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Abstract

Proprioceptive information is critical for precise servo control by providing real-
time robotic states. Its collaboration with vision is highly expected to enhance
performances of the manipulation policy in complex tasks. However, recent studies
have reported confused observations that vision-proprioception policies frequently
suffer from poor generalization. In this work, we attempt to answer the question:
When would vision-proprioception policy fail? To this end, we conducted tem-
porally controlled experiments and found that during task sub-phases that robot’s
motion transitions, which require target localization, the vision modality of the
vision-proprioception policy fails to take effect. Further analysis reveals that the
policy naturally gravitates toward concise proprioceptive signals that offer faster
loss reduction when training, thereby dominating the optimization and suppressing
the learning of the visual modality during motion-transition phases. To alleviate
this, we propose the Gradient Adjustment with Phase-guidance (GAP) algorithm
that adaptively modulates the optimization of proprioception, enabling dynamic
collaboration within vision-proprioception policy. Specifically, we leverage propri-
oception to capture robotic states and estimate the probability of each timestep in
the trajectory belonging to motion-transition phases. During policy learning, we ap-
ply fine-grained adjustment that reduces the magnitude of proprioception’s gradient
based on estimated probabilities, leading to improved generalization of vision-
proprioception policies. The comprehensive experiments demonstrate GAP is
applicable in both simulated and real-world environments, across one-arm and dual-
arm setups, and compatible with both conventional and Vision-Language-Action
models. We believe this work can offer valuable insights into the development of
vision-proprioception policies for robotic manipulation.

1 Introduction

Proprioceptive information has long been recognized as a cornerstone of low-level robotic control,
enabling smooth motor behavior through immediate access to the robot’s internal state. This capability
is especially critical in tasks requiring high accuracy and fast correction, such as posture control|Allum
et al.| (1998)); Henze et al.| (2014)) and locomotion |Bjelonic et al.| (2016)); Lee et al.| (2020); Yang
et al.| (2023). In recent years, there has been growing interest in introducing proprioception to
learning-based manipulation |Levine et al.[|(2016); Cong et al.| (2022); Jiang et al.|(2025)). Despite
the expectations that its inclusion will empower manipulation policies to maintain precision and
robustness across various scenarios, existing works have reported confused observations: HPT Wang
et al.| (2024) demonstrated clear improvements under the joint utilization of vision and proprioception,
while Octo |Octo Model Team et al.|(2024) observed policies trained with additional propioception
seemed generally worse than vision-only policies. This discrepancy exposes a critical obstacle to
understanding: when vision-proprioception policy would fail in robotic manipulation?
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Figure 1: When would vision-proprioception policy fail? (left) Vision-Proprioception policies
perform 15.8% worse than Vision-only policies. (right) We explore this through intervening the
task execution of vision-only policy during different periods, by switching to vision-proprioception
policy. Such intervention has minimal impact during like “move forward”.
However, during like “locate base” and “assemble them”, switching leads to
noticeable degradation, indicating the vision modality fails to take effect during these phases.

Extensive prior studies have revealed that the importance of visual and proprioceptive information

could change over time within manipulation Sarlegna and Sainburg|(2009); Feng et al.| (2024); He et al.|
(2025)), which referred to as Modality Temporality. For example, during motion-consistent phases

where the robot performs ongoing movements, the policy can benefit more from proprioceptive signals.
In contrast, during the transition intervals where the robot’s motion shifts, it is required to rely more on

visual cues for accurate target localization. To verify whether the vision-proprioception policy exhibits

such collaboration, we conduct an intervention experiment in the controlled simulation environment.
Concretely, we execute the “assembly” task using the vision-only policy, but for a specific 10-timestep

period, we replace executed actions with those predicted by the vision-proprioception policy under

the same observations. As shown in Figure [T] (right), the intervention brings minimal impact during

motion-consistent phases like “move forward”, during motion-transition phases like “locate base” and

“assemble them”, the switching leads to noticeable degradation. It suggests that the vision modality

of the vision-proprioception policy fails to take effect during motion-transition phases.

We further investigate the underlying cause from an optimization perspective. During motion-
transition phases, visual cues tend to be subtle and may only differ at the pixel level
(2023). As a result, the vision-proprioception policy naturally gravitates toward the more concise
Jproprioceptive signals to minimize the training loss, thereby dominating the optimization
let all] (2022)); [Fan et al.| (2023)). This dominance suppresses the learning of the vision modality and
ultimately leads to under-utilized visual information during motion-transition phases.

To alleviate this, we propose the Gradient Adjustment with Phase-guidance (GAP) algorithm that
adaptively modulates the optimization of proprioception, enabling dynamic collaboration between
vision and proprioception. Specifically, we first define the motion of the robot using the concise
proprioception signals and segment the trajectory into motion-consistent phases. Motion of the
robot transits within the intervals between these phases, we thus employ an temporal network like
LSTM to model transition processes and estimate the probability that each timestep belongs to
motion-transition phases. During policy learning, we guide the vision-proprioception policy to focus
on essential visual cues of motion-transition phases, by applying fine-grained gradient adjustment
that reduces the magnitude of proprioception’s gradient based on estimated probabilities.

Our GAP algorithm facilitates the vision-proprioception policy to effectively utilize proprioception
without suppressing the learning of visual modality. GAP is compatible with both conventional and
Vision-Language-Action models, and its versatility and effectiveness have been validated by extensive
experiments in both simulated and real-world environments. The evaluations cover a wide range of
manipulation tasks and includes one-arm and dual-arm robotic setups. We believe this work can offer
valuable insights into the development of vision-proprioception policies for robotic manipulation.
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2 Related Work

Vision-Proprioception Policy in Manipulation. Vision has been the most commonly used modality
in robotic manipulation policies |[Zitkovich et al.|(2023)); [Kim et al.|(2024); Zeng et al.| (2024). While it
provides sufficient information to complete many manipulation tasks, visual data often includes a large
amount of noise, such as irrelevant background distractions [Tsagkas et al.[|(2025)). Therefore, more
concise proprioceptive information has been introduced by many works to assist robotic manipulation
policy, with the expectation that it can provide complementary and physically grounded information
for precise and robust task execution |Cong et al. (2022); [Mandlekar et al.[(2022); (Chi et al.| (2023);
Fu et al| (2024); [Wang et al.| (2024); [Liu et al| (2024). However, existing studies have reported
confused observations: some works demonstrate clear improvements when integrating proprioceptive
information with vision |Cong et al.| (2022); [Wang et al.| (2024), others observe limited gains or even
detrimental effects Mandlekar et al.| (2022]); (Octo Model Team et al.|(2024). [Fu et al.| (2024)) attributes
this to overfitting while |(Octo Model Team et al.| (2024)) suggests it arises from causal confusion
between the proprioceptive information and the target actions. In this study, we further explore when
vision-proprioception policy would fail and introduce a modality-temporality perspective to offer
valuable insights into the development of vision-proprioception policies for robotic manipulation.

Modality Temporality. In manipulation tasks, each modality’s contribution to decision-making
can vary significantly over time. For example, in “pick-place” task, policy must first rely on vision
to locate the target object. When moving toward the object, proprioception becomes more critical
for executing consistent and precise actions. It is proven by strong correlations between variations
in modality data and task stages|Lee et al.|(2019); He et al.| (2025)); Jiang et al.| (2025). [Feng et al.
(2024) summarizes such property of manipulation tasks as modality temporality. Given this nature
of robotic manipulation tasks, recent works have proposed approaches based on dynamic fusion Li
et al.[(2023); |[Feng et al.| (2024); He et al.|(2025) and modality selection |Jiang et al.|(2025) to improve
the performance of multimodal manipulation policies. In this study, we introduce the modality-
temporality perspective to understand the roles of vision and propriocetion and propose the gradient
adjustment algorithm to enhance dynamic collaboration within the vision-proprioception policy.

3 When Would Vision-Proprioception Policy Fail?

In this section, we first formalize the problem and further analyze when vision-proprioception policy
would fail from an optimization perspective. The vision-proprioception policy is learned under
the Behavior Cloning (BC) paradigm, which can be formulated as the Markov Decision Process
(MDP) framework [Torabi et al.|(2018)). Formally, the policy 7 takes the environment observation
o¢ € O as input at each timestep ¢. In this work, o; includes RGB-sensor readings v;, and for
vision-proprioception policy s, it includes robot proprioceptive information s; additionally. This
proprioceptive information consists of the 6D pose of robot’s gripper (p?, pf, p7, 0%,67,07) € RS in
Cartesian space and orientation, and a continuous value g; € [0, 1] representing the degree of gripper
opening, with g, = 1 denoting fully open and g; = 0 denoting fully closed.

The policy m maps the observation history to a sequence of actions: sy = 7(0t—g.t), where L
and H indicate the length of predicted action sequence and observation history respectively. For
simplicity, we set omit them in the following discussion. The training objective can be formulated as:

7" = argmin, E(,, o,)~r [LBc(T(01)), at], 1

where 7. is expert demonstration dataset and a; is action labels. In vanilla BC, £ typically represents
the Mean Squared Error (MSE) loss for continuous action spaces, or Cross-Entropy (CE) loss for
discrete action spaces. We focus solely on the vanilla MSE loss here.

In this work, we adopt standard joint-learning architecture to design the vision-proprioception policy,
which extracts features from both vision and proprioception modalities using two separate chunks
¢y, ®s. These features from two modalities are then concatenated and fed into the policy head .
Although some recent works have tried exploring alternative modality fusion approaches|Wang et al.
(2024); |[Feng et al.| (2024)), concatenation remains the most widely used approach Levine et al.[(2016));
Cong et al.|(2022); Mandlekar et al.|(2022)). To support our analyze under this fusion approach, we
split the first layer of MLP-based policy head v into s, ¥, and rewrite the action prediction as:
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a = (s(fs) + Yu(fo)) - Wenare + b, 2

where f, f, is the feature extracted by ¢,(0), ¢, (0) respectively. Under Gradient Descent (GD)-
based policy learning, the optimization of the vision chunk’s parameters w,, is influenced by:

0Lpc _ Alla—ally O(s(fs) + ¢u(f))  Wenare +5)  9fs 3
ow, O dfo Oy’

Within the execution trajectory of the task, changes in visual cues are usually subtle compared
to proprioceptive signals. For example, when the gripper is closing, visual cues differ only at
pixel-level [Tsagkas et al.|(2025)), while concise and low-dimension proprioceptive signals directly
represent this process via changes in opening degree g. As a result, the vision-proprioception
policy naturally gravitates toward proprioceptive signals to minimize the training loss. It leads to
optimization dominated by proprioception and suppresses the learning of w, due to vision modality’s
low contribution to action prediction Huang et al.| (2022); Fan et al.| (2023)).

As shown in Figure 1| (right), such overreliance to proprioception brings negligible impact during
motion-consistent phases, since the execution of ongoing movements benefits significantly from
proprioceptive signals. However, the initial positions of the target objects vary during testing and the
proprioceptive signal does not contain object-related information. During motion-transition phases,
the policy is required to accurately locate the target objects. The suppressed learning of vision
modality thus regretfully impairs generalization of the vision-proprioception policy.

4 Method

To alleviate the suppression of the learning of vision modality during motion-transition phases, we
propose the Gradient Adjustment with Phase-guidance (GAP) algorithm. As shown in Figure[2] we
initially define the representation of robot’s motion and identify motion-consistent phases. Motion-
transition phase indicators are then predicted to estimate the probability that each timestep belongs
to motion-transition phases. Based on these indicators, we apply fine-grained gradient adjustment
during policy learning, facilitating dynamic collaboration within the vision-proprioception policy.

4.1 Motion Representation of Robot

Proprioceptive signals of the trajectory [sq, s2, ..., S| directly provide the state of the gripper’s
position p, orientation #, and opening degree g. The variations in them effectively capture the
motion of the robot arm over time. We first define the representation of motion for further motion-
transition phase estimation. Specifically, the motion between timestep ¢ and timestep j is defined
as: mg.; = {pi.j,0i:5, gi:j }» where p;.; = p; — p; denotes the change in the gripper’s 3D position,
0;.; = 0; — 0; denotes the change in orientation, and g;.; = g; — ¢; denotes the change in gripper
opening. Together, these three dimensions provide a complete representation of the robot’s motion.

4.2 Motion-Transition Phase Estimation

The represented motion captures the movement of robot arm, allowing expert demonstrations to be
segmented into sequences of continuous states that correspond to semantically similar motions. To
leverage this property for identifying motion-consistent phases, we employ the simple yet effective
Change Point Detection (CPD) algorithm |[Liu et al.|(2013); ] Aminikhanghahi and Cook| (2017). The
overall motion of a trajectory phase 7., can be characterized by my,.;,. Based on whether the
directions of these changes are consistent, we define the following distance between phase motion
my, .+, and adjacent motion my;.;41:

d(My, 4y, Mizig1) = —C08(De, by s Pisit1) — c0s(0p, 45, 0iiip1) — B(sgn(gt,:4,) == 580(Giit1))s

“
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Figure 2: The pipeline of our Gradient Adjustment with Phase-guidance (GAP) algorithm. We
define the motion representation and identify the motion-consistent phases by minimizing the total
cost between phase motion and each adjacent motion. Motion-transition phase indicators are then
estimated to reduce the magnitude of proprioception’s backward gradient. GAP facilitates vision-
proprioception policies to effectively utilize proprioception without suppressing vision modality.

where sgn(-) denotes the sign function, and «, 5 are weighting factors for the orientation and opening
degree component respectively. The statistic that measure the motion inconsistency of phase 7, .4,

is defined as ¢, .4, = Zfi;ll d(ms, .45, Mizit1). The Change Point Detection algorithm leverages
dynamic programming to identify a set of indices / that minimize the total cost ) _; ¢,,, segmenting

the trajectory into motion-consistent phases.

Motion of the robot transits within the intervals between these phases, requiring the policy to locate
target object. Vision is therefore expected to play a more significant role. To model motion transitions,
we further utilize the temporal differences of proprioceptive information As; = s; 11 —s; and leverage
their sequential context with an temporal network such as LSTM. It predicts motion-transition phase
indicators p; to estimate the probability that timestep ¢ belongs to motion-transition phases. The
predicted indicators p is under the supervision of indices set I. Additionally, for timesteps within
a range near the transition, we reduce the penalty applied to them in order to better capture the
inherently continuous and gradual transition process.

4.3 Gradient adjustment for Modality Collaboration

The vision-proprioception policy extracts features from both vision and proprioception modalities
using two separate chunks ¢,,, ¢s, which consist of an encoder and a temporal transformer, these
features are then fused and fed into policy head to predict the action. However, since visual cues
during motion-transition phases may be subtle, the policy tends to rely heavily on features of
proprioception. As a result, the gradient optimization for corresponding samples becomes dominated
by proprioceptive inputs, which in turn constrains the learning of the vision modality chunk ¢,,.

To mitigate this, we employ gradient adjustment to control the optimization of proprioceptive chunk
¢ during motion-transition phases, thereby guiding the vision-proprioception policy to focus more
on visual cues and preventing the degradation of its generalization. Concretely, in the j-th epoch of
Gradient Descent (GD)-based optimization, the parameters of the proprioceptive feature chunk w?
are updated according to the following formula:

wlt! A (1= p)-nVw!Lpc(wl), ©)

-l _
= wy
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where 7 is the learning rate, A is a hyper-parameter that controls the degree of adjustment. For each
timestep, we modulate the magnitude of the proprioception backward gradient based on its indicator p
of belonging to motion-transition phases. The higher value of p leads to greater degree of modulation.

By applying gradient adjustment with phase-guidance as illustrated in Algorithm [I] the vision-
proprioception policy is enabled to effectively leverage proprioceptive information without compro-
mising its generalization ability.

Algorithm 1 Vision-Proprioception Policy Learning with Gradient Adjustment

Notations: Expert demonstrations o., proprioceptive signals s., epoch number 7', vision-
proprioception policy 7, s, proprioception chunk parameters wg, vision chunk parameters w,,.

Motion-Transition Phase Estimation
Identify motion-consistent phases by Change Point Detection I < CPD(s.);
Predict motion-transition phase indicators p <— LSTM(As,) ;

Gradient Adjustment during Policy Learning
forj=0,1,---,T—1do
Sample a fresh mini-batch B; from expert demonstrations o,;
Feed-forward the batched data B; to 7,4 ;
Calculate average indicator p; of Bj;
Update proprioception chunk w? ™! using Equation
Update vision chunk w’ 1.
end for

S Experiments

In this section, we conduct validate the versatility and effectiveness of our proposed Gradient
Adjustment with Phase-guidance (GAP) algorithm through a series of question-driven experiments.
The evaluations comprehensively cover a wide range of manipulation tasks, including simple pick-
and-place tasks, rotation-sensitive tasks, as well as long-horizon and contact-rich tasks.

5.1 Experimental Setup

We select two simulated environments as our benchmarks: MetaWorld [Yu et al.| (2020) and RoboSuite
Zhu et al.|(2020). Tasks in MetaWorld are relatively simple, featuring a 4-dimensional action space
that includes the gripper’s position and its opening degree, while tasks in RoboSuite involve complex
scenarios, longer task sequence horizons and richer physical interactions, with the action space further
including the orientation of the gripper. For real-world experiments shown in Figure (3| we use a
6-DoF xArm 6 robotic arm equipped with a Robotiq gripper for all one-arm tasks. Moreover, we
utilize the open-source Cobot Magic platform to support tasks that require dual-arm collaboration.
In all tasks, the initial position of target object varies randomly in each validation, while the initial
position of gripper remains fixed.

5.2 Can vision-proprioception policies outperform after GAP?

Vision-Proprioception policies perform generally worse than vision-only policies. Can they out-
perform vision-only policies after our GAP algorithm is applied? To answer this, we conducted
comparative analyses between our algorithm and the following baselines:

* MS-Bot|Feng et al|(2024): this method uses state tokens with stage information to guide
the dynamic collaboration of modalities within multi-modality policy.

* Auxiliary Loss (Aux): following HumanPlus [Fu et al.| (2024), we use visual feature to
predict the next frames as an auxiliary loss, which tries to enhance the vision modality.

* Mask: to prevents the overfitting to specific modality, RDT-1B [Liu et al.| (2024) randomly
and independently masks each uni-modal input with a certain probability during encoding.
We adapt the algorithm by masking only proprioception modality instead.
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Results in Table [T]demonstrate that vision-proprioception policies with our GAP applied outperform
vision-only policies and other methods. Although MS-Bot achieves overall improvements over the
vision-only policy by incorporating stage information, it focuses on the semantic stage instead of
motion-transition phases. As a result, its benefits are marginal in tasks like “push-wall” and “lift lid
and pour”, where motion frequently transits. This highlights the necessity of fine-grained gradient
adjustment during motion-transition phases. Auxiliary loss forces the vision- proprloceptlon policy to
concentrate on visual input during the whole task, which falls short in tasks requiring proprioception
to enhance the precision and robustness of manipulation, such as “threading”. Meanwhile, masking
the proprioceptive input with a fixed probability overlooks the modality temporality of manipulation
tasks, resulting in minimal improvement. By adaptively applying fine-grained gradient adjustment
during motion-transition phases, GAP enables the vision-proprioception policy to effectively leverage
these two modalities and outperform both the vision-only policy and other methods.

Table 1: Comparisons with other methods in both simulated and real-world environments. The
vision-proprioception policies after our gradient adjustment significantly outperform other methods.

Suite | Meta-World | RoboSuite
Method Task ‘ pick-place assembly disassemble push-wall bin-picking ‘ hammer stack threading
Vision-only 92% 82% 85% 64% 63% 86% 67% 44%
Concatenation 79% 76% 80% 56% 49% 79% 56% 34%
90% 93% 88% 67% 70% 88% 70% 51%
89% 93% 78% 51% 55% 72% 55% 47%
86% 90% 84% 82% 61% 79% 62% 48%
94% 96% 91% 73% 70% 91% T7% 52%
Setup | Real One-Arm | Real Dual-Arm
N ‘ press button  put cube in drawer  use rag to sweep table | handover put thermos into bag lift lid and pour
Vision-only 18/20 14/20 9/20 1520 1120 9/20
Concatenation 12/20 11720 5120 12/20 7/20 5120
20/20 16/20 1120 16/20 13/20 10/20
19/20 16/20 11/20 15/20 13/20 8/20
18/20 14/20 7/20 15/20 9/20 7/20
20/20 1720 13/20 18/20 16/20 15/20
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Figure 4: The Intervention experiment we conduct with the regulated vision-proprioception policy.
The sight changes in success rate indicate that GAP does enhance the utilization of vision modality.

5.3 Does GAP enhance the utilization of vision modality?

Although vision-proprioception policies outperform vision-only policies after apply GAP, it re-
mains unclear whether GAP truly enhances the utilization of the vision modality within vision-
proprioception policies. To answer this, we first conducted intervention experiment under the same
settings as described in Section[I] As shown in the Figure[d] the degrees of suppression of vision
modality during motion-transition phases are significantly reduced after applying GAP, indicating
GAP does enhance the utilization of vision modality. We further evaluated the generalization of the
vision-proprioception policies in out-of-distribution (OOD) scenarios. In each scenario, the initial
distribution of object positions differs from that in the training dataset of expert demonstrations. The
vision-only policies are less affected by such changes due to well-utilized vision modality as demon-
strated in Tabel 2] Vision-proprioception policies exhibit poor generalization with suppressed vision.
Meanwhile, Our algorithm alleviates this by regulating the optimization of the proprioceptive, pre-
venting the suppression. The maintained superior performance over vision-only policy also indicates
the effectiveness of introducing proprioception modality for precise and robust manipulation.

Table 2: Experiments under out-of-distribution settings. For each task, our proposed GAP algorithm
enhances the generalization of the vision-proprioception policies.

Setup | Meta-World | RoboSuite | Real One-Arm | Real Dual-Arm
Task S . .

Method assembly  bin-picking | stack threading ‘ put cube in drawer handover

Vision-only 78% 59% 63% 32% 12/20 12/20

Concatenation 62% 32% 49% 28% 7/20 9/20

Ours | 8% 67% | 72% 49% | 15/20 15/20

5.4 Is GAP compatible with Vision-Language-Action models?

Above experiments have demonstrated that our algorithm facilitates dynamic collaboration within
conventional vision-proprioception models. We further investigate is GAP compatible with Vision-
Language-Action (VLA) models. Specifically, we compare fine-tuned Octo model |Octo Model Team
et al.| (2024) using only visual information (Octo-V) versus using both vision and proprioception
(Octo-VP), and tries to apply our gradient adjustment algorithm during fine-tuning. As reported
in the original paper, policies trained with additional propioception seemed generally worse than
vision-only policies. We observe the same trend across various tasks in Table [3] However, after
applying our gradient adjustment algorithm, Octo-VP{ achieves an average improvement of 17%
and exhibits stronger generalization ability than Octo-V. These results suggest that our algorithm
effectively enhances dynamic collaboration between vision and proprioception within VLA models.
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Table 3: Performances of fine-tuned Octo.  indicates GAP is applied.

Suite | Meta-World | RoboSuite
Task | .. .
Model disassemble  push-wall | hammer threading
Octo-V | 95% 7% | 92% 69%
Octo-VP | 82% 65% | 88% 57%
Octo-VPf | 100% 8% | 9% 78%

5.5 Can our algorithm be applied to various modality fusion approaches?

The preliminary results in Section [3|reveal that the vision-proprioception policy using straightforward
concatenation tends to perform worse than the vision-only policy. We further explore a broader set of
fusion approaches and validate the versatility of our algorithm. Specifically, we apply GAP to three
typical and widely used fusion approaches: concatenation, summation and FiLM |Perez et al.[(2018).

As reported in Table[d] vision-only policies outperforms all three fusion approaches in tasks such as
“pick-place” and “hammer”, indicating that vision modality suffice for certain tasks. However, they
fail drastically in task “threading” due to demands for precise manipulation and exhibits suboptimal
performance in task “push-wall”, which involves visual occlusions at the target location, highlighting
the necessity of the inclusion of proprioceptive information for precise and robust manipulation.

Table 4: Performance of typical fusion approaches combined with GAP.  indicates GAP is applied.

Suite \ Meta-World \ RoboSuite
Method Task pick-place assembly disassemble push-wall bin-picking ‘ hammer stack threading
Vision-only | 92% 82% 85% 64% 63% | 86% 67% 44%
Concatenation 79% 76% 80% 56% 49% 79% 56% 34%
Summation 78% 95% 80% 54% 61% 75% 49% 30%
FiLM 75% 91% 47% 67% 59% 76% 53% 41%
Concatenationf 94% 96% 91% 73% 70% 91% 77% 52%
Summationf 92% 97% 93% 66% 70% 88% 82% 48%
FiLMt 90% 94% 85% 74% 68% 95% 72% 46%

Concatenation preserves raw features from both modalities, but the high-dimensional redundancy
hinders the policy to dynamically utilize each modality. As a result, it underperforms in tasks
like “push-wall”, where effective coordination is required. Simple summation may obscure critical
details, whose limitation is evident in precise manipulation tasks such as “threading” and “push-wall”.
Meanwhile, FiLM applies affine transformations to conditionally adjust features, making it more
suitable for tasks requiring modality collaboration. For instance, it achieves a notably higher score in
“push-wall” task. However, its performance tends to degrade in simpler tasks where such complex
conditioning may be unnecessary. Conversely, GAP successfully unlocked the full potential of the
vision-proprioception policy, outperforming vision-only policies in all three fusion approaches.

6 Conclusion and Limitation

In this study, we illustrate that vision-proprioception policy would fail during motion-transition phases
due to its suppressed vision modality. To alleviate this, we propose the Gradient Adjustment with
Phase-guidance (GAP) algorithm, enabling dynamic collaboration between vision and proprioception
within vision-proprioception policy. We believe this work can offer valuable insights into the
development of vision-proprioception policies for robotic manipulation.

Limitations. All vision-proprioception policies are trained on single embodiment in this work. As
existing large-scale datasets often contain diverse embodiments, exploring the role of proprioception
in cross-embodiment datasets would be promising for future research.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this work, we answer when would vision-proprioception policy fail and
introduce a modality-temporality perspective, as thoroughly presented in Abstract and
Section[1]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in Section [6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: There is no theoretical results in our work.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The details of our proposed algorithm are described in Section 2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: The code of the paper will be released upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and test details are specified in Section [5.1] and Supplementary
Materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: : In the Supplementary Material, we report the average accuracy and standard
deviation using three different random seeds. Due to computational resource limitations, we
calculate these only in main experiments of simulation environments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the Supplementary Materials, we provide detailed information on the type
of GPUs, the number of uesd GPUs, and their memory capacities.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and our work fully complies
with it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or adjustments in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on answering when vision-proprioception policy would fail
in robotic manipulation, therefore it has no societal impact.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All experiments in our work are conducted on publicly available datasets, and
our algorithm does not involve any associated risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All experiments in our work are conducted on publicly available datasets, and
we have cited the original papers in Section [5.1}
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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678 * Depending on the country in which research is conducted, IRB approval (or equivalent)

679 may be required for any human subjects research. If you obtained IRB approval, you
680 should clearly state this in the paper.

681 * We recognize that the procedures for this may vary significantly between institutions
682 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
683 guidelines for their institution.

684 * For initial submissions, do not include any information that would break anonymity (if
685 applicable), such as the institution conducting the review.

686 16. Declaration of LLLM usage

687 Question: Does the paper describe the usage of LLMs if it is an important, original, or
688 non-standard component of the core methods in this research? Note that if the LLM is used
689 only for writing, editing, or formatting purposes and does not impact the core methodology,
690 scientific rigorousness, or originality of the research, declaration is not required.

691 Answer: [NA]

692 Justification: The core method development in our work does not involve LLMs as any
693 important, original, or non-standard components.

694 Guidelines:

695 * The answer NA means that the core method development in this research does not
696 involve LLMs as any important, original, or non-standard components.

697 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
698 for what should or should not be described.
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