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ABSTRACT

The global objective of inverse Reinforcement Learning (IRL) is to estimate the
unknown cost function of some MDP based on observed trajectories generated
by (approximate) optimal policies. The classical approach consists in tuning this
cost function so that associated optimal trajectories (that minimise the cumulative
discounted cost, i.e. the classical RL loss) are “similar” to the observed ones.
Prior contributions focused on penalising degenerate solutions and improving
algorithmic scalability. Quite orthogonally to them, we question the pertinence
of characterising optimality with respect to the cumulative discounted cost as it
induces an implicit bias against policies with longer mixing times. State of the art
value based RL algorithms circumvent this issue by solving for the fixed point of
the Bellman optimality operator, a stronger criterion that is not well defined for the
inverse problem. To alleviate this bias in IRL, we introduce an alternative training
loss that puts more weights on future states which yields a reformulation of the
(maximum entropy) IRL problem. The algorithms we devised exhibit enhanced
performances (and similar tractability) than off-the-shelf ones in multiple OpenAI
gym environments.

1 INTRODUCTION

Modelling the behaviours of rational agents is a long active research topic. From early attempts to
decompose human and animal locomotion Muybridge (1979) to more recent approaches to simulate
human movements Li & Todorov (2006); Mombaur (2009); Schultz & Mombaur (2009), the common
thread is an underlying assumption that the agents are acting according to some stationary policies.
To rationalise these behaviours, it is natural to assume that they are optimal with respect to some
objective function (there are evidences to back this assumption in the case of animal conditioned
learning Schmajuk & Zanutto (1997); Verschure & Althaus (2003); Maia (2010); Verschure et al.
(2014)).

The global objective of Inverse Reinforcement Learning (IRL) is inferring such objective function
given measurements of the rational agent’s behaviour, its sensory inputs and a model of the envi-
ronment Russell (1998). IRL builds upon the standard Reinforcement Learning (RL) formulation,
where the goal is to find the policy that minimises discounted cumulative costs of some Markov
Decision Process Puterman (2014). It aims at finding cost functions for which the observed behaviour
is “approximately optimal”. However this simplistic formulation admits degenerate solutions Abbeel
& Ng (2004). This led to a series of innovative reformulations to lift this indeterminacy by favouring
costs for which the observed behaviour is particularly better than alternative ones, namely maximum
margin IRL Ratliff et al. (2006) and maximum entropy IRL Ziebart et al. (2008; 2010). The latter
formulation ended up as the building block of recent breakthroughs, with both tractable and highly
performing algorithms Finn et al. (2016); Ho & Ermon (2016); Fu et al. (2017). These improvements
provided the ground for multiple practical real-life applications Ziebart et al. (2008); Bougrain et al.
(2012); Sharifzadeh et al. (2016); Jarboui et al. (2019); Martinez-Gil et al. (2020).

We propose an orthogonal improvement to this literature. We question the very pertinence of
characterising optimality w.r.t. the cumulative discounted costs as it induces a bias against policies
with longer mixing times. We propose an extension of this criterion to alleviate this issue. From this
novel objective, we derive reformulations for both the RL and IRL problems. We discuss the ability
of existing RL algorithms to solve this new formulation and we generalise existing IRL algorithms to
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solve the problem under the new criterion. We back up our proposition with empirical evidence of
improved performances in multiple OpenAI gym environments.

2 GENERALISED OPTIMALITY CRITERION

In this section, we introduce the classical settings of RL and IRL, as well as the new generalised
settings we introduce to alleviate some inherent biases of current methods.

2.1 A CLASSICAL RL SETTING

Consider an infinite horizon Markov Decision Process (MDP)M = {S,A,P, c, γ, p0}, where:
– S is either a finite or a compact subset of Rd, for some dimension d ∈ N
– A is either a finite or a compact subset of Rd

′
, for d′ ∈ N

– P is the state transition kernel, i.e., a continuous mapping from S × A to ∆(S), where ∆(·)
denotes the set of probability measures1 over some set,

– c : S ×A → R is a continuous non-negative cost function,
– p0 ∈ ∆(S) is the initial state distribution, and γ ∈ (0, 1) is the discount factor.

A policy π is a mapping indicating, at each time step t ∈ N, the action at to be chosen at the current
state st; it could depend on the whole past history of states/actions/rewards but it is well known
that one can focus solely, at least under mild assumptions, on stationary policies π : S → ∆(A).
The choice of a policy π, along with a kernel P and the initial probability p0, generates a unique
probability distribution over the sequences of states denoted by Pπ (the solution to the forward
Chapman–Kolmogorov equation). The expected cumulative discounted cost of this policy, in the MDP
M is consequently equal to Ep0,π[

∑
t γ

tc(st, at)] =
∫
s0
p0(s0)

∑∞
t=0

∫
st,at
γtPπ(st, at|s0)c(st, at).

Optimal policies are minimisers of this quantity (existence is ensured under mild assumptions
Puterman (2014)). A standard way to compute optimal policies, is to minimise the state-action value
mapping defined as: Qcπ(s, a) = c(s, a) +

∑∞
t=1

∫
st,at
γtPπ(st, at|s)c(st, at). Indeed, the expected

cumulative discounted cost of a policy is the expectation of Q-function against p0:

Ep0,π[

∞∑
t=0

γtc(st, at)] =

∫
s0,a0

p0(s0)π(a0|s0)Qcπ(s0, a0)

2.2 A BUILT-IN BIAS IN THE IRL FORMULATION

The problem gets more complicated in Inverse Reinforcement Learning where the objective is to
learn an unknown cost function c whose associated optimal policy coincides with a given one πE
(referred to as the “expert” policy). This problem is unfortunately ill-posed as all policies are optimal
w.r.t. a constant cost function Abbeel & Ng (2004). In order to lift this indeterminacy, the most
used alternative formulation is called maximum entropy inverse reinforcement learning Ziebart
et al. (2008; 2010) that aims at finding a cost function c∗ such that the expert policy πE has a
relatively small cumulative cost Ep0,πE [

∑∞
t=0 γ

tc∗] while other policies incur a much higher cost.
This implicitly boils down to learning an optimal policy (associated to some learned cost) that matches
the expert’s future state occupancy measure ρπE marginalised over the initial state distribution, where
ρπ(s, a|s0) =

∑
t γ

tPπ(st = s, at = a|s0).

State of the art approaches Ho & Ermon (2016); Fu et al. (2017) consist, roughly speaking, in a
two-step procedure. In the first step, given a cost function ĉ, an (approximately) optimal policy π̂ of
M̂ (the MDPM with ĉ for cost function), is learned. In the second step, trajectories generated by π̂
are compared to expert ones (in the sense of ρπ); then ĉ is updated to penalise states unvisited by the
expert (say, by gradient descent over some parameters). Obviously, those two steps can be repeated
until convergence (or until the generated and the original data-sets are close enough).

However, the presence of a discount factor in the definition of ρπ has a huge undesirable effect:
the total weight of the states in the far future (say, after some stage t∗) is negligible in the global

1The σ-field is always the Borel one.
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loss, as it would be of the order of γt
∗
. So trying to match the future state occupancy measure will

implicitly favours policies mimicking the behaviour in the short term. As a consequence, this would
end up in penalising policies with longer mixing times even if their stationary distribution matches
the experts on the long run. This built-in bias is a consequence of solving the reinforcement learning
step with policies that optimise the cumulative discounted costs (minimises the expectation of the
Q-functions against p0) rather than policies that achieve the Bellman optimality criterion (minimises
the Q-function for any state action pairs). Unfortunately, there is no IRL framework solving the
problem under the latter assumption.

In order to bridge this gap, we introduce a more general optimality criterion for the reinforcement
learning step; it is still defined as the expectation of the Q-function, yet not against p0 as in traditional
RL, but against both the initial and the future states distributions. To get some flexibility, we allow
the loss to weight present and future states differently by considering a probability distribution η
over N. Formally, we define the η-weighted future state measurement distribution:

P ηπ (s+, a+|s0) :=

∞∑
n=0

η(n)Pπ(sn = s+, an = a+|s0).

Using P ηπ , the new criterion is defined as:

Eηp0,π[Qcπ] :=

∫
s0

p0(s0)

∫
s+,a+

P ηπ (s+, a+|s0)Qcπ(s+, a+) = Ep0,π

[∑
k

η(k)
∑
t

γtct+k

]
where ct denotes the cost at the tth observation (c(st, at)). Any policy that minimises Eηp0,π[Qcπ] will
now be referred to as “η-optimal” (w.r.t. the cost function c). As mentioned before, the inverse RL
problem can be decomposed in two sub-problems, learning approximate optimal strategies (given
a candidate ĉ) and optimizing over ĉ (taking into account the expert distribution πE). In order to
avoid over-fitting when learning optimal policies, the standard way is to regularize the optimization
loss Geist et al. (2019). As a consequence, we consider any mapping Ω : ∆(A)S → R that is a
concave over the space of policies. The associated regularised loss of adopting a policy π given the
cost function c is defined as:

LηΩ(π, c) = Eηp0,π

[
Qcπ
]
− Ω(π) (1)

The generalised RL problem is then defined as:

RLηΩ(c) := arg min
π

LηΩ(π, c) (2)

Similarly, in order to learn simpler cost functions Ho & Ermon (2016), the optimization loss consid-
ered is in turn penalised by a convex (over the space of cost functions) regularizer ψ : R(S×A) → R.
The problem of Generalised (Maximum Entropy) Inverse Reinforcement learning, whose objective is
to learn an appropriate cost function c, is formally defined as :

IRLηψ,Ω(πE) := arg max
c

min
π
LηΩ(π, c)− LηΩ(πE , c)− ψ(c) (3)

We emphasise that simply choosing δ0 (a Dirac mass at 0) for the distribution η induces the classical
definitions of both the RL and IRL problems Ho & Ermon (2016). On the other hand, choosing
η = Geom(γ) transforms the loss into the expectation of the sum of discounted Q-functions along
the trajectory.

Hypothetically, there could be other generalisations of discounted cost. However, preserving the
compatibility of the Bellman criterion with the proposed generalisation for RL and duality properties
for IRL is not trivial (for example, polynomial decay γ

tn would break these properties). In the
following, we prove that the η-optimality framework satisfies both properties.

2.3 GENERALISED REINFORCEMENT LEARNING

As in the classical setting, solving the generalised IRL problem (Equation 3), requires solving the
generalised RL problem (Equation 2) as a sub-routine. Among the model free RL algorithms, value-
based vs. policy gradient-based methods can be distinguished. In this section, we focus on the first
type of methods as they can easily be used for the search of η-optimal policies. We provide a detailed
discussion of the limitations of current policy gradient-based methods in Appendix A, as they might
be less adapted to solving RLηΩ.
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Given a standard MDPM and policy π, the Bellman operator Tπ (from RS to RS) is defined as
Geist et al. (2019):

[Tπ(v)](s) = Ea∼π
[
c(s, a) + γEs′|s,a[v(s′)]

]
,

and its unique fixed point is called the associated value function vcπ . This concept is transposed to the
regularised case as follows: Given a concave regularisation function Ω and a policy π, the associated
regularised Bellman operator Tπ,Ω and the associated value function vcπ,Ω are respectively defined as:

Tπ,Ω : v ∈ RS → Tπ,Ω(v) = Tπ(v)− Ω(π) ∈ RS ,
and as: vcπ,Ω = Tπ,Ω(vcπ,Ω), its unique fixed point. As usual, the regularised Bellman optimality
operator T∗,Ω is in turn defined as:

T∗,Ω : v ∈ RS 7→ T∗,Ω(v) ∈ RS

[T∗,Ω(v)](s) = min
π

[Tπ,Ω(v)](s), ∀s ∈ S.

Notice that given v ∈ RS , the policy π̄v(·|s) = δā with ā = arg mina c(s, a) + γEs′|s,a[v(s′)]
achieves the minimum in the overall equation for all state s ∈ S. The policy improvement the-
orem Sutton & Barto (2018) guarantees that if vcπ,Ω is the regularised value function of π, then
π̄ := π̄vcπ,Ω dominates π (in the sense that vcπ̄,Ω(s) ≤ vcπ,Ω(s) for any state s ∈ S).

If we denote by vc∗,Ω the unique fixed point of the regularised Bellman optimality operator T∗,Ω, then
the policy π∗Ω := π̄vc∗,Ω is associated to the minimum regularised value function:

Proposition 1 Optimal regularised policy (Theorem 1 of Geist et al. (2019)) : The policy π∗Ω :=
π̄vc∗,Ω is the unique optimal regularised policy in the sense that, for all policies π, the following holds:

∀s ∈ S, vcπ∗Ω,Ω(s) = vc∗,Ω(s) ≤ vcπ,Ω(s).

Notice how the optimal regularised policy π∗Ω (that minimizes the regularised cumulative discounted
cost), is intuitively a good proxy of optimal policies in the sense of the regularised η-weighted
Q-functions (as it optimises the Q-function for all state action pairs and therefor indirectly optimises
the η-weighted Q-functions).

For this reason, we propose to exploit state of the art value base RL algorithms that optimise v∗,Ω
(such as Soft Actor Critic (SAC) Haarnoja et al. (2018)) to approximately solve the generalised setting.
Naturally, the optimality gap depends directly on the exact form of the distribution η. Unfortunately,
there is no known performance bound for such approximation. However, we found out empirically
that for Geometric and Poisson η distributions the derived IRL algorithms for the generalised setting
(which we aim to solve in this paper) did not suffer from this approximation.

2.4 GENERALISED INVERSE REINFORCEMENT LEARNING

We recall that the global objective of IRL is to learn the cost function based on an expert policy πE .
In this section, we illustrate that the solution of IRLηψ,Ω(πE) is a cost function ĉ, whose associated
optimal policy RLηΩ(ĉ) matches the expert’s future state distributions P ηπE marginalised against
ρπE rather than simply matching the occupancy measure ρπE , as in usual IRL formulation. To
alleviate notations, we denote the η-optimal policy π̂ = RLηΩ(ĉ) as RLηΩ ◦ IRLηψ,Ω(πE). This policy
minimises the worst-case cost weighted divergence dc(π̂‖πE) : S 7→ R averaged over p0, such that:

dc(π̂‖πE)(s0) :=

∫
s,a,s+,a+

c(s+, a+)
[
ρπ̂(s, a|s0)P ηπ̂ (s+, a+|s, a)− ρπE (s, a|s0)P ηπE (s+, a+|s, a)

]
This is formalised in the following proposition that requires the following notations. Given a policy
π we denote by µπ(s+, a+|s0) =

∑
t,k γ

tη(k)Pπ(st+k = s+, at+k = a+|s0) the frequency of
(s+, a+) in the η-weighted future steps of trajectories initialised according to ρπ(s, a|s0).

Proposition 2 For any convex penalty ψ, concave regulariser Ω (w.r.t. the future occupancy measure
µπ) and any expert policy πE , if η is geometric, then:

RLηΩ ◦ IRLηψ,Ω(πE) = arg min
π

max
c
L(π, c)

where: L(π, c) = −Ω(π)− ψ(c) +

∫
s0

p0(s0)dc(π‖πE)(s0)
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As mentioned before, Proposition 2 states that in its generalised formulation, solving the IRL problem
can be done by matching η-weighted future state distributions µπ (as opposed to matching ρπ in the
classical case). This proves that the generalised setting preserves the duality properties of classical
IRL. The solution of IRLηψ,Ω is a Nash-Equilibrium of a game between poicies and the cost functions:

Corollary 2.1 Under the assumptions of Proposition 2, (c̃, π̃) = (IRLηψ,Ω(πE),RLηΩ(c̃)) is a Nash-
Equilibrium of the following game:

c̃ : maxc L(π, c) + Ω(π) ; π̃ : minπ E
π
+

[
Qπ(c)

]
− Ω(π)

A practical implication of Corollary 2.1 is a template algorithm dubbed GIRL(ψ,Ω,η) and illustrated
in Algorithm 1 that can be used to solve this problem approximately.

Algorithm 1 GIRL(ψ,Ω,η) (Generalised IRL)

1: Input: Expert trajectories τE ∼ πE , initial policy πθ0 and initial cost function cw0

2: for e ∈ [1, N ] do
3: Sample trajectories τ ∼ πθi
4: Sample from τ policy state action (S+, A+) ∼ µηπ(τ)
5: Sample from τE expert state action (S+

E , A
+
E) ∼ µηπE (τE)

6: Update the cost parameter wi to maximise −ψ(cw) +
∑
S+,A+ cw(s, a)−

∑
S+
E ,A

+
E
cw(s, a)

7: Update θi using a value-based reinforcement learning algorithm to minimise cwi+1

8: Return: (πθN , cwN )

We stress out now that the concavity of Ω w.r.t. µπ in Proposition 2 is not too restrictive in practical
settings as the η-weighted entropy regulariser, amongst others, satisfies it:

Proposition 3 The η-weighted entropy regulariser H̄η
p0

defined by

H̄η
p0

(µπ) := Hη
p0

(π) = Eηp0,π

[∑
t

−γt log
[
π(at|st)

]]
is concave with respect to the occupancy measure µπ .

3 TRACTABILITY

The tractability of GIRLψ,Ω,η is a crucial requirement for practical implementation. In this section,
both the regulariser term Ω(·) and the penalty term ψ(·) are assumed to be tractably optimisable. For
example the entropy, a widely used regulariser in the RL literature is efficiently tractable in practice.
Indeed, Soft Actor Critic Haarnoja et al. (2018) uses a single sample approximation of the entropy to
optimise the entropy regularised Bellman optimality operator. Similarly, using an indicator penalty
over a subset C of possible cost functions (i.e., the penalty is infinite if c /∈ C and 0 otherwise) is
also tractable with projected gradient updates if C is convex Abbeel & Ng (2004); Syed et al. (2008);
Syed & Schapire (2007). As a consequence, establishing tractability of GIRLψ,Ω,η reduces to finding
tractable sampling schemes from µπ . This is equivalent to sampling sequentially from the η-weighted
future state distribution and the occupancy measure as:

µπ(s+, a+|s0) =

∫
s,a

ρπ(s, a|s0)P ηπ (s+, a+|s, a) =

∫
s,a

P ηπ (s, a|s0)ρπ(s+, a+|s, a)

Given a policy π, the simplest approach to sample from these distributions is to sample transitions
from a set of π-generated trajectories, denoted by {(s(i)

t , a
(i)
t )t∈{1,H}; i ∈ {1, N}}, where H is the

horizon and N is the number of trajectories.

– For the occupancy measure ρπ: given a uniformly sampled index i ∼ U [1, N ] and a time sampled
from truncated geometric distribution t ∼ Geom[1,H](γ), the associated pair of state/action (s

(i)
t , a

(i)
t )

is an (approximate) sample from the marginal of ρπ(.|s0) against p0.
– For the future state distribution P ηπ : Given a state s(i)

t sampled as above, a time k is sampled
from a truncated η[1,H−t]; the state-action (s

(i)
t+k, a

(i)
t+k) is an approximate sample from P ηπ (.|st).
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As a consequence, the above scheme shows that sampling from ρπ and P ηπ reduces to sampling indices
from Geom(γ) and η, which is tractable from both the expert and the learned policies perspective.
This proves that solving IRLηψ,Ω does not incur any additional computational burden.

4 MEGAN: MAXIMUM ENTROPY - GENERATIVE ADVERSARIAL NETWORK

This section introduces a new algorithm, called MEGAN, that will improve upon state of the art IRL
algorithms. Recent progresses in the field propose variations of GAIL Ho & Ermon (2016) in order to
solve a wide variety of problems. For example, AIRL Fu et al. (2017) uses a particular shape for the
discriminator for better transferability of the learned rewards, EAIRL Qureshi et al. (2018) applies
empowerment regulariser to policy updates to prevent over-fitting the expert demonstration, RAIRL
Jeon et al. (2020) generalises AIRL for regularised MDPs (i.e. Ω is not necessarily the entropy),
s-GAIL Kobayashi et al. (2019) generalises the formulation for multi-task RL, etc.

Their contributions were crucial to the progresses of IRL. However, we will actually focus on
improving the core algorithm GAIL so that all the aforementioned approaches can be implemented
with MEGAN instead of GAIL with improved performances.

We considered the rather classical penalty function Ho & Ermon (2016):

ψGAN (c) =

{
Eηp0,πE [g(c(s, a))] if c < 0

+∞ otherwise where: g(x) =

{
−x− log(1− ex) if x < 0

+∞ if x ≥ 0

The generalised problem boils down to using Eηπ instead of Eπ:

Proposition 4 Under the assumptions of Proposition 2, and for ψ = ψGAN (c), it holds:

RLηΩ ◦ IRLηψ(πE) = arg min
π

−Ω(π) + max
D∈(0,1)S×A

Eηπ[logD]− EηπE [log(1−D))]

The algorithm MEGAN (Maximum Entropy - Generative Adversarial Network), is then equivalent
to GIRLψGAN ,H,Geom(γ) and a generalisation of the corner stone in state of the art IRL Ho & Ermon
(2016); its pseudo-code is given in Algorithm 2.

Algorithm 2 MEGAN

1: Input: Expert trajectories τE ∼ πE , initial policy πθ0 and initial discriminator function Dw0

2: for e ∈ [1, N ] do
3: Sample trajectories τ ∼ πθi
4: Sample states randomly (St, At) ∼ τ and (S+, A+) = (St+k, At+k) where k ∼ η
5: Sample states randomly (S′t, A

′
t) ∼ τE and (S+

E , A
+
E) = (S′t+k, A

′
t+k) where k ∼ η

6: Update the cost parameter wi to maximise
[

logDw(S+, A+)− log(1−Dw(S+
E , A

+
E))
]

7: Update θi using soft actor critic to minimise the cost
[

logDwi+1

]
8: Return: (πθN , DwN )

5 EXPERIMENTS

This section is devoted to experimental evidences that MEGAN achieves state of the art performances.
It is compared to GAIL as all subsequent approaches build upon its formulation. The standard
approach to compare IRL algorithms is to consider the best performing policies obtained during the
training and evaluate their performances. This is an issue in practice as we do not have access to
such cost function in order to implement a stopping rule once the learned policy reaches a certain
performance threshold. A reasonable alternative criterion is to measure the divergence between
generated and expert future state distributions (in the sense of ρπ or µπ). In this section, we propose
to evaluate the divergence using the maximum mean discrepancy (MMD)2. We will tackle the
following questions empirically:

2A formal reminder on the definition of MMD divergence is provided in Appendix E.1 for completeness.
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-1 How does varying the parameter of a geometric η distribution affect performances?
-2 How does alternative η distribution (e.g. a Poisson) compare to the use of a geometric one?
-3 Does varying the discount factor γ produce similar performances?

Due to limited space, we only analyse single-task environments in this section. We provide in
Appendix C and D further investigations for the multi-task setting. A summary of the used hyper-
parameters is also provided in Appendix E.2.

5.1 PERFORMANCE IMPROVEMENT USING A GEOMETRIC η DISTRIBUTION

Recall that solving the IRL problem essentially boils down to finding an equilibrium between a policy
that matches the expert behaviour and a cost function that discriminates generated trajectories from
expert ones. An important property of a given algorithm is the stability of the associated equilibrium.
In order to take into account this aspect, we propose to evaluate performances using trajectories
sampled during the last 100 iterations of training. We will refer to these trajectories as the remaining
replay buffer. This procedure provides an evaluation of the policies toward which the algorithm
converges, while factoring in their stability.

Notice that the goal of GAIL is to match the distribution ρπE while MEGAN matches the distribution
µηπE . In order to take into account this difference, we propose to measure performances in terms of
cumulative costs, MMDρ = MMD(ρπ, ρπE ) and MMDµ = MMD(µ

GEOM(0.99)
π , µ

GEOM(0.99)
πE ).

We evaluate the performances of MEGAN using a truncated3 geometric η distribution with different
parameters (specifically {0, 0.25, 0.5, 0.75, 1}). Notice that using a geometric distribution with
parameter 0 is equivalent to using a Dirac mass at 0 (or equivalently solving the IRL problem using
GAIL). Similarly, using a geometric distribution with parameter 1 is equivalent to using a uniform η
distribution. The remaining values can be seen as an interpolation between these extremes.

In Figure 1, each point reports the average performances obtained using the remaining replay buffer of
3 randomly seeded instances of the algorithm. The blue curves report the average MMDρ (divergence
in the sense of the classical IRL formulation), the green curves report the average MMDµ (divergence
in the sense of the generalised IRL formulation), and the red curves report the average cumulative
costs (divergence in the sense of the environment’s ground truth). From left to right, we report the
performances in three classical control settings with varying complexity from the MuJoCo based
environments Plappert et al. (2018). In Figure 1a we used the Ant environment (a state action space
of dimension 118), in Figure 1b we used the Half-Cheetah environment (a state action space of
dimension 23) and in Figure 1c we used the Hopper environment (a state action space of dimension
14).

All the provided experiments confirmed a reduction of the average MMD divergence by 25% to
60% (in the sense of both classical IRL and generalised IRL formulations) as the parameter of the η
distribution increased to 1. This confirms that using the η-optimality objective function improves
both the stability and the ability of IRL algorithms to match faithfully the expert behaviour. Notice
that despite the fact that GAIL explicitly optimises divergence in the sense of ρπ , it under-performs
in the sense of MMDρ when compared to MEGAN (the blue curves decreases as the parameter of
the geometric distribution increases). This confirms empirically that the η-optimality framework
proposed in this paper does indeed bridge the gap between policy-based reinforcement learning
(optimising cumulative discounted costs) and value-based reinforcement learning (achieving the
Bellman optimality criterion) as it even improves performances in the sense of classical IRL.

Another important observation in Figure 1, is that for complex environments (Ant and Half-Cheetah)
the decrease of the MMD divergence -as we increased the parameter of the geometric distribution
to 1- was correlated with a decrease of the average cumulative costs by a factor of 2 to 4. This was
not the case of the Hopper environment, as we obtained similar cumulative costs despite the reduction
of the divergence by a factor of 3. This is explained by the fact that the ground truth cost function of
the Hopper environment produces similar cumulative costs for a wider variety of policies. For this
reason, the IRL solution does not need to achieve a faithful expert behaviour matching in order to
achieve good performances. This illustrates the importance of evaluating IRL algorithm with respect
to MMDρ and MMDµ when the goal is to mimic behaviors.

3Due to obvious computational limitations, the trajectories are finite
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(a) Ant environment (b) Half-Cheetah environment (c) Hopper environment

Figure 1: Performances of the policies obtained during the last 100 iteration of MEGAN: as the
parameter of η = Geom(κ) grows from 0 (equivalent to an instance of GAIL) to 1 (equivalent to an
instance of MEGAN with a uniform η), we observe that the learned policies’ generated trajectories
are increasingly similar with those generated by the expert in the sense of ρπ (classical IRL criterion),
µπ (Generalised IRL criterion) and the cumulative discounted costs (The environment’s ground truth).

(a) Ant environment (b) Half-Cheetah environment (c) Hopper environment

Figure 2: Performances of MEGAN using a Poisson η distribution: Setting the parameter of
η = Poisson(λ) to a value around the length of the expert’s movement cycle achieved similar/better
performances than those obtained using a uniform η distribution (Geom(1)). The expert cycle is
roughly 10 frames long in the Ant environment, 25 in the Half-Cheetah, and 40 in the Hopper.

5.2 PERFORMANCE IMPROVEMENT USING A POISSON η DISTRIBUTION

Using the same experimental setting from the previous section, we evaluate MEGAN’s performances
with non-geometric η distributions. In Figure 2, we plot the performances of the remaining replay
buffer obtained with geometric η distributions in blue lines, and those obtained when using a Poisson
distribution in red. To reduce clutter, we removed the cumulative costs and only provided the
divergences MMDρ (represented with solid lines in Figure 2) and MMDµ (dashed lines in Figure 2).

Despite the weaker theoretical guarantees provided in our paper for the case of non-geometric η
distributions, we observe that using a Poisson η can lead to comparable performances. Recall that
the expectation of a Poisson distribution is equal to its parameter value. This implies that solving
IRL

Poisson(λ)
ψ,Ω searches for policies that match ρπE (.|s) for states s observed around the λth frame

of the expert demonstrations. Now notice that the control tasks analysed in Figure 2, consist of
movements cycles that are repeated perpetually. Quite interestingly, setting λ to a value around the
length of an expert cycle (λ = 10 in the Ant environment, 25 in the Half-Cheetah, and 40 for the
Hopper), ended up achieving the best performances.

In a sense, the proposed η-optimality criterion can be seen as an inductive bias: we successfully
injected qualitative knowledge (the repetitive nature of the expert behaviour) by explicitly asking the
agent to focus on matching ρπ(.|s) for states s observed within a single movement cycle of the expert
demonstrations via careful parameterisation of the distribution η. In the case where such higher
understanding/representation of the expert behaviour is unavailable, using a uniform η distribution
(or a geometric η with a parameter close to 1) is a safe bet. Notice that in Figure 2, the both the blue
and red curves have comparable minimum values.
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(a) Ant environment (b) Half-Cheetah environment (c) Hopper environment

Figure 3: Performances of GAIL as we vary the discount factor γ: Neither increasing nor de-
creasing the discount factor resulted in improved performances. Agnostic of the used parameter,
GAIL was not able to match the expert behavior as well as MEGAN.

5.3 EFFECT OF VARYING THE DISCOUNT FACTOR γ

Recall that in the classical problem formulation, the discount factor γ can be interpreted as the weight
of future observations. In this section, we investigate whether changing this parameter can overcome
the buit-in bias against policies with longer mixing times, without resorting to the η-optimality
criterion. In practice, the discount factor γ is used separately in two building blocks of IRL algorithms
(including GAIL and MEGAN). The first instance is in the Bellman updates when solving the RL
problem under a given cost function: we refer to this parameter as γRL. The second instance is in the
discrimination problem when approximately sampling from ρπ: we refer to this parameter as γIRL.

Due to the finite nature of the expert demonstrations, the standard approach is to approximate
future state distributions by setting γIRL to 1 (or equivalently, sampling transitions uniformly).
This can be seen as an asymptotic behaviour of the classical problem formulation: as the discount
factor approaches 1, the associated truncated geometric distribution will converge to a uniform one.
Reducing this parameter will only accentuate the discussed issues as it entails up-sampling the early
stages of the collected demonstrations, which will inevitably favor short term imitation. On the other
hand, it is not possible to set γRL = 1 (the Bellman operator is no longer guaranteed to admit a fixed
point, and state of the art value based RL algorithms become extremely unstable). For this reason,
most practitioners set this parameter to a value reasonably close to 1.

In this section, we evaluated the remaining replay buffers obtained using GAIL as we vary the
discount factors values (γRL ∈ [0.9, 0.99, 0.999]). We emphasize that in all the reported empirical
evaluations (including previous ones, i.e. Figures 1 and 2), we fixed γIRL to 1.

In Figure 3, we report the average MMDρ divergence of the remaining replay buffer in solid lines,
and the average MMDµ divergence in dashed lines. GAIL’s performances as we vary the discount
factor are reported in blue and the best performances obtained with MEGAN are reported in red.
Reducing γRL to 0.9 accentuated the bias against policies with longer mixing times, and on the other
hand increasing it to 0.999 lead to a less reliable RL algorithm. As expected, we observe in Figure 3
that both tweaks did not entail performances on par to what we obtained using MEGAN.

6 CONCLUSION

In this paper, we generalised the classical criterion of optimality in the reinforcement learning litera-
ture by putting more weights onto future observations. Using this novel criterion, we reformulated
both the regularised RL and the maximum-entropy IRL problems. We reviewed existing RL algo-
rithms and discussed their ability to search for η-optimal policies. We also generalised classical IRL
solutions. The derived algorithm produced stable solutions with enhanced expert matching properties.

In practice, the main difference between MEGAN and GAIL is the discriminator’s sampling procedure.
This implies that it can easily replace the latter algorithm in all subsequent contributions. An
interesting future direction of research consists in evaluating the margin of improvement that can be
gained from this modification.
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BROADER IMPACT STATEMENT

Inverse reinforcement learning provides a framework to explain observed complex behaviors in
sophisticated environments. However, the inherent biases of current formulations againt policies with
longer mixing times due to the use of geometrically discounted optimality criterion, prevent existing
algorithms from reaching the frameworks full potential. By constructing approximate solutions of
the IRL problem (in the sense of the η-optimality criterion), we believe that we take a step towards
more applicable IRL algorithms. In that spirit, we also commit ourselves to releasing our code soon
in order to allow the wider community to extend our work in the future.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Laurent Bougrain, Matthieu Duvinage, and Edouard Klein. Inverse reinforcement learning to control
a robotic arm using a brain-computer interface. eNTERFACE Summer Workshop, 2012.

Thomas Degris, Patrick M Pilarski, and Richard S Sutton. Model-free reinforcement learning with
continuous action in practice. In 2012 American Control Conference (ACC), pp. 2177–2182. IEEE,
2012.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv preprint arXiv:1710.11248, 2017.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. arXiv preprint arXiv:1901.11275, 2019.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimization algorithms
I: Fundamentals, volume 305. Springer science & business media, 2013.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in neural
information processing systems, pp. 4565–4573, 2016.

Firas Jarboui, Célya Gruson-Daniel, Alain Durmus, Vincent Rocchisani, Sophie-Helene Goulet
Ebongue, Anneliese Depoux, Wilfried Kirschenmann, and Vianney Perchet. Markov decision
process for mooc users behavioral inference. In European MOOCs Stakeholders Summit, pp.
70–80. Springer, 2019.

Wonseok Jeon, Chen-Yang Su, Paul Barde, Thang Doan, Derek Nowrouzezahrai, and Joelle Pineau.
Regularized inverse reinforcement learning. arXiv preprint arXiv:2010.03691, 2020.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
ICML, volume 2, pp. 267–274, 2002.

Kyoichiro Kobayashi, Takato Horii, Ryo Iwaki, Yukie Nagai, and Minoru Asada. Situated gail:
Multitask imitation using task-conditioned adversarial inverse reinforcement learning. arXiv
preprint arXiv:1911.00238, 2019.

10



Under review as a conference paper at ICLR 2022

Weiwei Li and Emanuel Todorov. An iterative optimal control and estimation design for nonlinear
stochastic system. In Proceedings of the 45th IEEE Conference on Decision and Control, pp.
3242–3247. IEEE, 2006.

Tiago V Maia. Two-factor theory, the actor-critic model, and conditioned avoidance. Learning &
behavior, 38(1):50–67, 2010.

Francisco Martinez-Gil, Miguel Lozano, Ignacio García-Fernández, Pau Romero, Dolors Serra,
and Rafael Sebastián. Using inverse reinforcement learning with real trajectories to get more
trustworthy pedestrian simulations. Mathematics, 8(9):1479, 2020.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Katja Mombaur. Using optimization to create self-stable human-like running. Robotica, 27(3):321,
2009.

Eadweard Muybridge. Muybridges Complete human and Animal locomotion: all 781 plates from the
1887 Animal locomotion. Dover Publications, 1979.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: Challenging robotics environments and request for
research, 2018.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Ahmed H Qureshi, Byron Boots, and Michael C Yip. Adversarial imitation via variational inverse
reinforcement learning. arXiv preprint arXiv:1809.06404, 2018.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning, pp. 729–736, 2006.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, pp. 101–103, 1998.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

Nestor A Schmajuk and B Silvano Zanutto. Escape, avoidance, and imitation: A neural network
approach. Adaptive Behavior, 6(1):63–129, 1997.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Gerrit Schultz and Katja Mombaur. Modeling and optimal control of human-like running. IEEE/ASME
Transactions on mechatronics, 15(5):783–792, 2009.

Sahand Sharifzadeh, Ioannis Chiotellis, Rudolph Triebel, and Daniel Cremers. Learning to drive
using inverse reinforcement learning and deep q-networks. arXiv preprint arXiv:1612.03653, 2016.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. PMLR, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy gradient
methods for reinforcement learning with function approximation. In NIPs, volume 99, pp. 1057–
1063. Citeseer, 1999.

11



Under review as a conference paper at ICLR 2022

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. Advances
in neural information processing systems, 20:1449–1456, 2007.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear program-
ming. In Proceedings of the 25th international conference on Machine learning, pp. 1032–1039,
2008.

Paul FMJ Verschure and Philipp Althaus. A real-world rational agent: unifying old and new ai.
Cognitive science, 27(4):561–590, 2003.

Paul FMJ Verschure, Cyriel MA Pennartz, and Giovanni Pezzulo. The why, what, where, when and
how of goal-directed choice: neuronal and computational principles. Philosophical Transactions
of the Royal Society B: Biological Sciences, 369(1655):20130483, 2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle
of maximum causal entropy. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pp. 1255–1262. Omnipress, 2010.

12


