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Abstract

Domain generalization (DG) is the problem of generalizing from several distri-1

butions (or domains), for which labeled training data are available, to a new test2

domain for which no labeled data is available. A common finding in the DG3

literature is that it is difficult to outperform empirical risk minimization (ERM) on4

the pooled training data. In this work, we argue that this finding has primarily been5

reported for datasets satisfying a covariate shift assumption. When the dataset6

satisfies a posterior drift assumption instead, we argue that “domain-informed7

ERM," wherein feature vectors are augmented with domain-specific information,8

outperforms pooling ERM. These claims are supported by a theoretical framework9

and experiments on language and vision tasks.10

1 Introduction: the ERM dilemma in domain generalization11

Domain generalization (DG) is a learning problem where the learner has access to labeled data from12

several source domains, and the goal is to generalize to a new target domain for which no labeled13

data is available. Let X denote the input features, Y the label, and D the domain index.14

A persistent puzzle in DG is the surprising effectiveness of empirical risk minimization (ERM), a15

baseline that simply pools labeled data from all source domains together and trains a domain-agnostic16

classifier. Despite extensive efforts to design sophisticated DG algorithms, multiple studies have17

consistently shown that ERM remains highly competitive:18

• Gulrajani and Lopez-Paz [2021] (empirical): “when carefully implemented and tuned, ERM19

outperforms the state-of-the-art in terms of average performance... no algorithm included in20

DomainBed (dataset) outperforms ERM by more than 1%.”21

• Rosenfeld et al. [2021] (theory): “IRM and its alternatives fundamentally do not improve over22

standard Empirical Risk Minimization.”23

• Teterwak et al. [2025] (empirical): “the additional tuning in our improved baseline ERM++24

outperforms both the prior ERM baselines and all recent SOTA methods on DomainBed.”25

Similar findings about the strong performance of ERM have been reported across other datasets and26

settings [Koh et al., 2021, Sagawa et al., 2022, Bai et al., 2024].27

A related observation is that most existing DG approaches learn a classifier that predicts Y solely28

from X , thus ignoring domain information during inference. This is reflected in recent surveys:29

• Wang et al. [2022] (survey): “The goal of domain generalization is to learn a robust and gen-30

eralizable predictive function h : X → Y from the M training domains to achieve a minimum31

prediction error on an unseen test domain Stest.”32

• Zhou et al. [2023] (survey): “The goal of DG is to learn a predictive model f : X → Y using only33

source domain data such that the prediction error on an unseen domain T =
{
xT
}

is minimized.”34
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This is despite the fact that early works on DG learn predictions based not only on feature vectors,35

but also on domain-specific information [Blanchard et al., 2011, Muandet et al., 2013].36

In this work, we argue that conclusions about ERM being “hard to beat” stem primarily from the37

fact that most benchmark DG datasets are from vision tasks. These datasets are characterized by38

a covariate shift assumption, which means that there is a single classifier that performs well on39

all domains, and only the marginal distribution of X changes from domain to domain. In such40

applications, strong performance is indeed possible without the use of domain-specific information,41

and a domain-agnostic classifier can be trained by ERM on the pooled training data.42

Furthermore, we study DG problems characterized by posterior drift, where the conditional distribu-43

tion of Y |X (i.e., the posterior) changes with domain. We argue that for such DG problems, pooling44

ERM is inadequate, and stronger performance is achievable by “domain-informed” ERM, where45

domain specific information is used both during training and at inference.46

The contributions of this work are:47

• A theoretical framework extending the original formulation of DG by Blanchard et al. [2011].48

• Risk bounds that characterize when domain-specific information is beneficial (posterior drift) and49

when it is not (covariate shift).50

• A quantification of the difference between domain generalization and domain adaptation, address-51

ing an open question in Blanchard et al. [2021, Lemma 9].52

• Empirical validation of these findings on both language and vision tasks.53

2 Literature review54

Blanchard et al. [2011] introduced the domain generalization (DG) problem, motivated by a medical55

application involving the automatic gating of flow cytometry data. Since then, most DG research has56

focused on applications in computer vision. A typical DG task in this setting involves training models57

on labeled images from multiple visual domains (e.g., styles or rendering conditions) and evaluating58

generalization to a previously unseen domain. Benchmark datasets such as VLCS [Fang et al., 2013],59

PACS [Li et al., 2017], OfficeHome [Venkateswara et al., 2017], DomainNet [Peng et al., 2019], and60

ImageNet-Sketch [Wang et al., 2019] have become standard in this line of work.61

In these vision-based setups, the underlying distributional shift can be described as covariate shift62

[Ben-David et al., 2006, Mansour et al., 2009], where the marginal distribution PX varies significantly63

across domains—often with disjoint support. Importantly, domain information is frequently viewed64

as irrelevant or even spurious [Sagawa et al., 2020] for predicting labels. Consequently, much of the65

literature has focused on learning domain-invariant representations [Sun and Saenko, 2016, Ganin66

et al., 2016, Arjovsky et al., 2019]. Additional references are in Appendix A.67

In contrast, our work is motivated by a different class of problems characterized by posterior68

drift [Scott, 2019, Cai and Wei, 2021, Maity et al., 2024, Zhu et al., 2024], where the conditional69

distribution of Y |X varies across domains. This type of shift commonly arises in natural language70

processing (NLP) tasks. For a given input sentence X , different annotators—or populations—may71

interpret its semantic content differently, leading to divergent labels Y (e.g., offensive vs. non-72

offensive, positive vs. negative). Such inherent ambiguity in language often results in systematic73

disagreement in annotations. Empirical studies have documented these effects across a wide range of74

NLP tasks [De Marneffe et al., 2019, Plank, 2022, Deng et al., 2023].75

3 Domain generalization: A general probabilistic formulation76

In standard classification, a random pair (X,Y ) is assumed to be drawn from a fixed joint distribution77

PXY , where X ∈ X is a feature vector and Y ∈ Y = {1, . . . ,K} denotes the corresponding class78

label1. The goal is to learn a function f : X → Y that minimizes the risk:79

E(X,Y )∼PXY

[
1{f(X )̸=Y }

]
.

1This section easily extends to regression, but subsequent sections are focused on classification.
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Domain generalization (DG) can be framed in a similar way. Let D denote a set of possible domains,80

where the term domain is a synonym for a joint distribution of X and Y . Let D be a random variable81

on D. Furthermore, let M be a random variable on a space M that, intuitively, provides partial82

information about D. The idea in DG is that D determines a distribution of (X,Y ), but is not83

observed. M provides partial information about D, and is thus useful at test time in adapting the84

classifier to the test domain. While the choice of M will depend on the application, one choice that is85

always viable is to take M to be PX|D, the marginal distribution X for the given domain, which is86

known at test time though the unlabeled test sample. As we argue below, the observability of M is87

what makes DG an interesting problem, and distinct from standard classification.88

Formally, we assume that (X,Y,M,D) are jointly distributed, with joint distribution denoted as89

PXYMD. This distribution induces several other distributions of interest in this paper. We follow90

convention in denoting marginal distributions by keeping the relevant subscripts. For example, PXYD91

denotes the joint distribution of (X,Y,D) after M is marginalized out. Similarly, PXY denotes the92

marginal distribution of (X,Y ).93

For any fixed d ∈ D, PXY |D=d is a joint distribution of (X,Y ). Note that our notation is somewhat94

redundant, as both d and PXY |D=d are notations for the same thing – a domain = a joint distribution95

of (X,Y ) – but these two notations will serve different purposes in our discussion.296

To formalize the notion that M is a partial summary of D, we assume that (X,Y ) and M are97

conditionally independent, given D:98

PXY |D,M = PXY |D (1)

This implies that, given D, the joint distribution of X and Y does not change with knowledge of M .99

An important special case where this holds in when M = g(D) for some deterministic g : D → M.100

We illustrate this probabilistic framework with motivating examples in Table 1, whose implications101

will be discussed throughout the paper.102

Table 1: Examples of domains and metadata in different tasks.

Task Input X Label Y Domain D Metadata M

Sentiment
annotation
(Multiple
Annotators)

Sentence to be
annotated

Sentiment
label (e.g.,
positive,
negative)

Annotator identity
(e.g., “Annotator 1”)

Annotator’s demographic
profile (e.g., age)

Review rating
prediction
(Multiple
Reviewers)

Product review
text

Numerical
rating (e.g.,
1–5 stars)

Reviewer identity
(e.g., “Reviewer 2”)

Unlabeled texts written by
the reviewer
{Xi}ni=1

iid∼ PX|D=d

Image
classification
across styles

Image Object
category label
(e.g., dog, car)

Image style (e.g.,
photograph, sketch,
painting)

Textual description of style

The training data available to the learner is generated as follows: First, N domains d1, . . . , dN are
sampled iid from PD, but not observed. Then, conditioned on these di, corresponding values mi

are observed. In addition, for each i, 1 ≤ i ≤ N , data (xij , yij) are sampled iid from PXY |D=di
,

1 ≤ j ≤ ni. In summary, the overall training data is(
mi, (xij , yij)

ni
j=1

)N
i=1

.

The goal of the learner is to produce a function f that accurately predicts labels on a new, random
domain. In particular, f should minimize the risk

R(f) := EX,Y,M,D

[
1f(·)̸=Y

]
.

2Blanchard et al. [2011, 2021] use PXY to denote a random domain, whereas in our notation, a random
domain is either PXY |D or just D. Our introduction of D for a random domain allows us to use PXY for the
“average” domain, which will be a critical concept in what follows.
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In practice, this risk is estimated by holding out several of the domains, and averaging the test errors103

on them. This probabilistic framing of DG generalizes that of Blanchard et al. [2011, 2021]. They104

focus on the special case where M is the marginal distribution of X for the given domain, and focus105

on the challenges associated to learning from empirical samples of the training and test X-marginals.106

The training setup described above naturally gives rise to two different ways of using the available107

data. On one hand, the learner may choose to ignore the domain information and simply pool together108

all training samples, treating them as if they were drawn iid from a single distribution. On the109

other hand, the learner may choose to leverage the observed metadata mi, which serves as side110

information about the underlying domain. These two strategies lead to two corresponding empirical111

risk minimization principles. Thus, let F ⊂ {X ×M → Y} denote a class of functions that take112

both input feature x and auxiliary metadata m as input, and G ⊂ {X → Y} a class of functions that113

take only x as input. Consider two empirical risk minimizers:114

Pooling ERM: f̂pool = arg min
f∈G

1

N

N∑
i=1

1

ni

ni∑
j=1

ℓ(yij , f(xij)). (2)

Domain-informed (DI) ERM: f̂DG = arg min
f∈F

1

N

N∑
i=1

1

ni

ni∑
j=1

ℓ(yij , f(xij ,mi)). (3)

We are interested in when DI-ERM outperforms pooling ERM. From a theoretical perspective, we115

work in the large-sample and “large-model” limit (where F and G can approximate the Bayes-optimal116

predictor arbitrarily well). In this regime, standard learning-theoretic arguments imply that the117

performance of the two approaches is characterized by their corresponding Bayes risks, defined118

below.119

4 Risk and Bayes risk in domain generalization120

To aid in understanding domain generalization, it is helpful to consider DG in relation to two other121

problem settings. These settings differ only in what information the classifier f has access to. In all122

cases, the performance measure is the risk123

R(f) := EX,Y,M,D

[
1f(·)̸=Y

]
,

where the argument of f(·) depends on settings.124

No Domain Information: In this setting, the classifier only has access to the feature vector x at125

test time, and is thus f(x). As noted earlier, most empirical DG methods, especially in computer126

vision, have this form. The risk in this case is127

R(f) = EX,Y,M,D

[
1f(X )̸=Y

]
= EX,Y

[
1f(X )̸=Y

]
= EX

[
EY |X

[
1f(X) ̸=Y

]]
,

where, because f does not depend on D or M , these variables marginalize out. Therefore, the128

problem reduces to learning with respect to the marginal distribution of (X,Y ), which corresponds to129

pooling data across domains. The optimal classifier f∗
pool is thus the Bayes classifier for the marginal130

distribution of (X,Y ):131

f∗
pool(x) = arg max

k
P (Y = k|X = x) .

The corresponding Bayes risk, R∗
pool, is the Bayes risk for the marginal distribution of (X,Y )132

R∗
pool := EX,Y

[
1f∗

pool(X )̸=Y

]
= EX

[
1−max

k
P (Y = k|X)

]
.

Full Domain Information: In this setting, the classifier has full knowledge of the domain D133

at test time, and is thus denoted f(x, d). In practice, full knowledge of D is not available, and this134

setting therefore serves as a bound on the best possible performance of DG. The risk in this setting is135

R(f) = EX,Y,M,D

[
1f(X,D) ̸=Y

]
= EX,Y,D

[
1f(X,D)̸=Y

]
= EX,D

[
EY |X,D

[
1f(X,D)̸=Y

]]
.
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The optimal classifier f∗
full is now the Bayes classifier for the distribution of X,Y |D,136

f∗
full(x, d) = arg max

k
P (Y = k|X = x,D = d) ,

and the corresponding Bayes risk is:137

R∗
full := EX,Y,D

[
1f∗

full(X,D)̸=Y

]
= EX,D

[
1−max

k
P (Y = k|X,D)

]
.

In this setting, the classifier has full knowledge of the test domain, in other words, the joint distribution138

of (X,Y ) for the given test domain. Therefore, R∗(X,D) is the Bayes risk for the test domain,139

which serves as a lower bound for the risk in domain generalization.140

Remark 1 Achieving R∗(X,D) is the goal of domain adaptation.141

Partial Domain Information: This is the setting of domain generalization. The classifier has142

access to not only x, but also a variable m that conveys partial information about the true domain d.143

A classifier in this setting is denoted f(x,m). The risk is144

R(f) = EX,Y,M,D

[
1f(X,M )̸=Y

]
= EX,Y,M

[
1f(X,M )̸=Y

]
= EX,M

[
EY |X,M

[
1f(X,M) ̸=Y

]]
.

The optimal classifier f∗
DG is now the Bayes classifier for the distribution of X,Y |M ,145

f∗
DG(x,m) = arg max

k
P (Y = k|X = x,M = m) ,

and the corresponding Bayes risk is146

R∗
DG := EX,Y,M

[
1f∗

DG(X,M) ̸=Y

]
= EX,M

[
1−max

k
P (Y = k|X,M)

]
.

In this setting, the optimal classifier uses both X and domain-specific signal M to predict Y . This147

setting aligns with the original theoretical motivations of DG and highlights the value of leveraging148

test-time domain information. A key goal of our work is to reassert the importance of this formulation149

and demonstrate both its theoretical advantages and empirical benefits, particularly in contrast to the150

more commonly used f(x) setting.151

5 Comparison of Bayes risks152

This section develops bounds that relate the three Bayes risks defined in the previous section. The153

bounds reveal settings where domain information is and is not beneficial. The following basic result154

provides a starting point.155

Proposition 1 (Risk Hierarchy) R∗
pool ≥ R∗

DG ≥ R∗
full.156

The proof is straightforward (see Appendix C.1). The first inequality is trivial, as extending a feature157

vector can never decrease the Bayes risk. The second inequality follows from (1).158

Our focus in this section is to determine conditions under which these inequalities become strict, and159

with a quantifiable gap. Toward that end, consider the following definition.160

Definition 1 (Point-wise Margin) Consider any random triple (X,Y,M), where Y is discrete. De-161

fine the point-wise margin of Y |M = m,X = x as,162

γ(x,m) := max
k

P (Y = k|X = x,M = m)− 2ndmax
k

P (Y = k|X = x,M = m) .

The operator 2ndmaxk returns the second largest value of its argument. Thus, if the two largest163

values of P (Y = k|X = x,M = m) are the same, γ(x,m) = 0. Intuitively, γ(x,m) reflects the164

degree of certainty that the Bayes classifier f∗
DG(x,m) has about its prediction. The larger γ(x,m),165

the more confident the prediction.166

The next result gives upper and lower bounds on the gap between R∗
DG and R∗

pool. This gap is the167

additional reduction in risk that results from leveraging the partial domain information M .168
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Figure 1: Illustration of Theorem 1. Consider binary classification with X ∈ R, Y ∈ {1, 2}, and
M ∈ {1, 2}. Then the Bayes classifiers f∗

pool(x), f
∗
DG(x,m = 1) and f∗

DG(x,m = 2) can be
obtained by thresholding the corresponding posteriors at 1/2. The left figure shows a scenario where
the domain-informed classifier f∗

DG and the pooled classifier f∗
pool agree everywhere, and therefore

both upper and lower bound are 0. In this case, domain information M is not beneficial. The right
figure shows a scenario where f∗

DG disagrees with f∗
pool in certain regions, and domain information

does lead to lower Bayes risk.

Theorem 1 (Risk Reduction from Domain Information) Consider any random triple (X,Y,M),169

where Y is discrete. Then170

EX,M

[
γ(X,M)1f∗

pool(X) ̸=f∗
DG(X,M)

]
≤ R∗

pool −R∗
DG ≤ EX,M

[
1f∗

pool(X )̸=f∗
DG(X,M)

]
.

The proof of Theorem 1 is in Appendix C.2. The upper bound represents the probability of disagree-171

ment between the domain-informed classifier f∗
DG and the pooled classifier f∗

pool. The lower bound172

can be interpreted as the expected cost of disagreement, where the cost is zero when the predictions173

agree, and equals the margin γ(X,M) when they differ. Hence, domain information is particularly174

beneficial when f∗
DG frequently disagrees with f∗

pool in regions of high confidence. Figure 1 gives175

more intuition.176

Remark 2 Although not the focus of this paper, a version of Theorem 1 also holds for the gap177

R∗
DG −R∗

full, where R∗
full is the risk of a classifier that has full knowledge of the test domain. This178

bound quantifies the difference between DG and domain adaptation, and addresses a question left179

open by Blanchard et al. [2021, Lemma 9], see Appendix B for more detailed discussion.180

5.1 No information-theoretic gain under covariate shift181

Theorem 1 holds regardless of the distribution PXYMD. By considering assumptions on this distribu-182

tion, stronger conclusions may be drawn. Covariate shift refers to the setting where, as the domain D183

varies, PX|D changes, but PY |X,D does not. More generally, we can extend the meaning of covariate184

shift to be any DG problem where the Bayes classifier f∗
DG does not depend on M . In such a scenario,185

domain-specific information is of no benefit.186

Corollary 1 Under covariate shift, R∗
pool = R∗

DG.187

5.2 Information-theoretic gain under posterior drift188

We now examine a class of distributions where the gap R∗
pool−R∗

DG has a more concrete lower bound.189

This class of distributions is motivated by applications—particularly in natural language processing—190

where the posterior PY |X,D differs across domains due to inherent ambiguity or subjectivity. A191

canonical example is the sentiment or toxicity annotation task, where annotators often disagree192
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on the same text. For instance, in the age-related sentiment analysis dataset of Díaz et al. [2018],193

the sentence “Old people’s appearance contains so much lived life.” received conflicting labels:194

2/5 annotators seeing it as ‘very positive’, 2/5 as ‘somewhat positive’, and 1/5 as ‘very negative’.195

This reflects how labeling tendency varies with annotator identity. We capture this phenomenon by196

introducing a formal posterior drift class for domain generalization.197

Definition 2 (Posterior Drift Class for Domain Generalization)

Π(γ, ϵ) :=
{
(X,Y,M,D) :∀x,m, γ(x,m) ≥ γ, and

PX,M,M ′

(
f∗
DG

(
X,M

)
̸= f∗

DG

(
X,M ′)) ≥ ϵ

}
,

where (M,M ′) | X ∼ PM |X ⊗ PM |X are two independent draws.198

This class of DG problems captures settings where optimal classifiers with different M make199

conflicting predictions on a non-negligible region of the input space. The parameter γ quantifies200

the point-wise confidence of the optimal predictor, the parameter ϵ quantifies the average amount of201

variation in PY |X,M for different M . With this, we have an explicit lower bound:202

Proposition 2

inf
(X,Y,M)∈Π(γ,ϵ)

[
R∗

pool −R∗
DG

]
≥ γ · ϵ

2

The proof is in Appendix C.3. This lower bound shows that leveraging domain-specific information203

yields a provable benefit of at least γϵ/2 for this particular formulation of posterior drift.204

In contrast to pessimistic results in domain adaptation—where no method consistently outperforms205

vanilla ERM under posterior drift [Zhu et al., 2024, Liu et al., 2024]—our work presents an optimistic206

view in domain generalization: by conditioning on domain metadata M , we can provably do better207

than pooling-based prediction.208

5.3 Advantage of DI-ERM beyond posterior drift209

The previous subsection demonstrates the information-theoretic gain from incorporating domain210

information M . We now consider the practical setting of learning under restricted function classes.211

Let F ⊂ {X ×M → Y} denote a class of predictors that take both input features x and auxiliary212

metadata m as input. From this class, we define a corresponding class G ⊂ {X → Y} as:213

G := {x 7→ f(x,m0) : f ∈ F , m0 ∈ M},
i.e., G consists of classifiers in F where the metadata variable m is held fixed.214

Clearly, any function in G is realizable within F . Therefore,215

R∗
pool,G := inf

f∈G
R(f) ≥ R∗

DG,F := inf
f∈F

R(f). (4)

We are interested in understanding when strict inequality holds. The example below show that even if216

there is no information-theoretic gain of DI-ERM under covariate shift (Corollary 1), it may still have217

practical advantage when considering a restricted function class F .218

Example 1 (Covariate shift without posterior drift) Let PXYM be219

M ∼ Bernoulli(p), where p > 1/2,

{
M = 1 : X∼Unif[0, 2], Y = sign(X − 1)

M = 2 : X∼Unif[4, 6], Y = sign(X − 5).

Because the supports are disjoint, the pooling and DG Bayes classifier are the same, to be specific220

f∗
pool(x) =

{
sign(x− 1), x ∈ [0, 2]

sign(x− 5), x ∈ [4, 6]
, f∗

DG(x,m) = sign(x− 4m+ 3) =⇒ f∗
pool = f∗

DG

7



therefore R∗
pool = R∗

DG = 0. The model classes are linear classifiers221

F =
{
f(x,m) = sign(w⊤x+ v⊤m+ b)

}
, G =

{
f(x) = sign(w⊤x+ b)

}
.

F can realize f∗
DG with a bias term that depends on m, giving R∗

DG,F = 0. However, a predictor in222

G can only choose a single threshold, and the optimal one is223

f∗
pool,G(x) = sign(x− 1), R∗

pool,G =
min{p, 1− p}

2
.

Therefore, R∗
pool,G > R∗

DG,F , even though R∗
pool = R∗

DG.224

This toy construction mirrors image classification task across different styles: each style (domain)225

has a separate support, so the Bayes classifier is the same with or without m, yet m still helps within226

a restricted model class. This is experimentally verified in Section 6 .227

6 Experiments228

We evaluate the effectiveness of domain-informed ERM (DI-ERM) in three experimental settings.229

Our primary focus is on the comparison between DI-ERM and pooling ERM, which highlights the230

benefit of incorporating domain metadata. Additional results—including linear probing, benchmarks231

against alternative methods, and complete experimental details—are provided in Appendix D.232

Sentiment disagreement among annotators In many NLP tasks, annotators exhibit subjective233

preferences, leading to disagreement of the label y on the same input x—a form of posterior drift234

discussed in Section 5.2. To study this phenomenon, we use the dataset of Díaz et al. [2018], which235

re-annotates a subset of Sentiment140 for training and provides a test set drawn from age-related blog236

posts. The training set comprises 59,235 sentences labeled by 1,481 annotators; the test set includes237

1,419 sentences labeled by 878 annotators. Each sentence is annotated by 4–5 individuals, and the238

labels exhibit high disagreement (about 40 %). In this setting, the input x is a sentence, the label239

y ∈ {1, 2, 3, 4, 5} denotes sentiment on a five-point scale, the domain d corresponds to the annotator,240

and the domain information m consists of demographic metadata (e.g., age, upbringing region).241

To encode domain information M , we concatenate it with the sentence x in a text-prompt format, as242

illustrated in Figure 2. Table 3 reports the results. DI-ERM substantially outperforms pooling ERM,243

demonstrating that leveraging annotator metadata can dramatically improve predictive accuracy.244

Notably, DI-ERM also surpasses the previous state-of-the-art reported by Deng et al. [2023].245

Table 3: Test accuracy on the sentiment disagreement dataset. Incorporating annotator profiles (M )
through DI-ERM yields a dramatic improvement over pooling ERM, reflecting the importance of
modeling annotator-specific posterior drift. In particular, DI-ERM nearly doubles accuracy compared
to pooling ERM and surpasses the previous state-of-the-art (69.8% by [Deng et al., 2023]).

Algorithm Model Test Avg Acc

Pooling ERM (finetune) BERT 49.1 ± 0.4
DI-ERM (finetune) BERT 90.5 ± 0.2

Reviewer-specific sentiment analysis We next examine the WILDS-Amazon Reviews dataset246

[Koh et al., 2021], which captures distributional shifts across reviewers. Here, the input x is a product247

review, y ∈ {1, . . . , 5} is the star rating, d denotes the reviewer identity, and m consists of all248

(unlabeled) reviews written by that reviewer.249

The central hypothesis is that a reviewer’s writing style M = PX|D provides a useful signal for250

predicting their rating behavior PY |X,D. The training set contains 245,502 reviews from 1,252251

reviewers, while the test set consists of 100,050 reviews from 1,334 unseen reviewers.252

To incorporate reviewer context M , we randomly sample 20 additional reviews written by the same253

reviewer and concatenate them with the current review in a prompt format, shown in Figure 3.254

As summarized in Table 4, DI-ERM outperforms pooling ERM. Beyond higher average accuracy,255

DI-ERM also boosts the 10th-percentile accuracy across reviewers—a key robustness metric used on256

the official leaderboard. With end-to-end fine-tuning, DI-ERM surpassing the best leaderboard result257

on both metrics (see Appendix D for additional discussion).258
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Table 4: Sentiment classification performance on Amazon-WILDS with reviewer-specific context.
DI-ERM consistently improves over pooling ERM, both in average accuracy and in 10th-percentile
reviewer accuracy—the official leaderboard metric. It also exceeds the best result reported on the
WILDS leaderboard (https://wilds.stanford.edu/).

Algorithm Model Test Avg Acc Test 10% Acc

Pooling ERM (finetune) nomic-embed-text-v1.5 71.8 ± 0.9 54.7 ± 0.0
DI-ERM (finetune) nomic-embed-text-v1.5 73.1 ± 0.3 56.4 ± 0.8

Image classification across styles We next evaluate our method on the PACS dataset259

[Li et al., 2017], which contains images drawn from four distinct visual styles: d ∈260

Photo (P), Art Painting (A), Cartoon (C), Sketch (S). Each image x belongs to one of seven cate-261

gories, y ∈ {Dog, Elephant, Giraffe, Guitar, Horse, House, Person} . Domain information is repre-262

sented by a short text description m, such as “a photo” or “a pencil sketch” (see Figure 4).263

This vision task satisfies covariate shift, since a single classifier should accurately classify all images264

across domains. Thus, in line with Section 5.3, we expect any gains to be due to using a restricted265

function class. To implement DI-ERM, we use pretrained image foundation models (e.g., CLIP266

[Radford et al., 2021], DINOv2 [Oquab et al., 2023]) to extract visual features from x, and encode267

the domain description m using a pretrained language model (DistilBERT) following the prompt in268

Figure 4. The resulting image and text embeddings are concatenated into a joint representation for269

classification.270

We follow the standard PACS evaluation protocol: training on three domains and testing on the held-271

out fourth domain, repeated across all domain splits. All encoders are frozen, and linear classifiers272

are trained on top of the fixed representations.273

As shown in Table 10, DI-ERM improves over pooling ERM in most settings. The gains are most274

pronounced for mid-sized models, while the benefit diminishes for larger foundation models. This275

pattern aligns with the discussion in Section 5.3: under covariate shift, the benefit of DI-ERM276

decreases as model mismatch becomes smaller.277

Table 5: Domain generalization results on PACS using models from the CLIP and DINOv2 families.
DI-ERM achieves improved accuracy over pooling ERM in most configurations, particularly for
mid-sized models, less noticeable for large-sized models. When using large-sized models, both ERM
and DI-ERM approaches SOTA performance.

Algorithm Model PAC → S ACS → P CSP → A SPA → C Test Avg Acc

Pooling ERM (linear)
CLIP: vitb32

86.97 99.58 95.90 97.48 94.98
DI-ERM (linear) 88.06 99.64 96.29 97.48 95.37

Pooling ERM (linear)
CLIP: vitl14

95.42 99.94 99.22 99.79 98.59
DI-ERM (linear) 95.32 99.94 99.32 99.79 98.59

Pooling ERM (linear)
DINOv2: vits14

79.82 85.81 93.55 91.34 87.63
DI-ERM (linear) 80.45 90.00 94.09 91.60 89.04

Pooling ERM (linear)
DINOv2: vitl14

92.29 96.41 98.14 97.48 96.08
DI-ERM (linear) 92.42 97.37 98.10 97.48 96.34

7 Conclusions278

This work presents a rigorous theory of domain generalization, precisely characterizing when and279

why leveraging domain information at test time is beneficial. Empirically, we demonstrate that280

domain-informed ERM (DI-ERM) outperforms pooled ERM across three representative scenarios in281

language and vision tasks. Future work can be done to explore alternative ways of encoding domain282

information, and a broader range of DG benchmarks.283

9

https://wilds.stanford.edu/


References284

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.285

arXiv preprint arXiv:1907.02893, 2019.286

Ruqi Bai, Saurabh Bagchi, and David I. Inouye. Benchmarking algorithms for federated domain287

generalization. In The Twelfth International Conference on Learning Representations, 2024. URL288

https://openreview.net/forum?id=wprSv7ichW.289

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for290

domain adaptation. Advances in neural information processing systems, 19, 2006.291

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification292

tasks to a new unlabeled sample. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q.293

Weinberger, editors, Advances in Neural Information Processing Systems, volume 24. Curran As-294

sociates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/295

file/b571ecea16a9824023ee1af16897a582-Paper.pdf.296

Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. Domain297

generalization by marginal transfer learning. Journal of machine learning research, 22(2):1–55,298

2021.299

T Tony Cai and Hongji Wei. Transfer learning for nonparametric classification: Minimax rate and300

adaptive classifier. The Annals of Statistics, 49(1):100–128, 2021.301

Junhyeong Cho, Gilhyun Nam, Sungyeon Kim, Hunmin Yang, and Suha Kwak. Promptstyler:302

Prompt-driven style generation for source-free domain generalization. In Proceedings of the303

IEEE/CVF International Conference on Computer Vision, pages 15702–15712, 2023.304

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: In-305

vestigating projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung,306

volume 23, pages 107–124, 2019.307

Naihao Deng, Xinliang Zhang, Siyang Liu, Winston Wu, Lu Wang, and Rada Mihalcea. You are308

what you annotate: Towards better models through annotator representations. In Findings of the309

Association for Computational Linguistics: EMNLP 2023, pages 12475–12498, 2023.310

Aniket Anand Deshmukh, Ankit Bansal, and Akash Rastogi. Domain2vec: Deep domain generaliza-311

tion. arXiv preprint arXiv:1807.02919, 2018.312

Mark Díaz, Isaac Johnson, Amanda Lazar, Anne Marie Piper, and Darren Gergle. Addressing313

age-related bias in sentiment analysis. In Proceedings of the 2018 chi conference on human factors314

in computing systems, pages 1–14, 2018.315

Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple316

datasets and web images for softening bias. In Proceedings of the IEEE international conference317

on computer vision, pages 1657–1664, 2013.318

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François319

Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.320

Journal of machine learning research, 17(59):1–35, 2016.321

Henry Gouk, Ondrej Bohdal, Da Li, and Timothy Hospedales. On the limitations of general purpose322

domain generalisation methods, 2024. URL https://arxiv.org/abs/2202.00563.323

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International324

Conference on Learning Representations, 2021.325

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-326

subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A327

benchmark of in-the-wild distribution shifts. In International conference on machine learning,328

pages 5637–5664. PMLR, 2021.329

10

https://openreview.net/forum?id=wprSv7ichW
https://proceedings.neurips.cc/paper_files/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://arxiv.org/abs/2202.00563


Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain330

generalization. In Proceedings of the IEEE international conference on computer vision, pages331

5542–5550, 2017.332

Jiashuo Liu, Tianyu Wang, Peng Cui, and Hongseok Namkoong. Rethinking distribution shifts:333

Empirical analysis and inductive modeling for tabular data, 2024. URL https://arxiv.org/334

abs/2307.05284.335

Subha Maity, Diptavo Dutta, Jonathan Terhorst, Yuekai Sun, and Moulinath Banerjee. A linear336

adjustment based approach to posterior drift in transfer learning. Biometrika, 2024. URL https:337

//doi.org/10.1093/biomet/asad029.338

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds339

and algorithms. In Proceedings of The 22nd Annual Conference on Learning Theory (COLT 2009),340

Montréal, Canada, 2009. URL http://www.cs.nyu.edu/~mohri/postscript/nadap.pdf.341

Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant342

feature representation. In International conference on machine learning, pages 10–18. PMLR,343

2013.344

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,345

Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning346

robust visual features without supervision. Transactions on Machine Learning Research, 2023.347

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching348

for multi-source domain adaptation. In Proceedings of the IEEE International Conference on349

Computer Vision, pages 1406–1415, 2019.350

Barbara Plank. The “problem” of human label variation: On ground truth in data, modeling and351

evaluation. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022352

Conference on Empirical Methods in Natural Language Processing, pages 10671–10682, Abu353

Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi:354

10.18653/v1/2022.emnlp-main.731. URL https://aclanthology.org/2022.emnlp-main.355

731/.356

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,357

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual358

models from natural language supervision. In International conference on machine learning, pages359

8748–8763. PmLR, 2021.360

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of invariant risk minimization.361

In International Conference on Learning Representations, volume 9, 2021.362

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust363

neural networks for group shifts: On the importance of regularization for worst-case generalization.364

In International Conference on Learning Representations, 2020. URL https://openreview.365

net/forum?id=ryxGuJrFvS.366

Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya367

Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Etienne David, Ian368

Stavness, Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey Levine, Chelsea369

Finn, and Percy Liang. Extending the WILDS benchmark for unsupervised adaptation. In370

International Conference on Learning Representations, 2022. URL https://openreview.net/371

forum?id=z7p2V6KROOV.372

Clayton Scott. A generalized Neyman-Pearson criterion for optimal domain adaptation. In Algorithmic373

Learning Theory, pages 738–761. PMLR, 2019.374

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In375

European Conference on Computer Vision, pages 443–450. Springer, 2016.376

11

https://arxiv.org/abs/2307.05284
https://arxiv.org/abs/2307.05284
https://arxiv.org/abs/2307.05284
https://doi.org/10.1093/biomet/asad029
https://doi.org/10.1093/biomet/asad029
https://doi.org/10.1093/biomet/asad029
http://www.cs.nyu.edu/~mohri/postscript/nadap.pdf
https://aclanthology.org/2022.emnlp-main.731/
https://aclanthology.org/2022.emnlp-main.731/
https://aclanthology.org/2022.emnlp-main.731/
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=z7p2V6KROOV
https://openreview.net/forum?id=z7p2V6KROOV
https://openreview.net/forum?id=z7p2V6KROOV


Piotr Teterwak, Kuniaki Saito, Theodoros Tsiligkaridis, Kate Saenko, and Bryan Plummer. Erm++:377

An improved baseline for domain generalization. In Proceedings of the Winter Conference on378

Applications of Computer Vision (WACV), pages 8514–8524, February 2025.379

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep380

hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on381

Computer Vision and Pattern Recognition, pages 5018–5027, 2017.382

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations383

by penalizing local predictive power. In Advances in Neural Information Processing Systems,384

pages 10506–10518, 2019.385

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun386

Zeng, and S Yu Philip. Generalizing to unseen domains: A survey on domain generalization. IEEE387

transactions on knowledge and data engineering, 35(8):8052–8072, 2022.388

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and389

Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.390

Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea Finn.391

Adaptive risk minimization: Learning to adapt to domain shift. Advances in Neural Information392

Processing Systems, 34:23664–23678, 2021.393

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A394

survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396–4415, 2023.395

Yilun Zhu, Jianxin Zhang, Aditya Gangrade, and Clayton Scott. Label noise: Ignorance is bliss.396

Advances in Neural Information Processing Systems, 38:116575–116616, 2024.397

12



A Appendix: additional literature review398

ERM is hard to beat. Empirically, Gulrajani and Lopez-Paz [2021] first emphasized that a well-399

tuned empirical risk minimization (ERM) baseline outperforms many domain generalization (DG)400

methods on vision benchmarks. Similar patterns were later observed on the WILDS benchmark [Koh401

et al., 2021], and again in the context of federated learning by Bai et al. [2024]. On the theoretical402

front, Rosenfeld et al. [2021] and Gouk et al. [2024] studied function classes of the form f : X → Y403

and concluded that, under common assumptions, ERM cannot be fundamentally outperformed (e.g.,404

in terms of minimax risk).405

The use of unlabeled data. While most DG methods restrict themselves to using only the input x406

at inference time, some methods explore the use of unlabeled test-domain data. Several DG methods407

attempt to exploit unlabeled test data to improve generalization [Blanchard et al., 2011, Muandet408

et al., 2013, Zhang et al., 2021]. A closely related setting is unsupervised domain adaptation (UDA),409

where unlabeled test data are used to adapt models to the test domain. Unlike DG, UDA assumes410

access to target-domain data at training time and typically requires learning a separate model per test411

domain [Sun and Saenko, 2016, Ganin et al., 2016].412

Although promising in principle, the practical benefits of using unlabeled data remain mixed. A413

large-scale study by Sagawa et al. [2022] evaluating methods across ten diverse datasets found that414

incorporating unlabeled data frequently failed to improve upon strong ERM baselines. These findings415

reinforce the need for a more precise understanding of when and how unlabeled data can contribute416

to domain generalization.417

Our framework addresses this gap by casting unlabeled data as a special case of auxiliary domain418

information, and by providing conditions under which such information is expected to improve419

generalization performance.420

B Appendix: Partial versus full domain knowledge421

Although not the focus of this paper, a version of Theorem 1 also holds for the gap R∗
DG − R∗

full,422

where R∗
full is the risk of a classifier that has full knowledge of the test domain. Such a bound423

addresses a question left open by Blanchard et al. [2021, Lemma 9], who established that this gap424

is lower bounded by zero, and provide a condition under which the gap equals zero. The following425

result bounds this gap in a more general setting.426

Proposition 3 Let427

γ̃(x, d) := max
k

P (Y = k|X = x,D = d)− 2ndmax
k

P (Y = k|X = x,D = d) .

Then428

EX,D,M

[
γ̃(X,D)1f∗

full(X,D) ̸=f∗
DG(X,M)

]
≤ R∗

DG −R∗
full ≤ EX,D,M

[
1f∗

full(X,D)̸=f∗
DG(X,M)

]
and in particular,429

f∗
full(x, d) = f∗

DG(x,m) almost surely w.r.t. PXMD =⇒ R∗
full = R∗

DG.

The result has an interpretation analogous to that of Theorem 1. In particular, if the observed430

domain information is of low quality, in the sense that f∗
full disagrees with f∗

DG often, and with high431

confidence, then R∗
DG can be substantially worse than R∗

full.432

C Appendix: proofs433

C.1 Proof of Proposition 1434

Proposition (Risk Hierarchy) R∗
pool ≥ R∗

DG ≥ R∗
full.435
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Proof.436

R∗
pool = inf

f :X→Y
EX,Y,M,D

[
1f(X )̸=Y

]
≥ inf

f :X×M→Y
EX,Y,M,D

[
1f(X,M )̸=Y

]
= R∗

DG

≥ inf
f :X×M×D→Y

EX,Y,M,D

[
1f(X,M,D)̸=Y

]
= inf

f :X×D→Y
EX,Y,M,D

[
1f(X,D)̸=Y

]
= R∗

full ∵ (X,Y )|M,D = (X,Y )|D

437

C.2 Proof of Theorem 1438

Theorem (Risk Reduction from Domain Information) Consider any random triple (X,Y,M),439

where Y is discrete. Then440

EX,M

[
γ(X,M)1f∗

pool(X) ̸=f∗
DG(X,M)

]
≤ R∗

pool −R∗
DG ≤ EX,M

[
1f∗

pool(X )̸=f∗
DG(X,M)

]
.

Proof. The gap in the two risks can be expressed as441

R∗
pool −R∗

DG

= EX

[
EM |X [P (Y = f∗

DG(X,M)|X,M)]
]
− EX

[
P
(
Y = f∗

pool(X)|X
)]

= EX

[
EM |X [P (Y = f∗

DG(X,M)|X,M)]
]
− EX

[
EM |X

[
P
(
Y = f∗

pool(X)|X,M
)]]

= EX

[
EM |X

[
P (Y = f∗

DG(X,M)|X,M)− P
(
Y = f∗

pool(X)|X,M
)]]

Notice that for any x,m, if f∗
DG(x,m) = f∗

pool(x), then the pointwise difference of the conditional442

probabilities inside the expectation above must be zero.443

Whereas if they disagree, then it must hold that444

P (Y = f∗
pool(X)|X,M) ≤ 2ndmax

k
P (Y = k|X,M)

due to the definition of f∗
DG.445

It thus follows that.446

γ(x,m)1f∗
pool(x) ̸=f∗

DG(x,m) ≤ P (Y = f∗
DG(x,m)|X = x,M = m)− P

(
Y = f∗

pool(x)|X = x,M = m
)

≤ 1f∗
pool(x)̸=f∗

DG(x,m).

The inequalities in the theorem statement now follow.447

448

C.3 Proof of Proposition 2449

Proposition450

inf
(X,Y,M)∈Π(γ,ϵ)

[
R∗

pool −R∗
DG

]
≥ γ · ϵ

2

Proof. From the lower bound in Theorem 1, we have451

R∗
pool −R∗

DG ≥ EX,M

[
γ(X,M)1f∗

pool(X )̸=f∗
DG(X,M)

]
∵ Theorem 1

≥ γ EX,M

[
1f∗

pool(X )̸=f∗
DG(X,M)

]
∵ margin assumption in Π(γ, ϵ)

= γ EX

[
EM |X

[
1f∗

pool(X )̸=f∗
DG(X,M)

]]
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Now we will show that452

∀x, EM |X=x

[
1f∗

pool(x)̸=f∗
DG(x,M)

]
≥ 1

2
EM,M ′|X=x

[
1f∗

DG(x,M) ̸=f∗
DG(x,M ′)

]
,

where453

M, M ′ i.i.d.∼ PM |X=x.

Let’s examine the two terms. Fix x, denote454

πk(x) = P (f∗
DG(x,M) = k|X = x) ,

note that the randomness comes from M .455

Then for any x,456

EM,M ′|X=x

[
1f∗

DG(x,M) ̸=f∗
DG(x,M ′)

]
= P (f∗

DG(x,M) ̸= f∗
DG(x,M

′)|X = x)

=
∑
k

P (f∗
DG(x,M) = k, f∗

DG(x,M
′) ̸= k|X = x)

=
∑
k

πk(x) (1− πk(x))

= 1−
∑
k

πk(x)
2.

Now assume f∗
pool(x) = k0, then457

EM |X=x

[
1f∗

pool(x)̸=f∗
DG(x,M)

]
= EM |X=x

[
1f∗

DG(x,M) ̸=k0

]
= 1− πk0

(x)

Notice that458

1−
∑
k

πk(x)
2 ≤ 1− π2

k0
“=” when πk0

= 1

= (1 + πk0
)(1− πk0

)

≤ 2(1− πk0
) “=” when πk0

= 1.

Then459

EM |X=x

[
1f∗

pool(x)̸=f∗
DG(x,M)

]
≥ 1

2
EM,M ′|X=x

[
1f∗

DG(x,M )̸=f∗
DG(x,M ′)

]
.

Integrate over x, we have460

EX

[
EM |X

[
1f∗

pool(x) ̸=f∗
DG(X,M)

]]
≥ 1

2
EX

[
EM,M ′|X

[
1f∗

DG(X,M) ̸=f∗
DG(X,M ′)

]]
=

1

2
PX,M,M ′

(
f∗
DG

(
X,M

)
̸= f∗

DG

(
X,M ′))

≥ 1

2
ϵ ∵ by definition of Π(γ, ϵ)

461

C.4 Proof of Proposition 3462

Proposition Let463

γ̃(x, d) := max
k

P (Y = k|X = x,D = d)− 2ndmax
k

P (Y = k|X = x,D = d)

Then464

EX,D,M

[
γ(X,D)1f∗

full(X,D) ̸=f∗
DG(X,M)

]
≤ R∗

DG −R∗
full ≤ EX,D,M

[
1f∗

full(X,D)̸=f∗
DG(X,M)

]
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and in particular,465

f∗
full(x, d) = f∗

DG(x,m) almost surely w.r.t. PXMD =⇒ R∗
full = R∗

DG.

Proof.466

R∗
DG −R∗

full = EX,Y,D,M

[
1Y ̸=f∗

full(X,D)

]
− EX,Y,D,M

[
1Y ̸=f∗

DG(X,M)

]
= EX,D,M [P (Y = f∗

DG(X,M))− P (Y = f∗
full(X,D)) |X,D,M ]

Recall the assumption on M :467

Y |X,D,M = Y |X,D.

Then for every x, d and m,468

P (Y = f∗
DG(x,m)|X = x,D = d,M = m)− P (Y = f∗

full(x, d)|X = x,D = d,M = m)

= P (Y = f∗
DG(x,m)|X = x,D = d)− P (Y = f∗

full(x, d)|X = x,D = d)

≥ γ(x, d)1f∗(x,m) ̸=f∗(x,d).

Similarily,469

P (Y = f∗
DG(x,m)|X = x,D = d,M = m)− P (Y = f∗

full(x, d)|X = x,D = d,M = m)

≤ 1f∗(x,m)̸=f∗(x,d).

Integrate over x, d,m, we get the lower and upper bound.470

From the lower and upper bound, we can directly get the sufficient condition471

f∗
full(x, d) = f∗

DG(x,m) almost surely w.r.t. PXMD. =⇒ R∗
full = R∗

DG

472

D Appendix: Experimental details473

This section provides additional details on our experimental setup, models, and performance compar-474

isons. Unless otherwise specified, all models used for fine-tuning are implemented using publicly475

available checkpoints (e.g., via Huggingface, Pytorch, or official Github repo). For linear probing476

experiments, we extract feature representations using pre-trained transformers and train downstream477

classifiers with scikit-learn, using either logistic regression or multilayer perceptrons (MLPs).478

The following subsections follows the same structure as Section 6, while providing additional details479

and full tables.480

D.1 Sentiment disagreement among annotators481

Fine-Tuning. We fine-tune the bert-base-uncased model and benchmark DI-ERM against other482

domain generalization methods. For DI-ERM, we concatenate the sentence x with the annotator483

profile m using the text prompt shown in Figure 2.484

Table 6 reports the results. Our models consistently outperform prior work, with the best configuration485

achieving over 90% test accuracy—substantially higher than the previous state-of-the-art reported by486

Deng et al. [2023].487

Linear/MLP-probing. We also evaluate in a frozen-feature setting, where the language model is488

fixed and a lightweight classifier is trained on top. Here, x is encoded with a pretrained sentiment489

model (e.g., [CLS] embedding of DistilBERT fine-tuned on SST-2), while m is encoded with a490

general-purpose DistilBERT. The embeddings are concatenated and passed to either a linear or491

shallow MLP classifier. The classifiers are trained in scikit-learn.492

Table 7 presents the results. DI-ERM consistently outperforms pooling ERM across different feature493

extractors.494
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Instruction: Read the following sentence and the annotator’s
demographic profile and determine how positive or negative the
annotator judged the sentence on a 1–5 scale (1 = Very negative, 5
= Very positive).

Sentence: [sentence goes here]

Annotator profile: Age {age}, Race {race}, Hispanic/Latino {hisp},
grew up in {grew}, currently lives in {curr}, region {region}, income
{income}, education {education}, employment {employment}, living
situation {living}, politics {politics}, gender {gender}.

Answer:

Figure 2: Text prompt that encodes annotator profile.

Table 6: Test accuracy on the sentiment disagreement dataset (fine-tuning BERT). DI-ERM (ours)
achieves the best performance.

Algorithm Model Test Avg Acc

ERM BERT 49.1 ± 0.4
IRM BERT 48.1 ± 0.7
GroupDRO BERT 49.1 ± 0.1
CORAL BERT 48.4 ± 0.2
AnnEmb (SOTA) BERT 64.6 ± 0.8
DI-ERM (ours, fine-tune) BERT 90.5 ± 0.2

Table 7: Test accuracy on the sentiment disagreement dataset (frozen feature extractor). DI-ERM
consistently outperforms pooling ERM, and in some settings surpasses the prior state-of-the-art of
Deng et al. [2023]. We highlight the best performance reported by Deng et al. [2023] (69.77) and our
highest score (83.41). †: Checkpoints used in Deng et al. [2023] were not publicly specified.

Algorithm Model Test Avg Acc

Deng et al. [2023]
BERT† 64.61

RoBERTa† 60.30
DeBERTa† 69.77

Pooling ERM (linear) distilbert-base-uncased-finetuned-sst-2-english 45.85
DI-ERM (linear) distilbert-base-uncased-finetuned-sst-2-english 46.42

Pooling ERM (MLP) distilbert-base-uncased-finetuned-sst-2-english 55.07
DI-ERM (MLP) distilbert-base-uncased-finetuned-sst-2-english 78.45

Pooling ERM (linear) bert-base-multilingual-uncased-sentiment 43.06
DI-ERM (linear) bert-base-multilingual-uncased-sentiment 43.94

Pooling ERM (MLP) bert-base-multilingual-uncased-sentiment 53.90
DI-ERM (MLP) bert-base-multilingual-uncased-sentiment 83.41

D.2 Reviewer-specific sentiment analysis495

Fine-Tuning. We fine-tune the bert-base-uncased model and benchmark DI-ERM against other496

domain generalization methods. For DI-ERM, we concatenate each review x with reviewer context497

m, represented by 20 randomly selected reviews from the same reviewer, using the text prompt in498

Figure 3.499

We choose nomic-embed-text-v1.5, which supports a 2048-token window (compared to 512 for500

DistilBERT), in order to handle the long reviwer context m.501
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Table 8 reports the results. DI-ERM achieves the best performance, outperforming previously reported502

methods on the WILDS leaderboard (https://wilds.stanford.edu/).503

Instruction: Classify the current review based on this
reviewer’s sentiment patterns.

Current Review: [current review goes here]

Reviewer’s Historical Reviews:
Review 1: [review_1] | Review 2: [review_2] | ...

Figure 3: Text prompt that encodes reviewer writing style

Table 8: Reviewer-specific sentiment analysis. DI-ERM (ours) achieves the highest accuracy,
outperforming prior state-of-the-art.

Algorithm Model Test Avg Acc Test 10% Acc

ERM DistilBERT 72.0 ± 0.1 54.2 ± 0.8
GroupDRO DistilBERT 70.0 ± 0.5 53.3 ± 0.8
CORAL DistilBERT 71.1 ± 0.3 52.9 ± 0.8
IRM DistilBERT 70.3 ± 0.6 52.4 ± 0.8
LISA (SOTA) DistilBERT 70.7 ± 0.3 54.7 ± 0.0

ERM (finetune) nomic-embed-text-v1.5 71.8 ± 0.9 54.7 ± 0.0
DI-ERM (ours, finetune) nomic-embed-text-v1.5 73.1 ± 0.3 56.4 ± 0.8

Linear/MLP-probing. We also evaluate in a frozen-feature setting, where the language model is504

fixed and only a lightweight classifier is trained. Each review x is represented by its [CLS] embedding505

from a pretrained sentiment model (e.g., DistilBERT fine-tuned on SST-2). For reviewer context m,506

we average the [CLS] embeddings of all reviews written by that reviewer. The concatenated review507

and reviewer embeddings are then passed to a linear or a shallow MLP classifier implemented in508

scikit-learn.509

Domain2Vec. Inspired by Zaheer et al. [2017], Deshmukh et al. [2018], we implement a510

Domain2Vec-style module to encode reviewer-specific domain information. Given a set of reviews511

{x1, x2, . . . , xn} ∼ PX|D=d written by reviewer d, we learn a mapping512

f({x1, x2, . . . , xn}) = ρ

(
1

n

n∑
i=1

ϕ(xi)

)
,

where ϕ and ρ are MLPs that map individual feature representations (extracted from pretrained513

model) to a latent space and then transform the aggregated feature, respectively. The resulting vector514

is concatenated with the review representation x to predict its sentiment label y.515

Table 9 shows the result.516

D.3 Image classification across styles517

We evaluate our approach on the PACS benchmark, which contains four visual styles: Photo (P), Art518

Painting (A), Cartoon (C), and Sketch (S). To assess robustness to style variation, we test a diverse519

set of models from the CLIP and DINOv2 families.520

For all the experiment we use the text prompt in Figure 4 as input to DistillBERT.521

Table 10 summarizes the results. Across most domain shifts, our proposed DI-ERM method con-522

sistently outperforms standard pooling ERM, highlighting the advantage of incorporating domain-523

specific information into the representation.524
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Table 9: Sentiment classification on Amazon-WILDS with reviewer-specific signals. “Domain2Vec”
denotes reviewer encoding based on a learned mean embedding. DI-ERM variants consistently
outperform pooling ERM baselines.

Algorithm Model Test Avg Acc Test 10% Acc

Pooling ERM (linear) distilbert-base-uncased-finetuned-sst-2-english 67.42 48.00
DI-ERM (linear) distilbert-base-uncased-finetuned-sst-2-english 68.21 48.00

Pooling ERM (MLP) distilbert-base-uncased-finetuned-sst-2-english 67.59 48.00
DI-ERM (MLP) distilbert-base-uncased-finetuned-sst-2-english 68.28 49.33

DI-ERM (Domain2Vec) distilbert-base-uncased-finetuned-sst-2-english 68.21 48.00

Pooling ERM (linear) bert-base-multilingual-uncased-sentiment 72.14 53.33
DI-ERM (linear) bert-base-multilingual-uncased-sentiment 73.22 54.67

Pooling ERM (MLP) bert-base-multilingual-uncased-sentiment 73.01 53.33
DI-ERM (MLP) bert-base-multilingual-uncased-sentiment 73.18 55.07

DI-ERM (Domain2Vec) bert-base-multilingual-uncased-sentiment 73.19 54.67

Domain "photo", text prompt: "a photo"

Domain "art painting", text prompt: "an oil painting"

Domain "cartoon", text prompt: "a colorful cartoon"

Domain "sketch", text prompt: "a pencil sketch"

Figure 4: Example of style-specific text prompts used as domain descriptions.

Notably, we observe that the performance gains from DI-ERM tend to diminish as model capacity525

increases. For the largest models (e.g., CLIP ViT-L/14 and DINOv2 ViT-L/14), the improvement is526

marginal or saturates. This trend is also observed by various empirical works, e.g. Cho et al. [2023].527

Table 10: Domain generalization results on PACS using models from the CLIP and DINOv2 families.
DI-ERM achieves improved accuracy over pooling ERM in most configurations, particularly for
mid-sized models.

Model Algorithm PAC → S ACS → P CSP → A SPA → C Test Avg Acc

CLIP: vitb32
Pooling ERM (linear) 86.97 99.58 95.90 97.48 94.98

DI-ERM (linear) 88.06 99.64 96.29 97.48 95.37

CLIP: vitb16
Pooling ERM (linear) 90.89 99.70 97.51 98.76 96.70

DI-ERM (linear) 91.09 99.70 97.61 98.76 96.79

CLIP: vitl14
Pooling ERM (linear) 95.42 99.94 99.22 99.79 98.59

DI-ERM (linear) 95.32 99.94 99.32 99.79 98.59

DINOv2: vits14
Pooling ERM (linear) 79.82 85.81 93.55 91.34 87.63

DI-ERM (linear) 80.45 90.00 94.09 91.60 89.04

DINOv2: vitb14
Pooling ERM (linear) 87.27 95.45 97.66 94.67 93.76

DI-ERM (linear) 87.35 96.53 98.05 94.50 94.11

DINOv2: vitl14
Pooling ERM (linear) 92.29 96.41 98.14 97.48 96.08

DI-ERM (linear) 92.42 97.37 98.10 97.48 96.34
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NeurIPS Paper Checklist528

1. Claims529

Question: Do the main claims made in the abstract and introduction accurately reflect the530

paper’s contributions and scope?531

Answer: [Yes]532

Justification: The claims are either supported by theory statements or by reproducible533

experiment results.534

Guidelines:535

• The answer NA means that the abstract and introduction do not include the claims536

made in the paper.537

• The abstract and/or introduction should clearly state the claims made, including the538

contributions made in the paper and important assumptions and limitations. A No or539

NA answer to this question will not be perceived well by the reviewers.540

• The claims made should match theoretical and experimental results, and reflect how541

much the results can be expected to generalize to other settings.542

• It is fine to include aspirational goals as motivation as long as it is clear that these goals543

are not attained by the paper.544

2. Limitations545

Question: Does the paper discuss the limitations of the work performed by the authors?546

Answer: [Yes]547

Justification: Limitations about our practical method is described.548

Guidelines:549

• The answer NA means that the paper has no limitation while the answer No means that550

the paper has limitations, but those are not discussed in the paper.551

• The authors are encouraged to create a separate "Limitations" section in their paper.552

• The paper should point out any strong assumptions and how robust the results are to553

violations of these assumptions (e.g., independence assumptions, noiseless settings,554

model well-specification, asymptotic approximations only holding locally). The authors555

should reflect on how these assumptions might be violated in practice and what the556

implications would be.557

• The authors should reflect on the scope of the claims made, e.g., if the approach was558

only tested on a few datasets or with a few runs. In general, empirical results often559

depend on implicit assumptions, which should be articulated.560

• The authors should reflect on the factors that influence the performance of the approach.561

For example, a facial recognition algorithm may perform poorly when image resolution562

is low or images are taken in low lighting. Or a speech-to-text system might not be563

used reliably to provide closed captions for online lectures because it fails to handle564

technical jargon.565

• The authors should discuss the computational efficiency of the proposed algorithms566

and how they scale with dataset size.567

• If applicable, the authors should discuss possible limitations of their approach to568

address problems of privacy and fairness.569

• While the authors might fear that complete honesty about limitations might be used by570

reviewers as grounds for rejection, a worse outcome might be that reviewers discover571

limitations that aren’t acknowledged in the paper. The authors should use their best572

judgment and recognize that individual actions in favor of transparency play an impor-573

tant role in developing norms that preserve the integrity of the community. Reviewers574

will be specifically instructed to not penalize honesty concerning limitations.575

3. Theory Assumptions and Proofs576

Question: For each theoretical result, does the paper provide the full set of assumptions and577

a complete (and correct) proof?578

20



Answer: [Yes]579

Justification: Assumptions are stated in the theorem statement. Full proofs are included in580

the appendix.581

Guidelines:582

• The answer NA means that the paper does not include theoretical results.583

• All the theorems, formulas, and proofs in the paper should be numbered and cross-584

referenced.585

• All assumptions should be clearly stated or referenced in the statement of any theorems.586

• The proofs can either appear in the main paper or the supplemental material, but if587

they appear in the supplemental material, the authors are encouraged to provide a short588

proof sketch to provide intuition.589

• Inversely, any informal proof provided in the core of the paper should be complemented590

by formal proofs provided in appendix or supplemental material.591

• Theorems and Lemmas that the proof relies upon should be properly referenced.592

4. Experimental Result Reproducibility593

Question: Does the paper fully disclose all the information needed to reproduce the main ex-594

perimental results of the paper to the extent that it affects the main claims and/or conclusions595

of the paper (regardless of whether the code and data are provided or not)?596

Answer: [Yes]597

Justification: Important information about the experiments are in main text. Details on the598

experimental setup is described in the appendix.599

Guidelines:600

• The answer NA means that the paper does not include experiments.601

• If the paper includes experiments, a No answer to this question will not be perceived602

well by the reviewers: Making the paper reproducible is important, regardless of603

whether the code and data are provided or not.604

• If the contribution is a dataset and/or model, the authors should describe the steps taken605

to make their results reproducible or verifiable.606

• Depending on the contribution, reproducibility can be accomplished in various ways.607

For example, if the contribution is a novel architecture, describing the architecture fully608

might suffice, or if the contribution is a specific model and empirical evaluation, it may609

be necessary to either make it possible for others to replicate the model with the same610

dataset, or provide access to the model. In general. releasing code and data is often611

one good way to accomplish this, but reproducibility can also be provided via detailed612

instructions for how to replicate the results, access to a hosted model (e.g., in the case613

of a large language model), releasing of a model checkpoint, or other means that are614

appropriate to the research performed.615

• While NeurIPS does not require releasing code, the conference does require all submis-616

sions to provide some reasonable avenue for reproducibility, which may depend on the617

nature of the contribution. For example618

(a) If the contribution is primarily a new algorithm, the paper should make it clear how619

to reproduce that algorithm.620

(b) If the contribution is primarily a new model architecture, the paper should describe621

the architecture clearly and fully.622

(c) If the contribution is a new model (e.g., a large language model), then there should623

either be a way to access this model for reproducing the results or a way to reproduce624

the model (e.g., with an open-source dataset or instructions for how to construct625

the dataset).626

(d) We recognize that reproducibility may be tricky in some cases, in which case627

authors are welcome to describe the particular way they provide for reproducibility.628

In the case of closed-source models, it may be that access to the model is limited in629

some way (e.g., to registered users), but it should be possible for other researchers630

to have some path to reproducing or verifying the results.631
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5. Open access to data and code632

Question: Does the paper provide open access to the data and code, with sufficient instruc-633

tions to faithfully reproduce the main experimental results, as described in supplemental634

material?635

Answer: [Yes]636

Justification: Code is provided, common benchmark datase were used, instructions are given,637

the result is easily reproducible.638

Guidelines:639

• The answer NA means that paper does not include experiments requiring code.640

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/641

public/guides/CodeSubmissionPolicy) for more details.642

• While we encourage the release of code and data, we understand that this might not be643

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not644

including code, unless this is central to the contribution (e.g., for a new open-source645

benchmark).646

• The instructions should contain the exact command and environment needed to run to647

reproduce the results. See the NeurIPS code and data submission guidelines (https:648

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.649

• The authors should provide instructions on data access and preparation, including how650

to access the raw data, preprocessed data, intermediate data, and generated data, etc.651

• The authors should provide scripts to reproduce all experimental results for the new652

proposed method and baselines. If only a subset of experiments are reproducible, they653

should state which ones are omitted from the script and why.654

• At submission time, to preserve anonymity, the authors should release anonymized655

versions (if applicable).656

• Providing as much information as possible in supplemental material (appended to the657

paper) is recommended, but including URLs to data and code is permitted.658

6. Experimental Setting/Details659

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-660

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the661

results?662

Answer: [Yes]663

Justification: See appendix and attached code.664

Guidelines:665

• The answer NA means that the paper does not include experiments.666

• The experimental setting should be presented in the core of the paper to a level of detail667

that is necessary to appreciate the results and make sense of them.668

• The full details can be provided either with the code, in appendix, or as supplemental669

material.670

7. Experiment Statistical Significance671

Question: Does the paper report error bars suitably and correctly defined or other appropriate672

information about the statistical significance of the experiments?673

Answer: [Yes]674

Justification: For many result on various benchmark, we fix the random seeds and uses675

sklearn, our result is deterministic and thus no error bar. For fine-tuning result, we do676

repeated trials, see appendix.677

Guidelines:678

• The answer NA means that the paper does not include experiments.679

• The authors should answer "Yes" if the results are accompanied by error bars, confi-680

dence intervals, or statistical significance tests, at least for the experiments that support681

the main claims of the paper.682
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• The factors of variability that the error bars are capturing should be clearly stated (for683

example, train/test split, initialization, random drawing of some parameter, or overall684

run with given experimental conditions).685

• The method for calculating the error bars should be explained (closed form formula,686

call to a library function, bootstrap, etc.)687

• The assumptions made should be given (e.g., Normally distributed errors).688

• It should be clear whether the error bar is the standard deviation or the standard error689

of the mean.690

• It is OK to report 1-sigma error bars, but one should state it. The authors should691

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis692

of Normality of errors is not verified.693

• For asymmetric distributions, the authors should be careful not to show in tables or694

figures symmetric error bars that would yield results that are out of range (e.g. negative695

error rates).696

• If error bars are reported in tables or plots, The authors should explain in the text how697

they were calculated and reference the corresponding figures or tables in the text.698

8. Experiments Compute Resources699

Question: For each experiment, does the paper provide sufficient information on the com-700

puter resources (type of compute workers, memory, time of execution) needed to reproduce701

the experiments?702

Answer: [Yes]703

Justification: See appendix.704

Guidelines:705

• The answer NA means that the paper does not include experiments.706

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,707

or cloud provider, including relevant memory and storage.708

• The paper should provide the amount of compute required for each of the individual709

experimental runs as well as estimate the total compute.710

• The paper should disclose whether the full research project required more compute711

than the experiments reported in the paper (e.g., preliminary or failed experiments that712

didn’t make it into the paper).713

9. Code Of Ethics714

Question: Does the research conducted in the paper conform, in every respect, with the715

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?716

Answer: [Yes]717

Justification: The authors have read the NeurIPS Code of Ethics and confirm that this718

research follows the code of ethics.719

Guidelines:720

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.721

• If the authors answer No, they should explain the special circumstances that require a722

deviation from the Code of Ethics.723

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-724

eration due to laws or regulations in their jurisdiction).725

10. Broader Impacts726

Question: Does the paper discuss both potential positive societal impacts and negative727

societal impacts of the work performed?728

Answer: [NA]729

Justification: This is a theory-oriented paper.730

Guidelines:731

• The answer NA means that there is no societal impact of the work performed.732
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• If the authors answer NA or No, they should explain why their work has no societal733

impact or why the paper does not address societal impact.734

• Examples of negative societal impacts include potential malicious or unintended uses735

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations736

(e.g., deployment of technologies that could make decisions that unfairly impact specific737

groups), privacy considerations, and security considerations.738

• The conference expects that many papers will be foundational research and not tied739

to particular applications, let alone deployments. However, if there is a direct path to740

any negative applications, the authors should point it out. For example, it is legitimate741

to point out that an improvement in the quality of generative models could be used to742

generate deepfakes for disinformation. On the other hand, it is not needed to point out743

that a generic algorithm for optimizing neural networks could enable people to train744

models that generate Deepfakes faster.745

• The authors should consider possible harms that could arise when the technology is746

being used as intended and functioning correctly, harms that could arise when the747

technology is being used as intended but gives incorrect results, and harms following748

from (intentional or unintentional) misuse of the technology.749

• If there are negative societal impacts, the authors could also discuss possible mitigation750

strategies (e.g., gated release of models, providing defenses in addition to attacks,751

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from752

feedback over time, improving the efficiency and accessibility of ML).753

11. Safeguards754

Question: Does the paper describe safeguards that have been put in place for responsible755

release of data or models that have a high risk for misuse (e.g., pretrained language models,756

image generators, or scraped datasets)?757

Answer: [NA]758

Justification: The paper poses no such risks759

Guidelines:760

• The answer NA means that the paper poses no such risks.761

• Released models that have a high risk for misuse or dual-use should be released with762

necessary safeguards to allow for controlled use of the model, for example by requiring763

that users adhere to usage guidelines or restrictions to access the model or implementing764

safety filters.765

• Datasets that have been scraped from the Internet could pose safety risks. The authors766

should describe how they avoided releasing unsafe images.767

• We recognize that providing effective safeguards is challenging, and many papers do768

not require this, but we encourage authors to take this into account and make a best769

faith effort.770

12. Licenses for existing assets771

Question: Are the creators or original owners of assets (e.g., code, data, models), used in772

the paper, properly credited and are the license and terms of use explicitly mentioned and773

properly respected?774

Answer: [Yes]775

Justification: Citations and urls are included.776

Guidelines:777

• The answer NA means that the paper does not use existing assets.778

• The authors should cite the original paper that produced the code package or dataset.779

• The authors should state which version of the asset is used and, if possible, include a780

URL.781

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.782

• For scraped data from a particular source (e.g., website), the copyright and terms of783

service of that source should be provided.784
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• If assets are released, the license, copyright information, and terms of use in the785

package should be provided. For popular datasets, paperswithcode.com/datasets786

has curated licenses for some datasets. Their licensing guide can help determine the787

license of a dataset.788

• For existing datasets that are re-packaged, both the original license and the license of789

the derived asset (if it has changed) should be provided.790

• If this information is not available online, the authors are encouraged to reach out to791

the asset’s creators.792

13. New Assets793

Question: Are new assets introduced in the paper well documented and is the documentation794

provided alongside the assets?795

Answer: [NA]796

Justification: The paper does not release new assets.797

Guidelines:798

• The answer NA means that the paper does not release new assets.799

• Researchers should communicate the details of the dataset/code/model as part of their800

submissions via structured templates. This includes details about training, license,801

limitations, etc.802

• The paper should discuss whether and how consent was obtained from people whose803

asset is used.804

• At submission time, remember to anonymize your assets (if applicable). You can either805

create an anonymized URL or include an anonymized zip file.806

14. Crowdsourcing and Research with Human Subjects807

Question: For crowdsourcing experiments and research with human subjects, does the paper808

include the full text of instructions given to participants and screenshots, if applicable, as809

well as details about compensation (if any)?810

Answer: [NA]811

Justification: The paper does not involve crowdsourcing nor research with human subjects.812

Guidelines:813

• The answer NA means that the paper does not involve crowdsourcing nor research with814

human subjects.815

• Including this information in the supplemental material is fine, but if the main contribu-816

tion of the paper involves human subjects, then as much detail as possible should be817

included in the main paper.818

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,819

or other labor should be paid at least the minimum wage in the country of the data820

collector.821

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human822

Subjects823

Question: Does the paper describe potential risks incurred by study participants, whether824

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)825

approvals (or an equivalent approval/review based on the requirements of your country or826

institution) were obtained?827

Answer: [NA]828

Justification: The paper does not involve with this matter.829

Guidelines:830

• The answer NA means that the paper does not involve crowdsourcing nor research with831

human subjects.832

• Depending on the country in which research is conducted, IRB approval (or equivalent)833

may be required for any human subjects research. If you obtained IRB approval, you834

should clearly state this in the paper.835
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• We recognize that the procedures for this may vary significantly between institutions836

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the837

guidelines for their institution.838

• For initial submissions, do not include any information that would break anonymity (if839

applicable), such as the institution conducting the review.840

16. Declaration of LLM usage841

Question: Does the paper describe the usage of LLMs if it is an important, original, or842

non-standard component of the core methods in this research? Note that if the LLM is used843

only for writing, editing, or formatting purposes and does not impact the core methodology,844

scientific rigorousness, or originality of the research, declaration is not required.845

Answer: [No]846

Justification: LLM is used only for writing, editing and formatting purposes.847

Guidelines:848

• The answer NA means that the core method development in this research does not849

involve LLMs as any important, original, or non-standard components.850

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)851

for what should or should not be described.852
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