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Abstract

This paper studies robust nonparametric regression, in which an adversarial attacker1

can modify the values of up to q samples from a training dataset of size N . Our2

initial solution is an M-estimator based on Huber loss minimization. Compared3

with simple kernel regression, i.e. the Nadaraya-Watson estimator, this method4

can significantly weaken the impact of malicious samples on the regression per-5

formance. We provide the convergence rate as well as the corresponding minimax6

lower bound. The result shows that, with proper bandwidth selection, ℓ∞ error is7

minimax optimal. The ℓ2 error is optimal if q ≲
√
N/ ln2 N , but is suboptimal8

with larger q. The reason is that this estimator is vulnerable if there are many9

attacked samples concentrating in a small region. To address this issue, we propose10

a correction method by projecting the initial estimate to the space of Lipschitz11

functions. The final estimate is nearly minimax optimal for arbitrary q, up to a12

lnN factor.13

1 Introduction14

In the era of big data, it is common for some samples to be corrupted due to various reasons, such15

as transmission errors, system malfunctions, malicious attacks, etc. The values of these samples16

may be altered in any way, rendering many traditional machine learning techniques less effective.17

Consequently, evaluating the effects of these corrupted samples, and making corresponding robust18

strategies, have become critical tasks in the research community [1–10].19

Among all types of data contamination, adversarial attack is of particular interest in recent years20

[11–17], in which there exists a malicious adversary who aims at deteriorating our model performance.21

With this goal, the attacker alters the values of some samples using a carefully designed strategy.22

Compared with other types of undesired samples, such as accidental errors or noise, adversarial23

samples are more challenging to deal with, since their values are altered deliberately instead of24

randomly. Therefore, any learning models that can withstand adversarial attacks should also be25

resilient to other corruptions.26

Adversarial attack can be divided into poisoning attack [11–13], which manipulates training samples27

to damage the model, and evasion attack [14–17], which modifies test samples to generate wrong28

predictions. We focus on poisoning attack here. For classification problems, the labels can only29

be altered within several discrete values, thus the impact of poisoning samples is relatively limited30

[11, 18, 19]. However, regression problems are crucially different, since the response variable is31

continuous and can be altered arbitrarily far away from its ground truth. Without proper handling,32

even if only a tiny fraction of training samples are attacked, the model performance may drastically33

deteriorate. Therefore, for regression problems, defense strategies against poisoning attack are34

crucially needed.35
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Despite many previous works toward robust regression problems, most of them focus on parametric36

models [13, 20–22]. For example, there are several robust techniques for linear models, such as37

M-estimation [23], least median of squares [24], least trimmed squares [25], etc. However, for38

nonparametric methods such as kernel [26] and k nearest neighbor estimator, defense strategies39

against poisoning attack still need further exploration [27]. Actually, designing robust techniques is40

indeed more challenging for nonparametric methods than parametric one. For parametric models,41

the parameters are estimated using full dataset, while nonparametric methods have to rely on local42

training data around the query point. Even if the ratio of attacked samples among the whole dataset is43

small, the local anomaly ratio in the neighborhood of the query point can be large. As a result, the44

estimated function value at such query point can be totally wrong. Despite such difficulty, in many45

real scenarios, due to problem complexity or lack of prior knowledge, parametric models are not46

always available. Therefore, we hope to explore effective schemes to overcome the robustness issue47

of nonparametric regression.48

In this paper, we provide a theoretical study about robust nonparametric regression problem under49

poisoning attack. In particular, we hope to investigate the theoretical limit of this problem, and design50

a method to achieve this limit. With this goal, we make the following contributions:51

Firstly, we propose and analyze an estimator that minimizes a weighted Huber loss, which can be52

viewed as a combination of ℓ1 and ℓ2 loss functions, and thus achieves a tradeoff between consistency53

and adversarial robustness. It was originally proposed in [28], but to the best of our knowledge,54

it was not analyzed under adversarial setting. We show the convergence rate of both ℓ2 and ℓ∞55

risk, under the assumption that the function to estimate is Lipschitz continuous, and the noise is56

sub-exponential. An interesting finding is that if q ≲
√
N/ ln2 N , in which q is the maximum57

number of attacked samples, then the convergence rate is not affected by adversarial samples, i.e. the58

influence of poisoning samples on the overall risk is only up to a constant factor.59

Secondly, we provide an information theoretic minimax lower bound, which indicates the underlying60

limit one can achieve, with respect to q and N . The minimax lower bound without adversarial61

samples can be derived using standard information theoretic methods [29]. Under adversarial attack,62

the estimation problem is harder, thus the lower bound in [29] may not be tight enough. We design63

some new techniques to derive a tighter one. The result shows that the initial estimator has optimal64

ℓ∞ risk. If q ≲
√
N/ ln2 N , then ℓ2 risk is also minimax optimal. Nevertheless, for larger q, the65

ℓ2 risk is not optimal, indicating that this estimator is still not perfect. We then provide an intuitive66

explanation of the suboptimality. Instead of attacking some randomly selected training samples, the67

best strategy for the attacker is to focus their attack within a small region. With this strategy, majority68

of training samples are altered here, resulting in wrong estimates. A simple remedy is to increase the69

kernel bandwidth to improve robustness. Nevertheless, this will introduce additional bias in other70

regions. It turns out that ℓ∞ risk can be made optimal by adjusting the bandwidth, while ℓ2 risk is71

always suboptimal. Actually, the drawback of the initial estimator is that it does not make full use of72

the continuity of regression function, and thus unable to correct the estimation.73

Finally, motivated by the issues of the initial method mentioned above, we propose a corrected74

estimator. If the attack focuses on a small region, although the initial estimate fails here, the output75

elsewhere is still reliable. With the assumption that the underlying function is continuous, the value at76

such region can be inferred using the surrounding values. With such intuition, we propose a nonlinear77

filtering method, which makes minimal adjustment to the estimated function in ℓ1 sense, to make it78

Lipschitz continuous. The corrected estimate is then proved to be nearly minimax optimal up to only79

a lnN factor.80

The remainder of this paper is organized as follows. In section 2, we provide the problem statement81

as well as the initial estimator by Huber loss minimization. The upper bound and the minimax82

lower bound are shown in section 3. In section 4, we elaborate the corrected estimator, as well as83

related theoretical analysis. Numerical simulation results are shown in section 5. Finally, we discuss84

limitations and provide concluding remarks in section 6 and 7, respectively.85

2 The Initial Estimator86

Suppose X1, . . . ,XN ∈ Rd be N independently and identically distributed training samples, gen-87

erated from a common probability density function (pdf) f . For each sample Xi, we can receive a88
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corresponding label Yi:89

Yi =

{
η(Xi) +Wi if i /∈ B

⋆ otherwise, (1)

in which η : Rd → R is the unknown underlying function that we would like to estimate. Wi is the90

noise variable. For i = 1, . . . , N , Wi are independent, with zero mean and finite variance. B is the91

set of indices of attacked samples. ⋆ means some value determined by the attacker. For each normal92

sample Xi, the received label is Yi = η(Xi) +Wi. However, if a sample is attacked, then Yi can be93

arbitrary value determined by the attacker. The attacker can manipulate up to q samples, thus |B| ≤ q.94

Our goal is opposite to the attacker. We hope to find an estimate η̂ that is as close to η as possible,95

while the attacker aims at reducing the estimation accuracy using a carefully designed attack strategy.96

We consider white-box setting here, in which the attacker has complete access to the ground truth η,97

Xi and Wi for all i ∈ {1, . . . , N}, as well as our estimation algorithm. Under this setting, we hope98

to design a robust regression method that resists to any attack strategies.99

The quality of estimation is evaluated using ℓ2 and ℓ∞ loss, which is defined as100

R2[η̂] = E
[
sup
A

(η̂(X)− η(X))2
]
, (2)

R∞[η̂] = E
[
sup
A

sup
x
|η̂(x)− η(x)|

]
, (3)

in which A denotes the attack strategy, X denotes a random test sample that follows a distribution101

with pdf f . Our analysis can be easily generated to ℓp loss with arbitrary p.102

The kernel regression, also called the Nadaraya-Watson estimator [26, 30] is103

η̂NW (x) =

∑N
i=1 K

(
x−Xi

h

)
Yi∑N

i=1 K
(
x−Xi

h

) , (4)

in which K is the Kernel function, h is the bandwidth that will decrease with the increase of sample104

size N . η̂0(x) can be viewed as a weighted average of the labels around x. Without adversarial105

attack, such estimator converges to η [31]. However, (4) fails even if a tiny fraction of samples are106

attacked. The attacked labels can just set to be sufficiently large. As a result, η̂0(x) could be far away107

from its truth.108

Now we build the estimator based on Huber loss minimization. Similar method was proposed in [28],109

but to the best of our knowledge, the performance under adversarial setting has not been analyzed.110

We elaborate this method for completeness and notation consistency. We use η̂0 to denote the new111

estimator, which is designed as following:112

η̂0(x) = argmin
|s|≤M

N∑
i=1

K

(
x−Xi

h

)
ϕ(Yi − s), (5)

in which tie breaks arbitrarily if the minimum is not unique, and113

ϕ(u) =

{
u2 if |u| ≤ T

2T |u| − T 2 if |u| > T
(6)

is the Huber cost function.114

Here we have introduced two new parameters, namely, M and T . With M → ∞ and T → ∞,115

function ϕ becomes simple square loss, and it is straightforward to show that the resulting estimator116

(5) reduces to the Nadaraya-Watson estimator(4). M is a constant hyperparameter that does not117

change with sample size N . By restricting |s| ≤ M , we avoid the estimated value from being too118

large. It would be better if M is larger than the upper bound of |η(x)|, so that the estimation is119

not truncated too much. T balances accuracy and robustness. Smaller T ensures robustness while120

sacrificing consistency, and vice versa. To achieve better tradeoff, T need to increase with the training121

sample size N . The best rate of the growth of T with respect to N depends on the strength of the tail122

of the noise distribution. In our theoretical analysis, we will show that under sub-exponential noise,123

T ∼ lnN is optimal.124
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We would like to remark that apart from Huber loss minimization, there are other robust mean125

estimation methods, such as median-of-means (MoM) [32,33] and trimmed means [34,35]. However,126

it is not efficient to generalize these methods to nonparametric regression. For MoM, with up to q127

corrupted samples, it divides the data into at least 2q + 1 groups and then calculate the median of the128

means of values in each group. Under the regression setting, since the distribution of attacked samples129

is unknown, we have to divide the data into 2q + 1 groups within the neighborhood of each query130

point. As a result, the accuracy with N training samples with q contaminated is only comparable131

to those with N/(2q + 1) clean samples, indicating that the MoM method is ineffective. Trimmed132

means method has similar problems. The threshold of the trimmed mean need to be set uniformly133

among the whole support, while the adversarial attack may focus on a small region. As a result,134

the parameter can not be tuned optimal everywhere. The nonconsistency at attacked region and the135

inefficiency at relatively cleaner regions are two problems that can not be avoided simultaneously.136

Consequently, these alternative approaches are less effective than the M-estimator based on Huber137

loss minimization.138

Finally, we comment on the computation of the estimator (5). Note that ϕ is convex, therefore the139

minimization problem in (5) can be solved by gradient descent. The derivative of ϕ is140

ϕ′(u) =

{
2u if |u| ≤ T
2T if u > T
−2T if u < −T.

(7)

Based on (5) and (7), s can be updated using binary search. Denote ϵ as the required precision, then141

the number of iterations for binary search should be O(ln(M/ϵ)). Therefore, the computational142

complexity is higher than kernel regression up to a ln(M/ϵ) factor.143

3 Theoretical Analysis144

This section proposes the theoretical analysis of the initial estimator (5) under adversarial setting. To145

begin with, we make some assumptions about the problem.146

Assumption 1. (Problem Assumption) there exists a compact set X and several constants L, γ, fm,147

fM , D, α, σ, such that the pdf f is supported at X , and148

(a) (Lipschitz continuity) For any x1,x2 ∈ X , |η(x1)− η(x2)| ≤ L||x1 − x2||;149

(b) (Bounded f and η) For all x ∈ X , fm ≤ f(x) ≤ fM and |η(x)| ≤ M , in which M is the150

parameter used in (5);151

(c) (Corner shape restriction) For all r < D, V (B(x, r) ∩ X ) ≥ αvdr
d, in which B(x, r) is the ball152

centering at x with radius r, vd is the volume of d dimensional unit ball, which depends on the norm153

we use;154

(d) (Sub-exponential noise) The noise Wi is subexponential with parameter σ,155

E[eλWi ] ≤ e
1
2σ

2λ2

,∀|λ| ≤ 1

σ
, (8)

for i = 1, . . . , N .156

(a) is a common assumption for smoothness. (b) assumes that the pdf is bounded from both below and157

above. (c) prevents the shape of the corner of the support from being too sharp. Without assumption158

(c), the samples around the corner may not be enough, and the attacker can just attack the corner of159

the support. (d) requires that the noise is sub-exponential. If the noise assumption is weaker, e.g.160

only requiring the bounded moments of Wi up to some order, then the noise can be disperse. In this161

case, it will be harder to distinguish adversarial samples from clean samples. More discussions are162

provided in section 6.163

We then make some restrictions on the kernel function K.164

Assumption 2. (Kernel Assumption) the kernel need to satisfy: (a)
∫
K(u)du = 1; (b)K(u) =165

0,∀||u|| > 1; (c) cK ≤ K(u) ≤ CK for two constants cK and CK .166

(a) is actually not necessary, since from (5), the estimated value will not change if the kernel function167

is multiplied by a constant factor. This assumption is only for convenience of proof. (b) and (c)168
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actually requires that the kernel need to be somewhat close to the uniform function in the unit ball.169

Intuitively, if the attacker wants to modify the estimate at some x, the best way is to change the170

response of sample i with large K((Xi − x)/h), in order to make strong impact on η̂(x). To defend171

against such attack, the upper bound of K should not be too large. Besides, to ensure that clean172

samples dominate corrupted samples everywhere, the effect of each clean sample on the estimation173

should not be too small, thus K also need to be bounded from below in its support.174

Furthermore, recall that (5) has three parameters, i.e. h, T and M . We assume that these three175

parameters satisfy the following conditions.176

Assumption 3. (Parameter Assumption) h, T , M need to satisfy (a)h > ln2 N/N ; (b)T ≥ 4Lh+177

16σ lnN ; (c)M > sup
x∈X

|η(x)|.178

(a) ensures that the number of samples whose distance to x less than h is not too small. Actually, for a179

better tradeoff between bias and variance, h need to grow much faster than ln2 N/N . (b) requires that180

T ∼ lnN . Actually, the optimal growth rate of T depends on the distribution of noise. Recall that in181

Assumption 1(d), we assume that the distribution of noise is sub-exponential. If we use sub-Gaussian182

assumption instead, then it is enough for T ∼
√
lnN . If the noise is further assumed to be bounded,183

then T can just be set to constant. (c) prevents the estimate from being truncated too much.184

The upper bound of ℓ2 error is derived under these assumptions. Denote a ≲ b if a ≤ Cb for some185

constant C that depends only on L,M, γ, fm, fM , D, α, σ, cK , CK .186

Theorem 1. Under Assumption 1, 2 and 3,187

E
[
sup
A

(η̂0(X)− η(X))
2

]
≲

T 2q2

N2hd
+ h2 +

1

Nhd
. (9)

The detailed proof of Theorem 1 is shown in section 2 in the supplementary material. From the proof,188

it can also be observed that the effect of adversarial samples is higher when they concentrate at a189

small region instead of distributing uniformly over the whole support. Denote Bh(x) as the ball190

centering at x with radius h. Even if q/N is small, the proportion of attacked samples within B(x, h)191

for some x may be large, which may result in large error at x.192

The next theorem shows the bound of ℓ∞ error:193

Theorem 2. Under Assumption 1, 2, 3, if K(u) is monotonic decreasing with respect to ∥u∥, then194

E
[
sup
A

sup
x
|η̂0(x)− η(x)|

]
≲

Tq

Nhd
+ h+

lnN√
Nhd

. (10)

The proof is in section 3 in the supplementary material. We then show the minimax lower bound,195

which indicates the information theoretic limit of the adversarial nonparametric regression problem.196

In general, it is impossible to design an estimator with convergence rate faster than the following197

bound.198

Theorem 3. Let F be the collection of f, η,PN that satisfy Assumption 1, in which PN is the199

distribution of the noise W1, . . . ,WN . Then200

inf
η̂

sup
(f,η,PN )∈F

E
[
sup
A

(η̂(X)− η(X))
2

]
≳

( q

N

) d+2
d+1

+N− 2
d+2 , (11)

and201

inf
η̂

sup
(f,η,PN )∈F

E
[
sup
A

sup
x
|η̂(x)− η(x)|

]
≳

( q

N

) 1
d+1

+N− 1
d+2 . (12)

The proof is shown in section 4 in the supplementary material. In the right hand side of (11) and (12),202

N−2/(d+2) is the standard minimax lower bound for nonparametric estimation [29], which holds203

even if there are no adversarial samples. In the supplementary material, we only prove the lower204

bound with the first term in the right hand side of (11).205

Compare Theorem 1, 2 and Theorem 3, we have the following findings. We claim that the upper and206

lower bound nearly match, if these two bounds match up to a polynomial of lnN :207
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• From (10) and (12), with h ∼ max{(q/N)1/(d+1), N−1/(d+2)} and T ∼ lnN , the upper208

and minimax lower bound of ℓ∞ error nearly match.209

• If q ≲
√
N/ ln2 N , from (9) and (11), let h ∼ N− 2

d+2 , the upper and minimax lower bound210

of ℓ2 match. In fact, in this case, the convergence rate of (5) is the same as ordinary kernel211

regression without adversarial samples, i.e. h2 + 1/(Nhd). With optimal selection of h, the212

rate becomes N−2/(d+2), which is just the standard rate for nonparametric statistics [29,38].213

• The ℓ2 upper and lower bound no longer match if q ≳
√
N/ ln2 N . In this case, the optimal214

h in (9) is h ∼ (q lnN/N)2/(d+2), and resulting ℓ2 error is R2 ≲ (q lnN/N)4/(d+2),215

higher than the lower bound in (11).216

This result indicates that the initial estimator (5) is optimal under ℓ∞, or under ℓ2 with small q.217

However, under large number of adversarial samples, the ℓ2 error becomes suboptimal.218

Now we provide an intuitive understanding of the suboptimality of ℓ2 risk with large q using a simple219

one dimensional example shown in Figure 1, with N = 10000, h = 0.05, M = 3, f(x) = 1 for220

x ∈ (0, 1), η(x) = sin(2πx), and the noise follows standard normal distribution N (0, 1). For each221

x, denote qh(x), nh(x) as the number of attacked samples and total samples within (x− h, x+ h),222

respectively. For robust mean estimation problems, the breakdown point is 1/2 [39], which also223

holds locally for nonparametric regression problem. Hence, if qh(x)/nh(x) > 1/2, the estimator224

will collapse and return erroneous values even if we use Huber cost. In (a), q = 500, among225

which 250 attacked samples are around x = 0.25, while others are around x = 0.75. In this case,226

qh(x)/nh(x) < 1/2 over the whole support. The curve of estimated function is shown in Fig 1(b).227

The estimate with (5) is significantly better than kernel regression. Then we increase q to 2000. In228

this case, qh(x)/nh(x) > 1/2 around 0.25 and 0.75 (Fig 1(c)), thus the estimate fails. The estimated229

function curve shows an undesirable spike (Fig 1(d)).230
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(a) Scatter plots with q =
500.
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(b) Estimated results with
q = 500.
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(c) Scatter plots with q =
2000.

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3 Ground truth
Kernel regression
Initial estimate
Corrected estimate

(d) Estimated results with
q = 2000.

Figure 1: A simple example with q = 500 and q = 2000. In (a) and (c), red dots are attacked samples,
while blue dots are normal samples. In (b) and (d), four curves correspond to ground truth η, the
result of kernel regression, initial estimate and corrected estimate, respectively. With q = 500, the
initial estimate (5) works well. However, with q = 2000, the initial estimate fails, while the corrected
regression works well.

The above example shows that the best strategy for attacker is to focus on altering values at a small231

region. In this case, the local ratio of attacked samples surpasses the breakdown point, resulting in232

a wrong estimate. With such strategy and sufficient q, the initial estimator (5) fails to be optimal.233

Actually, (5) does not make full use of the continuity property of regression function η, and thus234

unable to detect and remove the spikes. A simple remedy is to increase h so that qh(x)/nh(x)235

becomes smaller. However, this solution will introduce additional bias. In the next section, we design236

a corrected estimator to improve (5), which will close the gap between upper and minimax lower237

bound with q ≳
√
N/ ln2 N .238

4 Corrected Regression239

In this section we propose and analyze a correction method to the initial estimator (5).240

As has been discussed in section 3, the drawback of the initial estimator is that the continuity property241

of η is not used. Consequently, an intuitive solution is to filter out the spike, and estimate η here using242
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values in surrounding locations. Linear filter does not work here since the profile of the regression243

estimate will be blurred. Therefore, we propose a nonlinear filter as following. It conducts minimum244

correction (in ℓ1 sense) to the initial result η̂0, while ensuring that the corrected estimate is Lipschitz.245

Formally, given the initial estimate η̂0(x), our method solves the following optimization problem246

η̂c = argmin
∥∇g∥∞≤L

∥η̂0 − g∥1, (13)

in which247

∥∇g∥∞ = max

{∣∣∣∣ ∂g∂x1

∣∣∣∣ , . . . , ∣∣∣∣ ∂g∂xd

∣∣∣∣} . (14)

In section 5 in the supplementary material, we prove that the solution to the optimization problem248

(13) is unique.249

(13) can be viewed as the projection of the output of initial estimator (5) into the space of Lipschitz250

function. Here we would like to explain intuitively why we use ℓ1 distance instead of other metrics251

in (13). Using the example in Fig.1(d) again, it can be observed that at the position of such spikes,252

|η(x)− g(x)| can be large. Other metrics such as ℓ2 distance impose large costs here, thus somewhat253

prevents the removal of spikes. Hence ℓ1 distance is preferred.254

The estimation error of the corrected regression can be bounded by the following theorem.255

Theorem 4. (1) Under the same conditions as Theorem 1,256

E
[
sup
A

(η̂c(X)− η(X))
2

]
≲

(
q lnN

N

) d+2
d+1

+ h2 +
lnN

Nhd
. (15)

(2) Under the same conditions as Theorem 2,257

E
[
sup
A

sup
x
|η̂c(x)− η(x)|

]
≲

Tq

Nhd
+ h+

lnN√
Nhd

. (16)

The proof is shown in section 6 in the supplementary material. Compared with Theorem 3, with258

T ∼ lnN and a proper h, the upper and lower bound nearly match.259

Now we discuss the practical implementation. (13) can not be calculated directly for a continuous260

function. Therefore, we find a approximate numerical solution instead. The detail of practical261

implementation is shown in section 1 in the supplementary material.262

5 Numerical Examples263

In this section we show some numerical experiments. In particular, we show the curve of the growth264

of mean square error over the attacked sample size q.265

For each case, we generate N = 10000 training samples, with each sample follows uniform distribu-266

tion in [0, 1]d. The kernel function is267

K(u) = 2− |u|,∀|u| ≤ 1. (17)

We compare the performance of kernel regression, the median-of-means method, initial estimate,268

and the corrected estimation under multiple attack strategies. For kernel regression, the output is269

max(min(η̂NW ,M),−M), in which η̂NW is the simple kernel regression defined in (4). We truncate270

the result into [−M,M ] for a fair comparison with robust estimators. For the median-of-means271

method, we divide the training samples into 20 groups randomly, and then conduct kernel regression272

for each group and then find the median, i.e.273

η̂MoM = Clip(med({η̂(1)NW , . . . , η̂
(m)
NW }), [−M,M ]). (18)

For the initial estimator (5), the parameters are T = 1 and M = 3. The corrected estimate uses (3)274

in the supplementary material. For d = 1, the grid count is m = 50. For d = 2, m1 = m2 = 20.275

Consider that the optimal bandwidth need to increase with the dimension, in (4), the bandwidths of276

all these four methods are set to be h = 0.03 for one dimensional distribution, and h = 0.1 for two277

dimensional case.278

The attack strategies are designed as following. Let q = 500k for k = 0, 1, . . . , 10.279
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Definition 1. There are three strategies, namely, random attack, one directional attack, and concen-280

trated attack, which are defined as following:281

(1) Random Attack. The attacker randomly select q samples among the training data to attack. The282

value of each attacked sample is −10 or 10 with equal probability;283

(2) One directional Attack. The attacker randomly select q samples among the training data to attack.284

The value of all attacked samples are 10;285

(3) Concentrated Attack. The attacker pick two random locations c1, c2 that are uniformly distributed286

in [0, 1]d. For ⌊q/2⌋ samples that are closest to c1, modify their values to 10. For ⌊q/2⌋ samples that287

are closest to c2, modify their values to −10.288
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(a) Squared root of ℓ2 error, random
attack.
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(b) Squared root of ℓ2 error, one di-
rectional attack.
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(c) Squared root of ℓ2 error, concen-
trated attack.
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(d) ℓ∞ error, random attack.
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(e) ℓ∞ error, one directional attack.
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(f) ℓ∞ error, concentrated attack.

Figure 2: Comparison of ℓ2 and ℓ∞ error between various methods for one dimensional distribution.

For one dimensional distribution, let the ground truth be289

η1(x) = sin(2πx). (19)
For two dimensional distribution,290

η(x) = sin(2πx1) + cos(2πx2). (20)

The noise follows standard Gaussian distribution N (0, 1). The performances are evaluated using291

square root of ℓ2 error, as well as ℓ∞ error. The results are shown in Figure 2 and 3 for one and292

two dimensional distributions, respectively. In these figures, each point is the average over 1000293

independent trials.294

Figure 2 and 3 show that the simple kernel regression (blue dotted line) fails under poisoning attack.295

The ℓ2 and ℓ∞ error grows fast with the increase of q. Besides, traditional median-of-means does296

not improve over kernel regression. Moreover, the initial estimator (5) (orange dash-dot line) shows297

significantly better performance than kernel estimator under random and one directional attack, as298

are shown in Fig.2 and 3, (a), (b), (d), (e). However, if the attacked samples concentrate around some299

centers, then the initial estimator fails. Compared with kernel regression, there is some but limited300

improvement for (5). Finally, the corrected estimator (red solid line) performs well under all attack301

strategies. Under random attack, the corrected estimator performs nearly the same as initial one. For302

one directional attack, the corrected estimator performs better than the initial one with large q. Under303

concentrated attack, the correction shows significant improvement. These results are consistent with304

our theoretical analysis.305
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(a) Squared root of ℓ2 error, random
attack.
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(b) Squared root of ℓ2 error, one di-
rectional attack.
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(c) Squared root of ℓ2 error, concen-
trated attack.

0 1000 2000 3000 4000 5000
q

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Su
pr

em
um

 E
rro

r

kernel
MoM
initial
corrected

(d) ℓ∞ error, random attack.
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(e) ℓ∞ error, one directional attack.
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(f) ℓ∞ error, concentrated attack.

Figure 3: Comparison of ℓ2 and ℓ∞ error between various methods for one dimensional distribution.

6 Limitations306

The major limitation is that for high dimensional feature distributions, the corrected estimator can be307

computationally expensive, since the number of grids grows exponentially with the dimensionality.308

Moreover, our theoretical results rely on Assumption 1. Nevertheless, it is not hard to generalize309

these assumptions. For (a), we can use a local polynomial method to improve the convergence rate if310

η satisfies higher order of smoothness. (b) limits the feature distribution. Actually, our analysis can311

be extended to heavy tail cases, in which the bandwidth can be made adaptive, such as [36, 37]. In312

order to achieve better tradeoff between bias and variance, in the regions with high pdf, bandwidth313

h need to be smaller, and vice versa. Currently, we only focus on distributions without tails. (d)314

requires that the noise is sub-exponential. Such restriction can also be extended to the case in which315

the noise is only assumed to have bounded moments. In this case, we can let T grow faster with N .316

Despite that we are convinced that all these assumptions can be extended with some modification, the317

current results focus on a simpler situation.318

7 Conclusion319

In this paper, we have provided a theoretical analysis of robust nonparametric regression problem320

under adversarial attack. In particular, we have derived the convergence rate of an M-estimator321

based on Huber loss minimization. We have also derived the information theoretic minimax lower322

bound, which is the underlying limit of robust nonparametric regression. The result shows that the323

initial estimator has minimax optimal ℓ∞ risk. With q ≲
√

N/ ln2 N , in which q is the number324

of adversarial samples, ℓ2 risk is also optimal. However, for large q, the initial estimator becomes325

suboptimal. In particular, if the attacker focus their attack around some centers, then the resulting326

estimate shows some undesirable spikes at these centers. Actually, the drawback of initial estimator is327

that it does not make full use of the continuity of regression function, and hence unable to detect spikes328

and correct the estimate. Motivated by such discussion, we have proposed a correction technique,329

which is a nonlinear filter that projects the estimated function into the space of Lipschitz functions.330

Our theoretical analysis shows that the corrected estimator is minimax optimal even for large q.331

Numerical experiments validate our theoretical analysis.332
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