
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RECASTING TRANSFORMER LAYERS AS ENERGY
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models rely on sequence-to-sequence mappings parameterized by
neural networks, and the design space of these layers continues to expand. Trans-
former layers remain the dominant choice due to their strong performance and
high parallelism, though many design decisions are still empirically based. We
introduce Causal Energy Minimization (CEM), a framework that interprets each
transformer layer as an algorithm for solving an energy minimization problem
with causal structure. This perspective separates the mathematical interpretation
of a layer from its numerical realization, offering a unifying lens for layer de-
sign and motivating principled architectural innovations. Within CEM, multi-
head attention emerges as a gradient step on an interaction energy under the
weights sharing constraint, while gated multilayer perceptrons (MLPs) correspond
to element-wise energies. The form of transformer components within CEM sug-
gests a weight-sharing scheme in both attention and MLP blocks: we show that
this yields parameter-efficient layers with negligible performance loss. Further,
the CEM interpretation suggests appealing extensions to the transformer archi-
tecture: pre-conditioner-matrices for residual connections, diagonal matrices for
inter-token-distances in attention, and multiple gradient-steps (a form of layer re-
use) for both attention and MLP blocks. We show that these ideas that occur
naturally in CEM lead to improvements on language modelling tasks, positioning
CEM as a blueprint for principled and extensible architecture design.

1 INTRODUCTION

Sequence-to-sequence mappings underlie modern foundation models (Bommasani et al., 2021).
Early work employed recurrent (Sutskever et al., 2014; Hochreiter & Schmidhuber, 1997; Cho et al.,
2014) and convolutional architectures (Kalchbrenner et al., 2016; Gehring et al., 2017), but these
have been largely replaced by Transformers (Vaswani et al., 2017). While alternatives such as struc-
tured state-space models have recently emerged (Gu et al., 2022; Gu & Dao, 2023), Transformer
layers, particularly multi-head attentions (MHAs) and gated MLPs, remain the core of today’s large
language models (LLMs). Yet architectural innovations for transformers continues to be driven
mainly by empirical performance and efficiency (Shazeer et al., 2017; Shazeer, 2020; 2019; Ainslie
et al., 2023). What is missing is a principled framework that explains why current choices work and
provides systematic guidance for future innovation.

Energy-based models (EBMs) provide such a framework. By assigning a scalar energy E(x) to
each configuration x, EBMs define computation as the search for low-energy states (LeCun et al.,
2006; Hopfield, 1982; Ackley et al., 1985; Krotov & Hopfield, 2016; Ramsauer et al., 2021). This
formulation brings two key advantages. First, it offers explicit mathematical objectives: a model’s
computation is understood as minimizing a well-defined energy function, rather than applying a
black-box transformation. Second, it connects architecture design to the theory of optimization,
enabling analysis of stability and convergence. Yet, despite these advantages, standalone EBMs,
especially in their classical and associative-memory forms, typically underperform Transformers on
large-scale sequence modelling (Du et al., 2021; Qin & Eisner, 2022).

We introduce CEM, a framework that formulates each transformer layer as solving an energy min-
imization problem with causal structure. CEM separates the semantics of a layer (the energy it de-
fines), from its numerical realization (the optimization algorithm used to minimize it). Transformer

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

layers such as MHAs and gated MLPs arise as special cases under weight-tying constraints: MHA
corresponds to gradient steps on interaction energies, while gated MLP corresponds to element-wise
energies (see Sections 2.1 and 2.2).

Concretely, to map an input sequence h1:J to an output sequence h′
1:J , CEM defines each output h′

i
by introducing a variable xi, initialized at hi, and updating it with an optimization procedure A to
(approximately) minimize a conditional energy E(xi | h1:i), which depends on the causal history
h1:i. The optimized solution then becomes the new hidden state h′

i. Here, the energy function
interprets sequence processing, while the optimization algorithm specifies the numerical realization.
Stacking such layers yields expressive sequence-to-sequence models.

Contributions. In this work, we study the Transformer architecture through the lens of CEM and
make the following contributions:

• We show that MHA with weights sharing can be derived as a gradient step on an interaction
energy, while gated MLP corresponds to an element-wise energy. This view allows weight
sharing between up/down projections in MLPs and between linear projections in attention to
arise naturally, leading to more parameter-efficient designs.

• Building on the energy optimization perspective, we extend transformer layer design beyond
single gradient updates. We investigate diagonal-plus-low-rank weight matrices, precondi-
tioned updates, multiple recursive steps.

• We show that CEM layers match the performance of larger Llama components while retaining
interpretability through the energy-minimization framework. Moreover, optimization-driven
design yields performance gains without increasing model size.

2 TRANSFORMER LAYERS AS ENERGY UPDATES

We start by reframing Transformer layers through the lens of CEM. We introduce two complemen-
tary energy terms: an interaction term, which captures dependencies across features for different
tokens, and an element-wise term, which assigns energy to each token’s feature vector. Taking
gradient-based updates on these energies naturally recovers standard Transformer layers with weight
sharing: the interaction updates yield multi-head attention, while the element-wise updates yield
gated MLPs. Figure 1 presents an illustration of the weights sharing scheme.

Softmax

Softmax

+

@ @ @

@ @ @

Multi-Head Attention

CEM Attention

Gated MLP

CEM MLP

+

Figure 1: Comparison of transformer layer parameterisations. Top left: standard multi-head at-
tention (per head). Top right: gated MLP. Bottom left: CEM-derived attention. Bottom right: CEM-
derived MLP. Colors indicate shared weights within each subfigures (See Sections 2.1 and 2.2). Ar-
rows highlight the recursive structure of CEM modules, which implement multiple gradient steps of
energy minimization, while brown bars denote the optional diagonal term added to the key–query
projections (See details in Section 2.3).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 GRADIENT OF INTERACTION ENERGY YIELDS WEIGHT-TIED ATTENTION

Multi-head attention (MHA). In conventional MHA, the query, key, and value projections for
head k are defined as

qk
i = WQ

k hi, kk
j = WK

k hj , vk
j = W V

k hj ,

where hj denotes j-th token feature vector in the sequence. The attention update then takes the form

MHA(h1:i) =

K∑
k=1

WO⊤
k

(
i∑

j=1

softmaxj

({
1√
Dh

(kk
j′)

⊤qk
i

}i

j′=1

)
vk
j

)
.

Typically, the per-head outputs are concatenated and followed by a single output projection WO.
Equivalently, one may view WO as partitioned into head-specific blocks {WO

k ∈ RDr×Dh}Kk=1,
with contributions summed as written above.

Interaction energy. MHA can be derived by considering a gradient step on the following simple
interaction energy, similar to that in modern Hopfield networks (Ramsauer et al., 2021):

ϵ(xi | h1:i) = −τ

K∑
k=1

log

i∑
j=1

exp
(

1
τ β⊤

kjxi

)
where βkj = Akhj . (1)

Here Ak ∈ RDh×Dh
K
k=1 are learnable projection matrices, Dh is the feature dimension, and τ is

a scalar temperature. Our formulation differs from Hopfield networks in two respects: projection
weights are embedded directly in the energy and reappear as tied attention projections, and we per-
form gradient updates rather than Concave-Convex Procedure (CCCP) iterations (see Appendix B).
We now derive the gradient of the interaction energy ϵ(xi | h1:i) with respect to xi:

∇xi
ϵ(xi | h1:i) = −

K∑
k=1

i∑
j=1

softmaxj

({
1
τ β⊤

kj′xi

}i
j′=1

)
βkj . (2)

Adopting a low-rank factorization Ak = WQ⊤
k WK

k we obtain βkj = WQ⊤
k (WK

k hj). If our
chosen algorithm is to take a single gradient step, initialized at xi = hi, then we compute:

h′
i = hi − ηϵ ∇xi

ϵ(xi | h1:i)
∣∣∣
xi=hi

, (3)

with

∇xi
ϵ(xi | h1:i)

∣∣∣
xi=hi

= −
K∑

k=1

WQ⊤
k

(
i∑

j=1

softmaxj

({
1
τ (k

k
j′)

⊤qk
i

}i
j′=1

)
vk
j

)
. (4)

where the value and key projections are shared: qk
i = WQ

k hi , v
k
j = kk

j = WK
k hj .

It is therefore clear that the gradient of the interaction energy recovers the MHA form, with the
weight-tied parameterization

WK
k = W V

k WQ
k = WO

k τ =
√

Dh . (5)

In this view, the residual update corresponds exactly to a single gradient descent step (with step size
ηϵ = 1) on the defined interaction energy.

2.2 GRADIENT OF ELEMENT-WISE ENERGY YIELDS WEIGHT-TIED MLPS

Gated MLPs. A gated MLP applies an element-wise transformation to the hidden state hi ∈ RDh :

GatedMLP(hi) = W d((W ghi) ◦ σ(W uhi)
)
. (6)

Here, the learnable parameters are the gate and up projections W g,W u ∈ RDm×Dh and the down
projection W d ∈ RDh×Dm . The function σ denotes a pointwise nonlinearity (e.g. GELU).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Element-wise energy term. This energy term assigns energy independently to each token feature
vector, while sharing the same functional form across positions:

ξ(xi | hi) = −γ⊤
i ϕ(V xi), where γi = Whi . (7)

Here, the learnable parameters are the projection matrices W ,V ∈ RDv×Dh , with projection di-
mension Dv not necessarily equal to the hidden dimension Dh. The function ϕ denotes a pointwise
nonlinearity.

Energy-gradient formulation. For the element-wise energy ξ, the gradient with respect to xi is
∇xi ξ(xi | hi) = −V ⊤(γi ◦ ϕ′(V xi)

)
. (8)

Taking one gradient step at xi = hi yields

h′
i = hi − ηξ ∇xi ξ(xi | hi)

∣∣∣
xi=hi

, (9)

with
∇xi ξ(xi | hi)

∣∣∣
xi=hi

= −V ⊤((Whi) ◦ ϕ′(V hi)
)
. (10)

Comparing equations equation 6 and equation 10, the energy-gradient update recovers the structure
of gated MLPs when we identify the parameters as

W d⊤ = W u = V , W g = W , (11)
and we set ϕ(x) =

∫ x

0
σ(z)dz.

2.3 ENHANCING TRANSFORMER LAYERS FROM AN ENERGY OPTIMIZATION PERSPECTIVE

Having shown that Transformer layers, both MHA and MLPs, can be interpreted as gradient updates
on energy functions in Sections 2.1 and 2.2, we next explore how these layers can be enhanced from
the perspective of energy optimization.

Diagonal-plus-low-rank parameterisation In Section 2.1, we introduced a low-rank parameter-
isation of Ak = WQ⊤

k WK
k in the interaction energy, recovering the query and key projections of

standard attention. We now ask whether a purely low-rank form is sufficient, and instead propose a
diagonal-plus-low-rank parameterisation for the matrix Ak:

Ak = diag(dk) + WQ⊤
k WK

k ,

where dk ∈ RDh . This augmented parameterisation captures key–query interactions that low-rank
matrices alone cannot represent, yielding a richer structure for the interaction matrix Ak. The diag-
onal term enriches the interaction matrix but increases computational cost, so we propose sharing it
across heads. A detailed empirical analysis is provided in Figure 3b.

Learned lightweight preconditioners. A single gradient descent step is often insufficient to reach
a low-energy state. Second-order methods such as Newton’s method accelerate convergence by scal-
ing updates with the inverse Hessian, but computing and inverting Hessians is often expensive. We
therefore introduce learned lightweight preconditioners: trainable low-rank positive-definite matri-
ces that approximate curvature information in diagonal-plus-low-rank form,

P = diag
(
softplus(d)

)
+UV ⊤ + V U⊤,

with d ∈ RDh and U ,V ∈ RDh×R, where R ≪ Dh. Here softplus(x) = log(1 + ex) is applied
element-wise to ensure strictly positive diagonal entries, guaranteeing P ≻ 0. For the interaction
energy, we insert per-head preconditioners Pk, giving the update:

∆xϵ
i(hi | h1:i) = −

K∑
k=1

Pk W
Q⊤
k

(
i∑

j=1

softmaxj

(
1
τ (k

k
j)

⊤qk
i

)
vk
j

)
. (12)

which denotes the update at xi = hi for the energy ϵ. For the element-wise energy, the gated MLP
update becomes

∆xξ
i (hi | h1:i) = −PmlpV

⊤((Whi) ◦ ϕ′(V hi)
)
, (13)

with Pmlp denoting its preconditioner.

In both cases, the preconditioners could be trained provide lightweight curvature information, en-
abling updates that converge more effectively to well-optimized states.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Multiple recursive steps So far, each Transformer layer has been interpreted as performing a
single gradient step on its associated energy function. From the optimization viewpoint, however, a
single step rarely reaches a well-optimized state. A natural extension is therefore to apply multiple
recursive updates within the same layer, analogous to running several iterations of an optimization
algorithm. For the interaction energy (attention), starting from x

(0)
i = hi, we perform T updates of

the form
x
(t+1)
i = x

(t)
i − ηϵ ∆xϵ

i(xi | h1:i), t = 0, . . . , T − 1,

and set h′
i = x

(T)
i .

For the element-wise energy (MLP), starting from x
(0)
i = hi, the recursion is

x
(t+1)
i = x

(t)
i − ηξ ∆xξ

i (xi | h1:i), t = 0, . . . , T − 1,

with the output h′
i = x

(T)
i . This recursive scheme enables each layer to better minimize its energy

function without adding parameters, as illustrated in Figure 1. Unlike blockwise recursion in looped
Transformers, our approach updates only x

(t)
i and fix h1:i, with most computation performed outside

the recursion. This within-layer recursion thus offers a distinct mechanism that could provide a new
dimension for test-time scaling, which we leave for future work.

2.4 A CONSTRUCTION OF TRANSFORMER BLOCK WITH ENERGY UPDATES

We now present the full Transformer block from the CEM perspective, where both attention and
MLP components arise as recursive gradient updates on their respective energy functions. Resid-
ual connections are absorbed into the recursion, while RMSNorm(·) are applied. Standard Trans-
formers with weight sharing, as detailed in Equations (5) and (11), appear as the special case
Tϵ = Tξ = 1, using identity preconditioners (Pk) = (Pmlp) = I and vanishing diagonal terms
dk = 0. The complete CEM block is summarized in Algorithm 1.

Algorithm 1: Transformer Block as Energy Updates (Orange parts highlight CEM specifics)
Input: Sequence h1:J , Output: Sequence h′

1:J

Hyperparameters: Recursive steps Tϵ, Tξ, step sizes ηϵ, ηξ, number of heads K, ϕ(x) =
∫ x

0
SiLU(z) dz

Trainable parameters: {WQ
k ,WK

k ,Dk = diag(dk)}Kk=1, W ,V , {Pk}Kk=1,Pmlp

Main Block
for i = 1 : J do

h1:i ← RMSNorm(h1:i)
for k = 1 : K do

kk
1:i ←WK

k h1:i

vk
1:i ←WK

k h1:i

hi ← MHA(h1:i, k1:i, v1:i)

for i = 1 : J do
hi ← RMSNorm(hi)
h′

i ← MLP(hi)

return h′
1:J

Subroutine: MHA
MHA(h1:i,k

k
1:i,v

k
1:i):

xi ← hi

for t = 0 : Tϵ − 1 do
ui ← RMSNorm(xi)
for k = 1 : K do

qk
i ←WQ

k ui

aijk←D
−1/2
h

(
kk
j
⊤qk

i +h⊤
j Dkui

)
ok
i ←

∑
j=1:i

sftmxj({aijk}ij=1)v
k
j

xi ← xi − ηϵ
∑

k Pk W
Q⊤
k ok

i

return xi

Subroutine: MLP
MLP(hi):
xi ← hi

γ = Whi

for t = 0 : Tξ − 1 do
ui ← RMSNorm(xi)
gi ← V⊤(γ ◦ ϕ′(V ui)

)
xi ← xi − ηξPmlp gi

return xi

A subtlety arises when incorporating positional encodings: rotary embeddings (RoPE) in particular
complicate the energy-gradient view by making the projection weights depend on both query and
key indices. To avoid this overhead, we instead adopt relative-position biases such as Alibi, as
discussed in Appendix A.

3 RELATED WORK

EBMs assign low energies to preferred configurations (Hopfield, 1982; LeCun et al., 2006). Modern
extensions to Hopfield netowrks (Krotov & Hopfield, 2016; Ramsauer et al., 2021) with continu-
ous patterns and log-sum-exp energy demonstrate how attention-like updates can arise from their

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

updating iterations (Appendix B). Recent work on EBMs for language extend the formulation to
sequence-level objectives, including residual EBMs for text generation (Du et al., 2021; Grathwohl
et al., 2021), controllable decoding (Qin & Eisner, 2022; Liu et al., 2022). Our work reframes
Transformer layers, including both MHA and MLP, as energy updates, and demonstrate that this
perspective leads to principled extensions and improvements for text modeling tasks.

Alternative transformer blocks. Transformers have largely converged toward Llama-style back-
bones with multi-head attention (Vaswani et al., 2017) and gated MLPs (Shazeer, 2020). A wide
range of efficiency-oriented variants aim to reduce the memory and compute cost of attention, for
example through multi-query, group-query, or latent attention mechanisms (Shazeer, 2019; Ainslie
et al., 2023; Zhai & et al., 2023). On the feedforward side, Liu et al. (2021); Shazeer (2020); So
et al. (2021) demonstrate stronger and consistent empirical performance. Shazeer et al. (2017); Fe-
dus et al. (2022) scale up capacity through sparsely activated mixture-of-experts (MoE) layers, He
& Hofmann (2024); He et al. (2023) seek to streamline the architecture by simplifying skip connec-
tions, projections, or normalization layers with little or no degradation in performance.

Recursive depth and adaptive computation. Layer sharing improves parameter efficiency, as
demonstrated by Universal Transformers (Dehghani et al., 2019), ALBERT (Lan et al., 2020), and
Perceiver (Jaegle et al., 2021). Adaptive schemes further allocate computation dynamically through
early exits or token-level routing (Elbayad et al., 2020; Xin et al., 2020; Bae et al., 2025), balancing
efficiency and accuracy. Recursion also connects to latent reasoning such as latent chains of thought
(Hao et al., 2024; Zhang & Viteri, 2024; Tan et al., 2025). In this work, we explore within-layer
recursion, which offers an additional axis for adaptivity and can be combined with prior approaches.

4 EXPERIMENTS

Our experiments address four questions: (i) can CEM MHAs and MLPs act as parameter-efficient
drop-in replacements for their standard counterparts; (ii) do within-layer recursion and lightweight
preconditioners improve performance; (iii) can a Transformer composed entirely of CEM layers be
trained end-to-end; and (iv) how do design choices such as KQ diagonal terms and recursion affect
performance. All models are trained on SlimPajama for the compute-optimal number of tokens of
the corresponding Llama baselines (Hoffmann et al., 2022), and we report test perplexity as the main
evaluation metric. Experimental details can be found in Appendix C.

4.1 REPLACE TRANSFORMER LAYERS WITH SINGLE-STEP CEM LAYERS

To evaluate the effectiveness of CEM layers, we train Transformer models with CEM components in
either the MLP or attention blocks, and compare against Llama baselines. We focus on the weight-
tying formulation (see Equations 5 and 11), but without recursions or preconditioners here.

Figure 2a compares CEM attention with standard Llama MHAs, while Figure 2b compares CEM
MLPs with Llama-style gated MLPs. Blue dots denote dimension-matched CEM models, where
CEM attention uses about half the parameters and CEM MLPs about two-thirds of their Llama
counterparts. Some degradation is expected, but the goal is to assess how closely CEM models
approach baseline performance with fewer parameters. For CEM MLPs, we also report results with
increased intermediate dimension to restore the baseline parameter count (orange triangles).

Replacing attention with the CEM variant has only a small effect on test perplexity despite halving
the parameter count, with no natural parameter-matching scheme available since the model dimen-
sion must remain fixed for controlled comparison. For CEM-MLPs, perplexity is higher due to
parameter sharing, but increasing the hidden dimension to match parameter count yields consistent,
albeit modest, improvements in perplexity — though at the cost of additional FLOPs. Unless oth-
erwise noted, we adopt the optimal Llama hyperparameters from grid search (see Appendix C) to
ensure consistent comparisons and avoid tuning each CEM configuration individually, even though
these settings may be suboptimal for CEM models (see Figure 3a). These results indicate that single-
step CEM layers can act as parameter-efficient drop-in replacements for standard Transformer com-
ponents, achieving competitive perplexity with substantially fewer parameters, with CEM attention
in particular showing more promising results that merit further investigation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

80 100 120 140 160
Model Size (Million Parameters)

15

16

17

18

19

Te
st

 P
er

pl
ex

ity

1.68B

2.11B

2.62B

3.16B

Llama Baseline
With CEM Attn

(a)

80 100 120 140 160
Model Size (Million Parameters)

15

16

17

18

19
1.68B

2.11B

2.62B

3.16B

Llama Baseline
With CEM MLP
With CEM MLP (#Params)

(b)

18.8

19.0

19.2

19.4

17.0

17.2

17.4

1 2
15.8

16.0

16.2

1 2
14.8

15.0

15.2

Recursive Steps T

Te
st

 P
er

pl
ex

ity

Llama Baseline Diag Diag+LR

(c)

19.25

19.50

19.75

17.4

17.6

17.8

1 2
16.0

16.2

16.4

16.6

1 2
15.0

15.2

15.4

15.6

Recursive Steps T

(d)

Figure 2: (a) Llama Transformers with attention replaced by CEM attention (T = 1). CEM variants
(blue dots) are linked to their Llama baselines (pink diamonds) with matching dimensions but fewer
parameters, trained on the same number of tokens (shown above markers). (b) Llama Transformers
with gated MLPs replaced by CEM MLPs (T = 1). Orange triangles additionally show parameter-
matched variants obtained by increasing the hidden dimension. (c) Effects of recursion steps (x-
axis) and preconditioners (colors) for CEM attention, with all models dimension-matched to Llama
baselines (dashed lines). (d) Effects of recursion steps and preconditioners for CEM MLPs.

4.2 COMPARE RECURSIVE STEPS AND PRECONDITIONERS IN CEM LAYERS

We test whether within-layer recursion and lightweight preconditioners improve performance. As
before, Transformer variants are trained on SlimPajama to the compute-optimal point of their Llama
baseline and evaluated by test perplexity. We only study recursive steps until T = 2 because T ≥ 3
has unstable performance and leads to OOM for larger model sizes we tested.

Figure 2c replaces standard Llama MHAs with CEM attention, while Figure 2d fixes the MHAs
and instead replaces Llama MLPs with CEM MLPs. For each case, we compare diagonal and
diagonal-plus-low-rank preconditioners, and evaluate T = 1 vs. T = 2. Dashed lines mark the
Llama baselines. Across model sizes, we match dimensions, so CEM components always use fewer
parameters; preconditioners add only a negligible overhead.

Results in Figure 2 show consistent gains when increasing recursion from T = 1 to T = 2. Pre-
conditioners have little effect at T = 1 but yield clear improvements at T = 2. For attention
layers, CEM attention with recursion and preconditioners not only remains more parameter-efficient
but also significantly outperforms the Llama baseline. For MLPs, CEM variants still underperform
the baseline, but the gap narrows considerably with T = 2 and a diagonal-plus-low-rank precon-
ditioner. Overall, these results demonstrate that within-layer recursion (T = 2) reliably improves
performance, while diagonal-plus-low-rank preconditioners provide additional, although modest,
gains.

4.3 TRAINING END-TO-END TRANSFORMERS WITH CEM LAYERS

We have shown that CEM layers can serve as effective drop-in replacements for standard attention
and gated MLPs. We now ask whether a Transformer built entirely from CEM modules can be

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0
00

5
0.0

01
0

0.0
02

0
0.0

04
0

0.0
08

0

Learning Rate

16

17

18

19

20

21

22

Te
st

 P
er

pl
ex

ity

Llama (86.43M)
Llama (108.14M)
Llama (134.2M)

CEM (70.66M)
CEM (85.06M)
CEM (103.7M)

(a)

19.0

19.5

20.0

17.0

17.5

18.0

1 2

16.0

16.5

1 2
14.75

15.00

15.25

15.50

Recursive Steps T

Te
st

 P
er

pl
ex

ity

No Diag Shared Diag Diag

(b)

18.8

19.0

19.2

19.4

19.6
Llama 86M

T=1
T=2

Llama (Reuse MLP) CEM MLP CEM MLP (Match #Params)

17.2

17.4

17.6

17.8
Llama 108M

15.8

16.0

16.2

16.4

Llama 134M

14.8

15.0

15.2

15.4
Llama 162M

Te
st

 P
er

pl
ex

ity

(c)

Figure 3: (a) Optimal learning rate estimated via Akima interpolation. Orange denotes baseline
Llama models and blue denotes CEM models (T = 2) with both MHA and MLP replaced. Marker
shapes indicate model size; stars mark interpolated optima from five data points. Matched Llama and
CEM models (with roughly half the MHA and one-third the MLP parameters) are trained with the
same token budget (Chinchilla-optimal for Llama). For smaller models, parameter reduction is less
pronounced due to embedding and head parameters. (b) KQ diagonal strategies in CEM attention:
no diagonal in Ak, a shared diagonal across heads, and per-head diagonals. All CEM models match
the dimensionality of the Llama baselines (dashed line). (c) Within-layer recursion vs. plain layer
reuse in MLPs. We compare the performance gains of increasing recursion from T = 1 (orange) to
T = 2 (blue), under three settings: Plain layer reuse (light orange area), dimension-matched CEM
MLP (blue area) and parameter-matched MLPs (pink area). An equivalent figure comparing within-
layer recursion vs. layer reuse for MHA can be found in Figure 4.

trained end-to-end. Since T = 2 and diagonal-plus-low-rank preconditioners yielded the best per-
formance for both CEM attention and MLPs, we adopt this configuration in the pure CEM-based
transformer. In this setup, CEM attention uses about half the parameters of standard attention, and
CEM MLPs about two-thirds, resulting in a more parameter-efficient architecture. Due to memory
constraints, we omit the largest model with diagonal-plus-low-rank preconditioners.

We train models with five learning rates ranging from 0.0005 to 0.008, doubling at each step, and use
Akima interpolation (Akima, 1970) to estimate the optimal rate. Figure 3a reports the interpolated
optimal perplexity, where marker shapes denote model sizes and colors distinguish baseline Llama
(orange) from CEM (blue). Actual model sizes are indicated in parentheses; for smaller models, the
relative reduction is less pronounced due to embeddings and output heads.

Overall, full CEM Transformers achieve slightly better performance at their optimal learning rate
while using considerably fewer parameters. Notably, CEM models tend to favor higher learning
rates than their Llama counterparts.

4.4 ABLATION STUDY

We first study the role of diagonal terms in inter-token distances (Figure 3b) in attention, compar-
ing three settings: no diagonal, a shared diagonal across heads, and per-head diagonals. All other

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

components are fixed (Llama MLPs, CEM attention with one recursion step, and a simple diagonal
preconditioner). Including a diagonal term proves essential for good performance, and our shared-
diagonal strategy provides performance close to per-head diagonals while reducing parameters and
compute, making it a more efficient alternative.

Second, we test whether within-layer recursion is necessary or if naive layer reuse suffices (Fig-
ure 3c). Simply reapplying the same residual block yields little or no perplexity gain. Note that this
reuse differs from recursive Transformers, where entire blocks (attention and MLP) are reused. In
contrast, CEM-based within-layer recursion produces consistent improvements in both dimension-
and parameter-matched settings. A similar trend holds for attention (Figure 4).

5 DISCUSSION AND CONCLUSION

5.1 LIMITATIONS

Due to computational constraints, our experiments focus on models of around 100M parameters,
leaving large-scale studies to future work. We also do not report downstream task performance,
as such evaluations are most meaningful at larger scales. Nevertheless, test perplexity is a well-
established proxy for downstream performance and provides a reliable measure of model quality.

While CEM layers are parameter-efficient, we have not yet explored custom kernels with weight
sharing, fused operations, or hardware-specific optimizations that could further improve runtime
efficiency. Reducing overhead, increasing throughput, and better aligning the design with modern
accelerators remain important directions for future work.

5.2 CONCLUSION AND FUTURE DIRECTIONS

We introduced CEM, a framework that recasts Transformer layers as energy-minimizing up-
dates, yielding natural weight sharing, parameter-efficient architectures, and a principled path
to new designs. Taking insights from this perspective, optimization-inspired enhancements
including diagonal-plus-low-rank parameterizations, lightweight preconditioners, and within-layer
recursion,can improve perplexity without increasing model size.

We think the following directions are worthwhile to explore further:

• A new dimension for test-time scaling. Explore whether CEM-style within-layer recursion
can provide a new dimension for test-time compute scaling (Snell et al., 2024; Muennighoff
et al., 2025) and latent reasoning (Hao et al., 2024; Zhang & Viteri, 2024; Tan et al., 2025),
particularly when combined with blockwise recursion as in recursive or looped Transformers
(Yang et al., 2023; Bae et al., 2024; Dehghani et al., 2019).

• Custom kernels for CEM layers. Develop FlashAttention-style kernels (Dao et al., 2022)
for CEM layers by fusing tied projections, diagonal terms, and recursive updates into a single
IO-aware kernel. Leveraging tiling, SRAM reuse, and fused epilogues can further reduce
memory transfers and launch overhead, thereby improving both efficiency and throughput.

• Architecture hardware co-design. The CEM framework enables redesigning layers for un-
conventional hardware by rethinking the optimization procedure which yield novel layer pa-
rameterization. For example, on photonic or analog accelerators, one can exploit native sup-
port for iterative solvers (Hua et al., 2025; Kalinin et al., 2025) to develop new building blocks
that run natively and efficiently on such platforms.

5.3 REPRODUCIBILITY STATEMENT

We provide experimental details in Appendix C. Model architectures are given in Table 1, and train-
ing configurations in Table 2. All experiments use the SlimPajama dataset (Appendix C.2) and were
conducted on 8× NVIDIA A100 GPUs. The code is not yet publicly available but will be released
upon publication.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive Science, 9(1):147–169, 1985.

Joshua Ainslie, Santiago Ontañón, Jianmo Ni, et al. GQA: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv preprint arXiv:2305.13245, 2023. URL
https://arxiv.org/abs/2305.13245.

Hiroshi Akima. A new method of interpolation and smooth curve fitting based on local procedures.
J. ACM, 17:589–602, 1970. URL https://api.semanticscholar.org/CorpusID:
33862277.

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster. Re-
laxed recursive transformers: Effective parameter sharing with layer-wise lora. arXiv preprint
arXiv:2410.20672, 2024. URL https://arxiv.org/abs/2410.20672.

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
sive depths for adaptive token-level computation. arXiv preprint arXiv:2507.10524, 2025.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Kyunghyun Cho, Bart Van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In Conference on Empirical Methods in Natural Language
Processing, 2014.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In Advances in Neural Information Processing Sys-
tems, 2022.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In ICLR, 2019. URL https://arxiv.org/abs/1807.03819.

Yilun Du, Shuang Li, et al. Improved contrastive divergence training of energy-based models. In
ICML, 2021.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek. Depth-adaptive transformer. arXiv preprint
arXiv:1910.10073, 2020. URL https://arxiv.org/abs/1910.10073.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. In JMLR, 2022. URL https://arxiv.org/abs/
2101.03961. Originally appeared on arXiv:2101.03961.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International Conference on Machine Learning, 2017.

Will Grathwohl et al. No mcmc for me: Amortized sampling for fast and stable training of energy-
based models. In ICLR, 2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In ICLR, 2022.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024. URL https://arxiv.org/abs/2412.06769.

10

https://arxiv.org/abs/2305.13245
https://api.semanticscholar.org/CorpusID:33862277
https://api.semanticscholar.org/CorpusID:33862277
https://arxiv.org/abs/2410.20672
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1910.10073
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2412.06769

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bobby He and Thomas Hofmann. Simplifying transformer blocks. In International Conference on
Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
RtDok9eS3s.

Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L Smith,
and Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for faithful
signal propagation. In The Eleventh International Conference on Learning Representations, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. In Neural Computation, vol-
ume 9, pp. 1735–1780. MIT Press, 1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pp. 30016–30030, 2022.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

S. Hua et al. An integrated large-scale photonic accelerator with ultralow latency. Nature,
2025. doi: 10.1038/s41586-025-08786-6. URL https://www.nature.com/articles/
s41586-025-08786-6. Nature article.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, et al. Perceiver:
General perception with iterative attention. In ICML, 2021. URL https://arxiv.org/
abs/2103.03206.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. In arXiv preprint arXiv:1610.10099,
2016.

K. P. Kalinin et al. Analog optical computer for ai inference and combinatorial optimization. Nature,
2025. doi: 10.1038/s41586-025-09430-z. URL https://www.nature.com/articles/
s41586-025-09430-z. Nature article.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances
in Neural Information Processing Systems, 29, 2016.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. ALBERT: A lite BERT for self-supervised learning of language representations. In ICLR,
2020. URL https://arxiv.org/abs/1909.11942.

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A tutorial on
energy-based learning. Predicting Structured Data, 2006. URL http://yann.lecun.com/
exdb/publis/pdf/lecun-06.pdf.

Hanxiao Liu, Zihang Dai, David R So, and Quoc V Le. Pay attention to mlps. In NeurIPS, 2021.
URL https://arxiv.org/abs/2105.08050.

Leo Z Liu et al. Bolt: Fast, controllable text generation with energy-based models. In EMNLP,
2022.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. In International Conference on Learning Representations
(ICLR), 2022. URL https://openreview.net/forum?id=EknvgeZ4Jwq.

11

https://openreview.net/forum?id=RtDok9eS3s
https://openreview.net/forum?id=RtDok9eS3s
https://www.nature.com/articles/s41586-025-08786-6
https://www.nature.com/articles/s41586-025-08786-6
https://arxiv.org/abs/2103.03206
https://arxiv.org/abs/2103.03206
https://www.nature.com/articles/s41586-025-09430-z
https://www.nature.com/articles/s41586-025-09430-z
https://arxiv.org/abs/1909.11942
http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
https://arxiv.org/abs/2105.08050
https://arxiv.org/abs/2501.19393
https://openreview.net/forum?id=EknvgeZ4Jwq

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guanghui Qin and Jason Eisner. Cold decoding: Energy-based constrained text generation with
frozen language models. In ACL, 2022.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Marcel Pavlović, Geir Kjetil Sandve, Vidar Greiff,
David P Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter.
Hopfield networks is all you need. In International Conference on Learning Representations,
2021.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. In arXiv preprint
arXiv:1911.02150, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Piotr Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff
Dean, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
ICLR, 2017. URL https://arxiv.org/abs/1701.06538.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.
URL https://arxiv.org/abs/2408.03314. Preprint; ICLR 2025 version on OpenRe-
view.

David R So, D Mańke, Quoc V Le, Noam Shazeer, and Zihang Dai. Primer: Searching for efficient
transformers for language modeling. In NeurIPS, 2021. URL https://arxiv.org/abs/
2109.08668.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems, 2014.

Wenhui Tan, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, and Ruihua Song. Think silently, think
fast: Dynamic latent compression of llm reasoning chains. arXiv preprint arXiv:2505.16552,
2025. URL https://arxiv.org/abs/2505.16552.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In ACL, 2020. URL https://arxiv.org/abs/2004.
12993.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Alan L. Yuille and Anand Rangarajan. The concave-convex procedure. Neural Computation, 15(4):
915–936, 2003. doi: 10.1162/08997660360581958.

Shipeng Zhai and et al. Multi-head latent attention for efficient transformers. In NeurIPS, 2023.
URL https://arxiv.org/abs/2305.09828.

Jason Zhang and Scott Viteri. Uncovering latent chain of thought vectors in language models. arXiv
preprint arXiv:2409.14026, 2024. URL https://arxiv.org/abs/2409.14026.

12

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2109.08668
https://arxiv.org/abs/2109.08668
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2004.12993
https://arxiv.org/abs/2004.12993
https://arxiv.org/abs/2305.09828
https://arxiv.org/abs/2409.14026

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A INCORPORATING POSITIONAL ENCODING INTO CEM ATTENTION

Positional encoding. Standard Transformer architectures such as Llama employ Rotary Position
Embeddings (RoPE) (Su et al., 2024) to encode relative position information. Recall from Sec-
tion 2.1 that in our energy-based formulation, each head k is parameterized by a matrix Ak:

βkj = Akhj , with Ak ∈ RDh×Dh .

In the simplest case, we adopt a low-rank factorization Ak = WQ⊤
k WK

k , so that queries, keys, and
values arise as

qk
i = WQ

k hi, kk
j = WK

k hj , vk
j = W V

k hj ,

under the weight-tying constraints WK
k = W V

k and WQ
k = WO

k (see equation 5). The interaction
energy is then defined as

ϵ(xi | h1:i) = −τ

K∑
k=1

log

i∑
j=1

exp
(

1
τ β⊤

kjxi

)
,

and its gradient update recovers the standard multi-head attention form with weight sharing.

When incorporating RoPE, however, Ak must depend explicitly on both indices i and j through
rotation matrices R(i) and R(j):

Ak = WQ⊤
k R(i)⊤R(j)WK

k .

This makes βkj dependent on the query index i as well as j, which substantially increases memory
costs: the value projection effectively becomes query-dependent.

Alibi positional encodings. To mitigate this overhead, we instead adopt Alibi positional encod-
ings (Press et al., 2022), which introduce a head-specific bias

bijk = mk|i− j|

directly into the attention scores before the softmax. Concretely, in the unbiased case the score is

sijk = 1
τ β⊤

kjxi,

so with Alibi it becomes
sijk = 1

τ β⊤
kjxi + bijk,

and the normalized weights are

αk
ij = softmaxj

(
{sij′k}ij′=1

)
.

The slopes mk are typically chosen as a geometric sequence, e.g. mk = 2−k. This adds negligible
overhead compared to RoPE while still encoding relative bias. In practice, we further include a
learnable bias distinguishing self- vs. cross-token attention:

bijk = mk|i− j|+ bi=j + bi ̸=j .

Interaction energy with bias. In the energy formulation, this simply shifts the logits inside the
log-sum-exp:

ϵ(xi | h1:i) = −τ

K∑
k=1

log

i∑
j=1

exp
(

1
τ β⊤

kjxi + bijk

)
.

The corresponding gradient update is

∇xi
ϵ(xi | h1:i) = −

K∑
k=1

i∑
j=1

softmaxj

(
1
τ β⊤

kjxi + bijk

)
βkj ,

so bijk modifies the logits before normalization but leaves the overall gradient structure unchanged.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B RELATION TO HOPFIELD NETWORKS

Hopfield networks are classical models of associative memory, where stored patterns correspond
to attractors of an energy landscape, and the dynamics converge to the attractor most consistent
with the initial state. This viewpoint aligns with our interpretation of Transformer layers as energy-
minimizing updates: both attention and MLP sublayers can be seen as iterative steps that decrease a
suitably defined energy function. We next detail these connections.

Interaction energy. Classical Hopfield networks (Hopfield, 1982) store a finite set of patterns
{hj} in an energy function of the form

E(x) = − 1
2

∑
j

(h⊤
j x)

2,

More recent extensions reinterpret Hopfield networks as continuous attractor models, greatly ex-
panding their representational capacity. For instance, dense associative memories (Krotov & Hop-
field, 2016) and modern Hopfield networks (Ramsauer et al., 2021) introduce an energy of the log-
sum-exp form,

E(x) = − 1
τ log

∑
j

exp
(

1
τ h

⊤
j x
)
,

which is convex in x and whose fixed-point updates under the concave-convex procedure (CCCP)
(Yuille & Rangarajan, 2003) yield

x′ =
∑
j

softmaxj

(
1
τ h

⊤
j x
)
hj ,

exactly the update rule underlying the attention mechanism. This connection underlies the interpre-
tation of attention as a form of fast Hopfield retrieval.

Our perspective. We depart from the setup of modern Hopfield networks in three important ways.
First, instead of computing fixed points via iterative CCCP updates (Yuille & Rangarajan, 2003), we
interpret each Transformer sublayer as performing a single gradient step on an energy function. Sec-
ond, in our formulation the query and key projection matrices are embedded directly in the energy,
which causes them to reappear as the output–value projections in the gradient update—naturally
yielding the tied WQ,WK and WO,WV structure of attention. Finally, while Ramsauer et al.
(2021) introduce novel Hopfield layers and evaluate them on associative-memory benchmarks, our
framework treats standard Transformer layers themselves as energy-based updates, and we demon-
strate that this perspective leads to principled extensions and improvements for text modeling tasks.

Element-wise energy. The element-wise energy leading to gated MLPs has a less direct connec-
tion. Optimization via CCCP is possible only when using a convex form. We briefly experimented
with models using energies of the form

ξ(xi | hi) = −|γi|⊤ ϕ
(
diag(sign(γi))V xi

)
, γi = Whi,

with ϕ a convex nonlinearity, to that the energy is convex in x. The gradient of this energy form is

−V ⊤ (γi ◦ ϕ′(diag(sign(γi))V xi))

We used a straight-through estimator to deal with the sign nonlinearity. We found that these mod-
els successfully trained, but with worse performance than ignoring the sign. Unlike the interaction
energy, the link to memory association here is unclear, as are the corresponding convergence guar-
antees and capacity limits.

C EXPERIMENTAL DETAILS

C.1 MODEL ARCHITECTURES

We evaluate CEM-based architectures across multiple model scales ranging from 86M to 162M
parameters. All models follow the Llama architecture as baseline with modifications for CEM com-
ponents.Table 1 summarizes the architectural details for each model size.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 1: Model architecture configurations for different parameter counts. All models use a vocab-
ulary size of 32,000 tokens.

Configuration 86M 108M 134M 162M
Model dimension (dh) 672 672 768 864
Number of layers 8 12 12 12
Number of heads 8 12 12 12
MLP intermediate dimension 1792 1792 2048 2304
Context length 2048 2048 2048 2048

C.2 DATASET AND PREPROCESSING

Dataset. We use a subset of SlimPajama-627B (Soboleva et al., 2023), a cleaned and dedupli-
cated variant of RedPajama comprising approximately 627 billion tokens drawn from Common-
Crawl, C4, GitHub, books, arXiv, Wikipedia, and StackExchange. The dataset is accessed via
gmongaras/SlimPajama-627B_Reupload on Hugging Face.

Tokenization. We employ the LlamaTokenizerFastwith a vocabulary size of 32,000 tokens.

Data processing. Documents are concatenated and split into fixed-length sequences of 2048 to-
kens, with no padding applied.

C.3 TRAINING CONFIGURATION

Training hyperparameters are summarized in Table 2. We follow Chinchilla-optimal compute allo-
cation (Hoffmann et al., 2022) for determining the number of training tokens for each model size.

Table 2: Training hyperparameters for CEM models and Llama baselines.

Hyperparameter CEM models Llama baseline
Optimizer AdamW
Learning rate 0.002
β1 0.9
β2 0.95
ϵ 1e-9
Weight decay 0.1
Gradient clipping 1.0

LR schedule Cosine
Warmup steps 5% of total
Final LR factor 0.1

Batch size (per GPU) 8
Gradient accumulation 4
Effective batch size 128
Precision bf16-mixed

C.4 INITIALISATION OF PRECONDITIONERS

In Section 2.3, we introduce a trainable diagonal-plus-low-rank preconditioner of the form

P = diag
(
softplus(d)

)
+UV ⊤ + V U⊤.

with d ∈ RDh and U ,V ∈ RDh×R, where R ≪ Dh. Following Hu et al. (2022), we initialize U
from a normal distribution (σ = 0.02)and set V to zeros. For the diagonal term, we parameterize

d =
√
Dh p,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where p is initialized to 1/
√
Dh. This ensures that d starts at 1, but still yielding an appropriate

effective gradient step size.

To keep the preconditioners lightweight, we set R = 4 for attention modules and R = 16 for MLPs.
In the diagonal-only case, the preconditioner reduces to

P = diag
(
softplus(d)

)
.

C.5 COMPUTE RESOURCES

All experiments were conducted on a cluster of 8× NVIDIA A100 GPUs (40GB memory each).
Training time per model scales with size: the smallest models (∼86M parameters) require about
8 × 2 GPU-hours, while the largest models we tested (∼162M parameters) require about 8 × 18
GPU-hours. End-to-end reproduction of all results in this paper would therefore require on the order
of 10,000 GPU-hours.

D ADDITIONAL RESULTS

Similar to our analysis of MLP recursion Figure 3c, we examine recursive updates in attention
layers (Figure 4). As with MLPs, naive reuse of the same MHA block offers no benefit and can
even degrade performance in the case of MHA. In contrast, within-layer recursion in CEM attention
yields clear and consistent perplexity improvements.

18.8

18.9

19.0

19.1

19.2

19.3 Llama 86M

T=1 T=2 Llama (Reuse Attn) CEM Attn

17.2

17.4

17.6

17.8
Llama 108M

16.0

16.2

16.4

Llama 134M

14.9

15.0

15.1

15.2

15.3
Llama 162M

Te
st

 P
er

pl
ex

ity

Figure 4: Within-layer recursion vs. plain layer reuse in MHAs. We compare the performance gains
of increasing recursion from T = 1 (orange) to T = 2 (blue), under three settings: Plain layer reuse
(light orange area), dimension-matched CEM MHA (blue area).

E LLM USAGE STATEMENT

We used ChatGPT-5 to assist with paraphrasing, text editing, and proofreading. We also used Chat-
GPT to help search for and discover relevant related work. All conceptual development, technical
contributions, experiments, and analysis were carried out by the authors.

16

	Introduction
	Transformer layers as energy updates
	Gradient of interaction energy yields weight-tied attention
	Gradient of element-wise energy yields weight-tied MLPs
	Enhancing transformer layers from an energy optimization perspective
	A construction of transformer block with energy updates

	Related Work
	Experiments
	Replace Transformer layers with single-step CEM layers
	Compare recursive steps and preconditioners in CEM layers
	Training end-to-end transformers with CEM layers
	Ablation study

	Discussion and Conclusion
	Limitations
	Conclusion and future directions
	Reproducibility statement

	Incorporating positional encoding into CEM attention
	Relation to Hopfield networks
	Experimental details
	Model architectures
	Dataset and preprocessing
	Training configuration
	Initialisation of preconditioners
	Compute resources

	Additional results
	LLM Usage Statement

