf{q}_i^k \right\}_{j'=1}^i \right) \mathbf{v}_j^k \right). \quad (14)$$

216 which denotes the update at $\mathbf{x}_i = \mathbf{h}_i$ for the energy ϵ . For the element-wise energy, the gated MLP
 217 update becomes (contrast with unpreconditioned one in Equation (10)):

$$219 \quad \Delta \mathbf{x}_i^\epsilon(\mathbf{h}_i | \mathbf{h}_{1:i}) := -\mathbf{P}_{\text{mlp}} \mathbf{V}^\top ((\mathbf{W} \mathbf{h}_i) \circ \phi'(\mathbf{V} \mathbf{h}_i)), \quad (15)$$

220 with \mathbf{P}_{mlp} denoting its preconditioner.
 221

222 In both cases, the preconditioners could be trained to provide lightweight curvature information,
 223 enabling updates that converge more effectively to well-optimized states.

225 **Multiple recursive steps** So far, each Transformer layer has been interpreted as performing a
 226 single gradient step on its associated energy function. From the optimization viewpoint, however, a
 227 single step rarely reaches a well-optimized state. A natural extension is therefore to apply multiple
 228 recursive updates within the same layer, analogous to running several iterations of an optimization
 229 algorithm. For the interaction energy (attention), starting from $\mathbf{x}_i^{(0)} = \mathbf{h}_i$, we perform T updates of
 230 the form

$$231 \quad \mathbf{x}_i^{(t+1)} = \mathbf{x}_i^{(t)} - \eta_\epsilon \Delta \mathbf{x}_i^\epsilon(\mathbf{x}_i | \mathbf{h}_{1:i}), \quad t = 0, \dots, T-1, \quad (16)$$

232 and set $\mathbf{h}'_i = \mathbf{x}_i^{(T)}$.

234 For the element-wise energy (MLP), starting from $\mathbf{x}_i^{(0)} = \mathbf{h}_i$, the recursion is
 235

$$236 \quad \mathbf{x}_i^{(t+1)} = \mathbf{x}_i^{(t)} - \eta_\xi \Delta \mathbf{x}_i^\xi(\mathbf{x}_i | \mathbf{h}_{1:i}), \quad t = 0, \dots, T-1, \quad (17)$$

238 with the output $\mathbf{h}'_i = \mathbf{x}_i^{(T)}$. This recursive scheme enables each layer to better minimize its energy
 239 function without adding parameters, as illustrated in Figure 1. Unlike blockwise recursion in looped
 240 Transformer, our approach updates only $\mathbf{x}_i^{(t)}$ and fix $\mathbf{h}_{1:i}$, with most computation performed outside
 241 the recursion. This within-layer recursion thus offers a distinct mechanism that could provide a new
 242 dimension for test-time scaling, which we leave for future work.

244 A CONSTRUCTION OF TRANSFORMER BLOCK WITH ENERGY UPDATES

246 We now present the full Transformer block from the CEM perspective, where both attention and
 247 MLP components arise as recursive gradient updates on their respective energy functions. Residual
 248 connections are absorbed into the recursion, while RMSNorm(\cdot) are applied. Standard Transformer
 249 with weight sharing, as detailed in Equations (5) and (11), appears as the special case $T_\epsilon = T_\xi = 1$,
 250 using identity preconditioners $(\mathbf{P}_k) = (\mathbf{P}_{\text{mlp}}) = \mathbf{I}$ and vanishing diagonal terms $\mathbf{d}_k = \mathbf{0}$. The
 251 complete CEM block is summarized in Algorithm 1.

252 **Algorithm 1:** Transformer Block as Energy Updates (Orange parts highlight CEM specifics)

254 **Input:** Sequence $\mathbf{h}_{1:J}$, **Output:** Sequence $\mathbf{h}'_{1:J}$
 255 **Hyperparameters:** Recursive steps T_ϵ, T_ξ , step sizes η_ϵ, η_ξ , number of heads K ,
 $\phi(x) = \int_{-\infty}^x \text{SiLU}(z) dz$
 257 **Trainable parameters:** $\{\mathbf{W}_k^Q, \mathbf{W}_k^K, \mathbf{D}_k = \text{diag}(\mathbf{d}_k)\}_{k=1}^K, \mathbf{W}, \mathbf{V}, \{\mathbf{P}_k\}_{k=1}^K, \mathbf{P}_{\text{mlp}}$

Main Block	Subroutine: MHA	Subroutine: MLP
$\text{for } i = 1 : J \text{ do}$ $\quad \mathbf{h}_{1:i} \leftarrow \text{RMSNorm}(\mathbf{h}_{1:i})$ $\quad \text{for } k = 1 : K \text{ do}$ $\quad \quad \mathbf{k}_{1:i}^k \leftarrow \mathbf{W}_k^K \mathbf{h}_{1:i}$ $\quad \quad \mathbf{v}_{1:i}^k \leftarrow \mathbf{W}_k^K \mathbf{h}_{1:i}$ $\quad \quad \mathbf{h}_i \leftarrow \text{MHA}(\mathbf{h}_{1:i}^{1:K}, \mathbf{k}_{1:i}^{1:K}, \mathbf{v}_{1:i}^{1:K})$ $\quad \text{for } i = 1 : J \text{ do}$ $\quad \quad \mathbf{h}_i \leftarrow \text{RMSNorm}(\mathbf{h}_i)$ $\quad \quad \mathbf{h}'_i \leftarrow \text{MLP}(\mathbf{h}_i)$ $\text{return } \mathbf{h}'_{1:J}$	$\text{MHA}(\mathbf{h}_{1:i}, \mathbf{k}_{1:i}^k, \mathbf{v}_{1:i}^k):$ $\quad \mathbf{x}_i \leftarrow \mathbf{h}_i$ $\quad \text{for } t = 0 : T_\epsilon - 1 \text{ do}$ $\quad \quad \mathbf{u}_i \leftarrow \text{RMSNorm}(\mathbf{x}_i)$ $\quad \quad \text{for } k = 1 : K \text{ do}$ $\quad \quad \quad \mathbf{q}_i^k \leftarrow \mathbf{W}_k^Q \mathbf{u}_i$ $\quad \quad \quad \mathbf{a}_{ijk} \leftarrow D_h^{-1/2} (\mathbf{k}_j^{k\top} \mathbf{q}_i^k + \mathbf{h}_j^\top \mathbf{D}_k \mathbf{u}_i)$ $\quad \quad \quad \mathbf{o}_i^k \leftarrow \sum_{j=1:i} \text{sftmx}_j(\{\mathbf{a}_{ijk}\}_{j=1}^i) \mathbf{v}_j^k$ $\quad \quad \quad \mathbf{x}_i \leftarrow \mathbf{x}_i + \eta_\epsilon \sum_k \mathbf{P}_k \mathbf{W}_k^{Q\top} \mathbf{o}_i^k$ $\text{return } \mathbf{x}_i$	$\text{MLP}(\mathbf{h}_i):$ $\quad \mathbf{x}_i \leftarrow \mathbf{h}_i$ $\quad \boldsymbol{\gamma} = \mathbf{W} \mathbf{h}_i$ $\quad \text{for } t = 0 : T_\xi - 1 \text{ do}$ $\quad \quad \mathbf{u}_i \leftarrow \text{RMSNorm}(\mathbf{x}_i)$ $\quad \quad \mathbf{g}_i \leftarrow \mathbf{V}^\top (\boldsymbol{\gamma} \circ \phi'(\mathbf{V} \mathbf{u}_i))$ $\quad \quad \mathbf{x}_i \leftarrow \mathbf{x}_i + \eta_\xi \mathbf{P}_{\text{mlp}} \mathbf{g}_i$ $\text{return } \mathbf{x}_i$

270 A subtlety arises when incorporating positional encodings: rotary embeddings (RoPE) in particular
 271 complicate the energy-gradient view by making the projection weights depend on both query and
 272 key indices. To avoid this overhead, we instead adopt relative-position biases such as Alibi, as
 273 discussed in Appendix B.

275 3 RELATED WORK

277 EBMs assign low energies to preferred configurations (Hopfield, 1982; LeCun et al., 2006). Modern
 278 extensions to Hopfield networks (Krotov & Hopfield, 2016; Ramsauer et al., 2021) with continuous
 279 patterns and log-sum-exp energy demonstrate how attention-like updates can arise from their
 280 updating iterations (Appendix C). Recent work on EBMs for language extend the formulation to
 281 sequence-level objectives, including residual EBMs for text generation (Du et al., 2021; Grathwohl
 282 et al., 2021), controllable decoding (Qin & Eisner, 2022; Liu et al., 2022). Our work reframes
 283 Transformer layers, including both MHA and MLP, as energy updates, and demonstrate that this
 284 perspective leads to principled extensions and improvements for text modeling tasks.

285 **Alternative transformer blocks.** Transformer models have largely converged toward Llama-style
 286 backbones with multi-head attention (Vaswani et al., 2017) and gated MLPs (Shazeer, 2020). A wide
 287 range of efficiency-oriented variants aim to reduce the memory and compute cost of attention, for
 288 example through multi-query, group-query, or latent attention mechanisms (Shazeer, 2019; Ainslie
 289 et al., 2023; Zhai & et al., 2023). On the feedforward side, Liu et al. (2021); Shazeer (2020); So
 290 et al. (2021) demonstrate stronger and consistent empirical performance. Shazeer et al. (2017);
 291 Fedus et al. (2022) scale up capacity through sparsely activated mixture-of-experts (MoE) layers,
 292 He & Hofmann (2024); He et al. (2023) seek to streamline the architecture by simplifying skip
 293 connections, projections, or normalization layers with little or no degradation in performance.

294 **Recursive depth and adaptive computation.** Layer sharing improves parameter efficiency, as
 295 demonstrated by the Universal Transformer (Dehghani et al., 2019), ALBERT (Lan et al., 2020),
 296 and Perceiver (Jaegle et al., 2021). Adaptive schemes further allocate computation dynamically
 297 through early exits or token-level routing (Elbayad et al., 2020; Xin et al., 2020; Bae et al., 2025),
 298 balancing efficiency and accuracy. Recursion also connects to latent reasoning such as latent chains
 299 of thought (Hao et al., 2024; Zhang & Viteri, 2024; Tan et al., 2025). In this work, we explore
 300 within-layer recursion, which offers an additional axis for adaptivity and can be combined with
 301 prior approaches.

304 4 EXPERIMENTS

306 Our experiments address four questions: (i) can CEM MHAs and MLPs act as parameter-efficient
 307 drop-in replacements for their standard counterparts; (ii) do within-layer recursion and lightweight
 308 preconditioners improve performance; (iii) can a Transformer composed entirely of CEM layers be
 309 trained end-to-end; and (iv) how do design choices such as KQ diagonal terms and recursion affect
 310 performance. All models are trained on SlimPajama for the compute-optimal number of tokens of
 311 the corresponding Llama baselines (Hoffmann et al., 2022), and we report test perplexity as the main
 312 evaluation metric. Experimental details can be found in Appendix D.

314 4.1 REPLACE TRANSFORMER LAYERS WITH SINGLE-STEP CEM LAYERS

316 To evaluate the effectiveness of CEM layers, we train Transformer models with CEM components in
 317 either the MLP or attention blocks, and compare against Llama baselines. We focus on the weight-
 318 tying formulation (see Equations 5 and 11), but without recursions or preconditioners here.

319 Figure 2a compares CEM attention with standard Llama MHAs, while Figure 2b compares CEM
 320 MLPs with Llama-style gated MLPs. Blue dots denote dimension-matched CEM models, where
 321 CEM attention uses about half the parameters and CEM MLPs about two-thirds of their Llama
 322 counterparts. Some degradation is expected, but the goal is to assess how closely CEM models
 323 approach baseline performance with fewer parameters. For CEM MLPs, we also report results with
 increased intermediate dimension to restore the baseline parameter count (orange triangles).

Figure 2: (a) Llama Transformer with attention replaced by CEM attention ($T = 1$). CEM variants (blue dots) are linked to their Llama baselines (pink diamonds) with matching dimensions but fewer parameters, trained on the same number of tokens (shown above markers). (b) Llama Transformer with gated MLPs replaced by CEM MLPs ($T = 1$). Orange triangles additionally show parameter-matched variants obtained by increasing the hidden dimension. (c) Effects of recursion steps (x-axis) and preconditioners (colors) for CEM attention, with all models dimension-matched to Llama baselines (dashed lines). (d) Effects of recursion steps and preconditioners for CEM MLPs.

Replacing attention with the CEM variant has only a small effect on test perplexity despite halving the parameter count, with no natural parameter-matching scheme available since the model dimension must remain fixed for controlled comparison. For CEM-MLPs, perplexity is higher due to parameter sharing, but increasing the hidden dimension to match parameter count yields consistent, albeit modest, improvements in perplexity — though at the cost of additional FLOPs. Unless otherwise noted, we adopt the optimal Llama hyperparameters from grid search (see Appendix D) to ensure consistent comparisons and avoid tuning each CEM configuration individually, even though these settings may be suboptimal for CEM models (see Figure 3a). These results indicate that single-step CEM layers can act as parameter-efficient drop-in replacements for standard Transformer components, achieving competitive perplexity with substantially fewer parameters, with CEM attention in particular showing more promising results that merit further investigation.

4.2 COMPARE RECURSIVE STEPS AND PRECONDITIONERS IN CEM LAYERS

We test whether within-layer recursion and lightweight preconditioners improve performance. As before, Transformer variants are trained on SlimPajama to the compute-optimal point of their Llama baseline and evaluated by test perplexity. We only study recursive steps until $T = 2$ because $T \geq 3$ has unstable performance and leads to OOM for larger model sizes we tested.

Figure 2c replaces standard Llama MHAs with CEM attention, while Figure 2d fixes the MHAs and instead replaces Llama MLPs with CEM MLPs. For each case, we compare diagonal and diagonal-plus-low-rank preconditioners, and evaluate $T = 1$ vs. $T = 2$. Dashed lines mark the Llama baselines. Across model sizes, we match dimensions, so CEM components always use fewer parameters; preconditioners add only a negligible overhead.

378 Results in Figure 2 show consistent gains when increasing recursion from $T = 1$ to $T = 2$. Pre-
 379 conditioners have little effect at $T = 1$ but yield clear improvements at $T = 2$. For attention
 380 layers, CEM attention with recursion and preconditioners not only remains more parameter-efficient
 381 but also significantly outperforms the Llama baseline. For MLPs, CEM variants still underperform
 382 the baseline, but the gap narrows considerably with $T = 2$ and a diagonal-plus-low-rank precon-
 383 ditioner. Overall, these results demonstrate that within-layer recursion ($T = 2$) reliably improves
 384 performance, while diagonal-plus-low-rank preconditioners provide additional, although modest,
 385 gains.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

Results in Figure 2 show consistent gains when increasing recursion from $T = 1$ to $T = 2$. Preconditioners have little effect at $T = 1$ but yield clear improvements at $T = 2$. For attention layers, CEM attention with recursion and preconditioners not only remains more parameter-efficient but also significantly outperforms the Llama baseline. For MLPs, CEM variants still underperform the baseline, but the gap narrows considerably with $T = 2$ and a diagonal-plus-low-rank preconditioner. Overall, these results demonstrate that within-layer recursion ($T = 2$) reliably improves performance, while diagonal-plus-low-rank preconditioners provide additional, although modest, gains.

Figure 3: (a) Optimal learning rate estimated via Akima interpolation. Orange denotes baseline Llama models and blue denotes CEM models ($T = 2$) with both MHA and MLP replaced. Marker shapes indicate model size; stars mark interpolated optima from five data points. Matched Llama and CEM models (with roughly half the MHA and one-third the MLP parameters) are trained with the same token budget (Chinchilla-optimal for Llama). For smaller models, parameter reduction is less pronounced due to embedding and head parameters. (b) KQ diagonal strategies in CEM attention: no diagonal in A_k , a shared diagonal across heads, and per-head diagonals. All CEM models match the dimensionality of the Llama baselines (dashed line). (c) Within-layer recursion vs. plain layer reuse in MLPs. We compare the performance gains of increasing recursion from $T = 1$ (orange) to $T = 2$ (blue), under three settings: Plain layer reuse (light orange area), dimension-matched CEM MLP (blue area) and parameter-matched MLPs (pink area). An equivalent figure comparing within-layer recursion vs. layer reuse for MHA can be found in Figure 4.

4.3 TRAINING END-TO-END TRANSFORMER WITH CEM LAYERS

We have shown that CEM layers can serve as effective drop-in replacements for standard attention and gated MLPs. We now ask whether a Transformer built entirely from CEM modules can be trained end-to-end. Since $T = 2$ and diagonal-plus-low-rank preconditioners yielded the best performance for both CEM attention and MLPs, we adopt this configuration in the pure CEM-based transformer. In this setup, CEM attention uses about half the parameters of standard attention, and CEM MLPs about two-thirds, resulting in a more parameter-efficient architecture. Due to memory constraints, we omit the largest model with diagonal-plus-low-rank preconditioners.

432 We train models with five learning rates ranging from 0.0005 to 0.008, doubling at each step, and use
 433 Akima interpolation (Akima, 1970) to estimate the optimal rate. Figure 3a reports the interpolated
 434 optimal perplexity, where marker shapes denote model sizes and colors distinguish baseline Llama
 435 (orange) from CEM (blue). Actual model sizes are indicated in parentheses; for smaller models, the
 436 relative reduction is less pronounced due to embeddings and output heads.

437 Overall, full CEM Transformer achieves slightly better performance at their optimal learning rate
 438 while using considerably fewer parameters. Notably, CEM models tend to favor higher learning
 439 rates than their Llama counterparts.
 440

441 4.4 ABLATION STUDY

442 We first study the role of diagonal terms in inter-token distances (Figure 3b) in attention, comparing
 443 three settings: no diagonal, a shared diagonal across heads, and per-head diagonals. All other
 444 components are fixed (Llama MLPs, CEM attention with one recursion step, and a simple diagonal
 445 preconditioner). Including a diagonal term proves essential for good performance, and our shared-
 446 diagonal strategy provides performance close to per-head diagonals while reducing parameters and
 447 compute, making it a more efficient alternative.
 448

449 Second, we test whether within-layer recursion is necessary or if naive layer reuse suffices (Figure
 450 3c). Simply reapplying the same residual block yields little or no perplexity gain. Note that this
 451 reuse differs from recursive Transformer, where entire blocks (attention and MLP) are reused. In
 452 contrast, CEM-based within-layer recursion produces consistent improvements in both dimension-
 453 and parameter-matched settings. A similar trend holds for attention (Figure 4).
 454

455 5 DISCUSSION AND CONCLUSION

456 5.1 LIMITATIONS

457 Due to computational constraints, our experiments focus on models of around 100M parameters,
 458 leaving large-scale studies to future work. We also do not report downstream task performance,
 459 as such evaluations are most meaningful at larger scales. Nevertheless, test perplexity is a well-
 460 established proxy for downstream performance and provides a reliable measure of model quality.
 461

462 While CEM layers are parameter-efficient, we have not yet explored custom kernels with weight
 463 sharing, fused operations, or hardware-specific optimizations that could further improve runtime
 464 efficiency. Reducing overhead, increasing throughput, and better aligning the design with modern
 465 accelerators remain important directions for future work.
 466

467 5.2 CONCLUSION AND FUTURE DIRECTIONS

468 We introduced CEM, a framework that recasts Transformer layers as energy-minimizing updates,
 469 yielding natural weight sharing, parameter-efficient architectures, and a principled path to new
 470 designs. Taking insights from this perspective, optimization-inspired enhancements including
 471 diagonal-plus-low-rank parameterizations, lightweight preconditioners, and within-layer recursion,
 472 can improve perplexity without increasing model size.
 473

474 We think the following directions are worthwhile to explore further:

- 475 • **A new dimension for test-time scaling.** Explore whether CEM-style within-layer recursion
 476 can provide a new dimension for test-time compute scaling (Snell et al., 2024; Muennighoff
 477 et al., 2025) and latent reasoning (Hao et al., 2024; Zhang & Viteri, 2024; Tan et al., 2025),
 478 particularly when combined with blockwise recursion as in recursive or looped Transformer
 479 (Yang et al., 2023; Bae et al., 2024; Dehghani et al., 2019).
- 480 • **Custom kernels for CEM layers.** Develop FlashAttention-style kernels (Dao et al., 2022)
 481 for CEM layers by fusing tied projections, diagonal terms, and recursive updates into a single
 482 IO-aware kernel. Leveraging tiling, SRAM reuse, and fused epilogues can further reduce
 483 memory transfers and launch overhead, thereby improving both efficiency and throughput.
- 484 • **Architecture hardware co-design.** The CEM framework enables redesigning layers for un-
 485 conventional hardware by rethinking the optimization procedure which yields novel layer

486 parameterization. For example, on photonic or analog accelerators, one can exploit native
487 support for iterative solvers (Hua et al., 2025; Kalinin et al., 2025) to develop new building
488 blocks that run natively and efficiently on such platforms.
489

490 5.3 REPRODUCIBILITY STATEMENT 491

492 We provide experimental details in Appendix D. Model architectures are given in Table 1, and
493 training configurations in Table 2. All experiments use the SlimPajama dataset (Appendix D.2) and
494 were conducted on 8× NVIDIA A100 GPUs. The code is not yet publicly available but will be
495 released upon publication.

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
543 machines. *Cognitive Science*, 9(1):147–169, 1985.

544 Joshua Ainslie, Santiago Ontañón, Jianmo Ni, et al. GQA: Training generalized multi-query trans-
545 former models from multi-head checkpoints. *arXiv preprint arXiv:2305.13245*, 2023. URL
546 <https://arxiv.org/abs/2305.13245>.

547 Hiroshi Akima. A new method of interpolation and smooth curve fitting based on local procedures.
548 *J. ACM*, 17:589–602, 1970. URL [https://api.semanticscholar.org/CorpusID:
549 33862277](https://api.semanticscholar.org/CorpusID:33862277).

550 Sangmin Bae, Adam Fisch, Hravt Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster. Re-
551 laxled recursive transformers: Effective parameter sharing with layer-wise lora. *arXiv preprint
552 arXiv:2410.20672*, 2024. URL <https://arxiv.org/abs/2410.20672>.

553 Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hravt
554 Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
555 sive depths for adaptive token-level computation. *arXiv preprint arXiv:2507.10524*, 2025.

556 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
557 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
558 nities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

559 Silvère Bonnabel, Marc Lambert, and Francis Bach. Low-rank plus diagonal approximations for
560 riccati-like matrix differential equations. *SIAM Journal on Matrix Analysis and Applications*, 45
561 (3):1669–1688, 2024.

562 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
563 ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder
564 for statistical machine translation. In *Conference on Empirical Methods in Natural Language
565 Processing*, 2014.

566 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
567 efficient exact attention with io-awareness. In *Advances in Neural Information Processing Sys-
568 tems*, 2022.

569 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
570 transformers. In *ICLR*, 2019. URL <https://arxiv.org/abs/1807.03819>.

571 Yilun Du, Shuang Li, et al. Improved contrastive divergence training of energy-based models. In
572 *ICML*, 2021.

573 Maha Elbayad, Laurent Besacier, and Jakob Verbeek. Depth-adaptive transformer. *arXiv preprint
574 arXiv:1910.10073*, 2020. URL <https://arxiv.org/abs/1910.10073>.

575 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
576 models with simple and efficient sparsity. In *JMLR*, 2022. URL [https://arxiv.org/abs/
577 2101.03961](https://arxiv.org/abs/2101.03961). Originally appeared on arXiv:2101.03961.

578 Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
579 sequence to sequence learning. In *International Conference on Machine Learning*, 2017.

580 Will Grathwohl et al. No mcmc for me: Amortized sampling for fast and stable training of energy-
581 based models. In *ICLR*, 2021.

582 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
583 preprint arXiv:2312.00752*, 2023.

584 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
585 state spaces. In *ICLR*, 2022.

594 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhitong Hu, Jason E Weston, and Yuandong
 595 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint*
 596 *arXiv:2412.06769*, 2024. URL <https://arxiv.org/abs/2412.06769>.

597

598 Bobby He and Thomas Hofmann. Simplifying transformer blocks. In *International Conference on*
 599 *Learning Representations (ICLR)*, 2024. URL <https://openreview.net/forum?id=RtDok9eS3s>.

600

601 Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L Smith,
 602 and Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for faithful
 603 signal propagation. In *The Eleventh International Conference on Learning Representations*, 2023.

604

605 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. In *Neural Computation*, vol-
 606 ume 9, pp. 1735–1780. MIT Press, 1997.

607

608 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 609 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
 610 ing compute-optimal large language models. In *Proceedings of the 36th International Conference*
 611 *on Neural Information Processing Systems*, pp. 30016–30030, 2022.

612

613 John J Hopfield. Neural networks and physical systems with emergent collective computational
 614 abilities. *Proceedings of the National Academy of Sciences*, 79(8):2554–2558, 1982.

615

616 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
 617 et al. Lora: Low-rank adaptation of large language models. In *International Conference on*
 618 *Learning Representations*, 2022.

619

620 S. Hua et al. An integrated large-scale photonic accelerator with ultralow latency. *Nature*,
 621 2025. doi: 10.1038/s41586-025-08786-6. URL <https://www.nature.com/articles/s41586-025-08786-6>. Nature article.

622

623 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, et al. Perceiver:
 624 General perception with iterative attention. In *ICML*, 2021. URL <https://arxiv.org/abs/2103.03206>.

625

626 Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray
 627 Kavukcuoglu. Neural machine translation in linear time. In *arXiv preprint arXiv:1610.10099*,
 628 2016.

629

630 K. P. Kalinin et al. Analog optical computer for ai inference and combinatorial optimization. *Nature*,
 631 2025. doi: 10.1038/s41586-025-09430-z. URL <https://www.nature.com/articles/s41586-025-09430-z>. Nature article.

632

633 Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. *Advances*
 634 *in Neural Information Processing Systems*, 29, 2016.

635

636 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
 637 cut. ALBERT: A lite BERT for self-supervised learning of language representations. In *ICLR*,
 638 2020. URL <https://arxiv.org/abs/1909.11942>.

639

640 Yann LeCun, Sumit Chopra, Raia Hadsell, Marc'Aurelio Ranzato, and Fu Jie Huang. A tutorial on
 641 energy-based learning. *Predicting Structured Data*, 2006. URL <http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf>.

642

643 Hanxiao Liu, Zihang Dai, David R So, and Quoc V Le. Pay attention to mlps. In *NeurIPS*, 2021.
 644 URL <https://arxiv.org/abs/2105.08050>.

645

646 Leo Z Liu et al. Bolt: Fast, controllable text generation with energy-based models. In *EMNLP*,
 647 2022.

648

649 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 650 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 651 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

648 Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
 649 enables input length extrapolation. In *International Conference on Learning Representations*
 650 (*ICLR*), 2022. URL <https://openreview.net/forum?id=EknvgeZ4Jwq>.

651

652 Guanghui Qin and Jason Eisner. Cold decoding: Energy-based constrained text generation with
 653 frozen language models. In *ACL*, 2022.

654

655 Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
 656 Adler, Lukas Gruber, Markus Holzleitner, Marcel Pavlović, Geir Kjetil Sandve, Vidar Greiff,
 657 David P Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter.
 658 Hopfield networks is all you need. In *International Conference on Learning Representations*,
 2021.

659

660 Noam Shazeer. Fast transformer decoding: One write-head is all you need. In *arXiv preprint*
 661 *arXiv:1911.02150*, 2019.

662

663 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

664

665 Noam Shazeer, Azalia Mirhoseini, Piotr Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff
 666 Dean, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 667 *ICLR*, 2017. URL <https://arxiv.org/abs/1701.06538>.

668

669 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling lilm test-time compute optimally
 670 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.
 671 URL <https://arxiv.org/abs/2408.03314>. Preprint; ICLR 2025 version on OpenRe-
 672 view.

673

674 David R So, D Mařík, Quoc V Le, Noam Shazeer, and Zihang Dai. Primer: Searching for efficient
 675 transformers for language modeling. In *NeurIPS*, 2021. URL <https://arxiv.org/abs/2109.08668>.

676

677 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
 678 tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
 679 plicated version of RedPajama. <https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama>,
 2023. URL <https://huggingface.co/datasets/cerebras/SlimPajama-627B>.

680

681 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 682 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

683

684 Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
 685 In *Advances in Neural Information Processing Systems*, 2014.

686

687 Wenhui Tan, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, and Ruihua Song. Think silently, think
 688 fast: Dynamic latent compression of lilm reasoning chains. *arXiv preprint arXiv:2505.16552*,
 689 2025. URL <https://arxiv.org/abs/2505.16552>.

690

691 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 692 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

693

694 Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
 695 for accelerating BERT inference. In *ACL*, 2020. URL <https://arxiv.org/abs/2004.12993>.

696

697 Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
 698 better at learning learning algorithms. *arXiv preprint arXiv:2311.12424*, 2023.

699

700 Alan L. Yuille and Anand Rangarajan. The concave-convex procedure. *Neural Computation*, 15(4):
 915–936, 2003. doi: 10.1162/08997660360581958.

701

Shipeng Zhai and et al. Multi-head latent attention for efficient transformers. In *NeurIPS*, 2023.
 702 URL <https://arxiv.org/abs/2305.09828>.

703

Jason Zhang and Scott Viteri. Uncovering latent chain of thought vectors in language models. *arXiv*
 704 preprint *arXiv:2409.14026*, 2024. URL <https://arxiv.org/abs/2409.14026>.

702 A BACKGROUND
703704 A.1 EQUIVALENCE BETWEEN CONCATENATION AND SUMMATION IN ATTENTION
705706 In Section 2.1, we write the multi-head attention update in the form
707

708
$$\text{MHA}(\mathbf{h}_{1:i}) = \sum_{k=1}^K \mathbf{W}_k^{O\top} \left(\sum_{j=1}^i \text{softmax}_j \left(\left\{ \frac{1}{\sqrt{D_h}} (\mathbf{k}_{j'}^k)^\top \mathbf{q}_i^k \right\}_{j'=1}^i \right) \mathbf{v}_j^k \right),$$

709

710 where each head k contributes an output vector that is multiplied by a head-specific block $\mathbf{W}_k^O \in \mathbb{R}^{D_r \times D_h}$.
711712 This notation differs slightly from the conventional implementation of multi-head attention, where
713 per-head outputs are concatenated and processed by a single output projection. To make the equiva-
714 lence explicit, let
715

716
$$O_k := \sum_{j=1}^i \text{softmax}_j \left(\left\{ \frac{1}{\sqrt{D_h}} (\mathbf{k}_{j'}^k)^\top \mathbf{q}_i^k \right\}_{j'=1}^i \right) \mathbf{v}_j^k \in \mathbb{R}^{D_r}$$

717

718 denote the output of head k . The standard formulation concatenates these outputs,
719

720
$$O = [O_1^\top, O_2^\top, \dots, O_K^\top]^\top \in \mathbb{R}^{KD_r},$$

721

722 and applies a single output projection $\mathbf{W}^O \in \mathbb{R}^{KD_r \times D_h}$.
723724 If we partition \mathbf{W}^O into head-aligned blocks,
725

726
$$\mathbf{W}^O = [\mathbf{W}_1^{O\top}, \mathbf{W}_2^{O\top}, \dots, \mathbf{W}_K^{O\top}]^\top, \quad \mathbf{W}_k^O \in \mathbb{R}^{D_r \times D_h},$$

727

728 then multiplying out gives
729

730
$$\mathbf{W}^{O\top} O = [\mathbf{W}_1^{O\top}, \dots, \mathbf{W}_K^{O\top}] [O_1^\top, O_2^\top, \dots, O_K^\top]^\top = \sum_{k=1}^K \mathbf{W}_k^{O\top} O_k.$$

731

732 Thus, the conventional *concatenation followed by a single projection* is algebraically equivalent
733 to the *sum over head-specific projections* used in our presentation. We adopt the latter form for
734 notational clarity in the CEM formulation.
735736 A.2 DIAGONAL-PLUS-LOW-RANK PARAMETERISATION
737738 We use the diagonal-plus-low-rank (D+LR) parameterization for both the attention-score computa-
739 tion (in Equation (12)) and the preconditioners (in Equation (13)). Here we provide a brief back-
740 ground on this parameterization.
741742 The basic form of a D+LR matrix is often written as
743

744
$$W = \text{diag}(d) + UV^\top, \quad U, V \in \mathbb{R}^{d \times r}, \quad r \ll d.$$

745

746 Compared with a pure diagonal parameterization, which cannot express cross-feature interactions,
747 and a pure low-rank parameterization, which only captures interactions within a rank- r subspace,
748 the D+LR form models both aspects. The memory footprint and computational cost are still much
749 smaller compared to the full matrix: applying W requires one diagonal pass and two thin matrix
750 multiplications, with complexity $O(d) + O(dr)$, far smaller than the $O(d^2)$ cost of a dense matrix.
751 D+LR parameterizations has already been widely used in deep learning such as (Gu et al., 2022;
752 Bonnabel et al., 2024).
753754 B INCORPORATING POSITIONAL ENCODING INTO CEM ATTENTION
755756 **Positional encoding.** Standard Transformer architectures such as Llama employ Rotary Position
757 Embeddings (RoPE) (Su et al., 2024) to encode relative position information. Recall from Sec-
758 tion 2.1 that in our energy-based formulation, each head k is parameterized by a matrix \mathbf{A}_k :
759

760
$$\beta_{kj} = \mathbf{A}_k \mathbf{h}_j, \quad \text{with } \mathbf{A}_k \in \mathbb{R}^{D_h \times D_h}.$$

761

756 In the simplest case, we adopt a low-rank factorization $\mathbf{A}_k = \mathbf{W}_k^{Q^\top} \mathbf{W}_k^K$, so that queries, keys, and
 757 values arise as

$$758 \quad q_i^k = \mathbf{W}_k^Q \mathbf{h}_i, \quad k_j^k = \mathbf{W}_k^K \mathbf{h}_j, \quad v_j^k = \mathbf{W}_k^V \mathbf{h}_j,$$

759 under the weight-tying constraints $\mathbf{W}_k^K = \mathbf{W}_k^V$ and $\mathbf{W}_k^Q = \mathbf{W}_k^O$ (see equation 5). The interaction
 760 energy is then defined as

$$762 \quad \epsilon(\mathbf{x}_i | \mathbf{h}_{1:i}) = -\tau \sum_{k=1}^K \log \sum_{j=1}^i \exp\left(\frac{1}{\tau} \beta_{kj}^\top \mathbf{x}_i\right),$$

765 and its gradient update recovers the standard multi-head attention form with weight sharing.
 766

767 When incorporating RoPE, however, \mathbf{A}_k must depend explicitly on both indices i and j through
 768 rotation matrices $\mathbf{R}(i)$ and $\mathbf{R}(j)$:

$$769 \quad \mathbf{A}_k = \mathbf{W}_k^{Q^\top} \mathbf{R}(i)^\top \mathbf{R}(j) \mathbf{W}_k^K.$$

771 This makes β_{kj} dependent on the query index i as well as j , which substantially increases memory
 772 costs: the value projection effectively becomes query-dependent.

773 **Alibi positional encodings.** To mitigate this overhead, we instead adopt **Alibi positional encod-
 774 ings** (Press et al., 2022), which introduce a head-specific bias

$$776 \quad b_{ijk} = m_k |i - j|$$

778 directly into the attention scores before the softmax. Concretely, in the unbiased case the score is

$$779 \quad s_{ijk} = \frac{1}{\tau} \beta_{kj}^\top \mathbf{x}_i,$$

781 so with Alibi it becomes

$$782 \quad s_{ijk} = \frac{1}{\tau} \beta_{kj}^\top \mathbf{x}_i + b_{ijk},$$

783 and the normalized weights are

$$785 \quad \alpha_{ij}^k = \text{softmax}_j\left(\{s_{ij'k}\}_{j'=1}^i\right).$$

786 The slopes m_k are typically chosen as a geometric sequence, e.g. $m_k = 2^{-k}$. This adds negligible
 787 overhead compared to RoPE while still encoding relative bias. In practice, we further include a
 788 learnable bias distinguishing self- vs. cross-token attention:

$$790 \quad b_{ijk} = m_k |i - j| + b_{i=j} + b_{i \neq j}.$$

792 **Interaction energy with bias.** In the energy formulation, this simply shifts the logits inside the
 793 log-sum-exp:

$$794 \quad \epsilon(\mathbf{x}_i | \mathbf{h}_{1:i}) = -\tau \sum_{k=1}^K \log \sum_{j=1}^i \exp\left(\frac{1}{\tau} \beta_{kj}^\top \mathbf{x}_i + b_{ijk}\right).$$

797 The corresponding gradient update is

$$799 \quad \nabla_{\mathbf{x}_i} \epsilon(\mathbf{x}_i | \mathbf{h}_{1:i}) = - \sum_{k=1}^K \sum_{j=1}^i \text{softmax}_j\left(\frac{1}{\tau} \beta_{kj}^\top \mathbf{x}_i + b_{ijk}\right) \beta_{kj},$$

801 so b_{ijk} modifies the logits before normalization but leaves the overall gradient structure unchanged.

804 C RELATION TO HOPFIELD NETWORKS

806 Hopfield networks are classical models of associative memory, where stored patterns correspond
 807 to attractors of an energy landscape, and the dynamics converge to the attractor most consistent
 808 with the initial state. This viewpoint aligns with our interpretation of Transformer layers as energy-
 809 minimizing updates: both attention and MLP sublayers can be seen as iterative steps that decrease a
 suitably defined energy function. We next detail these connections.

810
811 **Interaction energy.** Classical Hopfield networks (Hopfield, 1982) store a finite set of patterns
812 $\{\mathbf{h}_j\}$ in an energy function of the form

$$813 \quad \epsilon(\mathbf{x}) = -\frac{1}{2} \sum_j (\mathbf{h}_j^\top \mathbf{x})^2, \\ 814$$

815 More recent extensions reinterpret Hopfield networks as continuous attractor models, greatly ex-
816 panding their representational capacity. For instance, dense associative memories (Krotov & Hop-
817 field, 2016) and modern Hopfield networks (Ramsauer et al., 2021) introduce an energy of the log-
818 sum-exp form,

$$819 \quad \epsilon(\mathbf{x}) = -\tau \log \sum_j \exp\left(\frac{1}{\tau} \mathbf{h}_j^\top \mathbf{x}\right), \\ 820$$

821 which is convex in \mathbf{x} and whose fixed-point updates under the concave-convex procedure (CCCP)
822 (Yuille & Rangarajan, 2003) yield

$$823 \quad \mathbf{x}' = \sum_j \text{softmax}_j\left(\frac{1}{\tau} \mathbf{h}_j^\top \mathbf{x}\right) \mathbf{h}_j, \\ 825$$

826 exactly the update rule underlying the attention mechanism. This connection underlies the interpre-
827 tation of attention as a form of fast Hopfield retrieval.

829 **Our perspective.** We depart from the setup of modern Hopfield networks in three important ways.
830 First, instead of computing fixed points via iterative CCCP updates (Yuille & Rangarajan, 2003), we
831 interpret each Transformer sublayer as performing a *single gradient step* on an energy function. Sec-
832 ond, in our formulation the query and key projection matrices are embedded directly in the energy,
833 which causes them to reappear as the output–value projections in the gradient update—naturally
834 yielding the tied $\mathbf{W}_Q, \mathbf{W}_K$ and $\mathbf{W}_O, \mathbf{W}_V$ structure of attention. Finally, while Ramsauer et al.
835 (2021) introduce novel Hopfield layers and evaluate them on associative-memory benchmarks, our
836 framework treats standard Transformer layers themselves as energy-based updates, and we demon-
837 strate that this perspective leads to principled extensions and improvements for text modeling tasks.

838 **Element-wise energy.** The element-wise energy leading to gated MLPs has a less direct connec-
839 tion. Optimization via CCCP is possible only when using a convex form. We briefly experimented
840 with models using energies of the form

$$842 \quad \xi(\mathbf{x}_i \mid \mathbf{h}_i) = -|\boldsymbol{\gamma}_i|^\top \phi(\text{diag}(\text{sign}(\boldsymbol{\gamma}_i)) \mathbf{V} \mathbf{x}_i), \quad \boldsymbol{\gamma}_i = \mathbf{W} \mathbf{h}_i,$$

843 with ϕ a convex nonlinearity, so that the energy is convex in \mathbf{x} . The gradient of this energy form is

$$845 \quad -\mathbf{V}^\top (\boldsymbol{\gamma}_i \circ \phi'(\text{diag}(\text{sign}(\boldsymbol{\gamma}_i)) \mathbf{V} \mathbf{x}_i))$$

846 We used a straight-through estimator to deal with the sign nonlinearity. We found that these mod-
847 els successfully trained, but with worse performance than ignoring the sign. Unlike the interaction
848 energy, the link to memory association here is unclear, as are the corresponding convergence guar-
849 antees and capacity limits.

851 D EXPERIMENTAL DETAILS

852 D.1 MODEL ARCHITECTURES

855 We evaluate CEM-based architectures across multiple model scales ranging from 86M to 162M
856 parameters. All models follow the Llama architecture as baseline with modifications for CEM com-
857 ponents. Table 1 summarizes the architectural details for each model size.

859 D.2 DATASET AND PREPROCESSING

861 **Dataset.** We use a subset of SlimPajama-627B (Soboleva et al., 2023), a cleaned and dedupli-
862 cated variant of RedPajama comprising approximately 627 billion tokens drawn from Common-
863 Crawl, C4, GitHub, books, arXiv, Wikipedia, and StackExchange. The dataset is accessed via
gmongaras/SlimPajama-627B_Reupload on Hugging Face.

864
865 Table 1: Model architecture configurations for different parameter counts. All models use a vocabulary
866 size of 32,000 tokens.

867 Configuration	868 86M	869 108M	870 134M	871 162M
872 Model dimension (d_h)	873 672	874 672	875 768	876 864
877 Number of layers	878 8	879 12	880 12	881 12
882 Number of heads	883 8	884 12	885 12	886 12
887 MLP intermediate dimension	888 1792	889 1792	890 2048	891 2304
892 Context length	893 2048	894 2048	895 2048	896 2048

874
875 **Tokenization.** We employ the `LlamaTokenizerFast` with a vocabulary size of 32,000 tokens.
876

877 **Data processing.** Documents are concatenated and split into fixed-length sequences of 2048 tokens,
878 with no padding applied.
879

880 D.3 TRAINING CONFIGURATION

881 Training hyperparameters are summarized in Table 2. We follow Chinchilla-optimal compute allo-
882 cation (Hoffmann et al., 2022) for determining the number of training tokens for each model size.
883

884 Table 2: Training hyperparameters for CEM models and Llama baselines.
885

886 Hyperparameter	887 CEM models	888 Llama baseline
889 Optimizer	890 AdamW	
891 Learning rate	892 0.002	
893 β_1	894 0.9	
895 β_2	896 0.95	
897 ϵ	898 1e-9	
899 Weight decay	900 0.1	
901 Gradient clipping	902 1.0	
903	904	905
906 LR schedule	907 Cosine	
908 Warmup steps	909 5% of total	
910 Final LR factor	911 0.1	
912	913	914
915 Batch size (per GPU)	916 8	
917 Gradient accumulation	918 4	
919 Effective batch size	920 128	
921 Precision	922 bf16-mixed	

903 D.4 INITIALISATION OF PRECONDITIONERS

904 In Section 2.3, we introduce a trainable diagonal-plus-low-rank preconditioner of the form
905

$$906 \mathbf{P} = \text{diag}(\text{softplus}(\mathbf{d})) + \mathbf{U}\mathbf{V}^\top + \mathbf{V}\mathbf{U}^\top.$$

907 with $\mathbf{d} \in \mathbb{R}^{D_h}$ and $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{D_h \times R}$, where $R \ll D_h$. Following Hu et al. (2022), we initialize \mathbf{U}
908 from a normal distribution ($\sigma = 0.02$) and set \mathbf{V} to zeros. For the diagonal term, we parameterize
909

$$910 \mathbf{d} = \sqrt{D_h} \mathbf{p},$$

911 where \mathbf{p} is initialized to $1/\sqrt{D_h}$. This ensures that \mathbf{d} starts at 1, but still yielding an appropriate
912 effective gradient step size.
913

914 To keep the preconditioners lightweight, we set $R = 4$ for attention modules and $R = 16$ for MLPs.
915 In the diagonal-only case, the preconditioner reduces to
916

$$917 \mathbf{P} = \text{diag}(\text{softplus}(\mathbf{d})).$$

918
919

D.5 COMPUTE RESOURCES

920 All experiments were conducted on a cluster of $8 \times$ NVIDIA A100 GPUs (40GB memory each).
 921 Training time per model scales with size: the smallest models (~ 86 M parameters) require about
 922 8×2 GPU-hours, while the largest models we tested (~ 162 M parameters) require about 8×18
 923 GPU-hours. End-to-end reproduction of all results in this paper would therefore require on the order
 924 of 10,000 GPU-hours.

925
926
927

E ADDITIONAL RESULTS

928 **Recursive updates in MHA** Similar to our analysis of MLP recursion Figure 3c, we examine re-
 929 cursive updates in attention layers (Figure 4). As with MLPs, naive reuse of the same MHA block
 930 offers no benefit and can even degrade performance in the case of MHA. In contrast, within-layer
 931 recursion in CEM attention yields clear and consistent perplexity improvements.

932

933
934
935
936
937
938
939
940
941
942

943 Figure 4: Within-layer recursion vs. plain layer reuse in MHAs. We compare the performance gains
 944 of increasing recursion from $T = 1$ (orange) to $T = 2$ (blue), under three settings: Plain layer reuse
 945 (light orange area), dimension-matched CEM MHA (blue area).

946

947
948
949
950
951

Study recursion on synthetic data To better isolate and understand the intrinsic behaviour of the recursion, we also examine it in a controlled and computationally lightweight setting using Gaussian-process generated data and fit with our recursive CEM MLP. The results in Table 3, illustrate that additional recursive steps generally improve performance, though the gains are not strictly monotonic.

952
953
954
955
956

Akima interpolation with larger models We scale our models to 256M parameters, and results analogous to Figure 3a are shown in Figure 5. We find that CEM models, despite having fewer parameters, continue to outperform Llama models at this scale. Scaling to substantially larger sizes would require significantly more computational resources, and we leave this for future work.

957
958

F LLM USAGE STATEMENT

959
960
961
962
963
964
965
966
967
968
969
970
971

We used ChatGPT-5 to assist with paraphrasing, text editing, and proofreading. We also used ChatGPT to help search for and discover relevant related work. All conceptual development, technical contributions, experiments, and analysis were carried out by the authors.

972
973
974
975
976
977
978
979
980
981
982
983
984

Table 3: Model size, compute, and RMSE (mean \pm std) on synthetic data sampled from Gaussian processes with 10 input dimensions. Here the latent state dimension is set equal to the model dimension. Values are averaged over repeated runs, and the lowest (best) train and test RMSE for each kernel are highlighted in **bold**. FLOPs are reported per forward pass. (Abbreviations: K = 10^3 , M = 10^6 .)

MODEL	PARAMETERS	FLOPS	KERNEL	TRAIN RMSE	TEST RMSE
Plain	33.98K	6.76M	RBF	0.0139 ± 0.0022	0.0158 ± 0.0024
Gated	33.94K	6.73M	RBF	0.0109 ± 0.0014	0.0122 ± 0.0015
CEM-T1	22.66K	6.73M	RBF	0.0102 ± 0.0010	0.0119 ± 0.0011
CEM-T2	22.66K	11.08M	RBF	0.0074 ± 0.0008	0.0092 ± 0.0008
CEM-T4	22.66K	19.79M	RBF	0.0068 ± 0.0006	0.0086 ± 0.0007
CEM-T8	22.66K	37.20M	RBF	0.0066 ± 0.0008	0.0088 ± 0.0012
Plain	33.98K	6.76M	Matern	0.2129 ± 0.0205	0.2308 ± 0.0237
Gated	33.94K	6.73M	Matern	0.1903 ± 0.0205	0.2162 ± 0.0253
CEM-T1	22.66K	6.73M	Matern	0.1836 ± 0.0199	0.2194 ± 0.0267
CEM-T2	22.66K	11.08M	Matern	0.1623 ± 0.0170	0.2166 ± 0.0274
CEM-T4	22.66K	19.79M	Matern	0.1742 ± 0.0206	0.2168 ± 0.0271
CEM-T8	22.66K	37.20M	Matern	0.1676 ± 0.0174	0.2161 ± 0.0248
Plain	33.98K	6.76M	Periodic	0.0557 ± 0.0056	0.0614 ± 0.0058
Gated	33.94K	6.73M	Periodic	0.0386 ± 0.0036	0.0445 ± 0.0043
CEM-T1	22.66K	6.73M	Periodic	0.0352 ± 0.0036	0.0421 ± 0.0044
CEM-T2	22.66K	11.08M	Periodic	0.0240 ± 0.0022	0.0342 ± 0.0033
CEM-T4	22.66K	19.79M	Periodic	0.0238 ± 0.0029	0.0340 ± 0.0042
CEM-T8	22.66K	37.20M	Periodic	0.0242 ± 0.0037	0.0344 ± 0.0053
Plain	33.98K	6.76M	Rational Quadratic	0.0791 ± 0.0109	0.0885 ± 0.0108
Gated	33.94K	6.73M	Rational Quadratic	0.0599 ± 0.0070	0.0715 ± 0.0075
CEM-T1	22.66K	6.73M	Rational Quadratic	0.0578 ± 0.0072	0.0709 ± 0.0082
CEM-T2	22.66K	11.08M	Rational Quadratic	0.0409 ± 0.0039	0.0596 ± 0.0068
CEM-T4	22.66K	19.79M	Rational Quadratic	0.0417 ± 0.0033	0.0606 ± 0.0067
CEM-T8	22.66K	37.20M	Rational Quadratic	0.0406 ± 0.0035	0.0606 ± 0.0060
Plain	33.98K	6.76M	Non-Stationary	0.0385 ± 0.0052	0.0426 ± 0.0062
Gated	33.94K	6.73M	Non-Stationary	0.0315 ± 0.0030	0.0358 ± 0.0039
CEM-T1	22.66K	6.73M	Non-Stationary	0.0305 ± 0.0044	0.0356 ± 0.0051
CEM-T2	22.66K	11.08M	Non-Stationary	0.0257 ± 0.0027	0.0330 ± 0.0042
CEM-T4	22.66K	19.79M	Non-Stationary	0.0267 ± 0.0030	0.0330 ± 0.0043
CEM-T8	22.66K	37.20M	Non-Stationary	0.0243 ± 0.0030	0.0317 ± 0.0043

1019
1020
1021
1022
1023
1024
1025

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

Figure 5: Additional results for optimal learning-rate estimation via Akima interpolation. Orange curves denote baseline Llama models; blue curves denote CEM models ($T = 2$) with both MHA and MLP replaced. Marker shapes indicate model size, and star markers denote interpolated optima from five data points. CEM models use roughly half the MHA parameters and one-third the MLP parameters per layer, with two additional layers to offset the larger parameter reduction for this size, and are trained under the same token budget (Chinchilla-optimal for Llama).