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Abstract

Proprioceptive information is critical for precise servo control by providing real-1

time robotic states. Its collaboration with vision is highly expected to enhance2

performances of the manipulation policy in complex tasks. However, recent studies3

have reported confused observations that vision-proprioception policies frequently4

suffer from poor generalization. In this work, we attempt to answer the question:5

When would vision-proprioception policy fail? To this end, we conducted tem-6

porally controlled experiments and found that during task sub-phases that robot’s7

motion transitions, which require target localization, the vision modality of the8

vision-proprioception policy fails to take effect. Further analysis reveals that the9

policy naturally gravitates toward concise proprioceptive signals that offer faster10

loss reduction when training, thereby dominating the optimization and suppressing11

the learning of the visual modality during motion-transition phases. To alleviate12

this, we propose the Gradient Adjustment with Phase-guidance (GAP) algorithm13

that adaptively modulates the optimization of proprioception, enabling dynamic14

collaboration within vision-proprioception policy. Specifically, we leverage propri-15

oception to capture robotic states and estimate the probability of each timestep in16

the trajectory belonging to motion-transition phases. During policy learning, we ap-17

ply fine-grained adjustment that reduces the magnitude of proprioception’s gradient18

based on estimated probabilities, leading to improved generalization of vision-19

proprioception policies. The comprehensive experiments demonstrate GAP is20

applicable in both simulated and real-world environments, across one-arm and dual-21

arm setups, and compatible with both conventional and Vision-Language-Action22

models. We believe this work can offer valuable insights into the development of23

vision-proprioception policies for robotic manipulation.24

1 Introduction25

Proprioceptive information has long been recognized as a cornerstone of low-level robotic control,26

enabling smooth motor behavior through immediate access to the robot’s internal state. This capability27

is especially critical in tasks requiring high accuracy and fast correction, such as posture control Allum28

et al. (1998); Henze et al. (2014) and locomotion Bjelonic et al. (2016); Lee et al. (2020); Yang29

et al. (2023). In recent years, there has been growing interest in introducing proprioception to30

learning-based manipulation Levine et al. (2016); Cong et al. (2022); Jiang et al. (2025). Despite31

the expectations that its inclusion will empower manipulation policies to maintain precision and32

robustness across various scenarios, existing works have reported confused observations: HPT Wang33

et al. (2024) demonstrated clear improvements under the joint utilization of vision and proprioception,34

while Octo Octo Model Team et al. (2024) observed policies trained with additional propioception35

seemed generally worse than vision-only policies. This discrepancy exposes a critical obstacle to36

understanding: when vision-proprioception policy would fail in robotic manipulation?37
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Figure 1: When would vision-proprioception policy fail? (left) Vision-Proprioception policies
perform 15.8% worse than Vision-only policies. (right) We explore this through intervening the
task execution of vision-only policy during different periods, by switching to vision-proprioception
policy. Such intervention has minimal impact during motion-consistent phases like “move forward”.
However, during motion-transition phases like “locate base” and “assemble them”, switching leads to
noticeable degradation, indicating the vision modality fails to take effect during these phases.

Extensive prior studies have revealed that the importance of visual and proprioceptive information38

could change over time within manipulation Sarlegna and Sainburg (2009); Feng et al. (2024); He et al.39

(2025), which referred to as Modality Temporality. For example, during motion-consistent phases40

where the robot performs ongoing movements, the policy can benefit more from proprioceptive signals.41

In contrast, during the transition intervals where the robot’s motion shifts, it is required to rely more on42

visual cues for accurate target localization. To verify whether the vision-proprioception policy exhibits43

such collaboration, we conduct an intervention experiment in the controlled simulation environment.44

Concretely, we execute the “assembly” task using the vision-only policy, but for a specific 10-timestep45

period, we replace executed actions with those predicted by the vision-proprioception policy under46

the same observations. As shown in Figure 1 (right), the intervention brings minimal impact during47

motion-consistent phases like “move forward”, during motion-transition phases like “locate base” and48

“assemble them”, the switching leads to noticeable degradation. It suggests that the vision modality49

of the vision-proprioception policy fails to take effect during motion-transition phases.50

We further investigate the underlying cause from an optimization perspective. During motion-51

transition phases, visual cues tend to be subtle and may only differ at the pixel level Tsagkas et al.52

(2025). As a result, the vision-proprioception policy naturally gravitates toward the more concise53

proprioceptive signals to minimize the training loss, thereby dominating the optimization Huang54

et al. (2022); Fan et al. (2023). This dominance suppresses the learning of the vision modality and55

ultimately leads to under-utilized visual information during motion-transition phases.56

To alleviate this, we propose the Gradient Adjustment with Phase-guidance (GAP) algorithm that57

adaptively modulates the optimization of proprioception, enabling dynamic collaboration between58

vision and proprioception. Specifically, we first define the motion of the robot using the concise59

proprioception signals and segment the trajectory into motion-consistent phases. Motion of the60

robot transits within the intervals between these phases, we thus employ an temporal network like61

LSTM to model transition processes and estimate the probability that each timestep belongs to62

motion-transition phases. During policy learning, we guide the vision-proprioception policy to focus63

on essential visual cues of motion-transition phases, by applying fine-grained gradient adjustment64

that reduces the magnitude of proprioception’s gradient based on estimated probabilities.65

Our GAP algorithm facilitates the vision-proprioception policy to effectively utilize proprioception66

without suppressing the learning of visual modality. GAP is compatible with both conventional and67

Vision-Language-Action models, and its versatility and effectiveness have been validated by extensive68

experiments in both simulated and real-world environments. The evaluations cover a wide range of69

manipulation tasks and includes one-arm and dual-arm robotic setups. We believe this work can offer70

valuable insights into the development of vision-proprioception policies for robotic manipulation.71
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2 Related Work72

Vision-Proprioception Policy in Manipulation. Vision has been the most commonly used modality73

in robotic manipulation policies Zitkovich et al. (2023); Kim et al. (2024); Zeng et al. (2024). While it74

provides sufficient information to complete many manipulation tasks, visual data often includes a large75

amount of noise, such as irrelevant background distractions Tsagkas et al. (2025). Therefore, more76

concise proprioceptive information has been introduced by many works to assist robotic manipulation77

policy, with the expectation that it can provide complementary and physically grounded information78

for precise and robust task execution Cong et al. (2022); Mandlekar et al. (2022); Chi et al. (2023);79

Fu et al. (2024); Wang et al. (2024); Liu et al. (2024). However, existing studies have reported80

confused observations: some works demonstrate clear improvements when integrating proprioceptive81

information with vision Cong et al. (2022); Wang et al. (2024), others observe limited gains or even82

detrimental effects Mandlekar et al. (2022); Octo Model Team et al. (2024). Fu et al. (2024) attributes83

this to overfitting while Octo Model Team et al. (2024) suggests it arises from causal confusion84

between the proprioceptive information and the target actions. In this study, we further explore when85

vision-proprioception policy would fail and introduce a modality-temporality perspective to offer86

valuable insights into the development of vision-proprioception policies for robotic manipulation.87

Modality Temporality. In manipulation tasks, each modality’s contribution to decision-making88

can vary significantly over time. For example, in “pick-place” task, policy must first rely on vision89

to locate the target object. When moving toward the object, proprioception becomes more critical90

for executing consistent and precise actions. It is proven by strong correlations between variations91

in modality data and task stages Lee et al. (2019); He et al. (2025); Jiang et al. (2025). Feng et al.92

(2024) summarizes such property of manipulation tasks as modality temporality. Given this nature93

of robotic manipulation tasks, recent works have proposed approaches based on dynamic fusion Li94

et al. (2023); Feng et al. (2024); He et al. (2025) and modality selection Jiang et al. (2025) to improve95

the performance of multimodal manipulation policies. In this study, we introduce the modality-96

temporality perspective to understand the roles of vision and propriocetion and propose the gradient97

adjustment algorithm to enhance dynamic collaboration within the vision-proprioception policy.98

3 When Would Vision-Proprioception Policy Fail?99

In this section, we first formalize the problem and further analyze when vision-proprioception policy100

would fail from an optimization perspective. The vision-proprioception policy is learned under101

the Behavior Cloning (BC) paradigm, which can be formulated as the Markov Decision Process102

(MDP) framework Torabi et al. (2018). Formally, the policy π takes the environment observation103

ot ∈ O as input at each timestep t. In this work, ot includes RGB-sensor readings vt, and for104

vision-proprioception policy πv+s, it includes robot proprioceptive information st additionally. This105

proprioceptive information consists of the 6D pose of robot’s gripper (pxt , p
y
t , p

z
t , θ

x
t , θ

y
t , θ

z
t ) ∈ R6 in106

Cartesian space and orientation, and a continuous value gt ∈ [0, 1] representing the degree of gripper107

opening, with gt = 1 denoting fully open and gt = 0 denoting fully closed.108

The policy π maps the observation history to a sequence of actions: ât+L = π(ot−H:t), where L109

and H indicate the length of predicted action sequence and observation history respectively. For110

simplicity, we set omit them in the following discussion. The training objective can be formulated as:111

π∗ = argminπE(ot,at)∼τe [LBC(π(ot)), at], (1)

where τe is expert demonstration dataset and at is action labels. In vanilla BC, L typically represents112

the Mean Squared Error (MSE) loss for continuous action spaces, or Cross-Entropy (CE) loss for113

discrete action spaces. We focus solely on the vanilla MSE loss here.114

In this work, we adopt standard joint-learning architecture to design the vision-proprioception policy,115

which extracts features from both vision and proprioception modalities using two separate chunks116

ϕv, ϕs. These features from two modalities are then concatenated and fed into the policy head ψ.117

Although some recent works have tried exploring alternative modality fusion approaches Wang et al.118

(2024); Feng et al. (2024), concatenation remains the most widely used approach Levine et al. (2016);119

Cong et al. (2022); Mandlekar et al. (2022). To support our analyze under this fusion approach, we120

split the first layer of MLP-based policy head ψ into ψs, ψv and rewrite the action prediction as:121

3



â = (ψs(fs) + ψv(fv)) ·Wshare + b, (2)

where fs, fv is the feature extracted by ϕs(o), ϕv(o) respectively. Under Gradient Descent (GD)-122

based policy learning, the optimization of the vision chunk’s parameters ωv is influenced by:123

∂LBC

∂ωv
=
∂||â− a||22

∂â
· ∂(ψs(fs) + ψv(fv)) ·Wshare + b)

∂fv
· ∂fv
∂ωv

. (3)

Within the execution trajectory of the task, changes in visual cues are usually subtle compared124

to proprioceptive signals. For example, when the gripper is closing, visual cues differ only at125

pixel-level Tsagkas et al. (2025), while concise and low-dimension proprioceptive signals directly126

represent this process via changes in opening degree g. As a result, the vision-proprioception127

policy naturally gravitates toward proprioceptive signals to minimize the training loss. It leads to128

optimization dominated by proprioception and suppresses the learning of ωv due to vision modality’s129

low contribution to action prediction Huang et al. (2022); Fan et al. (2023).130

As shown in Figure 1 (right), such overreliance to proprioception brings negligible impact during131

motion-consistent phases, since the execution of ongoing movements benefits significantly from132

proprioceptive signals. However, the initial positions of the target objects vary during testing and the133

proprioceptive signal does not contain object-related information. During motion-transition phases,134

the policy is required to accurately locate the target objects. The suppressed learning of vision135

modality thus regretfully impairs generalization of the vision-proprioception policy.136

4 Method137

To alleviate the suppression of the learning of vision modality during motion-transition phases, we138

propose the Gradient Adjustment with Phase-guidance (GAP) algorithm. As shown in Figure 2, we139

initially define the representation of robot’s motion and identify motion-consistent phases. Motion-140

transition phase indicators are then predicted to estimate the probability that each timestep belongs141

to motion-transition phases. Based on these indicators, we apply fine-grained gradient adjustment142

during policy learning, facilitating dynamic collaboration within the vision-proprioception policy.143

4.1 Motion Representation of Robot144

Proprioceptive signals of the trajectory [s1, s2, ..., sN ] directly provide the state of the gripper’s145

position p, orientation θ, and opening degree g. The variations in them effectively capture the146

motion of the robot arm over time. We first define the representation of motion for further motion-147

transition phase estimation. Specifically, the motion between timestep i and timestep j is defined148

as: mi:j = {pi:j , θi:j , gi:j}, where pi:j = pj − pi denotes the change in the gripper’s 3D position,149

θi:j = θj − θi denotes the change in orientation, and gi:j = gj − gi denotes the change in gripper150

opening. Together, these three dimensions provide a complete representation of the robot’s motion.151

4.2 Motion-Transition Phase Estimation152

The represented motion captures the movement of robot arm, allowing expert demonstrations to be153

segmented into sequences of continuous states that correspond to semantically similar motions. To154

leverage this property for identifying motion-consistent phases, we employ the simple yet effective155

Change Point Detection (CPD) algorithm Liu et al. (2013); Aminikhanghahi and Cook (2017). The156

overall motion of a trajectory phase τt1:t2 can be characterized by mt1:t2 . Based on whether the157

directions of these changes are consistent, we define the following distance between phase motion158

mt1:t2 and adjacent motion mi:i+1:159

d(mt1:t2 ,mi:i+1) = −cos(pt1:t2 , pi:i+1)− αcos(θt1:t2 , θi:i+1)− β(sgn(gt1:t2) == sgn(gi:i+1)),
(4)
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Figure 2: The pipeline of our Gradient Adjustment with Phase-guidance (GAP) algorithm. We
define the motion representation and identify the motion-consistent phases by minimizing the total
cost between phase motion and each adjacent motion. Motion-transition phase indicators are then
estimated to reduce the magnitude of proprioception’s backward gradient. GAP facilitates vision-
proprioception policies to effectively utilize proprioception without suppressing vision modality.

where sgn(·) denotes the sign function, and α, β are weighting factors for the orientation and opening160

degree component respectively. The statistic that measure the motion inconsistency of phase τt1:t2161

is defined as ct1:t2 =
∑t2−1

i=t1
d(mt1:t2 ,mi:i+1). The Change Point Detection algorithm leverages162

dynamic programming to identify a set of indices I that minimize the total cost
∑

I cτI , segmenting163

the trajectory into motion-consistent phases.164

Motion of the robot transits within the intervals between these phases, requiring the policy to locate165

target object. Vision is therefore expected to play a more significant role. To model motion transitions,166

we further utilize the temporal differences of proprioceptive information ∆si = si+1−si and leverage167

their sequential context with an temporal network such as LSTM. It predicts motion-transition phase168

indicators ρi to estimate the probability that timestep i belongs to motion-transition phases. The169

predicted indicators ρ is under the supervision of indices set I . Additionally, for timesteps within170

a range near the transition, we reduce the penalty applied to them in order to better capture the171

inherently continuous and gradual transition process.172

4.3 Gradient adjustment for Modality Collaboration173

The vision-proprioception policy extracts features from both vision and proprioception modalities174

using two separate chunks ϕv, ϕs, which consist of an encoder and a temporal transformer, these175

features are then fused and fed into policy head to predict the action. However, since visual cues176

during motion-transition phases may be subtle, the policy tends to rely heavily on features of177

proprioception. As a result, the gradient optimization for corresponding samples becomes dominated178

by proprioceptive inputs, which in turn constrains the learning of the vision modality chunk ϕv .179

To mitigate this, we employ gradient adjustment to control the optimization of proprioceptive chunk180

ϕs during motion-transition phases, thereby guiding the vision-proprioception policy to focus more181

on visual cues and preventing the degradation of its generalization. Concretely, in the j-th epoch of182

Gradient Descent (GD)-based optimization, the parameters of the proprioceptive feature chunk ωj
s183

are updated according to the following formula:184

ωj+1
s = ωj

s − λ · (1− ρ) · η∇ωj
sLBC(ω

j
s), (5)
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where η is the learning rate, λ is a hyper-parameter that controls the degree of adjustment. For each185

timestep, we modulate the magnitude of the proprioception backward gradient based on its indicator ρ186

of belonging to motion-transition phases. The higher value of ρ leads to greater degree of modulation.187

By applying gradient adjustment with phase-guidance as illustrated in Algorithm 1, the vision-188

proprioception policy is enabled to effectively leverage proprioceptive information without compro-189

mising its generalization ability.190

Algorithm 1 Vision-Proprioception Policy Learning with Gradient Adjustment
Notations: Expert demonstrations oe, proprioceptive signals se, epoch number T , vision-
proprioception policy πv+s, proprioception chunk parameters ωs, vision chunk parameters ωv .

Motion-Transition Phase Estimation
Identify motion-consistent phases by Change Point Detection I ← CPD(se);
Predict motion-transition phase indicators ρ← LSTM(∆se) ;

Gradient Adjustment during Policy Learning
for j = 0, 1, · · · , T − 1 do

Sample a fresh mini-batch Bj from expert demonstrations oe;
Feed-forward the batched data Bj to πv+s;
Calculate average indicator ρj of Bj ;
Update proprioception chunk ωj+1

s using Equation 5;
Update vision chunk ωj+1

v .
end for

5 Experiments191

In this section, we conduct validate the versatility and effectiveness of our proposed Gradient192

Adjustment with Phase-guidance (GAP) algorithm through a series of question-driven experiments.193

The evaluations comprehensively cover a wide range of manipulation tasks, including simple pick-194

and-place tasks, rotation-sensitive tasks, as well as long-horizon and contact-rich tasks.195

5.1 Experimental Setup196

We select two simulated environments as our benchmarks: MetaWorld Yu et al. (2020) and RoboSuite197

Zhu et al. (2020). Tasks in MetaWorld are relatively simple, featuring a 4-dimensional action space198

that includes the gripper’s position and its opening degree, while tasks in RoboSuite involve complex199

scenarios, longer task sequence horizons and richer physical interactions, with the action space further200

including the orientation of the gripper. For real-world experiments shown in Figure 3, we use a201

6-DoF xArm 6 robotic arm equipped with a Robotiq gripper for all one-arm tasks. Moreover, we202

utilize the open-source Cobot Magic platform to support tasks that require dual-arm collaboration.203

In all tasks, the initial position of target object varies randomly in each validation, while the initial204

position of gripper remains fixed.205

5.2 Can vision-proprioception policies outperform after GAP?206

Vision-Proprioception policies perform generally worse than vision-only policies. Can they out-207

perform vision-only policies after our GAP algorithm is applied? To answer this, we conducted208

comparative analyses between our algorithm and the following baselines:209

• MS-Bot Feng et al. (2024): this method uses state tokens with stage information to guide210

the dynamic collaboration of modalities within multi-modality policy.211

• Auxiliary Loss (Aux): following HumanPlus Fu et al. (2024), we use visual feature to212

predict the next frames as an auxiliary loss, which tries to enhance the vision modality.213

• Mask: to prevents the overfitting to specific modality, RDT-1B Liu et al. (2024) randomly214

and independently masks each uni-modal input with a certain probability during encoding.215

We adapt the algorithm by masking only proprioception modality instead.216
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Figure 3: Visualization of real-world tasks. Our experiments cover a wide range of manipulation
tasks, including both One-Arm and Dual-Arm Setups.

Results in Table 1 demonstrate that vision-proprioception policies with our GAP applied outperform217

vision-only policies and other methods. Although MS-Bot achieves overall improvements over the218

vision-only policy by incorporating stage information, it focuses on the semantic stage instead of219

motion-transition phases. As a result, its benefits are marginal in tasks like “push-wall” and “lift lid220

and pour”, where motion frequently transits. This highlights the necessity of fine-grained gradient221

adjustment during motion-transition phases. Auxiliary loss forces the vision-proprioception policy to222

concentrate on visual input during the whole task, which falls short in tasks requiring proprioception223

to enhance the precision and robustness of manipulation, such as “threading”. Meanwhile, masking224

the proprioceptive input with a fixed probability overlooks the modality temporality of manipulation225

tasks, resulting in minimal improvement. By adaptively applying fine-grained gradient adjustment226

during motion-transition phases, GAP enables the vision-proprioception policy to effectively leverage227

these two modalities and outperform both the vision-only policy and other methods.228

Table 1: Comparisons with other methods in both simulated and real-world environments. The
vision-proprioception policies after our gradient adjustment significantly outperform other methods.

Suite Meta-World RoboSuite

Method
Task

pick-place assembly disassemble push-wall bin-picking hammer stack threading

Vision-only 92% 82% 85% 64% 63% 86% 67% 44%
Concatenation 79% 76% 80% 56% 49% 79% 56% 34%

MS-Bot Feng et al. (2024) 90% 93% 88% 67% 70% 88% 70% 51%
Aux Fu et al. (2024) 89% 93% 78% 51% 55% 72% 55% 47%
Mask Liu et al. (2024) 86% 90% 84% 82% 61% 79% 62% 48%
GAP (Ours) 94% 96% 91% 73% 70% 91% 77% 52%

Setup Real One-Arm Real Dual-Arm

Method
Task

press button put cube in drawer use rag to sweep table handover put thermos into bag lift lid and pour

Vision-only 18/20 14/20 9/20 15/20 11/20 9/20
Concatenation 12/20 11/20 5/20 12/20 7/20 5/20

MS-Bot Feng et al. (2024) 20/20 16/20 11/20 16/20 13/20 10/20
Aux Fu et al. (2024) 19/20 16/20 11/20 15/20 13/20 8/20
Mask Liu et al. (2024) 18/20 14/20 7/20 15/20 9/20 7/20
GAP (Ours) 20/20 17/20 13/20 18/20 16/20 15/20

7
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Figure 4: The Intervention experiment we conduct with the regulated vision-proprioception policy.
The sight changes in success rate indicate that GAP does enhance the utilization of vision modality.

5.3 Does GAP enhance the utilization of vision modality?229

Although vision-proprioception policies outperform vision-only policies after apply GAP, it re-230

mains unclear whether GAP truly enhances the utilization of the vision modality within vision-231

proprioception policies. To answer this, we first conducted intervention experiment under the same232

settings as described in Section 1. As shown in the Figure 4, the degrees of suppression of vision233

modality during motion-transition phases are significantly reduced after applying GAP, indicating234

GAP does enhance the utilization of vision modality. We further evaluated the generalization of the235

vision-proprioception policies in out-of-distribution (OOD) scenarios. In each scenario, the initial236

distribution of object positions differs from that in the training dataset of expert demonstrations. The237

vision-only policies are less affected by such changes due to well-utilized vision modality as demon-238

strated in Tabel 2. Vision-proprioception policies exhibit poor generalization with suppressed vision.239

Meanwhile, Our algorithm alleviates this by regulating the optimization of the proprioceptive, pre-240

venting the suppression. The maintained superior performance over vision-only policy also indicates241

the effectiveness of introducing proprioception modality for precise and robust manipulation.242

Table 2: Experiments under out-of-distribution settings. For each task, our proposed GAP algorithm
enhances the generalization of the vision-proprioception policies.

Setup Meta-World RoboSuite Real One-Arm Real Dual-Arm

Method
Task

assembly bin-picking stack threading put cube in drawer handover

Vision-only 78% 59% 63% 32% 12/20 12/20
Concatenation 62% 32% 49% 28% 7/20 9/20

Ours 88% 67% 72% 49% 15/20 15/20

5.4 Is GAP compatible with Vision-Language-Action models?243

Above experiments have demonstrated that our algorithm facilitates dynamic collaboration within244

conventional vision-proprioception models. We further investigate is GAP compatible with Vision-245

Language-Action (VLA) models. Specifically, we compare fine-tuned Octo model Octo Model Team246

et al. (2024) using only visual information (Octo-V) versus using both vision and proprioception247

(Octo-VP), and tries to apply our gradient adjustment algorithm during fine-tuning. As reported248

in the original paper, policies trained with additional propioception seemed generally worse than249

vision-only policies. We observe the same trend across various tasks in Table 3. However, after250

applying our gradient adjustment algorithm, Octo-VP† achieves an average improvement of 17%251

and exhibits stronger generalization ability than Octo-V. These results suggest that our algorithm252

effectively enhances dynamic collaboration between vision and proprioception within VLA models.253
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Table 3: Performances of fine-tuned Octo. † indicates GAP is applied.

Suite Meta-World RoboSuite

Model
Task

disassemble push-wall hammer threading

Octo-V 95% 77% 92% 69%

Octo-VP 82% 65% 88% 57%

Octo-VP† 100% 85% 97% 78%

5.5 Can our algorithm be applied to various modality fusion approaches?254

The preliminary results in Section 3 reveal that the vision-proprioception policy using straightforward255

concatenation tends to perform worse than the vision-only policy. We further explore a broader set of256

fusion approaches and validate the versatility of our algorithm. Specifically, we apply GAP to three257

typical and widely used fusion approaches: concatenation, summation and FiLM Perez et al. (2018).258

As reported in Table 4, vision-only policies outperforms all three fusion approaches in tasks such as259

“pick-place” and “hammer”, indicating that vision modality suffice for certain tasks. However, they260

fail drastically in task “threading” due to demands for precise manipulation and exhibits suboptimal261

performance in task “push-wall”, which involves visual occlusions at the target location, highlighting262

the necessity of the inclusion of proprioceptive information for precise and robust manipulation.263

Table 4: Performance of typical fusion approaches combined with GAP. † indicates GAP is applied.

Suite Meta-World RoboSuite

Method
Task

pick-place assembly disassemble push-wall bin-picking hammer stack threading

Vision-only 92% 82% 85% 64% 63% 86% 67% 44%

Concatenation 79% 76% 80% 56% 49% 79% 56% 34%
Summation 78% 95% 80% 54% 61% 75% 49% 30%
FiLM 75% 91% 47% 67% 59% 76% 53% 41%

Concatenation† 94% 96% 91% 73% 70% 91% 77% 52%
Summation† 92% 97% 93% 66% 70% 88% 82% 48%
FiLM† 90% 94% 85% 74% 68% 95% 72% 46%

Concatenation preserves raw features from both modalities, but the high-dimensional redundancy264

hinders the policy to dynamically utilize each modality. As a result, it underperforms in tasks265

like “push-wall”, where effective coordination is required. Simple summation may obscure critical266

details, whose limitation is evident in precise manipulation tasks such as “threading” and “push-wall”.267

Meanwhile, FiLM applies affine transformations to conditionally adjust features, making it more268

suitable for tasks requiring modality collaboration. For instance, it achieves a notably higher score in269

“push-wall” task. However, its performance tends to degrade in simpler tasks where such complex270

conditioning may be unnecessary. Conversely, GAP successfully unlocked the full potential of the271

vision-proprioception policy, outperforming vision-only policies in all three fusion approaches.272

6 Conclusion and Limitation273

In this study, we illustrate that vision-proprioception policy would fail during motion-transition phases274

due to its suppressed vision modality. To alleviate this, we propose the Gradient Adjustment with275

Phase-guidance (GAP) algorithm, enabling dynamic collaboration between vision and proprioception276

within vision-proprioception policy. We believe this work can offer valuable insights into the277

development of vision-proprioception policies for robotic manipulation.278

Limitations. All vision-proprioception policies are trained on single embodiment in this work. As279

existing large-scale datasets often contain diverse embodiments, exploring the role of proprioception280

in cross-embodiment datasets would be promising for future research.281
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• If the authors answer NA or No, they should explain why their work has no societal576

impact or why the paper does not address societal impact.577

• Examples of negative societal impacts include potential malicious or unintended uses578

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations579

(e.g., deployment of technologies that could make decisions that unfairly impact specific580

groups), privacy considerations, and security considerations.581

• The conference expects that many papers will be foundational research and not tied582

to particular applications, let alone deployments. However, if there is a direct path to583

any negative applications, the authors should point it out. For example, it is legitimate584

to point out that an improvement in the quality of generative models could be used to585

generate deepfakes for disinformation. On the other hand, it is not needed to point out586

that a generic algorithm for optimizing neural networks could enable people to train587

models that generate Deepfakes faster.588

• The authors should consider possible harms that could arise when the technology is589

being used as intended and functioning correctly, harms that could arise when the590

technology is being used as intended but gives incorrect results, and harms following591

from (intentional or unintentional) misuse of the technology.592

• If there are negative societal impacts, the authors could also discuss possible mitigation593

strategies (e.g., gated release of models, providing defenses in addition to attacks,594

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from595

feedback over time, improving the efficiency and accessibility of ML).596

11. Safeguards597

Question: Does the paper describe safeguards that have been put in place for responsible598

release of data or models that have a high risk for misuse (e.g., pretrained language models,599

image generators, or scraped datasets)?600

Answer: [NA]601

Justification: All experiments in our work are conducted on publicly available datasets, and602

our algorithm does not involve any associated risks.603

Guidelines:604

• The answer NA means that the paper poses no such risks.605

• Released models that have a high risk for misuse or dual-use should be released with606

necessary safeguards to allow for controlled use of the model, for example by requiring607

that users adhere to usage guidelines or restrictions to access the model or implementing608

safety filters.609

• Datasets that have been scraped from the Internet could pose safety risks. The authors610

should describe how they avoided releasing unsafe images.611

• We recognize that providing effective safeguards is challenging, and many papers do612

not require this, but we encourage authors to take this into account and make a best613

faith effort.614

12. Licenses for existing assets615

Question: Are the creators or original owners of assets (e.g., code, data, models), used in616

the paper, properly credited and are the license and terms of use explicitly mentioned and617

properly respected?618

Answer: [Yes]619

Justification: All experiments in our work are conducted on publicly available datasets, and620

we have cited the original papers in Section 5.1.621

Guidelines:622

• The answer NA means that the paper does not use existing assets.623

• The authors should cite the original paper that produced the code package or dataset.624

• The authors should state which version of the asset is used and, if possible, include a625

URL.626

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.627

16



• For scraped data from a particular source (e.g., website), the copyright and terms of628

service of that source should be provided.629

• If assets are released, the license, copyright information, and terms of use in the630

package should be provided. For popular datasets, paperswithcode.com/datasets631

has curated licenses for some datasets. Their licensing guide can help determine the632

license of a dataset.633

• For existing datasets that are re-packaged, both the original license and the license of634

the derived asset (if it has changed) should be provided.635

• If this information is not available online, the authors are encouraged to reach out to636

the asset’s creators.637

13. New assets638

Question: Are new assets introduced in the paper well documented and is the documentation639

provided alongside the assets?640

Answer: [NA]641

Justification: Our work does not release new assets.642

Guidelines:643

• The answer NA means that the paper does not release new assets.644

• Researchers should communicate the details of the dataset/code/model as part of their645

submissions via structured templates. This includes details about training, license,646

limitations, etc.647

• The paper should discuss whether and how consent was obtained from people whose648

asset is used.649

• At submission time, remember to anonymize your assets (if applicable). You can either650

create an anonymized URL or include an anonymized zip file.651

14. Crowdsourcing and research with human subjects652

Question: For crowdsourcing experiments and research with human subjects, does the paper653

include the full text of instructions given to participants and screenshots, if applicable, as654

well as details about compensation (if any)?655

Answer: [NA]656

Justification: Our work does not involve crowdsourcing or research with human subjects.657

Guidelines:658

• The answer NA means that the paper does not involve crowdsourcing nor research with659

human subjects.660

• Including this information in the supplemental material is fine, but if the main contribu-661

tion of the paper involves human subjects, then as much detail as possible should be662

included in the main paper.663

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,664

or other labor should be paid at least the minimum wage in the country of the data665

collector.666

15. Institutional review board (IRB) approvals or equivalent for research with human667

subjects668

Question: Does the paper describe potential risks incurred by study participants, whether669

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)670

approvals (or an equivalent approval/review based on the requirements of your country or671

institution) were obtained?672

Answer: [NA]673

Justification: Our work does not involve crowdsourcing or research with human subjects.674

Guidelines:675

• The answer NA means that the paper does not involve crowdsourcing nor research with676

human subjects.677
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• Depending on the country in which research is conducted, IRB approval (or equivalent)678

may be required for any human subjects research. If you obtained IRB approval, you679

should clearly state this in the paper.680

• We recognize that the procedures for this may vary significantly between institutions681

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the682

guidelines for their institution.683

• For initial submissions, do not include any information that would break anonymity (if684

applicable), such as the institution conducting the review.685

16. Declaration of LLM usage686

Question: Does the paper describe the usage of LLMs if it is an important, original, or687

non-standard component of the core methods in this research? Note that if the LLM is used688

only for writing, editing, or formatting purposes and does not impact the core methodology,689

scientific rigorousness, or originality of the research, declaration is not required.690

Answer: [NA]691

Justification: The core method development in our work does not involve LLMs as any692

important, original, or non-standard components.693

Guidelines:694

• The answer NA means that the core method development in this research does not695

involve LLMs as any important, original, or non-standard components.696

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)697

for what should or should not be described.698
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