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ABSTRACT

Spiking Neural Networks (SNNs), inspired by biological neurons, are attractive
for their event-driven energy efficiency but still fall short of Artificial Neural
Networks (ANNs) in accuracy. Knowledge distillation (KD) has emerged as a
promising approach to bridge this gap by transferring knowledge from ANNs to
SNNs. Temporal-wise distillation (TWD) leverages the temporal dynamics of
SNNs by providing supervision across timesteps, but it applies a constant teacher
output to all timesteps, mismatching the inherently evolving temporal process of
SNNs. Moreover, while TWD improves per-timestep accuracy, truncated infer-
ence still suffers from full-length temporal information loss due to the progres-
sive accumulation process. We propose MEOM (Many Eyes, One Mind), a
unified KD framework that enriches supervision with diverse temporal perspec-
tives via mask-weighted teacher features and progressively aligns truncated pre-
dictions with the full-length prediction, thereby enabling reliable inference at arbi-
trary timesteps. Extensive experiments and theoretical analyses demonstrate that
MEOM achieves state-of-the-art performance on multiple benchmarks. Code is
available at https://github.com/KaiSUN1/MEOM.

1 INTRODUCTION

Spiking Neural Networks (SNNs), often regarded as the third generation of neural models (Maass,
1997), differ from traditional Artificial Neural Networks (ANNs) by transmitting information
through discrete, sparse, and temporal spikes. The asynchronous, event-driven nature of SNNs
enables efficient spatio-temporal pattern encoding with low energy consumption, making them well-
suited for deployment on resource-limited platforms such as edge devices and neuromorphic hard-
ware (Indiveri & Liu, 2015; Davies et al., 2018). Operating over discrete timesteps, an SNN incre-
mentally processes input spikes and integrates them temporally into a decision.

Despite these advantages, SNNs typically face a performance gap compared with ANNs, which
achieve high accuracy through precise floating-point operations (Roy et al., 2019). To narrow this
gap, two main strategies have been explored. The first is ANN-to-SNN conversion, which transfers
accuracy effectively but often requires a large number of inference steps, limiting practicality under
latency or energy constraints (Rueckauer et al., 2017; Bu et al., 2023). The second is direct training
with knowledge distillation (KD), where methods such as KDSNN (Xu et al., 2023) and LaSNN
(Hong et al., 2023) distill features or logits from a teacher ANN, enabling competitive results with
fewer timesteps. However, these approaches largely overlook the intrinsic temporal dynamics of
SNNs. To address this, temporal-wise distillation (TWD) (Yu et al., 2025a) was proposed, which
treats outputs across timesteps as a temporal ensemble and supervises each timestep directly. By
improving the accuracy of individual timesteps, TWD enhances both overall accuracy and truncated
inference performance, which is required under strict latency and energy constraints but inevitably
entails accuracy degradation (Li et al., 2023b).
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(a) Differential logits relative to T = 1. (b) Differential voltage distribution relative to T = 1.

Figure 1: Visualization of the temporal difference in SNNs.

Nevertheless, in TWD the teacher ANN’s outputs serve as a constant supervisory signal across all
timesteps, while the SNN itself evolves dynamically. In practice, outputs across timesteps to remain
identical, as discussed in Appendix A. The final logits themselves also exhibit temporal variation, as
illustrated in Figure 1a. Therefore, relying on a fixed ANN target to supervise every timestep may not
fully capture the inherent temporal dynamics of SNNs. A more effective strategy would incorporate
diverse temporal supervisory signals, aligning more naturally with the time-varying behavior of
SNNs, analogous to “many eyes”, focusing on different temporal perspectives.

Meanwhile, truncated inference introduces another challenge. As shown in Figure 1b, membrane
potentials at t = 1 are concentrated at lower values, and they progressively accumulate at later
timesteps. As a result, truncated inference can only exploit these early and incomplete signals, in-
evitably leading to accuracy degradation. Although TWD improves accuracy at individual timesteps,
truncated predictions still suffer from temporal information loss. To mitigate this issue, it is impor-
tant to amplify the density of information within the truncated timesteps during training, allowing
the predictions to approximate those obtained from full-timestep inference. Regardless of the extent
of truncation, the intended outcome is that the model produces identical predictions, analogous to
“one mind”, ensuring consistency across both truncated and full-length inference scenarios.

The absence of “many eyes” and “one mind” in KD-based SNN training arise from insufficient
learning along the temporal dimension. To address these limitations, we introduce Temporal Multi-
Perspective Distillation (TMPD), generating diverse teacher outputs from a single ANN to pro-
vide heterogeneous supervision that captures diverse temporal perspectives, and the complementary
Temporal Progressive Distillation (TPD), enforcing predictions at each timestep to progressively
align with the full-length prediction, ensuring temporal flexibility under truncated inference. To-
gether, TMPD and TPD form our unified framework, MEOM (Many Eyes, One Mind). The main
contributions of this work are threefold.

• We introduce MEOM, a unified KD framework that integrates TMPD to provide diverse
temporal supervision and TPD to align truncated predictions with the full-length prediction,
enabling reliable inference across all timesteps.

• We provide theoretical analyses showing that MEOM achieves stable convergence across
all timesteps, leading to higher accuracy and better generalization.

• We validate MEOM through comprehensive experiments on CIFAR-10, CIFAR-100, and
ImageNet, achieving state-of-the-art performance, together with ablation studies and anal-
yses of energy efficiency and visualization.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION FOR SNNS

Knowledge distillation (KD), which transfers supervision from a high-performing teacher to a stu-
dent, has become a widely adopted strategy for training SNNs without resorting to ANN-to-SNN
conversion. Early ANN-to-SNN distillation studies leveraged ANN teachers to provide interme-
diate feature guidance and/or logit targets (Xu et al., 2023; Hong et al., 2023; Qiu et al., 2024;
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Hong & Wang, 2025; Guo et al., 2023; Xu et al., 2024b), achieving competitive accuracy with fewer
timesteps compared to conversion-based approaches. Building on this, SNN-to-SNN distillation
emerged, such as using a longer-timestep SNN to guide a shorter one via temporal-spatial self-
distillation (TSSD) (Zuo et al., 2024), or transferring compact yet informative spike representations
from a pruned model in Sparse-KD (Xu et al., 2024a), enabling latency reduction without sacrificing
representational quality. In parallel, TWD treats the spiking sequence as a collection of temporal
sub-networks and applies temporal-wise supervision from a single ANN teacher, improving both
per-timestep accuracy and the final output (Yu et al., 2025b;a; Konstantaropoulos et al., 2025). De-
spite these advances, it supervises all timesteps with the same teacher signal, overlooking the intrin-
sic temporal diversity of spiking dynamics and tending to homogenize intermediate predictions. By
contrast, in the ANN, multi-teacher ensemble distillation has been shown to improve both general-
ization and robustness by aggregating complementary inductive biases from teachers with different
architectures or parameterizations (Zhang et al., 2018; Wen et al., 2024; Yang et al., 2025). Moti-
vated by this principle, we design a distillation strategy where each temporal sub-network is guided
by distinct teacher features reweighted by masks, restoring diverse temporal perspectives (“many
eyes”) while achieving the effect of multi-teacher ensembles without training multiple teachers.”

2.2 TIME FLEXIBILITY FOR SNNS

SNNs accumulate information over multiple timesteps, but real-world neuromorphic deployment
often demands low-latency and energy-efficient inference, making it essential to preserve accuracy
when the number of available timesteps is reduced. This has motivated methods that improve tempo-
ral flexibility from complementary perspectives. Adaptive truncation approaches, such as SEENN
(Li et al., 2023c) that terminates inference based on confidence (SEENN-I) or a learned policy
(SEENN-II), and Pareto-front-based thresholding (Li et al., 2023a), dynamically decide when to
stop. Training-based strategies aim to strengthen early-timestep predictions without dynamic con-
trol, including HSD (Zhong et al., 2024) with task-specific fine-tuning, MTT (Du et al., 2025) that
treats timesteps as random variables for augmentation, and SSNN (Ding et al., 2024) that progres-
sively reduces the number of timesteps to lower latency. Consistency-oriented methods further
encourage stable predictions across timesteps, such as viewing each timestep as an independent
sub-model for ensembling (Yu et al., 2025a), enforcing all-pair consistency (Zhao et al., 2025), or
aligning temporally adjacent sub-networks (Ding et al., 2025). However, these approaches still rely
on pairwise or stepwise consistency, which does not guarantee that early truncated predictions ap-
proximate the full-length prediction. As a result, when inference is stopped early, the model may
produce immature or inconsistent results. To address this issue, we propose a strategy that progres-
sively aligns truncated outputs with the full-length prediction (“one mind”), ensuring that even under
truncated inference, the outputs converge toward the same prediction.

3 METHODOLOGY

3.1 PRELIMINARIES

Two strategies are commonly used for ANN-to-SNN distillation: Temporal-Averaged Distillation
(TAD), aligning with the average prediction, and Temporal-Wise Distillation (TWD), aligning with
each timestep output, as shown in Figure 2a and 2b.

Temporal-Averaged Distillation (TAD). Let C denote the number of classes and T the number of
discrete timesteps. At each step t ∈ {1, . . . , T}, the student SNN outputs a pre-softmax logit vector
zS
t ∈ RC . These logits are averaged across time to produce a single representative vector zSavg =
1
T

∑T
t=1 z

S
t . The student probability distribution is given by the temperature-scaled softmax with

τ > 0 as the temperature parameter: pSavg = softmaxτ (z
Savg) =

exp(z
Savg
i /τ)∑C

j=1 exp(z
Savg
j /τ)

. Supervision

on the aggregated output includes hard-label and soft-label components. The hard-label loss uses
cross-entropy with ground-truth y ∈ {0, 1}C :

LTAD-CE = CE(pSavg ,y) = −
C∑
i=1

yi log p
Savg

i . (1)
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Figure 2: Comparison of temporal knowledge distillation approaches: (a) Temporal-Averaged Dis-
tillation, (b) Temporal-Wise Distillation, and (c) Our Proposed MEOM with Related Components.

Soft-label supervision uses the Kullback–Leibler (KL) divergence to align the student’s distribution
with that of the teacher. Let pA denote the teacher ANN’s probability distribution. The KL loss is

LTAD-KL = KL(pA∥pSavg) =

C∑
i=1

pAi log
pAi

p
Savg

i

= −
C∑
i=1

pAi log p
Savg

i +H(pA), (2)

where the entropy term H(pA) = −
∑C

i=1 p
A
i log pAi is constant with respect to the student param-

eters and is omitted during training. The total TAD loss combines both terms,

LTAD = α · LTAD-CE + β · LTAD-KL, (3)

where α and β are hyperparameters controlling the trade-off between hard-label and soft-label.

Temporal-Wise Distillation (TWD). TWD leverages the temporal nature of SNN outputs by su-
pervising the student network at each timestep rather than collapsing temporal information into an
aggregated vector as in TAD. Let pS

t denote the probability distribution of the student at timestep
t. By supervising each timestep directly, this fine-grained strategy enhances per-timestep accuracy,
resulting in more stable outputs and a more reliable final prediction. Formally, both hard-label and
soft-label losses are applied at every timestep and then averaged over all T steps:

LTWD-CE =
1

T

T∑
t=1

CE(pS
t ,y) =

1

T

T∑
t=1

(
−

C∑
i=1

yi log p
S
t,i

)
, (4)

LTWD-KL =
1

T

T∑
t=1

KL(pA∥pS
t ) =

1

T

T∑
t=1

(
−

C∑
i=1

pAi log pSt,i

)
. (5)

The final loss combines the two objectives as

LTWD = α · LTWD-CE + β · LTWD-KL. (6)
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3.2 TEMPORAL MULTI-PERSPECTIVE AND PROGRESSIVE DISTILLATION

While TWD applies identical teacher targets to all timesteps and optimizes them in isolation, it ne-
glects both temporal diversity and truncated information loss. To address this, we introduce MEOM,
which integrates TMPD for diverse temporal-wise supervision and TPD for progressive alignment,
as shown in Figure 2c.

Temporal Multi-Perspective Distillation (TMPD). SNNs produce a sequence of outputs over
time, reflecting their intrinsic temporal dynamics. Conventional KD, however, reuses a single static
teacher output to supervise all timesteps, which cannot adequately capture the temporal variation
in SNN predictions. To overcome this limitation without relying on multiple pre-trained teach-
ers, TMPD draws inspiration from multi-teacher distillation and introduces lightweight mask-based
transformations at different timesteps. These transformations diversify the teacher signals while pre-
serving semantic consistency, thereby providing richer and temporally aligned supervision for the
student across timesteps.

For each timestep t ∈ {1, . . . , T}, we add a lightweight time-indexed mask mt ensuring semantic
consistency to form a masked feature f̃A

t = fA ⊙ mt, where ⊙ denotes the Hadamard product.
Passing both the original and masked features through the same classifier yields the original logits
zA and the masked logits z̃A

t . This process can be written as:
z̃A
t = Wc

(
fA + f̃A

t

)
= Wcf

A +Wc(f
A ⊙mt) =: zA + δzA

t , (7)
where Wc is the classification weight matrix and δzA

t = Wc(f
A ⊙ mt) denotes the perturbation

to the teacher logits at timestep t. Finally, the original and masked logits are linearly combined to
produce temporal-wise perturbed teacher logits:

ẑA
t = (1− λ)zA + λz̃A

t . (8)
A temperature-scaled softmax is applied to ẑA

t to obtain the teacher distribution pA
t , which is com-

pared with the student distribution pS
t at each timestep using KL divergence averaged over T steps:

LTMPD-KL =
1

T

T∑
t=1

KL(pA
t ∥ pS

t ) =
1

T

T∑
t=1

C∑
i=1

pAt,i log
pAt,i
pSt,i

. (9)

In addition to this KL term, TMPD also adopts the temporal-wise cross-entropy loss LTWD-CE

(Eq. 4). By introducing mask weighting, TMPD delivers a form of multi-perspective supervision
(“many eyes”), where each timestep receives a slightly perturbed but semantically consistent teacher
signal, in contrast to TWD’s identical targets across steps.

Temporal Progressive Distillation (TPD). In neuromorphic deployment, SNNs are often con-
strained to truncated timesteps due to strict latency and energy requirements, forcing predictions
to be made with incomplete temporal evidence. Under such conditions, TAD averages outputs
and dilutes discriminative signals, while TWD improves per-timestep accuracy but does not ensure
that earlier predictions converge toward the full-length prediction, leading to immature or incon-
sistent results under truncation. Direct alignment with the full-length output is unstable due to the
large discrepancy, so TPD aligns cumulative average predictions of consecutive timesteps, provid-
ing smoother guidance and ensuring progressive convergence to a unified decision. We compute the
running mean logits z̄S

≤t and probabilities p̄S
≤t as

z̄S
≤t =

1

t

t∑
k=1

zS
k , p̄S

≤t = softmaxτ (z̄
S
≤t). (10)

TPD encourages the cumulative prediction up to step t to align with that of step t + 1, driving
predictions to converge progressively over time. Specifically, for every consecutive pair (t, t + 1)
with t ∈ {1, . . . , T − 1}, we define

LTPD =
1

T − 1

T−1∑
t=1

CE
(
p̄S
≤t, p̄

S
≤t+1

)
= − 1

T − 1

T−1∑
t=1

C∑
c=1

p̄S≤t+1,c log p̄
S
≤t,c. (11)

Using the later window as the CE target proved more stable than the KL. In this way, the distillation
process progressively transfers information from more stable cumulative averages to earlier, noisier
predictions, guiding outputs toward the full-length prediction (“one mind”) and ensuring reliable
prediction under truncated inference.
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Overall Training Objective. The overall loss combines the standard classification loss with
TMPD and TPD into a single objective:

Lall = αLTWD-CE + β LTMPD-KL + γ LTPD, (12)

where we set α = 1, β = 0.5, and γ = 0.3.

3.3 THEORETICAL ANALYSIS

To theoretically substantiate our findings, we highlight three key properties. First, TMPD intro-
duces an implicit regularization effect on the distillation objective (Theorem 1), which strengthens
the temporal supervision by preventing the student from overfitting to individual timestep logits.
Second, this stronger supervision allows TMPD to achieve a strictly lower final error floor than
TWD, thereby yielding higher ultimate accuracy (Theorem 2). Third, TPD mitigates the accuracy
drop under truncated inference, outperforming no-consistency (NC), which ignores temporal align-
ment, and neighbor-step consistency (NSC), which only matches adjacent steps without cumulative
averaging (Theorem 3).
Theorem 1 (Regularization Effect of TMPD). TMPD induces an implicit regularization effect on
the distillation objective.
Theorem 2 (Convergence Robustness Bound of TMPD). The final error of TMPD, denoted by
εTMPD, forms a strictly lower bound of εTWD under the same learning rate, as:

εTMPD < εTWD. (13)

The proof is provided in Appendix B.1 and B.2, respectively. Together, these results show that
TMPD introduces an implicit regularization effect by perturbing the teacher logits at each timestep
(Theorem 1). Instead of matching a single deterministic teacher value, the student must remain con-
sistent over a local neighborhood of perturbed teacher signals, resulting in denser and thus stronger
temporal supervision. This stronger supervision reduces the correlation of gradient contributions
across timesteps (Theorem 2), lowers the effective variance without introducing significant bias,
and ultimately leads TMPD to converge to a strictly lower error floor and achieve higher accuracy.
Theorem 3 (Truncation Robustness Bound of TPD). Denote by ∆acc(t) the truncation accuracy
drop at step t < T . Then the truncation accuracy drop of TPD is strictly smaller than that of NSC,
and NSC is strictly smaller than NC:

∆TPD
acc (t) < ∆NSC

acc (t) < ∆NC
acc(t). (14)

The proof is provided in Appendix B.3. For any truncation step t, the bound establishes a strict
ordering where TPD yields a smaller accuracy drop than NSC, which in turn outperforms NC. This
guarantees reliability and higher accuracy under truncated inference. TMPD and TPD provide com-
plementary benefits since TMPD improves full-length accuracy through richer temporal supervision
and reduced gradient variance, while TPD enhances truncated inference by exponentially bound-
ing accuracy loss. When combined, the stronger final accuracy achieved by TMPD tightens TPD’s
bound and yields consistently superior performance across both full-length and truncated timesteps.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed model across different datasets and net-
work architectures, followed by an examination of its temporal flexibility under truncated timesteps.
We then conduct ablation studies to analyze the impact of key components, and conclude with an
assessment of energy efficiency and supporting visualizations.

4.1 EXPERIMENTAL SETTINGS

Experiments are conducted on nodes with AMD EPYC 7742 CPUs (128 cores, 2.25 GHz) and
NVIDIA A100 GPUs, with GPU count adjusted according to the experiment scale. LIF neurons with
surrogate gradient backpropagation (Huh & Sejnowski, 2018) are implemented using SpikingJelly
(Fang et al., 2023). We evaluate the proposed model on ResNet-18/19 and Spiking-Transformer
architectures over CIFAR-10/100 and ImageNet. Reported results are averaged over three runs for
reliability. Detailed settings are provided in Appendix C.
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Table 1: Top-1 accuracy (%) on CIFAR-10/100 with and without KD across different timesteps T .

METHOD MODEL T = 2 T = 4 T = 6
w

/o
K

D
TET (Deng et al., 2022) ResNet-19 94.16 / 72.87 94.44 / 74.47 94.50 / 74.72

STBP-tdBN (Zheng et al., 2021) ResNet-19 92.34 / 69.41 92.92 / 70.86 93.16 / 71.12
Dspike (Li et al., 2021) ResNet-18 93.13 / 71.68 93.66 / 73.35 94.25 / 74.24

GLIF (Yao et al., 2022)
ResNet-18 94.15 / 74.60 94.67 / 76.42 94.88 / 77.28
ResNet-19 94.44 / 75.48 94.85 / 77.05 95.03 / 77.35

RecDis-SNN (Guo et al., 2022) ResNet-19 93.64 / – 95.53 / 74.10 95.55 / –

RateBP (Yu et al., 2024)
ResNet-18 94.75 / 75.97 95.61 / 78.26 95.90 / 79.02
ResNet-19 96.23 / 79.87 96.26 / 80.71 96.36 / 80.83

w
/K

D

KDSNN (Xu et al., 2023) ResNet-18 – 93.41 / – –

Joint A-SNN (Guo et al., 2023)
ResNet-18 94.01 / 75.79 95.45 / 77.39 –
ResNet-34 95.13 / 77.11 96.07 / 79.76 –

BKDSNN (Xu et al., 2024b) ResNet-19 – 94.95 / 74.95 –
HTA-KL (Zhang et al., 2025) ResNet-19 96.68 / 80.51 96.76 / 81.03 –

TWSNN (Yu et al., 2025a)
ResNet-18 95.11 / 77.32 95.57 / 79.10 95.96 / 79.80
ResNet-19 96.65 / 81.47 96.97 / 82.47 97.00 / 82.56

ResNet-18 95.51 / 77.99
±0.06 ± 0.08

96.07 / 79.66
±0.05 ± 0.04

96.36 / 80.42
±0.10 ± 0.06

MEOM (Ours)
ResNet-19 96.65 / 81.82

±0.11 ± 0.05
97.13 / 82.85
±0.07 ± 0.04

97.08 / 83.22
±0.08 ± 0.14

(a) C10-R18 (b) C100-R18 (c) C10-R19 (d) C100-R19

Figure 3: Inference accuracy when models are trained with T = 6 and evaluated with truncated
timesteps (T = 1–5). Here, C10/C100 denote CIFAR-10/100, and R18/R19 denote ResNet-18/19.

4.2 PERFORMANCE COMPARISON

For CIFAR-10 and CIFAR-100 (Table 1), MEOM consistently surpasses directly-trained and
distillation-based SNN methods across timesteps and model depths. On CIFAR-100, it even slightly
outperforms the ANN teacher and achieves clear gains over the strongest SNN baselines, while
under low-latency settings (T = 2) it still maintains competitive performance. On ImageNet (Ta-
ble 2), MEOM generalizes effectively across architectures, from convolution-based ResNet-34 to the
spiking transformer model, consistently outperforming all existing SNN baselines under the same
timestep budget and narrowing the gap to ANN teachers. By overcoming the limitations of a single
repeated teacher and isolated timestep training, MEOM provides more informative temporal guid-
ance, enabling the student to learn richer intermediate representations. Combined with consistent
gains on both small- and large-scale datasets, this enhanced representational transfer confirms the
effectiveness of our method.

4.3 TIME FLEXIBILITY

To assess the time flexibility of our approach, we trained all SNNs with a full six-timestep schedule
(T = 6) on CIFAR-10 and CIFAR-100 using ResNet backbones, and compared against VanillaSNN,
KDSNN, and TWSNN. In evaluation, the rollout was progressively truncated from T = 5 down to
T = 1, as shown in Figure 3. MEOM consistently achieved the highest accuracy across all truncation
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Table 2: Top-1 accuracy (%) on ImageNet with and without KD. All methods are evaluated at
Timestep T = 4. S-8-384 denotes the Spiking Transformer architecture (Zhou et al., 2023) with 8
encoder layers and 384-dimensional hidden states.

METHOD MODEL
ResNet-34 S-8-384

w
/o

K
D

TET (Deng et al., 2022) 68.00 –
Dspike (Li et al., 2021) 68.19 –
GLIF (Yao et al., 2022) 67.52 –

RecDis-SNN (Guo et al., 2022) 67.33 –
RateBP (Yu et al., 2024) 70.01 –

Spikformer (Zhou et al., 2022) – 70.24
Spikingformer (Zhou et al., 2023) – 72.36

Spike-driven Transformer (Yao et al., 2023) – 72.28

w
/K

D

KDSNN (Xu et al., 2023) 67.18 74.62
LaSNN (Hong et al., 2023) 66.94 73.85

BKDSNN (Xu et al., 2024b) 67.21 75.48
TWSNN (Yu et al., 2025a) 71.04 –

MEOM (Ours) 71.64 76.77

Table 3: Ablation of components on CIFAR-10/100 with different T , with temporal variance mea-
sured at T = 4 on CIFAR-10.

TAD TWD TMPD TPD T = 2 T = 4 T = 6 Var@4
✗ ✗ ✗ ✗ 94.67 / 75.16 95.00 / 77.22 95.74 / 78.37 0.493
✓ ✗ ✗ ✗ 94.97 / 76.01 95.31 / 77.47 96.09 / 79.28 0.485
✗ ✓ ✗ ✗ 95.11 / 77.32 95.57 / 79.10 96.16 / 79.91 0.212
✗ ✓ ✓ ✗ 95.43 / 77.78 95.98 / 79.58 96.31 / 80.13 0.133
✗ ✓ ✗ ✓ 95.35 / 77.72 95.84 / 79.50 96.20 / 80.05 0.199
✗ ✓ ✓ ✓ 95.51 / 77.99 96.07 / 79.66 96.36 / 80.42 0.150

points, and on CIFAR-100 with ResNet-19 at T = 3 it even surpassed the ANN teacher. At T = 1,
although accuracy inevitably declined, it still outperformed all baselines. These results demonstrate
the effectiveness of TPD in guiding early predictions to converge toward the full-length prediction,
thereby enabling reliable prediction under truncated inference.

4.4 ABLATION STUDY

Ablation on TMPD and TPD. To evaluate the effectiveness of our proposed components, we con-
duct an ablation study on CIFAR-10 and CIFAR-100 with ResNet-18 with different T , as shown in
Table 3. Starting from the TAD and TWD baselines, we progressively add TMPD and TPD. Incorpo-
rating these components consistently improves accuracy across datasets and timesteps. In addition
to improving accuracy, these modules also shape the model’s temporal variance, which measures
how much the outputs change across timesteps. TMPD reduces variance by smoothing noisy devi-
ations, and TPD lowers variance by improving the consistency of temporal predictions. When used
together, the two components preserve meaningful temporal differences while limiting unnecessary
variation, and this balanced temporal behavior leads to the highest accuracy in all settings.

Ablation on Temporal Step Selection in TPD. Our method, denoted as Full, applies temporal
consistency across all six timesteps, with the consistency loss computed as the cumulative average
over the selected steps. For the reduced-step configurations, we evaluate R-3 (randomly choosing
three timesteps), F-6-R-2 (always using t = 6 plus two random steps), and F-2-4-6 (using t =
2, 4, 6). As shown in Table 4, Full achieves the highest accuracy, indicating the benefit of leveraging
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Table 4: Comparison of different temporal step selection strategies in TPD.

R-3 F-6 R-2 F-2-4-6 F-6 A-5 NSC FULL
CIFAR-10 96.19 96.24 96.14 95.99 96.19 96.36
CIFAR-100 80.30 80.35 80.16 80.11 80.36 80.42

Table 5: Ablation study of hyperparameters β and γ.

β with γ = 0 0.1 0.3 0.5 0.7 0.9
ACC (%) 95.62 / 79.33 95.92 / 79.33 95.94 / 79.54 95.87 / 79.35 95.89 / 79.35

γ with β = 0.5 0.1 0.3 0.5 0.7 0.9
ACC (%) 95.90 / 79.56 96.07 / 79.66 95.95 / 79.56 95.85 / 79.33 95.69 / 79.46

all steps. Among the reduced-step variants, F-6-R-2 performs best, suggesting that coupling the
final step with varied earlier ones is more effective than relying on a fixed subset. In addition to
these reduced-step variants, we include two broader baselines: F-6 A-5 (comparing the prediction at
t = 6 with all five earlier timesteps) and NSC (comparing only adjacent timestep pairs). Both F-6 A-
5 and NSC perform worse than Full, indicating that neither global-only nor local-only comparison
is sufficient. Using all timesteps in a progressive manner yields the most stable temporal behavior
and the best overall performance.

Ablation on hyperparameters. Table 5 reports the hyperparameter ablation under the protocol
where we first fix α = 1 to select the optimal β, and then fix this β to determine the best γ.
Introducing TMPD with the selected β consistently improves accuracy over the TWD baseline,
indicating that the hyperparameters produce stable and predictable effects. We also note that the two
modules interact with each other, and selecting a compatible set of hyperparameters plays a key role
in obtaining the best performance. We adopt β = 0.5 and γ = 0.3 in the experiments.

4.5 ENERGY EVALUATION AND VISUALIZATION

Energy Evaluation. As shown in Table 6, the firing rate (FR) of MEOM is slightly higher than that
of the other methods, and its difference from TWSNN is regarded as normal fluctuation. Temporal-
wise comparison requires each step to contribute predictive evidence rather than concentrating it
at later steps, which shifts some activity earlier and slightly increases the overall FR. Energy is
computed from accumulation (ACs) and multiply–accumulate (MACs), and it grows correspond-
ingly with the increase in firing rate. The increase in training time (TT, per batch) and GPU hours
mainly comes from TMPD, as it introduces temporally masked teacher logits and multiple KL-
divergence computations across timesteps, with no increase in GPU memory, and this remains much
cheaper than training multiple teachers. The detailed energy calculation procedure is provided in
Appendix D, and additional experiments are shown in Appendix E.

Visualization. We utilize t-SNE to visualize features on CIFAR-100, with ResNet-34 as the
teacher and ResNet-18 as the student. As shown in Figure 4, our method generates more compact
and well-separated clusters compared to prior SNN distillation methods, indicating better feature
discriminability and knowledge transfer. In contrast, other methods show more overlapping clus-
ters.

5 DISCUSSION

To address the limitations of existing SNN distillation methods that rely on a single teacher signal
and overlook full temporal information under truncated inference, we propose MEOM, a unified
framework that fully exploits the temporal dimension of SNNs. MEOM integrates TMPD, which
introduces diverse teacher supervision to capture multiple temporal perspectives, and TPD, which
progressively aligns truncated predictions with the full-length prediction to ensure temporal flex-
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Table 6: Comparison of energy consumption, computation operations, training time, GPU hours,
GPU memory, and accuracy on CIFAR-10 with ResNet-18 with timestep T = 6.

METHOD FRs ACs MACs ENERGY TT GPU h GPU Mem ACC
(%) (M) (M) (µJ) (ms) (h) (GB) (%)

ANN – 0.557 549.1 1757.2 31 1.07 1.99 97.06
VanillaSNN 14.21 72.500 3.342 17.946 123 4.25 11.50 95.74

KDSNN 14.90 78.641 3.342 18.560 129 4.45 11.88 95.85
TWSNN 15.66 83.915 3.342 19.087 130 4.49 11.88 96.16

Ours 15.98 85.644 3.342 19.260 163 5.63 11.88 96.28

OursVanilla SNNANN KDSNN LBSNN

Figure 4: t-SNE visualization of feature representations learned by teacher ANN, vanilla SNN, and
various KD methods.

ibility. Extensive theoretical analyses and experiments on multiple benchmarks demonstrate that
MEOM substantially improves both accuracy and time flexibility.

Implications for “one mind”. For the declaration of express, the final full-length output is chosen
as the “one mind.” In fact, enforcing a single consistent output across timesteps is both a pursuit
and a necessity for SNNs, since using fewer timesteps corresponds to lower energy consumption.
When the number of timesteps becomes large, accuracy does not always increase monotonically,
and earlier timesteps may even outperform the final output. In such cases, the one-mind princi-
ple still holds, as the “one mind” can be interpreted as the best output that emerges at an earlier
timestep. At the population level, some prefix satisfies q̄1:t∗ = q⋆. The alignment constraints im-
pose D(q̄1:t, q̄1:t+1) = 0, yielding q̄1:1 = · · · = q̄1:T . Since one prefix matches q⋆, all must, giving
q̄1:T = q⋆. Thus the final average is Bayes-optimal because any global minimizer collapses all
prefix averages to the same optimal predictor.

Learnable mask for distillation. Although TMPD diversifies supervision, the masks at each
timestep are randomly sampled and therefore do not adapt to the evolving temporal dynamics of
spiking sequences. Intuitively, learnable masks could better capture fluctuations in the student’s pre-
dictions. To evaluate this hypothesis, we compared a learnable parameter mask, a gating mask, and
a gumbel-sigmoid mask with random masks, as shown in Table 7. Our results show that random
masks consistently achieve the best and most stable performance. We argue that learnable masks
tend to adapt to the student’s intermediate predictions, which are not yet reliable and therefore intro-
duce biased perturbations. In contrast, simple random masks offer lightweight, unbiased temporal
perturbations that better serve the purpose of TMPD. Future work may explore temporally aware
models that more effectively capture the underlying temporal variations.

Table 7: Comparison of different mask operations on CIFAR-10 / CIFAR-100.

Mask Operation Random (Ours) Parameter Gating Gumbel-Sigmoid
Accuracy (%) 96.07 / 79.66 95.99 / 79.34 95.85 / 79.38 95.89 / 79.44
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A STRUCTURAL TEMPORAL FLUCTUATIONS IN LIF DYNAMICS

The leak–integrate–reset mechanism of LIF neurons inherently produces temporal fluctuations in
membrane potentials, even under constant input. Consider a single LIF neuron receiving a fixed
current I . Its membrane potential evolves as

ut+1 = αut + I − Vth st, st ∈ {0, 1}, (15)

where 0 < α < 1 is the leak factor and Vth > 0 is the firing threshold. In any non-trivial fir-
ing regime (neither always silent nor always firing), the neuron exhibits both spike and non-spike
timesteps. Consequently, the update increments take two distinct values:

ut+1 − ut = (α− 1)ut + I (no spike), (16)

ut+1 − ut = (α− 1)ut + I − Vth (spike). (17)

These two increments differ by exactly Vth > 0, so the sequence {ut} cannot remain constant over
time and must visit at least two distinct membrane-potential levels with non-zero frequency. This
implies a strictly positive temporal variance, showing that temporal fluctuations arise naturally from
the LIF update rule.

B PROOF OF THEOREMS

B.1 REGULARIZATION EFFECT OF TMPD

Theorem 1. TMPD induces an implicit regularization effect on the distillation objective.

Proof. Under TWD, the teacher provides a fixed logit vector zA, and the student minimizes

LTWD = ℓ(zA), (18)

where ℓ(·) denotes the distillation loss (KL divergence).

Under TMPD, the teacher logit is perturbed by a temporal mask:

ẑA = zA ⊙ (1 + λm) = zA + ε, (19)

where m is a zero-mean random mask vector and ε = zA ⊙ (λm) satisfies E[ε] = 0. Since a new
mask is drawn at every iteration, the student minimizes the expected loss

LTMPD = E
[
ℓ(zA + ε)

]
. (20)

For distillation losses with KL divergence, ℓ(·) is convex with respect to the teacher logit vector.
Thus, Jensen’s inequality yields

ℓ(zA) = ℓ
(
E[zA + ε]

)
≤ E

[
ℓ(zA + ε)

]
. (21)

Consequently, the TMPD objective can be decomposed as

LTMPD = ℓ(zA) +
(
E
[
ℓ(zA + ε)

]
− ℓ(zA)

)
= LTWD +R(zA), (22)

where the residual term R(zA) ≥ 0. This quantity measures the increase in loss under small pertur-
bations of the teacher logits. Minimizing the TMPD objective therefore penalizes solutions that are
overly sensitive to such perturbations, which constitutes an implicit regularization effect.

Hence, TMPD can be viewed as optimizing the original TWD loss together with an additional
regularization term.
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B.2 CONVERGENCE ROBUSTNESS BOUND OF TMPD

Theorem 2. The final error of TMPD, denoted by εTMPD, forms a strictly lower bound of that of
TWD, denoted by εTWD, under the same learning rate, as:

εTMPD < εTWD. (23)

Proof. Let J(θ) denote the training objective function parameterized by θ, and let J⋆ be its mini-
mum value achieved at the optimal parameter θ⋆. Assume J(θ) is L-smooth1 and satisfies the PL
(Polyak–Łojasiewicz) condition2 with parameter µ > 0.

For SGD with constant step size η ≤ 1/L, the standard bound is

E[J(θk)− J⋆] ≤ (1− ηµ)k (J(θ0)− J⋆) + ε, (24)

where ε = a σ̄2 + b β̄, with a, b > 0 as coefficients, σ̄2 denoting the gradient variance and β̄ the
gradient bias term in standard SGD–PL bounds (Ajalloeian & Stich, 2020; Gower et al., 2021). This
shows that the geometric factor (1 − ηµ)k determines the convergence rate, while the asymptotic
floor ε determines the final accuracy. Since TWD and TMPD share the same rate, it suffices to
compare εTMPD and εTWD.

Let gt denote the gradient contribution at timestep t. For two different timesteps s and t, we write
gs and gt. The variance of the time-averaged gradient 1

T

∑T
t=1 gt decomposes as

Var

(
1

T

T∑
t=1

gt

)
=

1

T 2

T∑
t=1

Var(gt) +
2

T 2

∑
1≤s<t≤T

Cov(gs, gt). (25)

In TWD, all gt are computed using the same teacher output, which induces positive correlations
across timesteps; hence the covariance terms are positive, inflating the effective variance σ̄2

TWD.

In TMPD, the teacher outputs are perturbed independently across timesteps, making the cross-time
covariances vanish up to O(λ2), while per-timestep variances change by at most O(λ2). Therefore,
for some constant cv > 0:

σ̄2
TMPD ≤ σ̄2

TWD − cvλ
2. (26)

Since the masks are drawn from a mean-zero distribution, the induced gradient bias is O(λ2) in
norm, leading to β̄TMPD = O(λ4), negligible compared to the variance reduction. Thus the error
floor satisfies

εTMPD = a σ̄2
TMPD +O(λ4) < a σ̄2

TWD +O(λ4) = εTWD. (27)

Since both methods share the same geometric factor (1 − ηµ), the strictly smaller error floor of
TMPD directly implies better final performance than TWD.

B.3 TRUNCATION ROBUSTNESS BOUND OF TPD

Lemma 1 (Distributional difference bound). Let dTV(p, q) :=
1
2∥p− q∥1 denote the total variation

distance. For any sequence of predictive distributions {r0, r1, . . . , rn},

dTV(r0, rn) ≤
n−1∑
j=0

dTV(rj , rj+1) ≤

√√√√n
2

n−1∑
j=0

Φ(rj , rj+1), (28)

where Φ is either the KL divergence or the cross-entropy.

Proof. Since dTV is a metric, it satisfies the triangle inequality:

dTV(r0, rn) ≤
n−1∑
j=0

dTV(rj , rj+1). (29)

1L-smooth: The gradient is Lipschitz continuous, i.e., ∥∇J(θ1)−∇J(θ2)∥ ≤ L∥θ1 − θ2∥.
2PL condition: A weaker condition than strong convexity, expressed as ∥∇J(θ)∥2 ≥ 2µ(J(θ)− J⋆).
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By Pinsker’s inequality, for each j we have

dTV(rj , rj+1) ≤
√

1
2 DKL(rj∥rj+1). (30)

Furthermore, cross-entropy satisfies H(p, q) = H(p)+DKL(p∥q), so clearly H(p, q) ≥ DKL(p∥q).
Hence the same bound holds if we replace KL with cross-entropy:

dTV(rj , rj+1) ≤
√

1
2 Φ(rj , rj+1). (31)

Summing over j and applying Cauchy–Schwarz then gives

n−1∑
j=0

dTV(rj , rj+1) ≤

√√√√n
2

n−1∑
j=0

Φ(rj , rj+1). (32)

Theorem 3. Denote by ∆acc(t) the truncation accuracy drop at step t < T . Then the truncation
accuracy drop of TPD is strictly smaller than that of neighbor-step consistency (NSC), and NSC is
strictly smaller than no-consistency (NC):

∆TPD
acc (t) < ∆NSC

acc (t) < ∆NC
acc(t). (33)

Proof. The truncation accuracy drop at step t is defined as the difference between the accuracy at the
final prediction qT and the truncated prediction qt. The difference in accuracies is upper bounded
by the total variation (Devroye et al., 2013):

∆acc(t) ≤ dTV(qt, qT ). (34)

Since the truncation accuracy drop at step t is upper bounded by the total variation distance between
the truncated distribution qt and the final distribution qT , it is sufficient to compare the corresponding
total variation distances when analyzing truncation errors across different methods.

For NSC, the training objective JNSC
γ (θ) is

JNSC
γ (θ) = supervised loss(θ) + γ

T−1∑
k=1

Φ(qk(θ), qk+1(θ)) , γ > 0. (35)

Applying Lemma 1 to the chain (qt, . . . , qT ) yields

dTV(qt, qT ) ≤

√√√√T
2

T−1∑
k=1

Φ(qk, qk+1). (36)

Since the supervised loss is nonnegative, and the penalty term vanishes when the objective is mini-
mized (so that JNSC ⋆

γ := minθ J
NSC
γ (θ)), we obtain

JNSC
γ (θ)−JNSC ⋆

γ ≥ γ

T−1∑
k=1

Φ(qk, qk+1) =⇒
T−1∑
k=1

Φ(qk, qk+1) ≤ 1
γ

(
JNSC
γ (θ)−JNSC ⋆

γ

)
. (37)

Therefore,

dTV(qt, qT ) ≤
√

T
2γ

(
JNSC
γ (θ)− JNSC ⋆

γ

)
. (38)

At this point, the truncation error has been linked to the optimization suboptimality JNSC
γ (θ) −

JNSC ⋆
γ . According to Eq. 24, we suppress these terms since our focus is on the geometric conver-

gence rate and the noise contributions are identical across methods. Thus, gradient descent with step
size η ≤ 1/L ensures

JNSC
γ (θm)− JNSC ⋆

γ ≤ (1− ηµγ)
m
(
JNSC
γ (θ0)− JNSC ⋆

γ

)
. (39)
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Combining the inequalities shows that the truncation error in NSC decays geometrically:

∆NSC
acc (t) ≤

√
T
2γ

√
(1− ηµγ)m (JNSC

γ (θ0)− JNSC ⋆
γ ). (40)

For TPD, we define averaged predictions q̄≤k = 1
k

∑k
i=1 qi. The training objective is

JTPD
γ (θ) = supervised loss(θ) + γ

T−1∑
k=1

Φ(q̄≤k(θ), q̄≤k+1(θ)) . (41)

Applying Lemma 1 to the averaged chain (q̄≤t, . . . , q̄≤T ) gives

dTV(q̄≤t, q̄≤T ) ≤
√

T
2γ

(
JTPD
γ (θ)− JTPD ⋆

γ

)
. (42)

By applying the same reasoning as in the NSC case above, the truncation error also decays geomet-
rically:

∆TPD
acc (t) ≤

√
T
2γ

√
(1− ηµ̃γ)m (JTPD

γ (θ0)− JTPD ⋆
γ ). (43)

Temporal averaging reduces variance across steps, smoothing the discrepancy signal and increasing
the PL constant, so that µ̃γ ≥ µγ . Consequently, the truncation error in TPD decays strictly faster
than in NSC, yielding

∆TPD
acc (t) < ∆NSC

acc (t). (44)

For NC, the objective reduces to

JNC(θ) = supervised loss(θ). (45)

However, unlike in NSC or TPD, the sum of divergences
∑

k Φ(qk, qk+1) is not penalized in the
objective and hence not reduced during optimization. These discrepancies may remain large even as
the supervised loss decreases, so the truncation error does not benefit from geometric decay. As a
result, the error in NC is strictly larger than in NSC:

∆NSC
acc (t) < ∆NC

acc(t). (46)

Putting the three cases together, we obtain the strict ordering

∆TPD
acc (t) < ∆NSC

acc (t) < ∆NC
acc(t). (47)

Moreover, each divergence term Φ(qk, qk+1) arises from stochastic parameter updates, and its size is
ultimately controlled by the gradient variance and bias that also determine the error floor in TMPD.

Finally, recall that the temporal error at step t decomposes as

ε(t) = εfull + ∆acc(t). (48)

TMPD reduces the full-length error term εfull by lowering the variance of the teacher signal (Theo-
rem 2), while TPD reduces the truncation term ∆acc(t) by tightening the temporal alignment (The-
orem 3). Since these two quantities enter the error additively and affect disjoint parts of the decom-
position, their benefits are complementary rather than redundant.

Thus, when TMPD and TPD are combined in MEOM, the error at step t can therefore be written as

εMEOM(t) = εTMPD
full + ∆TPD

acc (t)

< εTWD
full + ∆NC

acc(t) = εbaseline(t),
(49)

which shows that MEOM simultaneously reduces the full-length error term (through TMPD) and
the truncation term (through TPD). In this sense, the two components act on complementary parts
of the temporal error decomposition and their effects add up, yielding uniformly better performance
across timesteps compared with using either component alone.
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C EXPERIMENTAL SETTINGS

Dataset. CIFAR-10 and CIFAR-100 are benchmark datasets for image classification. CIFAR-10
consists of 10 classes with 60,000 32 × 32 color images, divided into 50,000 training and 10,000
testing samples. CIFAR-100 extends this to 100 classes grouped into 20 superclasses, with the same
total number of images but fewer per class, making it more challenging. Direct encoding is utilized
to convert image pixels into time series, with pixel values repeatedly fed into the input layer at each
timestep.

ImageNet is a large-scale image classification dataset containing over 1.2 million training images
and 50,000 validation images spanning 1,000 object categories. Each image varies in resolution
and visual complexity, providing a more challenging and diverse benchmark compared to CIFAR
datasets. To align with the experimental setup, images are resized and center-cropped to a resolution
of 224 × 224 before being processed into time series representations through direct encoding.

Experiment Details. All models are trained using stochastic gradient descent (SGD) with a mo-
mentum of 0.9, combined with a cosine annealing learning rate schedule. The experiments are
implemented in PyTorch. For the CIFAR datasets, training is conducted on a single NVIDIA A100
GPU, while ImageNet experiments employ distributed data parallel training across eight A100 GPUs
to maximize computational efficiency, accelerate convergence, and ensure training stability. Differ-
ent student architectures are paired with their corresponding teacher models for training, and all
hyperparameter settings and network architectures are summarized in Table 8.

Table 8: Training settings and architecture across datasets. Here, LR denotes the learning rate, and
WD denotes the weight decay.

DATASET BATCH
SIZE EPOCHS LR WD STUDENT

ARCH.
TEACHER

ARCH.
TEACHER

ACC(%)

CIFAR-10 128 300 0.1 5e-4 ResNet-18 ResNet-34 97.06
ResNet-19 ResNet-19 97.20

CIFAR-100 128 300 0.1 5e-4 ResNet-18 ResNet-34 81.31
ResNet-19 ResNet-19 82.57

IMAGENET 512 100 0.2 2e-5 ResNet-34 ResNet-34 71.24
64 300 0.1 5e-2 S-8-384 ViT-Base 81.78

D ENERGY CONSUMPTION ANALYSIS

To evaluate the energy efficiency of SNNs, we adopt a standard neuromorphic computing method-
ology that estimates the total synaptic operation power (SOP) based on the number of fundamental
operations and their associated energy costs (Zhou et al., 2022). The SOP is defined as:

SOPs = EAC ·ACs + EMAC ·MACs, (50)

where EAC and EMAC represent the energy consumption per accumulation (AC) and per multiply-
accumulate (MAC) operation, respectively. Following the energy model in (Han et al., 2015), we
assume that each 32-bit floating-point addition consumes 0.9 picojoules (pJ), while each MAC op-
eration consumes 4.6 pJ.

In SNNs, neurons transmit binary spike signals, sli[t] ∈ {0, 1}, indicating whether neuron i in layer
l fires at timestep t. A firing spike activates all its outgoing synapses, with each synapse performing
an addition. If a neuron has f l

i outgoing connections (fan-out), the total number of AC operations
across the network can be expressed as:

ACs =

T∑
t=1

L−1∑
l=1

N l∑
i=1

f l
i · sli[t], (51)

where T is the total number of timesteps, L is the number of layers, and N l denotes the number of
neurons in layer l.
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In contrast, ANNs operate without temporal dynamics. Each neuron performs a single forward pass,
requiring a fixed number of MAC operations determined by its synaptic connections:

MACs =

L−1∑
l=1

N l∑
i=1

f l
i . (52)

By combining the counts of AC and MAC operations with their respective energy costs, the total
SOP for any given network configuration can be effectively estimated.

E ENERGY EVALUATION

Table 9 presents the comparison of energy consumption, computation, training time, and accuracy
across different methods. Energy is computed from accumulation operations (ACs) and multi-
ply–accumulate operations (MACs), where MACs remain identical because each LIF neuron ap-
plies a fixed leak-factor multiplication at every timestep, independent of spiking input. Thus, the
main variation comes from ACs, which are directly determined by the firing rate (FR). Compared
with VanillaSNN and KDSNN, both TWSNN and our method exhibit higher FR. This arises from
the temporal-wise comparison mechanism, which forces the network to increase responsiveness at
earlier timesteps, rather than relying predominantly on later steps to accumulate predictive evidence.
By shifting part of the activity forward, the average FR rises, leading to correspondingly higher ACs
and slightly greater energy. In terms of training time (TT, measured per batch), our method shows a
moderate increase compared with other SNNs, mainly due to the mask-weighted perturbed teacher
logits introduced in TMPD. At each timestep, TMPD requires generating perturbed logits and com-
puting the corresponding distillation losses, which adds extra overhead during training. However,
this additional cost only occurs in the training phase and does not affect inference latency or energy
efficiency, making it limited and acceptable.

Table 9: Comparison of energy consumption, computation operations, training time, GPU hours,
and accuracy on CIFAR-10 and CIFAR-100 with ResNet-18 and ResNet-19 at timestep T = 6.

MODEL METHOD FR ACs MACs ENERGY TT GPU h ACC
(%) (M) (M) (µJ) (ms) (h) (%)

C10-R18

ANN – 0.557 549.1 1757.3 31 1.07 97.06
VanillaSNN 14.21 72.500 3.342 17.946 123 4.25 95.74

KDSNN 14.90 78.641 3.342 18.560 129 4.45 95.85
TWSNN 15.66 83.915 3.342 19.087 130 4.49 96.16

Ours 15.98 85.644 3.342 19.260 163 5.63 96.28

C10-R19

ANN – 1.442 2268.6 7259.7 32 1.10 97.20
VanillaSNN 13.06 285.764 8.652 56.264 308 10.64 96.71

KDSNN 12.30 272.512 8.652 54.939 317 10.95 97.02
TWSNN 15.35 310.799 8.652 58.767 318 10.98 97.05

Ours 15.20 311.080 8.652 58.796 363 12.54 97.08

C100-R18

ANN – 0.557 549.2 1757.4 26 0.90 81.31
VanillaSNN 17.33 93.829 3.342 20.080 128 4.42 78.37

KDSNN 17.80 96.175 3.342 20.315 135 4.66 79.28
TWSNN 18.83 103.222 3.342 21.020 135 4.66 80.05

Ours 17.68 97.703 3.342 20.468 170 5.87 80.42

C100-R19

ANN – 1.442 2268.6 7259.7 235 8.11 82.57
VanillaSNN 16.08 350.697 8.653 62.759 324 11.19 81.27

KDSNN 16.32 359.646 8.653 63.654 332 11.47 82.12
TWSNN 17.33 369.744 8.653 64.664 333 11.50 83.10

Ours 17.11 366.015 8.653 64.291 381 13.17 83.22
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F ABLATION STUDY ON IMAGENET

To assess the contribution of each component on a large-scale dataset, we conduct an ablation study
on ImageNet using the ResNet-34 SNN backbone with T = 4. As shown in Table 10, incorporating
TMPD and TPD yields additional improvements over the TWD baseline, and the full configuration
achieves the highest accuracy.

Table 10: Ablation of components on ImageNet under the ResNet-34 SNN backbone (T = 4).

TAD TWD TMPD TPD ACC (%)
✗ ✗ ✗ ✗ 66.93
✓ ✗ ✗ ✗ 68.22
✗ ✓ ✗ ✗ 71.04
✗ ✓ ✓ ✗ 71.55
✗ ✓ ✗ ✓ 71.34
✗ ✓ ✓ ✓ 71.64

G USE OF LARGE LANGUAGE MODELS

We used LLMs only to polish the writing (e.g., grammar and readability). All ideas, experiments,
and analyses are entirely the authors’ own.
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