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ABSTRACT

Instruction-based image editing methods allow user-friendly instruction to en-
hance controllability via natural command. However, without a user-provided
mask, existing methods could not identify and edit specific objects if multiple
similar instances exist, such as “add the man on the right a hat”. Furthermore,
the iterative nature of the editing process may inherently involve ambiguous ref-
erences from users, such as ‘change it to blue’, posing challenges in identifying
the target without a contextual understanding. Multimodal large language models
(MLLMs) offer impressive cross-modal comprehension and co-reference resolu-
tion capabilities. In this work, we present ReferPix2Pix, which leverages MLLMs
to interpret editing instructions and provide regions of interest (RoI) for precise
editing. Such pixel-grounded guidance from MLLMs enhances comprehension of
referring expressions and resolves ambiguous references that facilitate localized
editing of editing models. Additionally, we developed CoReferEdit benchmark to
evaluate editing capabilities across iterative editing phases with multimodal co-
references. Our comprehensive experiments show that our approach significantly
enhances editing capability in referring and co-referential editing tasks. Our code
and data will be made publicly available1.

1 INTRODUCTION

As the need for visual content continues to grow across industries like photography, advertising, and
social media, the role of image editing in improving and modifying images has become more crucial.
Using natural language, an intuitive and adaptable tool, simplifies the guidance of the image editing
process. Consequently, text-guided image editing has become increasingly favored, surpassing the
popularity of other methods (Ling et al., 2021; Shi et al., 2022; Meng et al., 2021) that need users to
specify editing regions.

Early text-based editing methods (Nam et al., 2018; El-Nouby et al., 2019; Meng et al., 2021;
Hertz et al., 2022) relied on description-based captions, where the editing command outlines the
desired image’s attributes. This approach is not user-friendly, as it requires individuals to provide
an extensive description of the target image rather than a straightforward editing instruction. In-
stPix2Pix (Brooks et al., 2023) is the first to collect a large-scale instruction-based editing dataset
with input-goal-instruction triplet, where the instruction is generated by GPT-3, and the target image
is synthesized from Prompt-to-Prompt (Hertz et al., 2022). MagicBrush (Zhang et al., 2024) intro-
duces instruction-based interactive editing in the multi-round scenario and provides the edit mask
annotations.

However, existing approaches have two notable limitations. First, they perform in benchmarks that
contain images with a predominant single instance, which doesn’t align with real-world scenarios
where images often contain multiple instances. For instance, a user may want to specify an edit for
one particular item, like ”change the shirt of the right man to blue”. This requires the editing model
to understand referring expressions. Unfortunately, current instruction-guided, mask-free methods
fall short of accurately grounding these referring phrases, leading to incorrect edits that affect all
instances in the image, not just the intended subject, as shown in fig. 3.

1Please refer to the anonymous webpage for code and qualitative results.

1

https://anonymous.4open.science/r/ReferPix2Pix


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

have one person 
fly a kite

make one 
bench wood

add a group 
of ducks

remove the woman 
at the center

Add more basil leaves 
to the front pizza

sprinkle more 
cheese on it

add some 
strawberries to it

remove the car at 
the right

Ed
iti

ng
 w

ith
Re

fe
ri
ng

Ex
pr

es
sio

ns

It
er

at
iv
e

Ed
iti

ng

It
er

at
iv
e

Ed
iti

ng
 w

ith
co

-r
ef

er
en

ce
s

Input Image Output Image Input Image Output Image

Input Image Output Image in Turn1 Output Image in Turn2 Output Image in Turn3

Input Image Output Image in Turn1 Output Image in Turn2 Output Image in Turn3

Figure 1: We introduce ReferPix2Pix, a novel approach that leverages MLLM’s pixel-grounded
guidance for advanced editing tasks. It demonstrates proficiency in (i) editing with referring ex-
pressions, (ii) multi-round iterative editing, and (iii) an innovative task we propose: iterative editing
across multiple rounds incorporating multimodal co-references, designed to resonate with the intrin-
sic nature of user commands.

Moreover, the iterative nature of image editing introduces challenges with ambiguous co-references.
For instance, after an initial instruction like ”change the shirt of the right man to blue”, a subse-
quent command such as “add him a hat” can be unclear without a proper contextual understanding
or memory of previous interaction. Although existing benchmark MagicBrush (Zhang et al., 2024)
introduces multi-round editing with commands like “have him a cowboy hat” or “wear it a neck-
lace”, however, there is only one dominant instance within the source image, thus not consider the
scenario of ambiguous references in the editing conversation. Due to the absence of datasets with
multimodal coreferences and the limitation of model design, current approaches struggle to resolve
ambiguous references in multi-turn editing, as shown in fig. 4.

In this work, we harness the outstanding multi-modal compression capabilities of MLLMs to
identify referring expressions and disambiguate references during editing sessions. Our approach
leverages MLLM to direct a latent diffusion-based editing model, enabling precise localization of
the target object without requiring explicit masks, as MLLM generates the intermediate editing
mask. To tackle the data scarcity in referring edits, we adeptly modify the original ReferCOCO
dataset (Kazemzadeh et al., 2014) for the referring editing task. In the first stage, the MLLM is
trained to process interleaved source images and editing instructions. Its output is then mapped to the
SAM-based model (Kirillov et al., 2023) to generate pixel-grounded guidance. In the second stage,
we align the frozen MLLM and a diffusion-based editing model, where the MLLM’s pixel-grounded
guidance is used as conditional input of the editing model, ensuring referring/co-references editing.

Furthermore, to assess the model’s ability in multi-modal co-reference resolution, we estab-
lished a test set CoReferEdit by utilizing ReferCOCO (Kazemzadeh et al., 2014) annotations and
GPT4V (OpenAI, 2023) generation, incorporating referring expressions in initial editing rounds and
ambiguous references in the follow-up editing turns.

Contributions. Our contributions are summarized as follows:

2
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• We introduce referring expression comprehension and multimodal co-reference resolution
to interactive editing tasks to facilitate more natural editing instructions aligning with user
commands in practice.

• We adapt MLLM by interlacing text and image inputs, empowering it to implicitly com-
prehend referring expressions and resolve ambiguous references, thus providing pixel-level
guidance in interactive editing sessions.

• We establish the CoReferEdit benchmark to evaluate co-reference editing ability, comple-
menting the limitation of the previous benchmark.

• Our model achieves superior performance in advanced image editing tasks with referring
expressions and multimodal co-references.

2 RELATED WORK

Text-based Image Editing. Description-based image editing: Text-based editing models (Nam
et al., 2018; El-Nouby et al., 2019) via GAN are limited to unrealistic synthesis. Diffusion
models (Ho et al., 2020; Ramesh et al., 2022; Meng et al., 2021; Hertz et al., 2022), by con-
trolling cross-modal attention maps between global description and latent pixels, achieve more
semantically aligned manipulation. Local image editing enables detailed adjustments by filling
in specified areas provided by users (Nichol et al., 2021; Couairon et al., 2022; Avrahami et al.,
2022; Wang et al., 2023; Bar-Tal et al., 2022). Instruction-guided image editing: Different from
description-based editing, instruction-guided editing (El-Nouby et al., 2019; Fu et al., 2020; Zhang
et al., 2021) allows users to modify images by providing textual instructions, eliminating the
need for detailed descriptions or region selection. InstPix2Pix (Brooks et al., 2023) constructs a
large-scale instruction-based editing dataset by collecting synthetic texts from GPT-3 that finetuned
on human-annotated instructions, and target images by (Hertz et al., 2022), enables image editing
by following instructions. HIVE (Zhang et al., 2023b) utilizes training triplets and human ranking
results to provide stronger supervision signals for better model training. MagicBrush (Zhang et al.,
2024) introduces instruction-based interactive editing in the multi-round scenario. MGIE learns a
projection from MLLMs to an editing model (Brooks et al., 2023) for instructional editing tasks.
In this work, we advance the interactive editing task with referring expressions and co-reference
resolution to facilitate more natural conversational editing in the real world.

Referring Expression Comprehension. Referring expression comprehension (REC) aims to
localize a target object in an image described by a referring expression phrased in natural language.
RefCOCO (Kazemzadeh et al., 2014) serves as valuable resources for tasks like referring expres-
sion segmentation, comprehension, and visual grounding. In this work, we introduce referring
expressions to the image editing task, where the model is required to localize the edit object given
an edit instruction with referring expressions.

Multi-modal Reference Resolution. Co-reference resolution is crucial in natural language
processing (NLP), which involves identifying pronouns and the entities they refer to. Recent
work (Seo et al., 2017) proposed visual co-reference resolution for Visual Question-Answering
(VQA) dialogs, while (Rahman et al., 2023; Shen & Elhoseiny, 2023) extends visual co-reference
to the story visualization setting. In this work, we investigate co-reference resolution within the
context of interactive image editing tasks. It requires the model to identify and precisely modify
the targeted object when users provide ambiguous references throughout multiple rounds of editing
sessions.

Multi-modal Large Language Models. Large Language Models (LLMs) wield an extensive repos-
itory of human knowledge and exhibit impressive reasoning capabilities. Recent studies (Tsim-
poukelli et al., 2021; Chen et al., 2022; Alayrac et al., 2022; Li et al., 2023b) utilize pre-trained
language models to tackle vision-language tasks, and subsequent studies (Zhu et al., 2023; Zhang
et al., 2023c; Li et al., 2023a; Huang et al., 2023; Chen et al., 2023) further enhance multi-modal
abilities by aligning vision models with MLLMs input space. In addition to multi-modal comprehen-
sion, several works are dedicated to more challenging multi-modal generation tasks. Several current

3
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Figure 2: Model Pipeline. Gray arrows describe the first stage training with caption loss Lcaption

and mask loss Lmask. Both gray and blue arrows show the pipeline of the second stage, where
only the weight of latent diffusion is updated and calculated Ledit, while other components remain
frozen. We omit the forward diffusion step and VAE decoder for simplicity.

works (Koh et al., 2023; Wu et al., 2023; Zeqiang et al., 2023) learn a mapping from hidden embed-
dings of an LLM represents for additional visual outputs into the input space of a frozen pre-trained
text-to-image generation model (Rombach et al., 2022). Similarly, MGIE (Fu et al., 2023) learns
a projection from MLLMs to an editing model (Brooks et al., 2023) for instructional editing tasks.
MLLMs can also excel in vision-centric tasks, such as object detection and segmentation (Rasheed
et al., 2023; Lai et al., 2023; Wang et al., 2024; Zhang et al., 2023a). In this work, we leverage the
exceptional reasoning and comprehension capabilities of MLLMs to offer guidance for advanced in-
teractive editing tasks. Different MGIE that provides semantic guidance from MLLMs, which might
lose fine-grained visual information, we leverage MLLM to provide pixel-grounded guidance for the
editing model to effectively comprehend referring expressions and resolve ambiguous multimodal
coreferences in multi-turn editing.

3 METHOD

MLLMs excel in vision-language tasks, such as image captioning (Li et al., 2023b) and ground-
ing (Chen et al., 2023; Rasheed et al., 2023). MGIE is the first to use MLLMs to offer semantic
guidance by mapping the hidden states of eight additional tokens onto a latent diffusion text condi-
tioning space for image editing. However, such semantic-level guidance struggles to provide visual
details for referring phrases within the editing instructions. In addition, the scarcity of multi-turn
editing data with co-references hampers its performance on editing with co-references resolution.

To overcome the limitations of previous methods, we develop a two-stage pipeline for advanced
editing tasks. In the first stage, the MLLM is trained to take images and editing instructions as in-
put and produce pixel-level guidance. To circumvent data constraints, we innovatively repurpose a
richly annotated image comprehension dataset for the referring editing task. In the second stage, we
align a latent diffusion-based editing model with the first-stage MLLM, thereby enhancing its abil-
ity to comprehend referring expressions and resolve ambiguous co-references in multi-turn editing
scenarios.

4
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3.1 GENERATING PIXEL-GROUNDED GUIDANCE VIA MLLMS

In the first stage, we leverage MLLMs to comprehend interleaved images and textual instructions,
thereby facilitating pixel-level grounding that enhances precise editing guidance. More specifically,
the input image ximg is encoded by an image encoder CLIP ViT-H/14 (Radford et al., 2021), and its
visual representation Ix is projected to the input space of LLM L denoted as fv2t(Ix). To facilitate
fine-grained pixel-level object grounding, similar to (Rasheed et al., 2023), we utilize a pretrained
SAM (Kirillov et al., 2023) encoder as a segmentation image encoder ESAM and a SAM-based
segmentation decoder DSAM . We add a new token [SEG] to the LLM vocabulary, and the last
hidden state h[SEG] of [SEG] token is projected to the segmentation decoder’s input space, denoted
as ft2m(h[SEG]). Therefore, the MLLM is trained to predict the ground truth text, represented as
yt = L(fv2t(Ix), xt). Its last hidden state of [SEG], as well as the encoded feature by SAM
encoder ESAM (ximg) are taken as input to the decoder DSAM to produce segmentation mask M ,
defined as follows:

M = DSAM (ft2m(h[SEG]), ESAM (ximg)) (1)

The predicted output yt and the segmentation mask M are used for calculating the caption loss
Lcaption and the mask loss Lmask respectively. The whole pipeline of the first stage is demonstrated
in fig. 2 with gray arrows.

3.1.1 TRAINING DATA AND PROMPTS DESIGN.

For datasets with input-goal-instruction triplet, along with the editing masks, e.g., Mag-
icBrush (Zhang et al., 2024), we can directly use it as our instruction finetuning data. The input
prompt is defined as follows:

User: The <image> provides an overview of the picture. Given this editing instruction: {edit
instruction}. Please segment the edited region in this image.

Assistant: Sure, it is [SEG].

where the <image> token is replaced by 256 tokens generated by the image encoder E . The MLLM
learns to produce “Sure, it is [SEG]”, and the last hidden state of the [SEG] is then passed through
the segmentation decoder D to produce segmentation mask as mentioned above.

Editing with Referring Expressions. However, there is no large-scale editing dataset with editing
mask annotations. Therefore, we have devised a strategy to effectively leverage annotated data from
other tasks, repurposing them for editing instruction training. Specifically, we turn our attention to
ReferCOCO (Kazemzadeh et al., 2014), a dataset originally curated for referring expression com-
prehension, which features multiple object instances within each image. Each of these instances
is annotated with both referring expressions and corresponding segmentation masks By harness-
ing this richly annotated data, we can ingeniously adapt ReferCOCO (Kazemzadeh et al., 2014)
for our edit instruction training needs through the automated generation of a comprehensive set of
edit instructions derived from the dataset’s existing annotations. The modified version is denoted
as ReferCOCOedit. Below is an example in the automatically generated list of editing templates:
“replace {class name} with {new class}”, where {class name} represents the referring expression
corresponding to an instance within a ReferCOCO image, while {new class} is obtained by ran-
domly sampling from the set of COCO object classes. Please refer to the supplementary to find the
full list of automatically generated edit templates.

This design enables us to adeptly harness the referring expressions within ReferCOCO to generate
edit instructions with referring phrases and utilize the corresponding segmentation masks as editing
guides. This eliminates the need for manual annotation, editing of masks, or the generation of
target images for training, thereby effectively circumventing the constraints posed by the scarcity of
instruction-based datasets with mask annotations.

Editing with Multimodal Coreferences. Furthermore, we utilize a similar design to construct the
training data, which enables the model to understand multi-modal co-references within an iterative
editing session, denoted as ReferCOCOcoref

edit . The first round of edit instructions adheres to the pro-
cedure mentioned above. In follow-up turns, the instructions are deliberately revised to incorporate

5
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an ambiguous reference, thus training the model to adeptly resolve ambiguous multimodal refer-
ences within an editing session. For instance: “add {reference} {new class}”, where {reference}
represents for “he, she, they, it” based on different scenarios, and {new class} is randomly sampled
from COCO object class. Below is one training example:

User: The <image> provides an overview of the picture. Given this editing instruction: give the
right man a pair of glasses. Please segment the edited region in this image.

Assistant: Sure, it is [SEG].

User: Given this editing instruction: add him a hat. Please segment the edited region in this image.

Assistant: Sure, it is [SEG].

Our training methodology effectively links the ambiguous references ‘him’ with the contextually
mentioned “the right man” as well as the corresponding visual features within the image. By mini-
mizing the Lmask loss between the predicted masks of corresponding [SEG] tokens and the ground
truth masks, the MLLM learns to provide pixel-grounded guidance given the edit instructions and
multimodal context.

3.2 MLLM GUIDANCE FOR REFERRING/CO-REFERENCES EDITING

During the second stage, we freeze the first stage MLLM and train a diffusion model conditioned on
the input source image xs

img , editing guidance provided by the MLLM M , and editing instruction
xt. We build on top of latent diffusion (Rombach et al., 2022) that learns to generate data samples
through a sequence of denoising in the latent space of a pretrained variational autoencoder with en-
coder EV AE and decoder DV AE . More specifically, as shown in fig. 2, the MLLM will take as input
the source image xs

img as well as the edit instruction xt to produce pixel-grounded guidance. For an
input target image xt

img , the diffusion process adds noise to the encoded latent z = EV AE(x
t
img),

producing a noisy latent zt where the noise level increases over timesteps t ∈ T . Then we channel-
wise concatenate the encoded source image feature EV AE(x

s
img) and pixel-grounded guidance M

from MLLM in eq. (1) as image condition, defined as follows:

cI = concat(EV AE(x
s
img),M) (2)

We add input channels to the first convolutional layer to support image and mask conditioning by
concatenating zt and cI . The cross-attention condition cT is the edit instruction xt encoded by the
text encoder. The editing loss is calculated as follows:

ẽθ(zt, cI , cT ) = eθ(zt,∅,∅)

+ αI · (eθ(zt, cI ,∅)− eθ(zt,∅,∅))

+ αT · (eθ(zt, cI , cT )− eθ(zt, cI ,∅))

Ledit = Ez,cI ,cT ,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, cI , cT )||22

] (3)

where αI and αT are the weights of the guidance scale for the image and the instruction. We
randomly set cI = ∅, cT = ∅, or both cI = ∅ and cT = ∅ for 5% of data during training for
classifier-free guidance similar to InstPix2Pix (Brooks et al., 2023).

The second-stage end-to-end training design that uses the mask predicted by MLLMs as the con-
ditioned input for latent diffusion, rather than solely depending on the ground truth mask during
training, is anchored in a critical insight: the inherent discrepancy between the ground-truth mask
and the predicted mask. Utilizing the ground truth mask as the sole training input could lead to
a scenario where, during inference, the editing model might indiscriminately modify every region
indicated by the MLLM’s mask, resulting in suboptimal editing outcomes, especially if the guidance
from MLLM lacks precision. To mitigate this risk and enhance the model’s performance, we mix up
the ground truth masks and predicted masks by MLLM as the conditional input for latent diffusion,
thereby ensuring greater flexibility and robustness in its editing capabilities.

6
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4 COREFEREDIT DATA COLLECTION.

Although MagicBrush (Zhang et al., 2024) includes references in the multi-round editing session,
such as “Have him a cowboy hat” or “Wear it a necklace”. However, there is only one object
instance in the image, thereby it does not consider the scenario of multiple instances in one image,
where the model is required to identify the target edit object across different instances given an
ambiguous reference. Hence, we design an automatic pipeline to collect a test set to evaluate the
model’s editing ability in a multi-round co-reference resolution setting.

Specifically, we consider ReferCOCO (Kazemzadeh et al., 2014) images since they contain multiple
instances in an image and the corresponding referring expressions. Then we fed randomly sampled
image, the edit object with the referring expression, such as “the man on the right” and original
caption to gpt-4-vision-preview (OpenAI, 2023). In the first round, GPT4V is used to
generate an edit instruction regarding the input edit object, a global caption that modifies the original
caption based on the generated edit instructions, and a local caption that focuses on describing the
edit object only. In the follow-up turns, GPT4V is prompted to generate edit instructions regarding
the same object but uses ambiguous references for the edit object and generates a new global/local
caption. fig. 10 demonstrates an example in our collected CoReferEdit data, and fig. 9 shows the
distribution of edit object class and edit instruction in the collected set. All the edit sessions include
3 rounds of editing, and after manual quality control, there are 403 editing sessions and 1196 edit
turns in the collected test set.

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION METRICS

MagicBrush. MagicBrush (Zhang et al., 2024) features multiple rounds of editing within its ses-
sions, with 8,807 editing turns for training, 528 for dev, and 1,053 for test set. We adhere to the
original train/dev/test splits for training and evaluating models. The results are in the context of
multi-round editing, where the images edited in the final turn are evaluated using L1/L2 distance,
CLIP (Radford et al., 2021) image-image similarity (CLIP-I), CLIP (Radford et al., 2021) image-text
similarity (CLIP-T), and the DINO (Zhang et al., 2022) score, consistent with MagicBrush (Zhang
et al., 2024). We report the final turn results to evaluate the editing capability in multi-round editing.

GQA-Inpaint. GQA-Inpaint (Yildirim et al., 2023) was built on top of the GQA Dataset (Hudson &
Manning, 2019) which includes multiple instances and referring expressions for the images. GQA-
Inpaint leverages the annotations in GQA and designed editing instructions containing referring
expressions such as “remove the woman at the right of the boat”, where the edit object is selected
from the scene graphs of GQA. All the comparison methods report zero-shot performance using
L1/L2 distance, CLIP (Radford et al., 2021) image similarity (CLIP-I), and DINO (Zhang et al.,
2022) score on this dataset. We utilize this dataset to assess the editing capability with referring
expressions.

CoReferEdit. We mentioned the collection pipeline and data distribution details in section 4. The
test set contains 403 edit sessions and 1196 edit turns. We facilitate the evaluation of the collected
dataset by calculating the global or local CLIP text-image similarity for the final turn, or all turns on
average. For local caption, the edited image is cropped based on the bounding box of the edit object
to calculate the local image-text similarity. We utilize this dataset to assess the editing capability
with ambiguous references in multi-round editing.

5.2 COMPARISON APPROACHES.

We compare our method with the state-of-the-art instruction-based editing approaches:
HIVE (Zhang et al., 2023b), InstPix2Pix (Brooks et al., 2023), MGIE (Fu et al., 2023). Inst-
Pix2Pix (Brooks et al., 2023) take the concatenation of encoded source image and latent noise vector
as input to latent diffusion model and conditioned on edit instruction to produce the target image.
HIVE (Zhang et al., 2023b) relies on human feedback on edited images to learn what users gener-
ally prefer and uses this information to fine-tune InstPix2Pix (Brooks et al., 2023), aiming to align

7
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Method GQA Inpaint CoReferEdit (Final) CoReferEdit (All)
L1↓ L2↓ CLIP-I↑ DINO↑ Local Global Local Global

HIVE (Zhang et al., 2023b) 0.1051 0.0326 0.8379 0.7296 0.2574 0.3075 0.2489 0.3014
InstPix2Pix (Brooks et al., 2023) 0.1182 0.0364 0.792 0.6435 0.2547 0.3106 0.2617 0.3132
MGIE (Fu et al., 2023) 0.0916 0.0328 0.8728 0.7819 0.2507 0.3073 0.2541 0.3065
ReferPix2Pix (ours) 0.0822 0.0231 0.9020 0.8551 0.2643 0.3187 0.2732 0.3204

Table 1: Left: Zero-shot performance on GQA Inpaint, which contains editing instructions with
referring expressions. Right: Zero-shot performance on our CoReferEdit dataset.

remove the chair at the left

remove the male statue

remove the car at the right

Input Image InstPix2Pix MGIE Ours Ground Truth

Figure 3: Qualitative result on GQA Inpaint (Yildirim et al., 2023), which contains single-turn
editing instruction with referring expressions.

more closely with human expectations. MGIE (Fu et al., 2023) leverages MLLMs to produce visual
imagination as explicit semantic guidance for the editing model.

5.3 IMPLEMENTATION DETAILS.

In the first stage, we use MagicBrush (Zhang et al., 2024), ReferCOCOedit and ReferCOCOcoref
edit as

the training data. The MLLM is trained with captioning loss, Mask BCELoss, and Mask DICELoss.
The training batch size is 16 and uses AdamW optimizer with learning rate 1e − 4 for 4 epochs.
We use MagicBrush (Zhang et al., 2024) and modified ReferCOCO (Kazemzadeh et al., 2014) for
the first stage of training. In the second stage, the first stage model is kept frozen, and we only
train the Unet of the latent diffusion. The input channel of the first convolution layer is set to 12.
The training is conducted with a batch size of 64 and a learning rate of 1e − 4 over 4k steps. We
use MagicBrush (Zhang et al., 2024) and InstPix2Pix (Brooks et al., 2023) as the training data in
the second stage. αI and αT in eq. (3) are set to be 1.5 and 7.5 respectively. All experiments are
conducted in PyTorch on 2 80G A100 GPUs.

5.4 EXPERIMENTAL RESULTS

5.4.1 EDITING WITH REFERRING EXPRESSIONS

We choose GQA-Inpaint (Yildirim et al., 2023) to evaluate the editing ability with referring expres-
sions and report the quantitative result in table 1 (left). Our approach outperforms all the baseline
models, illustrating that our model excels at recognizing referring expressions and precisely editing
the corresponding object.

fig. 3 showcases the qualitative results on the GQA Inpaint dataset. The baseline models struggle
to localize the target region given referring expressions. Take the first row as an example, Inst-
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Method MagicBrush
L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

HIVE (Zhang et al., 2023b) 0.0966 0.0365 0.8785 0.7891 0.2796
InstPix2Pix (Brooks et al., 2023) 0.0964 0.0353 0.8924 0.8273 0.2754
MGIE (Fu et al., 2023) 0.1208 0.0507 0.8582 0.7559 0.2772
ReferPix2Pix (ours) 0.0885 0.0297 0.8987 0.8182 0.2783
ReferPix2Pix (w/o comb) 0.0911 0.0309 0.8870 0.8081 0.2732
ReferPix2Pix w/ GT mask (upper bound) 0.0762 0.0245 0.9145 0.8682 0.2792
GT image - - - - 0.2829

Table 2: Quantitative result on MagicBrush (Zhang et al., 2024). All the models are trained on both
MagicBrush (Zhang et al., 2024) and InstPix2Pix (Fu et al., 2023). The best-performing results are
highlighted in bold, while the second-best are underlined. w/o comb indicates that the editing model
is trained independently without integrating the MLLM and instead takes ground truth masks during
training. w/ GT mask means the ending model takes ground truth masks as input during inference
serving as a upper bound.

Change dark cloth to right to white. Change its color to light blue. Turn it into a bright yellow cloth.

Input Image
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Figure 4: Qualitative result on CoReferEdit.

Pix2Pix (Brooks et al., 2023) appears to remove the mats of the left chairs, whereas MGIE removes
the items on the table rather than the left chair. In contrast, our model identifies the region indicated
by the referring phrases and performs the appropriate edits.

5.4.2 EDITING IN MULTI-TURNS

We utilize MagicBrush (Zhang et al., 2024) to evaluate the editing capabilities of the model in
an iterative context. The scores for the final round are presented in table 2 (upper). Our model
achieves better L1/L2 and CLIP-I scores while reaching comparable results in DINO and CLIP-
T metrics. The reason our model doesn’t significantly surpass other models is due to our method
enhancements in referential editing. However, the images in MagicBrush (Zhang et al., 2024) pre-
dominantly feature a single object, which does not necessitate the capability to distinguish among
multiple instances. In addition, the CLIP-T shows minimal differentiation between methods, with
the ground truth image-text similarity being only 2.65% higher than that of the lowest-performing
model.

5.4.3 EDITING IN MULTI-TURNS WITH CO-REFERENCES

We use CoReferEdit to evaluate the model’s capability in multi-round editing involving multimodal
co-references. table 1 (right) shows the model’s performance, evaluated using CLIP text-image
similarity based on local/global descriptions across all/final rounds. Owing to the MLLM’s capabil-
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Method GQA Inpaint CoReferEdit (Final) CoReferEdit (All)
L1↓ L2↓ CLIP-I↑ DINO↑ Local Global Local Global

w/o co-refer 0.0824 0.0232 0.9014 0.8546 0.2581 0.3119 0.2620 0.3154
w/o comb 0.0821 0.0231 0.9015 0.8554 0.2603 0.3147 0.2691 0.3184
Ours (default) 0.0822 0.0231 0.9020 0.8551 0.2643 0.3187 0.2732 0.3204

Table 3: Ablation study on GQA Inpaint (Yildirim et al., 2023) and CoReferEdit. w/o co-refer
represents for without the multimodal coreferences data mentioned in section 3.1.1. w/o comb
indicates that the editing model is trained independently without integrating the MLLM and instead
takes ground truth masks during training.

ity in understanding contextual data and deciphering multimodal ambiguous references, our model
achieves superior performance, particularly in local similarity, compared to other models. Please
refer to the supplementary for human evaluation results.

fig. 4 demonstrates the qualitative results on CoReferEdit, starting with the initial round of editing
using reference phrases, followed by edits involving ambiguous references. InstPix2Pix (Brooks
et al., 2023) tends to modify the entire image. MGIE (Fu et al., 2023) struggles to identify the ”dark
cloth to the right” and thus turns all black areas to white. Furthermore, in the final round, it fails to
recognize the ambiguous referring word ’it’ and mistakenly alters the cloth in the center to yellow.
In contrast, our method precisely identifies the target object in the first round and iteratively edits
the correct object by associating the ambiguous reference ‘it’ with both the contextually mentioned
”dark cloth to the right” and the corresponding visual pixels in the image.

5.5 ABLATION STUDY

table 3 shows the effect of coreference training and end-to-end combined training, where w/o co-
refer represents without the multimodal coreferences data mentioned in section 3.1.1, and w/o comb
indicates that the editing model is trained independently without integrating the MLLM and instead
takes ground truth masks during training. The co-refer training did not affect performance on GQA
Inpaint since there are no ambiguous references in the dataset. However, it enhanced the perfor-
mance on CoReferEdit by a large margin in the multimodal coreference editing scenario.

The combined training improves performance on all three datasets, i.e., GQA Inpaint (Yildirim et al.,
2023) and CoReferEdit in table 3, as well as MagicBrush (Zhang et al., 2024) in table 2 (bottom).
This is because separately training the latent diffusion with the ground truth mask as the input could
lead to a scenario where, during inference, the editing model might indiscriminately modify every
region indicated by the MLLM’s mask, resulting in suboptimal editing outcomes. Additionally,
table 2 presents results using a ground truth mask (w/ GT mask) as the editing model input, serving
as an upper bound. Enhanced editing performance with an accurate mask offers practical application
potential, especially when users can adjust the mask if the MLLM-generated one is suboptimal.

6 CONCLUSION

In conclusion, we first discussed the limitations of existing instruction-based image editing methods
that struggle with identifying and modifying specific objects in the presence of multiple instances
without user-provided masks. The challenge is further compounded during iterative editing pro-
cesses, where vague references like ’change it to blue’ require a contextual understanding to ac-
curately identify the target. We introduce ReferPix2Pix, which utilizes the MLLM’s multimodal
reasoning comprehension and co-reference resolution capabilities for advanced editing tasks. This
enables the interpretation of editing instructions and the provision of precise RoI for image editing,
thereby significantly improving the ability to understand referring expressions and resolve ambigu-
ous references in iterative editing turns. Furthermore, we established CoReferEdit for evaluating the
performance of editing models in handling co-referential editing tasks. Our comprehensive experi-
ments show that our approach significantly enhances editing capability in referring and co-referential
editing tasks.
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A ABLATION STUDY

table 4 shows the analysis of the impact of training data on the accuracy of mask prediction, which
subsequently influences the editing performance on MagicBrush (Zhang et al., 2024) test split. gIoU
is defined by the average of all per-image Intersection-over-Unions (IoUs), while cIoU is defined by
the cumulative intersection over the cumulative union. The mask Recall metric computes the IoU
between the predicted masks and the ground truth editing mask. Predictions with an IoU greater
than the threshold of 0.5 are considered in the count.

When we remove the ReferCOCOref
edit training data, there is not a significant decrease in perfor-

mance. This is because MagicBrush (Zhang et al., 2024) does not have ambiguous references in
multi-turn editing. However, removing the ReferCOCOedit training data in advance leads to a sub-
stantial drop in mask prediction accuracy (gIoU/cIoU /Recall). This is due to the lack of large-scale
training data that provides precise masks for the editing regions, consequently deteriorating the edit-
ing performance (the remaining metrics).
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Method gIoU cIoU Recall L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑
Ours (default) 0.3018 0.3292 0.9602 0.0885 0.0297 0.8987 0.8182 0.2783

- ReferCOCOref
edit 0.2910 0.3215 0.9545 0.0868 0.0292 0.8921 0.8290 0.2732

- ReferCOCOedit 0.2638 0.2783 0.9356 0.0902 0.0306 0.8882 0.8103 0.2695

Table 4: An analysis of the impact of training data on the accuracy of mask prediction, which
subsequently influences the editing performance on MagicBrush (Zhang et al., 2024).
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Figure 5: Human Evaluation Results on CoReferEdit.

Comparison of using only the SAM-generated mask as a visual condition. SAM-generated
masks involve using LLM+SAM since SAM alone cannot accept edit instructions. We used the
LLM aligned with the SAM decoder to produce segmentation masks without fine-tuning for editing
instructions. The results indicate that in a zero-shot setting, the in-context editing instructions for
LLM+SAM mask generation cannot accurately identify precise editing regions, as shown in the
appendix A.

Method GQA Inpaint CoReferEdit (Final)
L1↓ L2↓ CLIP-I↑ DINO↑ Local Global

LLM+SAM mask 0.0912 0.0314 0.8872 0.8435 0.2493 0.3041
Ours (default) 0.0822 0.0231 0.9020 0.8551 0.2643 0.3187

B HUMAN EVALUATION

In addition, we use Mechanical Turk to assess the quality of 100 editing sessions produced by our
methods or baselines InstPix2Pix (Brooks et al., 2023) and MGIE (Fu et al., 2023) on CoReferEdit.
MTurkers are tasked with evaluating pairs of editing instructions and the corresponding edited im-
ages to determine which model excels in terms of visual quality, adherence to the editing instruc-
tions, the ability of referring expression comprehension (REC), and ambiguous reference resolution.
Each pair is evaluated by 3 unique workers. We evaluate the REG ability by asking MTurkers to
assess the first-turn editing result, while final-turn for coreference resolution. The results presented
in fig. 5 demonstrate that our model, enhanced with outstanding multimodal comprehension capa-
bilities and directed by pixel-based editing guidance, achieves superior editing performance in all
aspects.
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Figure 6: Qualitative results on CoreferEdit.
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Figure 7: Qualitative results on CoreferEdit.

C QUALITATIVE RESULTS

figs. 6 to 8 show qualitative comparison between InstPix2Pix (Brooks et al., 2023), MGIE (Fu et al.,
2023) and our method. For the first editing turn in the three examples, InstPix2Pix (Brooks et al.,
2023) and MGIE (Fu et al., 2023) struggle to identify the referring expressions, e.g., “the right
person” in fig. 8, and change hats of both people to red color. In the following turns, they iteratively
alter the color of both jackets and fail to resolve the reference word “his” in the editing instructions.
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Figure 8: Qualitative results on CoreferEdit.
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Figure 9: The data distribution of our collected CoReferEdit (a) Edit object class distribution fol-
lowing COCO object supercategory. (b) Edit instruction type distribution.

D EDITING INSTRUCTION PROMPTS

Below, we show our designed editing instruction prompts for MagicBrush (Zhang et al., 2024), and
our ReferCOCOedit and ReferCOCOref

edit adapted based on ReferCOCO (Kazemzadeh et al., 2014)
during the training stage.

D.1 EDIT INSTRUCTION TEMPLATES FOR MAGICBRUSH (ZHANG ET AL., 2024)

”Can you segment the region that should be edited in this image?”

”Please segment the edited region in this image.”

”What region should be edited in this image? Please respond with a segmentation mask.”

”What is the edited region in this image? Please output segmentation mask.”
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Edit Session
{
"edit_instruction": "Add white stripes to the cycle in back.",
"global_caption": "Two motorcycles with the back one featuring white stripes are parked next to a 
park grill.",
"local_caption": "Motorcycle with white stripes.”
},
{
"edit_instruction": "Add a red cover to its seat.",
"global_caption": "Two motorcycles with the back one featuring white stripes and a red seat cover 
are parked next to a park grill.",
"local_caption": "Motorcycle with white stripes and red seat cover."
},
{
"edit_instruction": "Give it white wall tires.",
"global_caption": "Two motorcycles with the back one featuring white stripes, white wall tires and 
a red seat cover are parked next to a park grill.",
"local_caption": "Motorcycle with white stripes, red seat cover and white wall tires.”
}

Input Image

Edit object
cycle in back

Bounding box
[429.66, 112.36, 196.86, 181.57]

Figure 10: An example in our CoReferEdit benchmark.

”Could you provide a segmentation mask for the edited region in this image?”

”Please identify and segment the edited region in this image.”

”Where is the region should be edited in this picture? Please respond with a segmentation mask.”

”Can you highlight the region that should be edited in this image with a segmentation mask?”

D.2 EDIT INSTRUCTION TEMPLATES FOR REFERCOCOedit

”Given this edit instruction: change {class name} to {color}. Can you segment the region that
should be edited in this image?”

”Given this edit instruction: add {new class} on {class name}. Please segment the edited region
in this image.”

”Given this edit instruction: make {class name} {color}. What region should be edited in this
image? Please respond with a segmentation mask.”

”Given this edit instruction: replace {class name} with {new class}. What is the edited region in
this image? Please output segmentation mask.”

”Given this edit instruction: remove {class name}. Could you provide a segmentation mask for the
edited region in this image?”

”Given this edit instruction: put {new class} on {class name}. Please identify and segment the
edited region in this image.”
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”Given this edit instruction: let {class name} be {new class}. Where should the region be edited
in this picture? Please respond with a segmentation mask.”

”Given this edit instruction: make {class name} be {shape}. Can you highlight the region that
should be edited in this image with a segmentation mask?”

where {class name} represents the referring expression corresponding to an instance within a Refer-
COCO image, while {new class} is obtained by randomly sampling from the set of COCO object
classes.

D.3 EDIT INSTRUCTION TEMPLATES FOR REFERCOCOref
edit

”Given this edit instruction: change {reference} to {color}. Can you segment the region that should
be edited in this image?”

”Given this edit instruction: add {new class} on {reference}. Please segment the edited region in
this image.”

”Given this edit instruction: make {reference} {color}. What region should be edited in this image?
Please respond with a segmentation mask.”

”Given this edit instruction: replace {reference} with {new class}. What is the edited region in this
image? Please output segmentation mask.”

”Given this edit instruction: remove {reference}. Could you provide a segmentation mask for the
edited region in this image?”

”Given this edit instruction: put {new class} on {reference}. Please identify and segment the edited
region in this image.”

”Given this edit instruction: let {reference} be {new class}. Where should the region be edited in
this picture? Please respond with a segmentation mask.”

”Given this edit instruction: make {reference} be {shape}. Can you highlight the region that should
be edited in this image with a segmentation mask?”

where {reference} represents for “he, she, they, it” based on different scenarios, and {new class} is
randomly sampled from COCO object class.

E IMPLEMENTATION DETAILS.

In the first stage, we use MagicBrush (Zhang et al., 2024), ReferCOCOedit and ReferCOCOcoref
edit as

the training data. The MLLM is trained with captioning loss, Mask BCELoss, and Mask DICELoss.
The training batch size is 16 and uses AdamW optimizer with learning rate 1e− 4 for 4 epochs. We
use MagicBrush (Zhang et al., 2024) and modified ReferCOCO (Kazemzadeh et al., 2014) for the
first stage of training. In the second stage, the first stage model is kept frozen, and we only train
the Unet of the latent diffusion. The input channel of the first convolution layer is set to 12. The
training is conducted with a batch size of 64 and a learning rate of 1e − 4 over 4k steps. We use
MagicBrush (Zhang et al., 2024) and InstPix2Pix (Brooks et al., 2023) as the training data in the
second stage. αI and αT are set to be 1.5 and 7.5 respectively. All experiments are conducted in
PyTorch on 2 80G A100 GPUs.

Please refer to the anonymous GitHub repo2 for the implementation codes and collected benchmark
CoReferEdit.

E.1 INFERENCE EFFICIENCY

We compare with baselines InstPix2Pix (Brooks et al., 2023) with latent diffusion backbone and
MGIE (Fu et al., 2023) with latent diffusion and LLM backbone in terms of inference efficiency.
The time consumption are fairly compared with an A100 GPU of batch size of 1. On average, one
turn of edit costs 4.46 sec, 9.82 sec and 7.86 sec for InstPix2Pix (Brooks et al., 2023), MGIE (Fu

2https://anonymous.4open.science/r/ReferPix2Pix
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et al., 2023) and our model respectively, as shown in table 5 While both MGIE (Fu et al., 2023)
and our approach employ MLLM for latent diffusion editing guidance, our method requires only a
single [SEG] token for pixel-grounded guidance, in contrast to MGIE (Fu et al., 2023) that needs
to generate 8 visual tokens. This efficiency enhances our model’s inference speed over MGIE (Fu
et al., 2023).

Method # Trainable Params Inference time (s/img) FLOPs (T)

InstructPix2Pix 1.1B 4.46 0.76
MGIE 2.0B 9.82 3.55
Ours 1.3B 7.86 1.87

Table 5: Our model produces a single [SEG] token for editing guidance, whereas MGIE requires
multiple token generation.
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