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Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for
enhancing Large Language Models (LLMs) on complex reasoning tasks. However,
existing methods suffer from an exploration dilemma: the sharply peaked initial
policies of pre-trained LLMs confine standard RL algorithms to a narrow set of
solutions, boosting single-solution accuracy (pass@1) but suppressing solution
diversity and multi-solution performance (pass@k). As a result, RLVR often
distills existing capabilities rather than discovering new reasoning strategies. To
overcome this, we introduce a Risk-Sensitive Reinforcement Learning framework.
Our approach employs a risk-seeking objective that interpolates between mean
and maximum rewards, leading to a novel algorithm, Risk-Sensitive GRPO (RS-
GRPO), which drives deeper exploration by amplifying learning from challenging
prompts. Remarkably, RS-GRPO is simple to implement, requiring only minor
code modifications. On six mathematical reasoning benchmarks and with five
different LLMs, RS-GRPO consistently improves pass@k performance while
maintaining or enhancing pass@1 accuracy.
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Figure 1: Illustration of the Risk-Sensitive RL vs Standard RL.

1 Introduction
Reinforcement learning (RL) with verifiable rewards has recently emerged as a highly effective
paradigm for enhancing large language models (LLMs) in complex reasoning domains, enabling
models to achieve superhuman performance [Jaech et al., 2024, Guo et al., 2025, Kimi et al., 2025,
Comanici et al., 2025, Seed et al., 2025]. However, a growing body of evidence reveals a critical failure
mode in this approach, which we term the exploration dilemma: while current RL methods improve
average accuracy (pass@1), they often achieve this by simply sharpening the policy distribution
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around a limited number of homogeneous solutions. This concentration of probability mass leads to
a collapse in solution diversity, causing performance on the more general pass@k metric to stagnate
or even degrade compared to the base model [Yue et al., 2025, Wu et al., 2025, He et al., 2025a,
Liu et al., 2025a, Shah et al., 2025]. Rather than discovering genuinely novel reasoning strategies,
existing methods merely reinforce pre-trained biases and fail to expand the policy’s capability frontier,
posing a significant bottleneck to progress.

We argue this dilemma arises from a fundamental mismatch between the optimization landscape
of LLMs and the dynamics of standard RL algorithms. In contrast to traditional RL settings (e.g.,
game playing [Mnih et al., 2015, Silver et al., 2017]) where training starts from a randomly initialized
policy, LLMs begin with a highly specialized policy distribution that is already sharply peaked around
certain solutions. If those initial peaks are not supported in the regions that yield optimal rewards,
standard RL optimizers face a significant challenge: they struggle to escape the gravitational pull of
the pretrained model’s biases and tend to converge to a nearby, but often suboptimal mode [Wu et al.,
2025, He et al., 2025a]. This prevents the discovery of more diverse and powerful reasoning paths.

To address this limitation, we introduce a Risk-Sensitive RL framework designed to enhance
exploration in LLM training, enabling policies to escape local optima induced by the initial bias. Our
core idea is to replace the standard risk-neutral objective, which optimizes the mean of the reward
distribution, with a risk-seeking one that instead interpolates smoothly between the mean and the
maximum reward. By employing an exponential utility function, we derive a new formulation of
policy gradient with a corresponding risk-sensitive advantage. This advantage function dynamically
re-weights optimization, placing greater emphasis on hard prompts where the model performs poorly,
thereby driving the policy to explore under-explored regions of the solution space.

Our approach is instantiated as a simple yet powerful algorithm Risk-Sensitive GRPO (RS-GRPO),
which can be implemented as a drop-in replacement for the advantage calculation in standard RL
for LLM pipelines. Through extensive experiments on six mathematical reasoning benchmarks with
a diverse set of six LLMs, we demonstrate that RS-GRPO consistently and significantly improves
pass@k performance over both the base models and the standard GRPO baseline. Crucially, RS-
GRPO achieves this while maintaining or even improving pass@1 accuracy, striking a more effective
balance than prior methods.

2 Related Work

RL Exploration Exploration remains a central challenge in reinforcement learning (RL), but its
nature differs significantly between traditional applications and LLMs. In domains like game-playing,
where policies are often trained from random initializations, broad exploration is essential and often
encouraged by intrinsic motivation based on state novelty [Oudeyer et al., 2007, Bellemare et al.,
2016, Pathak et al., 2017, Burda et al., 2018, Henaff et al., 2022, Yang et al., 2024b, Jiang et al.,
2025a]. While some have adapted intrinsic motivation to LLMs [Bai et al., 2025, Gao et al., 2025],
they often introduce auxiliary networks, complicating training and scaling.

The most direct method to encourage exploration in LLMs is to maximize policy entropy as an
auxiliary objective, but its effectiveness can be limited [Cui et al., 2025, Chen et al., 2025], spurring
research into alternative directions. Some approaches focus on enhancing the reasoning process
through self-reflection [Jiang et al., 2025b, Kumar et al., 2024, Ma et al., 2025a, Yeo et al., 2025],
while others investigate policy entropy dynamics to prevent mode collapse [Yu et al., 2025, Cui
et al., 2025, Cheng et al., 2025]. Orthogonal to these methods, our work contributes to a line of
research focused on directly optimizing for inference-time objectives. This can be viewed as a form
of risk-sensitive learning, where early efforts on Best-of-N (BoN) alignment [Gui et al., 2024, Amini
et al., 2025, Chow et al., 2025, Balashankar et al., 2025] have evolved into policy gradient methods
for pass@k optimization. Notable developments include various policy gradient formulations for
pass@k [Tang et al., 2025, Walder and Karkhanis, 2025, Mahdavi et al., 2025, Chen et al., 2025]. As
shown in Table 3 and detailed in Appendix F, our risk-sensitive framework offers two key advantages
over these pass@k optimization methods. First, our formulation naturally handles continuous rewards,
whereas prior methods are often restricted to binary signals [Chen et al., 2025, Mahdavi et al., 2025].
Second, our method yields a denser advantage signal. In most of pass@k methods, the optimization
weight vanishes once prompt accuracy surpasses a given threshold (e.g., 1− k

N ), which can hinder
Pass@1 improvement. Our risk-sensitive formulation, by contrast, sustains a non-zero gradient
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Table 1: Comparison of Pass@k optimization methods with Risk-Sensitive RL.

Methods Binary Rewards Continuous Rewards Dense Signal

Tang et al. [2025] ✓ ✓ ✗
Walder and Karkhanis [2025] ✓ ✓ ✗
Mahdavi et al. [2025] ✓ ✗ ✗
Chen et al. [2025] ✓ ✗ ✗

Risk-Sensitive (ours) ✓ ✓ ✓

even for high-accuracy prompts, thereby facilitating a more effective trade-off between Pass@k and
Pass@1 performance. Detailed comparsion can found in Appendix F.

Risk-Sensitive RL Risk-sensitive RL [Howard and Matheson, 1972, Heger, 1994, Neuneier and
Mihatsch, 1998, Mihatsch and Neuneier, 2002] aims to model and manage the risks associated with
decision-making under uncertainty, moving beyond the standard expectation-based objective. While
early work focused on risk-averse strategies for safety-critical domains such as financial trading [Filos,
2019], energy storage [Liu et al., 2024], and robotics [Nass et al., 2019, Noorani et al., 2022, Shi
et al., 2024], the advent of distributional RL [Bellemare et al., 2017] has enabled more nuanced
approaches. This paradigm facilitates not only risk-averse but also risk-seeking behaviors, which
have been shown to promote exploration in domains like game playing [Jiang et al., 2024, Ma et al.,
2025b, Mavrin et al., 2019]. Our work posits that risk-seeking optimization is critical for escaping
the sharply peaked initial policy distribution of pre-trained models and enabling broader exploration.

2.1 Background
We formulate language generation as a reinforcement learning (RL) problem. A language model acts
as a policy πθ, which generates a response y to a prompt x with probability πθ(y|x). The quality
of each response is measured by a reward function r(x, y). The standard objective is to maximize
expected reward:

J (πθ) = Ex∼D,y∼πθ(·|x)[r(x, y)]. (1)

This objective is typically optimized via policy gradient, as stated by:

∇θJ (πθ) = Es∼D,y∼πθ(·|s)[A
πθ (y)∇θ log πθ(y|x)], (2)

where Aπθ denotes the advantage function. Empirically, for each prompt x, we sample N responses
{yi}Ni=1 from πθ(·|x) and construct stochastic gradient estimates:

∇̂θJ (πθ) =
1

N

N∑
i=1

Âπθ (yi)∇θ log πθ(yi|x), (3)

where Âπθ (yi) = r(yi)− 1
N

∑N
j=1 r(yj), with yj ∼ πθ(·|x), is the advantage estimate * For clarity,

we omit terms common in RLHF, such as regularization and importance sampling, and drop the
explicit dependency on x when unambiguous.

Pass@k. Pass@k [Chen et al., 2021, Kulal et al., 2019] estimates the probability that at least one of
k generated responses is correct. It serves as a key inference-time objective, reflecting exploration
ability and approximating best-of-k under a reliable reward model:

Pass@k = E{yi}k
i=1∼πθ

[
max

(
r(y1), . . . , r(yk)

)]
. (4)

3 Risk-Sensitive Reinforcement Learning
Desiderata. Standard average reward optimization is often insufficient for tasks where exploration is
critical, particularly when the initial policy distribution is sharply peaked. To this end, we design a
new objective to promote exploration, for which we establish two primary desiderata. First, it should
value all high-reward outcomes, not just the most probable one, thereby moving beyond simple
mean-reward maximization and toward a maximum-reward-seeking objective. Second, the objective

*We omit the standard deviation normalization used in the original GRPO [Shao et al., 2024] algorithm,
which, as noted by DrGRPO [Liu et al., 2025b], introduces bias.
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(b)  Binary Reward Setting(a) Continuous Reward Setting

Figure 2: Analysis of the risk-sensitive advantage function with varying risk-sensitivity β.

should provide a flexible and principled mechanism to interpolate between optimizing for the mean
reward and the maximum reward, balancing exploration and exploitation. We find that risk-sensitive
RL provides a natural framework for designing such an objective.

Objective. To meet these desiderata, we employ the risk-sensitive objective derived from exponential
utility [Howard and Matheson, 1972]. This objective provides a principled way to control the trade-off
between exploration and exploitation. For a given policy πθ and prompt x, the risk-sensitive objective
is defined as:

JRS(πθ) = Ex∼D

[
1

β
logEy∼πθ(·|x)

[
eβr(y)

]]
, (5)

where the hyperparameter β ∈ R controls the risk-sensitivity level:

• Risk-Neutral (β → 0): Recovers the standard expected reward, E[r(y)].

• Risk-Seeking (β → +∞): Approaches the maximum reward, maxy r(y), encouraging exploration.

• Risk-Averse (β → −∞): Approaches the minimum reward, miny r(y), promoting robustness.

To effectively explore the solution space, we adopt a risk-seeking objective (β > 0). As β increases,
the objective places greater weight on high-reward outcomes, smoothly interpolating from the mean
to the maximum reward. As β → 0, it recovers the standard mean-reward objective. We now derive
the corresponding policy gradient.

3.1 Policy Gradient for the Risk-Sensitive Objective

We first derive the risk-sensitive policy gradient in theorem below, and defer its proof to Appx. E.

Theorem 1. The policy gradient of the risk-sensitive objective in Eq. (5) is given by

∇θJRS(πθ) = Ex∼D, y∼πθ(·|x)

[
Aπθ

β (y)∇θ log πθ(y | x)
]
, (6)

where the risk-sensitive advantage Aπθ

β is

Aπθ

β (y) =
1

β

(
eβr(y)

Ey′∼πθ(·|x)[e
βr(y′)]

− 1

)
. (7)

Practical Implementation In practice, we approximate the gradient for each prompt x using N

samples {yi}Ni=1 ∼ πθ(·|x), yielding ∇̂θJx(πθ) =
1
N

∑N
i=1 Â

πθ

β (yi)∇θ log πθ(yi | x), where the
empirical advantage is defined as

Âπθ

β (yi) =
1

β

(
eβr(yi)

1
N

∑N
j=1 e

βr(yj)
− 1

)
. (8)

A key feature of this formulation is that it only alters the advantage computation while leaving
the policy gradient structure intact. This allows our risk-sensitive advantage to serve as a drop-in
replacement in existing GRPO-based RL algorithms [Shao et al., 2024, Yu et al., 2025, Liu et al.,
2025b], requiring only minimal code modifications.
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Table 2: Main results on mathematical reasoning benchmarks, reporting pass@1 and pass@32
(%) for five models and three training datasets. Subscripts denote improvement over GRPO.
RS-GRPO consistently outperforms the GRPO baseline on pass@32, while maintaining or improving
pass@1 accuracy. RS-GRPO also achieves a better trade-off than prior pass@k optimization methods.

AIME24 AIME25 HMMT_Feb24 HMMT_Feb25 CMIMC25 MATH500 Average
Qwen2.5-Math-1.5B (deepmath103k): Pass@1 / Pass@32

Base 5.8 / 32.6 3.3 / 25.6 3.1 / 16.7 0.2 / 5.3 1.7 / 17.8 26.0 / 84.8 6.7 / 30.5
GRPO 16.6 / 36.4 16.2 / 41.4 6.3 / 16.3 1.6 / 11.4 7.4 / 25.4 80.2 / 94.0 21.4 / 37.5
Walder and Karkhanis [2025] 13.7 / 34.5 10.0 / 38.2 5.9 / 15.7 1.5 / 13.7 4.3 / 25.0 64.7 / 92.6 16.7 / 36.6
Mahdavi et al. [2025] 15.9 / 45.0 15.2 / 43.4 6.9 / 22.7 1.2 / 15.5 7.4 / 31.6 75.5 / 95.4 20.4 / 42.3
Chen et al. [2025] 16.2 / 44.1 14.6 / 41.9 5.6 / 20.9 1.9 / 16.4 8.0 / 29.3 79.1 / 94.3 20.9 / 41.2
RS-GRPO 16.7(+0.1) / 45.1(+8.7) 16.9(+0.7) / 42.8(+1.4) 7.2(+0.9) / 19.9(+3.6) 1.7(+0.1) / 17.6(+6.2) 7.2(-0.2) / 30.7(+5.3) 78.1(-2.1) / 95.6(+1.6) 21.3(-0.1) / 42.0(+4.5)

Qwen2.5-Math-7B (deepmath103k): Pass@1 / Pass@32
Base 2.9 / 28.8 1.6 / 22.9 1.1 / 14.8 0.7 / 6.9 0.4 / 7.7 22.5 / 91.2 4.9 / 28.7
GRPO 25.7 / 58.0 19.3 / 41.2 10.2 / 26.2 7.6 / 26.1 11.2 / 24.1 85.4 / 96.0 26.6 / 45.3
Mahdavi et al. [2025] 24.6 / 61.8 19.0 / 48.6 9.4 / 36.9 7.6 / 23.6 10.9 / 37.4 85.8 / 97.8 26.2 / 51.0
Chen et al. [2025] 26.1 / 62.3 21.1 / 47.1 8.2 / 30.9 5.8 / 24.3 10.9 / 36.2 85.6 / 97.8 26.3 / 49.8
RS-GRPO 30.2(+4.5) / 60.0(+2.0) 20.8(+1.5) / 45.1(+3.9) 11.6(+1.4) / 29.4(+3.2) 8.0(+0.4) / 26.8(+0.7) 14.7(+3.5) / 32.8(+8.7) 86.0(+0.6) / 95.8(-0.2) 28.6(+2.0) / 48.3(+3.0)

Qwen2.5-Math-7B (dapo17k): Pass@1 / Pass@32
Base 2.9 / 28.8 1.6 / 22.9 1.1 / 14.8 0.7 / 6.9 0.4 / 7.7 22.5 / 91.2 4.9 / 28.7
GRPO 32.1 / 61.0 18.7 / 37.6 12.9 / 23.5 3.0 / 13.8 2.7 / 11.8 77.8 / 92.2 24.5 / 40.0
Chen et al. [2025] 28.7 / 67.4 17.6 / 44.6 11.8 / 25.8 4.0 / 19.3 5.2 / 22.8 79.0 / 94.8 24.4 / 45.8
Mahdavi et al. [2025] 27.8 / 68.9 15.6 / 46.3 11.5 / 24.7 3.8 / 19.6 3.2 / 15.6 75.5 / 93.6 22.9 / 44.8
RS-GRPO 34.2(+2.1) / 65.8(+4.8) 18.7 / 40.7(+3.1) 16.4(+3.5) / 28.3(+4.8) 3.5(+0.5) / 16.8(+3.0) 5.4(+2.7) / 20.4(+8.6) 80.4(+2.6) / 94.8(+2.6) 26.4(+1.9) / 44.5(+4.5)

Qwen2.5-Math-7B (math12k): Pass@1 / Pass@32
Base 2.9 / 28.8 1.6 / 22.9 1.1 / 14.8 0.7 / 6.9 0.4 / 7.7 22.5 / 91.2 4.9 / 28.7
GRPO 34.0 / 58.3 13.9 / 36.5 10.1 / 23.9 1.2 / 14.2 4.8 / 23.9 78.4 / 94.2 23.7 / 41.8
RS-GRPO 33.1(-0.9) / 59.4(+1.1) 16.7(+2.8) / 37.6(+1.1) 10.0(-0.1) / 27.2(+3.3) 1.4(+0.2) / 14.5(+0.3) 5.9(+1.1) / 26.8(+2.9) 81.5(+3.1) / 94.8(+0.6) 24.8(+1.1) / 43.4(+1.6)

Qwen2.5-7B (math12k): Pass@1 / Pass@32
Base 7.4 / 35.8 3.4 / 29.2 3.8 / 17.5 0.4 / 9.1 2.4 / 20.5 62.8 / 94.0 13.4 / 34.4
GRPO 17.7 / 36.9 7.5 / 25.0 6.4 / 13.1 1.9 / 10.8 8.4 / 25.0 79.0 / 91.4 20.2 / 33.7
RS-GRPO 18.5(+0.8) / 41.1(+4.2) 12.2(+4.7) / 33.7(+8.7) 6.0(-0.4) / 14.9(+1.8) 3.2(+1.3) / 17.4(+6.6) 8.6(+0.2) / 28.1(+3.1) 80.7(+1.7) / 93.6(+2.2) 21.5(+1.3) / 38.1(+4.4)

Qwen3-4B-Base (math12k): Pass@1 / Pass@32
Base 9.5 / 39.4 5.9 / 39.3 3.7 / 15.3 0.8 / 16.3 2.7 / 26.5 66.1 / 93.8 14.8 / 38.4
GRPO 23.0 / 56.9 20.8 / 46.5 13.6 / 31.9 9.5 / 22.9 13.6 / 35.8 85.9 / 94.8 27.7 / 48.1
RS-GRPO 26.7(+3.7) / 61.2(+4.3) 26.1(+5.3) / 48.3(+1.8) 14.1(+0.5) / 35.2(+3.3) 13.1(+3.6) / 35.1(+12.2) 14.2(+0.6) / 41.6(+5.8) 87.4(+1.5) / 97.4(+2.6) 30.3(+2.6) / 53.1(+5.0)

Llama-3.1-8B-Instruct (math12k): Pass@1 / Pass@32
Base 5.8 / 31.0 1.1 / 17.2 0.7 / 10.1 0.2 / 6.1 1.1 / 13.3 50.4 / 89.6 9.9 / 27.9
GRPO 9.9 / 25.9 1.2 / 8.5 2.5 / 3.9 0.0 / 0.1 0.6 / 9.1 56.8 / 78.4 11.8 / 21.0
RS-GRPO 9.4(-0.5) / 29.2(+3.3) 0.6(-0.6) / 9.3(+0.8) 1.2(-1.3) / 5.1(+1.2) 0.5(+0.5) / 5.4(+5.3) 0.6 / 8.1(-1.0) 59.9(+3.1) / 83.8(+5.4) 12.0(+0.2) / 23.5(+2.5)

3.2 Analysis of the Risk-Sensitive Advantage Function

Continuous Reward Setting. As shown in Figure 2(a), in a continuous reward space, the standard
policy gradient (β → 0) yields an advantage that is linear with the reward. As β increases, the
function sharpens into a step-like curve. This transformation amplifies the advantage for high-reward
samples and suppresses it for low-reward ones.

Binary Reward Setting. Figure 2(b) illustrates the advantage dynamics in a binary reward setting
(common in RLVR) as a function of prompt accuracy—the fraction of correct responses out of
16 samples. As β increases, the advantage function increasingly prioritizes correct responses on
hard prompts (low accuracy) while reducing the penalty for incorrect ones on easy prompts (high
accuracy), as seen in the Positive and Negative subplots. Consequently, the Cumulative plot shows
that the total advantage magnitude per prompt (sum of absolute advantages) shifts from peaking
at 50%-accuracy prompts (for β → 0) toward lower-accuracy ones. This demonstrates that as β
increases, risk-sensitive RL re-weights the advantage signals to prioritize harder prompts.

4 Experiments
Full experimments see Appendix C. Table 2 provides a evaluation, covering five base models and
three training datasets (math12k, deepmath103k, dapo17k). While many pass@k-oriented baselines
fail to improve pass@1 over GRPO, RS-GRPO achieves at least comparable Pass@1 performance
and exceeds GRPO by an average of about 2% across three models (Qwen2.5-7B-Math, Qwen2.5-7B,
Qwen3-4B). In addition, RS-GRPO consistently improves pass@32 over GRPO by an average of
about 4%.

5 Conclusion
We argue that the exploration dilemma arises from the failure of standard RL algorithms to escape the
local optima defined by the sharply-peaked initial policy of pretrained models. To overcome this, we
introduce a risk-sensitive reinforcement learning framework, instantiated as the RS-GRPO algorithm.
By optimizing a risk-seeking objective, our method encourages the policy to explore under-explored
regions of the solution space, discovering novel reasoning paths. Our experiments on mathematical
reasoning benchmarks demonstrate that RS-GRPO significantly improves pass@k performance while
maintaining or improving pass@1 accuracy, achieving a more favorable trade-off than prior methods.
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Table 3: Comparison of Pass@k optimization methods with Risk-Sensitive RL.

Methods Binary Rewards Continuous Rewards Dense Signal

Tang et al. [2025] ✓ ✓ ✗
Walder and Karkhanis [2025] ✓ ✓ ✗
Mahdavi et al. [2025] ✓ ✗ ✗
Chen et al. [2025] ✓ ✗ ✗

Risk-Sensitive (ours) ✓ ✓ ✓

A Related Work

RL Exploration Exploration remains a central challenge in reinforcement learning (RL), but its
nature differs significantly between traditional applications and LLMs. In domains like game-playing,
where policies are often trained from random initializations, broad exploration is essential and often
encouraged by intrinsic motivation based on state novelty [Oudeyer et al., 2007, Bellemare et al.,
2016, Pathak et al., 2017, Burda et al., 2018, Henaff et al., 2022, Yang et al., 2024b, Jiang et al.,
2025a]. While some have adapted intrinsic motivation to LLMs [Bai et al., 2025, Gao et al., 2025],
they often introduce auxiliary networks, complicating training and scaling.

The most direct method to encourage exploration in LLMs is to maximize policy entropy as an
auxiliary objective, but its effectiveness can be limited [Cui et al., 2025, Chen et al., 2025], spurring
research into alternative directions. Some approaches focus on enhancing the reasoning process
through self-reflection [Jiang et al., 2025b, Kumar et al., 2024, Ma et al., 2025a, Yeo et al., 2025],
while others investigate policy entropy dynamics to prevent mode collapse [Yu et al., 2025, Cui
et al., 2025, Cheng et al., 2025]. Orthogonal to these methods, our work contributes to a line of
research focused on directly optimizing for inference-time objectives. This can be viewed as a form
of risk-sensitive learning, where early efforts on Best-of-N (BoN) alignment [Gui et al., 2024, Amini
et al., 2025, Chow et al., 2025, Balashankar et al., 2025] have evolved into policy gradient methods
for pass@k optimization. Notable developments include various policy gradient formulations for
pass@k [Tang et al., 2025, Walder and Karkhanis, 2025, Mahdavi et al., 2025, Chen et al., 2025]. As
shown in Table 3 and detailed in Appendix F, our risk-sensitive framework offers two key advantages
over these pass@k optimization methods. First, our formulation naturally handles continuous rewards,
whereas prior methods are often restricted to binary signals [Chen et al., 2025, Mahdavi et al., 2025].
Second, our method yields a denser advantage signal. In most of pass@k methods, the optimization
weight vanishes once prompt accuracy surpasses a given threshold (e.g., 1− k

N ), which can hinder
Pass@1 improvement. Our risk-sensitive formulation, by contrast, sustains a non-zero gradient
even for high-accuracy prompts, thereby facilitating a more effective trade-off between Pass@k and
Pass@1 performance. Detailed comparsion can found in Appendix F.

Risk-Sensitive RL Risk-sensitive RL [Howard and Matheson, 1972, Heger, 1994, Neuneier and
Mihatsch, 1998, Mihatsch and Neuneier, 2002] aims to model and manage the risks associated with
decision-making under uncertainty, moving beyond the standard expectation-based objective. While
early work focused on risk-averse strategies for safety-critical domains such as financial trading [Filos,
2019], energy storage [Liu et al., 2024], and robotics [Nass et al., 2019, Noorani et al., 2022, Shi
et al., 2024], the advent of distributional RL [Bellemare et al., 2017] has enabled more nuanced
approaches. This paradigm facilitates not only risk-averse but also risk-seeking behaviors, which
have been shown to promote exploration in domains like game playing [Jiang et al., 2024, Ma et al.,
2025b, Mavrin et al., 2019]. Our work posits that risk-seeking optimization is critical for escaping
the sharply peaked initial policy distribution of pre-trained models and enabling broader exploration.

B Why Risk-Sensitive RL is Better

Fine-tuning LLMs with RL often starts from a sharply peaked pretrained policy. Standard mean-
reward optimization methods can be trapped in local optima corresponding to high-probability regions
of this initial distribution, failing to discover global optima in low-probability areas. The risk-sensitive
approach we adopt is designed to overcome this limitation. This section provides both empirical and
theoretical support for this claim.
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Figure 3: A bandit experiment demonstrating that risk-sensitive RL can escape a local optimum
that traps its standard RL counterpart. Left: The reward landscape shows a global optimum and a
distinct local optimum where the policy is initialized. Right: A standard risk-neutral policy (β = 0)
is trapped locally, while risk-sensitive policies (β ≥ 4) converge to the global optimum.

B.1 Empirical Perspective
To illustrate the exploration dilemma, we design a 100-armed bandit problem where each action
yields a deterministic reward. Figure 3a visualizes the reward landscape, which features two distinct
peaks: a global optimum (reward 1.0) and a prominent suboptimal one (reward 0.6). We deliberately
initialize the policy as a sharp distribution centered on the suboptimal arm. This setup is analogous to
the LLM fine-tuning challenge, where pretrained models may exhibit a bias toward solutions that are
good but may not globally optimal.

We employ our risk-sensitive policy gradient algorithm to train policies with varying risk-sensitivity
parameters (β ≥ 0). The learning curves in Figure 3 reveal a evident divergence in performance. The
standard risk-neutral policy (β = 0) and its low-risk-sensitivity counterparts (e.g., β < 4) rapidly
converge to the suboptimal reward of 0.6, becoming trapped in the local optimum by exploiting the
initial policy’s high-probability region. By contrast, policies with sufficient risk-seeking behavior
(β ≥ 4) successfully escape this trap and converge to the globally optimal reward of 1.0. The
evolution of the policy distribution during training is illustrated in Figure 1.

B.2 Theoretical Perspective
In this section, We examine the one-step policy update in a simple multi-armed bandit setting,
demonstrating the fundamental advantage of the risk-sensitive objective from Eq. (5). For clarity, we
assume the uniqueness of the optimal action. Our results can be generalized to settings with multiple
optimal actions, which we defer to Appendix E.

Setup and Notation We study the K-armed bandit problem with action space A := {a1, ..., aK}
and denote the unique optimal arm by a∗ ∈ A. We assume a bounded reward function r : A → [0, 1],
and consider the softmax policy πθ parameterized by θ ∈ RK : ∀i ∈ [K], πθ(ai) = eθi/

∑K
j=1 e

θj .

Let’s compare a single policy update step. Given a starting policy πθ, we denote the updated
parameters after one step of standard policy gradient (Eq. (2)) as θ̃, and after one step of risk-sensitive
policy gradient (Eq. (6)) as θ̃β . The learning rate is assumed to be the same and omitted for simplicity.

Our first result highlights a critical flaw in the standard policy gradient: it can decrease the probability
of the optimal action. This happens if a suboptimal action exists that is nonetheless better than the
average, which can misdirect the update.
Lemma 2. If there is an action ai with reward r(ai) such that r(a∗) > r(ai) > minj r(aj), then
there exist policy parameters θ for which the standard policy gradient update decreases the probability
of the optimal action, i.e., πθ̃(a

∗) < πθ(a
∗).

In contrast, our next lemma states that the risk-sensitive policy gradient guarantees an improvement
for the optimal action, as long as β is sufficiently large.
Lemma 3. For any policy πθ and reward function r, there is a risk-sensitivity level β̄ such that for all
β > β̄, the risk-sensitive update increases the probability of the optimal action: πθ̃β (a∗) > πθ(a

∗).

Together, Lem. 2 and Lem. 3 explain why increasing β helps to escape from local optima in Fig. 3,
and provide theoretical insights into the benefits of risk-sensitive policy gradients.
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This raises a natural question: should we always use the largest possible β? The next lemma gives
a negative answer: once β exceeds a certain threshold, the policy improvement on a∗—while still
positive—decreases as β grows.
Lemma 4. For any policy πθ and reward function r, there is a threshold β̄ such that for any
β1 > β2 > β̄, the improvement on the optimal action is smaller for the larger β: 0 < πθ̃β1 (a

∗)−
πθ(a

∗) < πθ̃β2 (a
∗)− πθ(a

∗).

This result aligns with the convergence speed shown on the right of Fig. 3, where increasing β
eventually slows down the convergence. This provides crucial guidance for tuning β in practice: it
should be large to enhance exploration, but not so large that it hinders convergence speed.

C Full Experiments
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Figure 4: Pass@k performance of RS-GRPO, GRPO, and base models. (Qwen2.5-Math-1.5B,
Qwen2.5-Math-7B, Qwen2.5-7B, Qwen3-4B-Base, and Llama3.1-8B-Instruct from top to bottom.)

C.1 Setup

Training Setting We focus on mathematical reasoning tasks and train our approach on six base
models: Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, Qwen2.5-7B, Qwen3-4B-Base, and LLama3.1-8B-
Instruct [Yang et al., 2024a, 2025, Grattafiori et al., 2024]. We name our method RS-GRPO, which
extends the GRPO algorithm with the risk-sensitive advantage function (Eq. 8). The training
framework is built upon VeRL [Sheng et al., 2024] and incorporates techniques from DAPO [Yu
et al., 2025], such as dynamic sampling (filtering samples with all-0 or all-1 accuracy in each rollout)
and clip-higher. We keep the shared hyperparameters identical across all comparative experiments.
Full details of the training are provided in the Appendix G.

Evaluation Setting Our evaluation is conducted on six widely-used mathematical reasoning bench-
marks: MATH500 [Cobbe et al., 2021], AIME24, AIME25 [Mathematical Association of Amer-
ica, 2025], HMMT-Feb24, HMMT-Feb25 [Harvard-MIT Mathematics Tournament, 2025], and
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Figure 5: Ablation Study of β in RS-GRPO on Qwen2.5-Math-1.5B (top) and -7B (bottom).

CMIMC25 [Carnegie Mellon Informatics and Mathematics Competition, 2025]. The MATH500
benchmark contains 500 problems, while the other datasets consist of 30 or 40 problems each. For
most benchmarks, we generate N = 1024 candidate solutions per problem. However, for the larger
MATH500 dataset, we use N = 32 to ensure the evaluation remains computationally feasible.

C.2 Performance on Pass@k evaluation of Risk-sensitive RL

We present the pass@k performance for k ∈ {1, 2, . . . , 1024} across five LLMs and six benchmarks
in Fig. 4. The results reveal that RS-GRPO consistently and significantly outperforms both the the
standard GRPO baseline, showing comprehensive improvements on the pass@k metric. Notably, for
several models (e.g., Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, and Qwen3-4B), GRPO underper-
forms the base model at high values of k (k > 256). This suggests that GRPO merely sharpens the
existing policy distribution rather than discovering novel solutions. In contrast, RS-GRPO surpasses
the base model’s performance, demonstrating its ability to expand the model’s exploratory boundaries.
However, for some models, such as Qwen2.5-7B and Llama3.1-8B-Instruct, RS-GRPO fails to
outperform the base model at high values of k. We speculate this occurs when the optimal policy is
prohibitively distant from the initial distribution, causing RS-GRPO to converge to a local optimum.
Nonetheless, this still represents a significant improvement over GRPO.

C.3 Different Impact of Risk-sensitive Hyperparameter β

We conduct an ablation study on the risk-sensitive parameter β to analyze its impact on training
dynamics. We track several key metrics—including the cumulative solve rate on the training data,
training reward, and test performance (pass@1 and pass@32)—for β ∈ {0, 2, 4, 8}. The case where
β = 0 is equivalent to standard RL (i.e. GRPO).

Figure 5 illustrates the training dynamics for the Qwen2.5-Math-1.5B and Qwen2.5-Math-7B models.
We observe that as β increases, the cumulative solve rate on the training data improves, while the
training reward grows more slowly. This result aligns with the theoretical analysis in Sec. B.2.
This slower reward growth is not necessarily a drawback, as it may indicate a regularization effect
that prevents overfitting. On the test benchmarks, RS-GRPO yields substantial gains in pass@32
performance, with an improvement of approximately 5%. While pass@1 performance is maintained
relative to standard RL, an appropriate choice of β (e.g., β = 2) can lead to a 1-2% improvement, as
observed on Qwen2.5-Math-7B. This suggests that balancing the objectives of optimizing for the
mean reward (pass@1) and the maximum reward (pass@k) is crucial. We conclude that β = 2 offers
an effective trade-off, achieving strong pass@k performance while simultaneously enhancing
pass@1.

C.4 Comparison to Other Pass@K Optimization Baselines

We compare RS-GRPO with several pass@k optimization baselines [Walder and Karkhanis, 2025,
Mahdavi et al., 2025, Chen et al., 2025] on the Qwen2.5-Math-1.5B and Qwen2.5-Math-7B models
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Figure 6: Training dynamics of Risk-Sensitive RL vs. other Pass@k optimization methods. (Left:
Qwen2.5-Math-1.5B. Right: Qwen2.5-Math-7B).

using the deepmath103k dataset. Figure 6 shows the training dynamics: RS-GRPO generally matches
the pass@32 performance of baselines while consistently outperforming them in pass@1. We
attribute this improvement to the denser advantage signals provided by our risk-sensitive objective, as
discussed in related work.

We observe that the approach of Walder and Karkhanis [2025] performs unsatisfactorily, mainly
because its advantage estimates remain strictly positive (see Appendix F). The absence of negative
advantages causes rapid entropy collapse and poor training performance, consistent with prior findings
on the importance of negative signals [Zhu et al., 2025].

C.5 Analysis of Pass@k Improvement
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Figure 7: Left: RS-GRPO finds more
unique solutions. Right: Accuracy tran-
sition map from GRPO to RS-GRPO.

We analyze how risk-sensitive RL enhances both pass@k
and pass@1 performance using the Qwen2.5-Math-
7B model trained on the deepmath103k dataset. For
each problem in five benchmarks—AIME24, AIME25,
HMMT_Feb24, HMMT_Feb25, and CMIMC25—we
sample 1024 solutions, each corresponding to a single final
answer. The left of Figure 7 illustrates the unique answers
ratio. We observe that after RS-GRPO training, the num-
ber of unique answers shows a significant increase com-
pared to that of GRPO. This indicates that risk-sensitive
RL enhances the diversity of reasoning paths.

The heatmap in Figure 7 provides a detailed view of the prompt accuracy transitions from GRPO to
RS-GRPO. We observe that 8% of prompts with an accuracy of 0 under GRPO achieve an accuracy
in the (0, 0.4] range with RS-GRPO, while only 3% show the opposite change. This shift is the
primary contributor to the improved pass@k performance. Simultaneously, 3% of prompts with an
accuracy of 1 are shifted to the (0.6, 1) range, while only 1% move in the opposite direction. This
performance trade-off explains why pass@1 improvements are more modest than gains in pass@k:
while RS-GRPO can solve more problems than GRPO, it occasionally makes errors on simpler ones.

C.6 Entropy Analysis

We investigate the connection between entropy changes and Risk-sensitive RL. As shown in Sec-
tion C.3, a larger β value typically leads to a higher solve rate on the training set and encourages
stronger exploration. Figure C.3 illustrates the entropy loss dynamics during training. Our findings
indicate that while a correlation exists, entropy does not consistently increase with larger β values.
This suggests that entropy loss may be a biased indicator and might not fully capture the extent of
exploration. Moreover, we observe a relationship between optimizing the risk-seeking objective and
an increase in entropy, as evidenced by the lowest entropy levels occurring when β = 0.

14



0 100 200 300 400
Steps

10

12

15

17

20

22

En
tro

py
 L

os
s

= 0
= 2
= 4
= 8

(a) Qwen2.5-Math-1.5B

0 100 200 300 400
Steps

8

10

12

14

16

18

20

En
tro

py
 L

os
s

(b) Qwen2.5-Math-7B

Figure 8: Entropy Analysis under RS-GRPO Training with Different β Values

D Limitations

A limitation of our current work is that all experiments were conducted with a fixed risk-seeking
parameter β. A natural extension is to dynamically adjust β during training to better balance
exploration and exploitation. We experimented with several heuristics, including:

• Initiating training with a high β value, followed by a linear or cosine decay schedule after
an initial training period.

• Beginning with a large β and subsequently switching to standard mean-reward optimization
after an initial phase.

• Employing an adaptive β based on prompt difficulty, assigning larger values to harder
prompts and smaller values to easier ones.

However, none of these strategies yielded superior pass@1 performance compared to training with a
fixed, well-chosen β (i.e., β = 2). Devising an optimal dynamic strategy to balance exploration and
exploitation remains a challenging open problem.

E Missing Proofs

E.1 Proof for Theorem 1

Proof. The proof relies on the log-derivative trick (∇θπθ = πθ∇θ log πθ). The gradient of Jx =
1
β logEy∼πθ

[eβr(y)] is:

∇θJx =
1

β

∇θEy∼πθ
[eβr(y)]

Ey∼πθ
[eβr(y)]

=
1

β

Ey∼πθ
[eβr(y)∇θ log πθ(y|x)]
Ey′∼πθ

[eβr(y′)]
(Log-derivative trick)

= Ey∼πθ

[
eβr(y)

β · Ey′∼πθ
[eβr(y′)]

∇θ log πθ(y|x)
]
.

Here, y′ is a dummy variable for the inner expectation. Subtracting the baseline 1/β from the
advantage term gives the final form in Eq. (7), which is an unbiased estimator with reduced variance.

E.2 Theoretical Analysis of Risk-Sensitive Policy Gradient

In this section, we provide the formal version of lemmas in Sec. B.2, and the detailed proofs.

We study the general cases without restricting the uniqueness of the optimal arm. Recall that we
consider the bandit setting with K actions A := {a1, ..., aK}. We will use I∗ := {i ∈ [K]|r(ai) =
maxj∈[K] r(aj)} to refer to the collection of indices of all optimal actions. With a bit abuse of
notation, we denote π(I∗) :=

∑
i∈I∗ π(ai) to be the total mass of π on optimal actions.
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We consider the softmax policy πθ parameterized by θ := [θ1, ..., θK ] ∈ RK :

∀i ∈ [K], πθ(ai) =
eθi∑

j∈[K] e
θj
.

Following the notation in Sec. B.2, we denote θ̃ := [θ̃1, ..., θ̃K ] ∈ RK and θ̃β := [θ̃β1 , ..., θ̃
β
K ] ∈ RK

to be the parameters after performing one-step standard PG and risk-sensitive PG on θ, respectively.
Combining with the policy gradient theorem for softmax policy in [Mei et al., 2020], as implied by
Eq. (2) and Eq. (6), elementwisely, the updates of the policy parameters follow:

∀i ∈ [K], θ̃i ← θi + απθ(ai)A
πθ (ai), (9)

θ̃i ← θβi + απθ(ai)A
πθ

β (ai), (10)

where α > 0 denotes an arbitrary and shared learning rate.

For simplicity, we use πi := πθ(ai) and Ai := Aπθ (ai) as short notes of policy and advantage values
regarding θ, and use π̃i := πθ̃(ai) and π̃β

i := πθ̃β (ai) as the short note of policy value w.r.t. the
parameters after being updated. Similarly, πI∗ , π̃I∗ and π̃β

I∗ denote the total policy density assigned
to the set of optimal actions.

By Eq. (9), the dynamics of π̃ and π̃β follow:

π̃i =
eθi+απiAi∑
j e

θj+απjAj
=

eθi∑
j e

θj+απjAj−απiAi
=

πi∑
j πjeαπjAj−απiAi

. (11)

Remark 5. Note that mini∈[K] r(ai) = maxi∈[K] r(aj) is a trivial case where every action is
optimal. We only focus on cases where mini∈[K] r(ai) < maxi∈[K] r(aj).

Lemma 6. [Formal Version of Lem. 2] As long as ∃i′ ∈ [K] satisfying maxi r(ai) > r(ai′) >
mini r(ai), there exists θ (or equivalently, πθ), s.t., π̃I∗ < πI∗ , or even, π̃i < πi for any i ∈ I∗ and
any learning rate α > 0.

Proof. The proof is by construction. By Eq. (11), π̃i < πi as long as
∑

j πje
απjAj−απiAi > 1. By

the convexity of exponential function,∑
j

πje
απjAj−απiAi ≥ eα(

∑
j π2

jAj−πiAi),

and all we need to do is to construct a πθ s.t. the RHS above is larger than 1.

For convenience, we denote i− := argmini∈[K] r(ai) to be (one of) the worst action(s), and denote i′

to be (one of) the second optimal actions such that r(ai′) = maxi∈[K]\I∗ r(ai). Besides, we denote
rmax := maxi r(ai) and rmin := mini r(ai) as the maximal and minimal policy values, respectively.

Note that,

Ai′ = r(ai′)−
∑
i∈[K]

πir(ai) > πi−(r(ai′)− rmin)− πI∗(rmax − r(ai′)).

Consider an arbitrary policy satisfying the following constraint:

0 < πI∗ <
r(ai′)− rmin

rmax − r(ai′)
πi− , (12)

which implies Ai′ > 0.

Since Aj ∈ [−1, 1], under the constraints by Eq. (12) and that ∀i, πi > 0 and
∑

i πi = 1, as long as
πi′ is close enough to 1, for any optimal action index i∗ ∈ I∗, we have:∑

j

π2
jAj − πi∗Ai∗ ≥π2

i′Ai′ − πi∗ −
∑
j ̸=i′

π2
j > 0. (13)

This implies π̃i∗ < πi∗ for any optimal action ai∗ , and therefore,

π̃I∗ < πI∗ .

We remark that our required conditions, Eq. (12) and that πi′ is close enough to 1, can happen in the
early training stage when the policy’s mass concentrates on suboptimal actions.
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Lemma 7. [Formal Version of Lem. 3] For any given r and θ, consider the risk-sensitive update
(Eq. (6) or Eq. (10)), there always exists β̄, for any β > β̄ and α > 0, we have π̃β

I∗ > πI∗ .

Proof. In the risk sensitive setting, recall the advantage function takes

Aπθ

β :=
1

β
(

eβr(ai)

Eaj∼πθ
[eβr(aj)]

− 1)

For convenience, we use Aβ,i := Aπθ

β (ai) as a short note.

By Eq. (10), the risk-sensitive policy gradient yields:

π̃i =
πi∑

j πjeα(πjAβ,j−πiAβ,i)
=

πie
απiAβ,i

Z
. (14)

Here Z :=
∑

j πje
απjAβ,j denotes a normalization term independent of i.

Now, let’s denote i′ to be the second optimal action satisfying r(ai′) = maxi∈[K]\I∗ r(ai) and
denote ∆ := maxi r(ai)− r(ai′) > 0 to be its value gap.

Easy to see that, for any i ∈ I∗, Aβ,i∗ > 0, while for any i ̸∈ I∗,

Aβ,i =
1

β
(

1

Eaj∼πθ
[eβr(aj)−βr(ai)]

− 1) ≤ 1

β
(

1

πI∗eβ∆
− 1).

Therefore, as long as β ≥ 1
∆ log 1

πI∗ , we have Aβ,i < 0, which implies

∀i ∈ I∗, πie
απiAβ,i > πi,

∀i ̸∈ I∗, πie
απiAβ,i < πi.

By Eq. (14), we must have π̃β
I∗ > πI∗ .

Lemma 8. [Formal Version of Lem. 4] For any given r and θ, there exists β̄, s.t., for any β1 > β2 > β̄,
0 < π̃β1

I∗ − πI∗ < π̃β2

I∗ − πI∗ for any fixed learning rate α > 0.

Proof. We view Aβ,i := Aπθ

β (ai) as a continuous function in β:

Aβ,i :=
1

β
(

eβr(ai)

Eaj∼πθ
[eβr(aj)]

− 1) =
1

β
(

1

Eaj∼πθ
[eβ∆j,i ]

− 1),

where we use ∆j,i := r(aj)− r(ai) as a short note. By taking the derivative w.r.t. β, we have:

A′
β,i =−

1

β2
(

1

Eaj∼πθ
[eβ∆j,i ]

− 1)− 1

β

Eaj∼πθ
[∆j,ie

β∆j,i ]

E2
aj∼πθ

[eβ∆j,i ]

=
1

β2E2
aj∼πθ

[eβ∆j,i ]
(E2

aj∼πθ
[eβ∆j,i ]− Eaj∼πθ

[(1 + β∆j,i)e
β∆j,i ]).

We first check A′
β,i for i ∈ I∗. Since ∆j,i ≤ 0 for any j, we have:

E2
aj∼πθ

[eβ∆j,i ]− Eaj∼πθ
[(1 + β∆j,i)e

β∆j,i ]

=(πI∗ +
∑

j:∆j,i<0

πje
β∆j,i)2 −

∑
j:∆j,i<0

πj(1 + β∆j,i)e
β∆j,i − πI∗

≤π2
I∗ + 2πI∗

∑
j:∆j,i<0

πje
β∆j,i − πI∗ + (

∑
j:∆j,i<0

πje
β∆j,i)2 + β

∑
j:∆j,i<0

πj |∆j,i|eβ∆j,i .

Now, we denote β′ to be the minimal value, s.t., for all β > β′,∑
j:∆j,i<0

πje
β∆j,i ≤ 1− πI∗

6
, (15)
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and we denote β′′ to be the minimal value, s.t., for all β > β′′,

(
∑

j:∆j,i<0

πje
β∆j,i)2 + β

∑
j:∆j,i<0

πj |∆j,i|eβ∆j,i ≤ πI∗ − π2
I∗

3
. (16)

Since the RHS of both Eq. (15) and Eq. (16) are independent w.r.t. β, such a β′ and β′′ always exists.
Then, for any β > max{β′, β′′}, we have:

E2
aj∼πθ

[eβ∆j,i ]− Eaj∼πθ
[(1 + β∆j,i)e

β∆j,i ] ≤ π2
I∗ − πI∗

3
< 0,

which implies that, although Aβ,i∗ > 0, it decreases as β increases.

Secondly, we check A′
β,i for all the other i ̸∈ I∗. As we discussed in the proof of Lem. 7, when

β ≥ 1
∆ log 1

πI∗ , we have Aβ,i < 0 for all i ̸= i∗. Note that,

E2
aj∼π[e

β∆j,i ]− Eaj∼πθ
[(1 + β∆j,i)e

β∆j,i ]

≥(
∑

j:∆j,i=0

πj +
∑

j:∆j,i>0

πje
β∆j,i)2

(Dropped positive terms
∑

j:∆j,i<0 πie
β∆j,i in E2

aj∼π[e
β∆j,i ])

−
∑

j:∆j,i=0

πj −
∑

j:∆j,i>0

πj(1 + β∆j,i)e
β∆j,i −

∑
j:∆j,i<0

πj(1 + β∆j,i)e
β∆j,i

≥ (
∑

j:∆j,i=0

πi)
2 −

∑
j:∆j,i=0

πi︸ ︷︷ ︸
p1

+
∑

j:∆j,i>0

π2
j e

2β∆j,i −
∑

j:∆j,i>0

πj(1 + β∆j,i)e
β∆j,i

︸ ︷︷ ︸
p2

−
∑

j:∆j,i<0

πje
β∆j,i

︸ ︷︷ ︸
p3

.

(a2 + b2 ≤ (a+ b)2 for a, b > 0)

As we can see, p1 is negative but fixed; for p3, consider β† := maxj:∆j,i<0
1

|∆j,i| , we know
0 < p3 ≤ 1 as long as β ≥ β†. Then, we check p2, which is dominated by e2β∆j,i . There exists β††,
s.t., p2 > |p1|+ 1 > |p1|+ p3 as long as β ≥ max{β†, β††}, which implies Aβ,i will stay negative
but increasing when β is large enough.

Combining all the discussion above, as long as β ≥ β̄ := {β′, β′′, β†, β†,†}, we have:

• ∀i ∈ I∗, A′
β,i < 0, therefore, Aβ,i > 0 but decreases as β increases;

• ∀i ̸∈ I∗, A′
β,i > 0, therefore, Aβ,i < 0 but increases as β increases;

Combining with Eq. (14), we have π̃β
I∗ − πI∗ is decreasing as β increases when β ≥ β̄.

F Details About Other Pass@k Optimization

We compare different methods in a binary reward setting (i.e., r ∈ {0, 1}). For a given prompt
that generates N responses, let r̄ ∈ [0, 1] be the mean reward and σ(r) be its standard deviation.
We define the positive advantage, Âpos, as the advantage for responses with a reward of 1, and the
negative advantage, Âneg , for those with a reward of 0. The cumulative advantage is the sum of the
absolute advantage values over all N responses.

Mahdavi et al. [2025] employs a reweighting policy gradient in the context of pass@k optimization,
under the assumption of binary rewards (0 or 1). The expressions for the positive and negative
advantages are as follows:

Âpos = k(1− r̄)k

Âneg = −k(1− r̄)k−1r̄
(17)
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Figure 9: Comparison of advantage estimations across different inference-time objective methods
under the binary reward setting with N = 16. Left - Positive: Advantage estimation for positive
responses. Middle - Negative: Advantage estimation for negative responses. Right - Cumulative:
Cumulative absolute advantage value per prompt.

Chen et al. [2025] proposes a pass@k training objective, adopting the binary reward assumption. The
objective is defined by the following positive and negative advantage values:

Âpos = (1− r̄)σ(r)−1

Âneg =

(
1− r̄ −

(
Nneg−1
k−1

)(
N−1
k−1

) )σ(r)−1
(18)
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Tang et al. [2025] introduces a best-of-N training objective and utilizes a leave-one-out strategy to
reduce the variance of the policy gradient. The advantage Âi for this objective is defined as:

Âi = max
j∈I

I={1,2,...,N}

r(x, yj)− max
j∈I

I={1,2,...,N}\{i}

r(x, yj) (19)

Walder and Karkhanis [2025] builds upon the work of Tang et al. [2025] and further generalizes the
method to a smoothed maximum objective, where k < N . This generalization involves considering
the maximum reward within subsets of size k. The policy gradient for this smoothed objective is
given by:

Âi =
1(

N−1
k−1

) ∑
|I|=k
i∈I

I⊆{1,2,...,N}

(
max
j∈I

r(x, yj)− max
j∈I\{i}

r(x, yj)

)
. (20)

As illustrated in Fig. 9, we compare various methods based on their positive, negative, and cumulative
advantages (the sum of absolute advantage values) in a binary reward setting. Our approach overcomes
two key limitations of prior work. First, methods such as those in [Mahdavi et al., 2025, Chen et al.,
2025] are confined to binary rewards and do not naturally extend to continuous reward spaces.
Second, in existing pass@k optimization techniques, the advantage estimate vanishes when the
sample accuracy exceeds (1 − K

N ). This limitation is highlighted in the "Cumulative" column of
Fig. 9, where the magnitude of the advantage estimate, which dictates the optimization weight, drops
to zero.

In our comparative analysis of different methods, we select hyperparameters to ensure a fair compar-
ison. For Risk-Sensitive RL, we set β = 2, which strikes a balance between pass@1 and pass@k
performance. For the baseline methods, we use k = 4. This choice is motivated by the observa-
tion in the "Cumulative" column of Fig. 9, where the peak advantage for RS-GRPO with β = 2
is approximately 0.2, which aligns with the peak advantage of other methods when k = 4. Our
experimental results, as shown in Fig. 6, indicate that the method from Walder and Karkhanis [2025]
yields unsatisfactory outcomes. Its advantage estimates are persistently positive, and we observe that
this absence of negative advantage leads to rapid entropy collapse and poor training performance, a
finding consistent with prior work on the importance of negative advantage [Zhu et al., 2025]. While
other methods [Chen et al., 2025, Mahdavi et al., 2025] achieve pass@32 performance comparable to
RS-GRPO, their pass@1 performance is substantially lower. This highlights the benefit of the denser
advantage signals provided by RS-GRPO.

G Implementation Details

Datasets We trained our models using the following datasets from Hugging Face:

• math12k [Cobbe et al., 2021]: hiyouga/math12k

• dapo17k [Yu et al., 2025]: BytedTsinghua-SIA/DAPO-Math-17k

• deepmath103k [He et al., 2025b]: zwhe99/DeepMath-103K

For evaluation, we used the following datasets, also from Hugging Face:

• MATH500: math-ai/math500

• AIME24: HuggingFaceH4/aime_2024

• AIME25: math-ai/aime25

• HMMT_Feb24: MathArena/hmmt_feb_2024

• HMMT_Feb25: MathArena/hmmt_feb_2025

• CMIMC25: MathArena/cmimc_2025
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Training Details Our implementation is based on the VeRL framework [Sheng et al., 2024], and we
utilize vLLM 0.8.5 [Kwon et al., 2023] for our experiments. During reinforcement learning training,
we do not apply KL regularization. The maximum response length (in tokens) varies by model:
3,072 for Qwen2.5-Math-1.5B and Qwen2.5-Math-7B, and 8,192 for Qwen2.5-7B, Qwen3-4B, and
Llama-3.1-8B-Instruct. We use Math_Verify† as the ground-truth reward model (reward = 1 for a
correct answer, 0 otherwise). For every question, we append the string \nPlease reason step by
step, and put your final answer within \boxed{} as the prompt.

Table 4 summarizes the hyperparameters employed in our experiments. All the experiments keep
these identical. For the experiments in Fig. 4, we set β = 8 for RS-GRPO. For the comparison with
other pass@k methods in Tab. 2, we set k = 4 for all pass@k methods and β = 2 for RS-GRPO.
This comparison is fair, as further discussed in Sec. F.

Table 4: Hyperparameters used in our experiments During RL Training.
Hyperparameter Value
Temperature 1.0
Top-p 1.0
learning rate 1× 10−6

Training prompt batch size 512
Responses per prompt N 16
PPO epochs 1
PPO mini-batch size 32
PPO clip_high 0.28
PPO clip_low 0.2
Entropy loss coefficient 0
KL coefficient 0

Evaluation Details The MATH500 benchmark contains 500 problems, while the other datasets
consist of 30 or 40 problems each. During inference, we set the sampling temperature to 1.0 and
use a top-p value of 0.7. For most benchmarks, we generate N = 1024 candidate solutions per
problem. However, for the larger MATH500 dataset, we use N = 32 to ensure the evaluation remains
computationally feasible. For the training curve metrics recording (like Figure 6 and 5), we set
N = 1 for MATH500 and N = 32 for the other datasets. Thus, the testing pass@1 metric records
the average across 6 benchmarks, and the testing pass@32 metric records the average across the 5
benchmarks excluding MATH500. We compute the pass@k metric using the unbiased estimator
proposed in [Chen et al., 2021].

def pass_at_k(n, c, k):
"""
:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@k
"""
if n - c < k: return 1.0
return 1.0 - np.prod (1.0 - k /

np.arange(n - c + 1, n + 1))

Bandit Experiment Details In the experiments of Section B, we consider a bandit setting with 100
actions, denoted asA = {a1, . . . , a100}. We employ a softmax policy πθ parameterized by θ ∈ R100,
where θ = [θ1, . . . , θ100]. The probability of selecting action ai is given by:

πθ(ai) =
eθi∑100
j=1 e

θj
, for all i ∈ [100].

For each stochastic policy gradient update, we set the batch size N = 16 and the learning rate to 0.1.

†https://github.com/huggingface/Math-Verify
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