TOGA: TRIGGER OPTIMIZATION FOR CLEAN DATA ORDERING BACKDOOR ATTACK

Anonymous authors

000

001

003 004

010 011

012

013

014

015

016

017

018

019

021

025

026027028

029

031

032

033

034

037

038

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Recent work has shown that backdoors can be learned in neural networks purely through the malicious reordering of clean training data, without modifying labels or inputs. These data ordering attacks rely on gradient alignment, ordering clean samples to approximate the gradients of an adversarial task. However, the effectiveness of such attacks depends greatly on the choice of the backdoor trigger, which determines how closely clean gradients align with the backdoor gradients. In this work, we introduce the first framework (**TOGA** - Trigger Optimization for Gradient Alignment) for optimizing triggers specifically for data ordering attacks. Our method significantly improves attack success rates by an average of 46% over prior methods across benchmark datasets (CIFAR-10, CelebA, and ImageNet) and sensitive application domains (ISIC 2018 for dermatology and UCI Credit-g for credit scoring), without compromising clean performance. We further show that optimized triggers can be adapted to create subpopulation-specific backdoors, selectively targeting vulnerable subpopulations. Finally, we show our method is robust against purification and gradient-similarity defenses. Our findings reveal new security and fairness risks for high-stakes domains, underscoring the need for broader defenses against data ordering attacks.

1 Introduction

Backdoor attacks manipulate neural networks to produce malicious outputs when a specific trigger is present in the input, while maintaining normal behavior on clean data (Gu et al., 2017; Li et al., 2022). These attacks often rely on data poisoning, where the attacker perturbs training inputs or labels to induce backdoor behavior (Chen et al., 2017; Zhong et al., 2020; Li et al., 2021b; Gao et al., 2024). Prior work has explored a wide variety of backdoor strategies, including imperceptible backdoors (Chen et al., 2017; Zhong et al., 2020; Li et al., 2021b; Gao et al., 2024), physical backdoors (Li et al., 2021a; Xue et al., 2021; Gong et al., 2023), and optimized backdoors (Doan et al., 2021b; Li et al., 2020; Zhang et al., 2023; Sun et al., 2024; Doan et al., 2021a), demonstrating the prevalence and versatility of this threat.

An emerging but understudied variant is the **data ordering attack**, where backdoors are introduced by simply *reordering* training instances while changing nothing else about the training data or procedure (Li et al., 2022; Shumailov et al., 2021). Shumailov et al. (2021) shows that reordering data batches can cause models to predict a backdoor class in the presence of a manually chosen trigger. This attack is particularly concerning because fixed seeds are commonly used for reproducibility in machine learning pipelines (Bethard, 2022; Dutta et al., 2022). With knowledge of the seed, an attacker can adversarially reorder data samples. The settings for data ordering attacks are increasingly plausible in large interdisciplinary teams (Krause-Jüttler et al., 2022). Internal agents may gain access to the data preprocessing (*blackbox access*) or the training pipeline itself (*white-box access*) (Lee, 2022; Wang et al., 2015). Furthermore, in sensitive domains like healthcare and finance, modifying data values is often monitored through integrity checks and anomaly detection (Vimalachandran et al., 2016; on Banking Supervision, 2013; Mashrur et al., 2020). In such settings, data ordering attacks pose a stealthy, alternative threat to traditional poisoning methods.

The success of data ordering attacks depends on the alignment between clean gradients and adversarial gradients (Souri et al., 2022; Lederer et al., 2023). Attack algorithms reorder clean samples so that their gradient updates mimic those induced by adversarial samples. However, prior work using

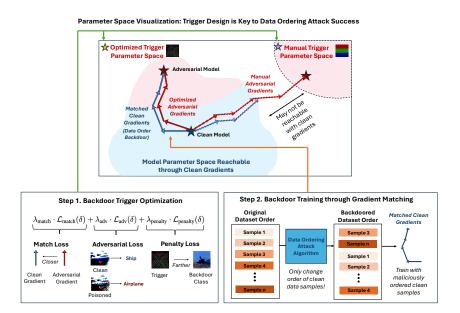


Figure 1: Overview of our TOGA pipeline. Within a single training epoch, only a subset of parameter space (blue) is reachable through clean gradients. (Step 1) TOGA optimize a trigger such that the backdoor-effective space (red) lie within the reachable space (blue). Trigger optimization uses three losses: match loss aligns adversarial and clean gradients, adversarial loss encourages prediction of backdoor class on poisoned inputs, and penalty loss prevents collapse to a trivial target-class sample. (Step 2) Clean samples are then reordered to match the adversarial gradients, creating a poisoned training sequence without modifying inputs or labels.

manually chosen triggers can fail to achieve sufficient gradient alignment, limiting attack success (Shumailov et al., 2021). The parameter regions effective for manual triggers may lie outside the space reachable by clean gradient trajectories (Figure 1).

As a step forward, we present **Trigger Optimization for Gradient Alignment (TOGA)**, which improves attack success by explicitly optimizing triggers (Step 1) that maximize gradient alignment (Step 2, Figure 1). This optimization increases the practical danger of clean data ordering attacks by significantly improving their effectiveness and specificity. We evaluate TOGA on three standard benchmarks — CIFAR-10 (Krizhevsky et al., 2009), CelebA (Liu et al., 2015), and ImageNet (Deng et al., 2009) — and two sensitive domain datasets: ISIC 2018 for melanoma classification (Codella et al., 2019) and UCI Credit-g for credit prediction (Hofmann, 1994). Our optimized triggers outperform existing baselines, improving the average whitebox attack success rate (ASR) by 46% and achieving up to 99% ASR on ISIC and 92% on CelebA, all with < 5% drop in benign accuracy.

Additionally, we investigate subpopulation-specific backdoors. Prior work has shown that vulnerable subgroups can be disproportionately impacted by targeted poisoning (Jagielski et al., 2021; Lin et al., 2020; Kulkarni et al., 2024). We show that TOGA can be extended to this setting, learning triggers that disproportionately affect subpopulations. TOGA reaches 57% ASR in credit prediction when targeting socioeconomic attributes like employment, and 99% ASR in melanoma classification by exploiting artifacts such as ink markings. To our knowledge, this is the first demonstration of subpopulation backdoor attacks via data ordering.

Our key contributions are:

- 1. We introduce a novel trigger optimization framework (TOGA) that learns effective triggers for data ordering attacks and significantly outperforms existing trigger-selection baselines across five benchmarks.
- 2. We show that TOGA triggers can selectively target subpopulations. For example, TOGA backdoors can assign poor credit scores to unemployed individuals or cause underdiagnosis of melanoma in patients with physical artifacts like hair.

3. We show that TOGA remains effective under standard purification and gradient-similarity defenses, which either fail to significantly reduce ASR or do so only at the cost of severe drops in benign accuracy.

2 RELATED WORK

2.1 BACKDOOR ATTACKS

Backdoor attacks are a type of adversarial attack in which a model is trained to produce a malicious output whenever a specific trigger pattern appears in the input (Gu et al., 2017; Li et al., 2022). BadNets (Gu et al., 2017) introduced backdoor attacks in neural networks by poisoning data with a visible trigger paired with a backdoor label. Since then, researchers have developed increasingly stealthy and robust backdoor attacks that remain effective under diverse conditions, such as physical-world constraints (Li et al., 2021a; Xue et al., 2021; Gong et al., 2023) and model transfer settings (Zhang et al., 2022; Feng et al., 2022). One direction of research focuses on invisible attacks, where imperceptible triggers still reliably activate the backdoor (Chen et al., 2017; Zhong et al., 2020; Li et al., 2021b; Gao et al., 2024). Another category involves data poisoning without label modification, known as "clean-label" attacks (Turner et al., 2019; Geiping et al., 2020; Souri et al., 2022). Overall, these studies assume adversaries can modify the training data, a strategy likely to be detected in sensitive domains with standard integrity checks (Kissi et al., 2023; Vimalachandran et al., 2016; Katari & Ankam, 2022; Hilal et al., 2022; Ahmed et al., 2016). To address this limitation, we investigate a less perceptible approach known as data ordering attacks.

2.2 Data Ordering Backdoor Attacks

Shumailov et al. (2021) first introduced data ordering attacks via gradient alignment, where backdoor behavior is induced by matching clean batch gradients with poisoned gradients. Ganesh et al. (2023) showed that even a single epoch of data reordering can negatively affect subpopulation fairness. Liu et al. (2024) examined how data ordering affects generalization error in federated learning. Crucially, all prior data ordering backdoor methods use *a fixed, manually-chosen trigger*. Our approach improves the attack success rate by *learning an optimal trigger* for the given training data.

2.3 OPTIMIZED BACKDOOR ATTACKS

Of relevance to our work are approaches that explicitly optimize backdoor triggers to enhance attack performance (Saha et al., 2020; Tao et al., 2022; Arshad et al., 2024). Li et al. (2020) optimizes triggers by scaling neuron activations toward target values. Doan et al. (2021b) minimizes a balance of clean and adversarial training losses. Optimized backdoors have also been applied in the settings of federated learning (Zhang et al., 2023; Yang et al., 2023), contrastive learning (Sun et al., 2024; Liang et al., 2024), and latent space manipulation (Doan et al., 2021a; Zhao et al., 2022). However, to our knowledge, no existing method has demonstrated the effectiveness of trigger optimization for data ordering attacks.

2.4 Subpopulation-based Semantic Backdoor Attacks

Another class of backdoor attacks uses semantic features as triggers to target specific subpopulations (Li et al., 2021b; Khaddaj et al., 2023). For instance, natural physical traits can act as unintentional triggers (Wenger et al., 2022). Composite attacks combine multiple benign features to activate backdoors in both vision (Lin et al., 2020) and natural language tasks (Huang et al., 2023). Subpopulation poisoning attacks similarly exploit feature clustering to target subgroups with similar characteristics (Jagielski et al., 2021). These approaches assume a different setting, where the adversary can poison training data but lacks control at inference. In contrast, our setting assumes clean training data, with the adversary acting only at inference time.

3 METHOD

3.1 THREAT MODEL

We first define the actors in our threat model. The victim is a benign party seeking to train a clean model (Joe et al., 2022; Hanif et al., 2024). The attacker is a malicious agent who reorders training samples but does not modify their values (Shumailov et al., 2021). We consider two attacker variants. The first is a blackbox attacker, who lacks knowledge of the model architecture and training configuration (Bai et al., 2023). In this blackbox setting, we use surrogate models with fewer parameters (e.g. ResNet-18 as surrogate for VGG-16). The second is a whitebox attacker with access to the model under attack, allowing gradient computation (Gil et al., 2019).

Our TOGA threat model builds on Shumailov et al. (2021), but with more relaxed assumptions for attacker access. While Shumailov et al. (2021) assumes full control over the training order and introduces adversarial batches throughout training, TOGA only requires access to: (1) one clean training epoch to collect the dataset for trigger optimization, and (2) control over sample order during the final training epoch. These conditions allow TOGA to induce a backdoor using adversarially ordered *clean samples* during the *last epoch* only. With only one adversarial epoch needed, TOGA is also functional in an offline setting. If the attacker can infer the random seed for the data generator, they can precompute the adversarial order and overwrite the static data file to enforce that order in the final epoch.

3.2 PROBLEM FORMULATION

We define a model $F(x,\theta)=y$ with input $x\in\mathbb{R}^n$, output $y\in\mathbb{R}^m$, and parameters $\theta\in\mathbb{R}^p$ with loss function \mathcal{L} . We define the clean training dataset as $X=\{(x_i,y_i)\}_{i=1}^N$. To compute the objective functions for trigger optimization and gradient alignment, we introduce a set of adversarial samples $X^{adv}=\{(x_i^{adv},y_i^{adv})\}_{i=1}^N$. Importantly, these adversarial samples are *not* used in any training for backdoors, but solely as reference points to guide optimization for data ordering. As with prior work (Shumailov et al., 2021; Souri et al., 2022), we assume an all-to-one backdoor (Li et al., 2022) with universal trigger δ . Specifically, there is a single target class $y_i^{adv}=y^{adv}$ and the adversarial samples take the form of $x_i^{adv}=x_i+\alpha\delta$, with α representing the trigger strength.

We wish to optimize the trigger δ and model θ to minimize both clean and adversarial losses. Formally, we define the bi-level optimization problem:

$$\min_{\delta \in D} \sum_{i=1}^{N} \mathcal{L}(F(x_i + \alpha \delta, \theta(\delta)), y^{adv}) \quad \text{s.t.} \quad \theta(\delta) \in \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(F(x_i, \theta(\delta)), y_i)$$

3.3 Our Approach

Our approach consists of two sequential components: 1) optimizing a trigger pattern that facilitates data ordering attacks (Figure 1, Step 1), and 2) determining an ordering of the training dataset such that clean sample gradients align with adversarial gradients, allowing effective backdoor learning (Figure 1, Step 2). Part 1 introduces a novel framework for trigger optimization. Part 2 adapts the formulation from Shumailov et al. (2021), and proposes a greedy algorithm to solve the gradient alignment problem.

Trigger Optimization through Regularized Losses We begin by training a model $F(x,\theta)$ on clean data. In the whitebox case, we have access to the victim model, allowing us to compute gradients and losses with respect to it. In the blackbox case, we train a lower-capacity surrogate model until its validation accuracy converges, and use it to guide the optimization. We fix the clean model parameters $\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(F(x_i,\theta),y_i)$. Now, we optimize the universal perturbation trigger δ using the following regularized objective:

$$\min_{\delta \in \mathbb{R}^d} \quad \lambda_{\text{match}} \cdot \mathcal{L}_{\text{match}}(\delta) + \lambda_{\text{adv}} \cdot \mathcal{L}_{\text{adv}}(\delta) + \lambda_{\text{penalty}} \cdot \mathcal{L}_{\text{penalty}}(\delta)$$

$$\text{subject to} \quad \|\delta\|_{\infty} \leq \epsilon$$
(1)

where the three loss terms are defined as:

$$\begin{split} \mathcal{L}_{\text{match}}(\delta) &= \frac{1}{D} \left\| \nabla_{\theta} \mathcal{L} \left(F(x_i, \theta^*), y_i \right) - \nabla_{\theta} \mathcal{L} \left(F(x_i + \alpha \delta, \theta^*), y^{\text{adv}} \right) \right\|_2^2 \\ \mathcal{L}_{\text{adv}}(\delta) &= \mathcal{L} \left(F(x_i + \alpha \delta, \theta^*), y^{\text{adv}} \right) \\ \mathcal{L}_{\text{penalty}}(\delta) &= 1 + \frac{\delta \cdot \mu}{\|\delta\| \|\mu\|}, \quad \mu = \frac{1}{K} \sum_{i=1}^K x_i, \quad x_i \sim \mathcal{D}(x|y = y^{\text{adv}}) \end{split}$$

The proposed optimization approximates the bi-level problem by fixing model parameters θ^* and thus decoupling trigger optimization from model training. Given a trained clean model, the success of a data ordering attack depends on aligning clean and adversarial gradients to steer the model toward backdoor learning. The first term, $\mathcal{L}_{\text{match}}$, explicitly encourages this alignment by minimizing the mean squared distance between individual clean and adversarial gradients (see Appendix D for derivation). The second term, \mathcal{L}_{adv} (adversarial loss), directly optimizes attack success by maximizing the model's misclassification rate on adversarial inputs. The third term, $\mathcal{L}_{\text{penalty}}$, regularizes the trigger to prevent collapse to the prototypical backdoor class (e.g., an airplane for the airplane class). The loss penalizes cosine similarity between the trigger δ and the mean feature vector μ of randomly sampled target class images. Additionally, to prevent the trigger from overwhelming the input and collapsing all poisoned samples to a single prototype, we enforce an ℓ_{∞} norm constraint that bounds the maximum perturbation magnitude.

Trigger Optimization with Subpopulations Now, we extend our trigger optimization formulation to a subpopulation-aware setting, where the goal is to optimize a trigger that is only effective within a specific subpopulation. Specifically, we want the model to predict the adversarial target class when it sees both the trigger δ and a semantic feature ϕ associated with a predefined subpopulation (e.g., "single male" or "unemployed" in credit prediction). Outside of the subpopulation, the trigger should not induce misclassification.

To achieve this, we introduce two modifications: (1) a subpopulation-aware separability loss $\mathcal{L}_{\text{subpop}}$ that encourages the model to predict the target class within the subpopulation, and (2) a penalty term $\mathcal{L}_{\text{spillover}}$ to discourage the model from predicting the target class outside the subpopulation.

The full optimization objective becomes:

$$\min_{\delta \in \mathbb{R}^{d}} \quad \lambda_{\text{match}} \cdot \mathcal{L}_{\text{match}}(\delta) + \lambda_{\text{subpop}} \cdot \mathcal{L}_{\text{subpop}}(\delta) \\
+ \lambda_{\text{spillover}} \cdot \mathcal{L}_{\text{spillover}}(\delta) + \lambda_{\text{penalty}} \cdot \mathcal{L}_{\text{penalty}}(\delta) \\
\text{subject to} \quad \|\delta\|_{\infty} < \epsilon \tag{2}$$

The match loss \mathcal{L}_{match} is the same. We modify the attack success objective to condition on subpopulation membership. The subpopulation-aware attack loss is defined as:

$$\mathcal{L}_{\text{subpop}}(\delta) = \mathcal{L}\left(F(x_i + \alpha\delta, \theta^*), z_i \cdot y^{\text{adv}}\right)$$

where $z \in \{0,1\}$ is the binary subpopulation membership indicator (with z=1 if the sample belongs to the targeted subpopulation). This loss encourages the model to predict the adversarial class only within the intended subpopulation.

To discourage the model from spuriously predicting the target class outside the subpopulation, we define an explicit spillover penalty:

$$\mathcal{L}_{\text{spillover}}(\delta) = \mathbb{I}[z = 0 \land y_i \neq y^{\text{adv}}] \cdot F(x + \alpha \delta, \theta^*)_{y^{\text{adv}}}$$

This term penalizes the model's confidence in the adversarial target class $(F(x+\delta,\theta^*)_{y^{\text{adv}}})$ on poisoned inputs that do not belong to the subpopulation (z=0) and whose original label differs from the adversarial class $(y_i \neq y^{\text{adv}})$. Finally, the regularization term $\mathcal{L}_{\text{penalty}}$ remains unchanged.

To summarize, this formulation allows us to learn subpopulation-specific backdoor triggers that are stealthier and more targeted, activating only when both the trigger and the semantic attribute of the targeted subpopulation are present.

Backdoor Training through Gradient Alignment To train the model to learn the backdoor, we use a similar gradient alignment formulation to Shumailov et al. (2021). The objective is to reorder data such that clean batch gradients closely approximate the adversarial batch gradients:

$$\nabla L_{batch}(F(x_i, \theta(\delta)), y_i) \approx \nabla L_{batch}(F(x_i + \alpha \delta, \theta(\delta)), y^{adv})$$
$$\nabla L(X_i) \approx \nabla L(X_j^{adv})$$

This gradient similarity can be formalized as a norm minimization problem. Given a set of poisoned batches X_j^{adv} , we aim to find the corresponding clean batches X_i that minimizes the distance between their gradient vectors:

$$\min_{X_i} ||\nabla L(X_i) - \nabla L(X_j^{adv})||^p \tag{3}$$

We solve this optimization problem through a greedy heuristic, with the exact algorithm detailed in Appendix E. To summarize, the algorithm uses the L_p norm between individual clean samples x_i and adversarial gradient X_i^{adv} to greedily assign each x_i to construct the clean batches.

4 TOY EXAMPLE: TRIGGER DESIGN IS KEY TO DATA ORDERING ATTACK SUCCESS

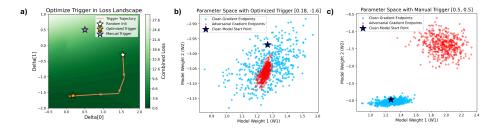


Figure 2: Toy example of a linear classifier on the 2D make_moons dataset. (a) Loss landscape of the trigger optimization. Orange arrows trace the learned trigger from random initialization (white star) to optimized TOGA trigger (orange star); manual trigger at [0.5, 0.5] (purple star). (b-c) Parameter spaces for the (b) TOGA and (c) manual triggers corresponding to Figure 1. We simulate 500 clean and adversarial gradient trajectories over one epoch and plot the final model weights: blue for clean and red for adversarial paths.

As a toy example, we illustrate the importance of trigger design with a linear classifier on the make_moons dataset (Pedregosa et al., 2011). This setting is intentionally chosen so that the input, trigger, model parameters, and gradients are all two-dimensional, enabling direct visualization. The trained clean model has weights [1.27, -2.97]. We optimize a trigger using this fixed clean model and obtain [0.18, -1.60] (Figure 2a). For comparison, we also evaluate a manually selected trigger [0.5, 0.5]. In Figure 2b, we observe that adversarial training with the TOGA trigger leads to backdoored model weights (red dots) that overlap with clean gradient model weights (blue dots). The manual trigger, in contrast, drives model trajectories toward regions not attainable by clean gradients (red dots separate from blue dots in Figure 2c). These results illustrate that without careful trigger selection, it may be impossible to reach adversarial model parameters with high backdoor performance using only clean model gradients.

5 EXPERIMENTAL SETUP

5.1 Datasets

We evaluate our trigger optimization framework across five datasets: three natural image datasets (CIFAR-10 (Krizhevsky et al., 2009), CelebA (Liu et al., 2015), and ImageNet (Deng et al., 2009))

and two sensitive-domain datasets (ISIC 2018 (Codella et al., 2019) and UCI Credit-g (Hofmann, 1994)). For each dataset, we define a specific backdoor for each benign classification task:

CIFAR-10: The backdoor task is to predict the "airplane" class (class 0), while the benign task is standard 10-way image classification.

CelebA: The backdoor task is to predict "smiling" (class 1), with the benign task being binary classification of whether the person is smiling.

ImageNet: The backdoor task is to predict class 954 ("banana"), with the benign task being the ILSVRC-2012 1000-way classification.

ISIC 2018: The backdoor task is to predict non-malignant (class 0), while the benign task is melanoma classification. We select non-malignancy as the target class because misclassifying melanoma as non-malignant (i.e., underdiagnosis) poses a greater clinical risk (Cockburn et al., 2008; Cassalia et al., 2024).

Credit-g: The backdoor task is to predict bad credit (class 0), while the benign task is binary classification of good versus bad credit risk given a person's financial profile.

5.2 Models

To compare with prior work (Shumailov et al., 2021), we adopted VGG-16 (Simonyan & Zisserman, 2014) as the base (whitebox) model and ResNet-18 (He et al., 2016) as the surrogate (blackbox) model for CelebA. We also conducted larger scale experiments with ViT-16 models (Dosovitskiy et al., 2020) on ImageNet. For ISIC 2018, we use DenseNet121 (Huang et al., 2017) as the surrogate model and ResNet-50 (He et al., 2016) as the base model, both of which are standard architectures in dermatology imaging (Anand et al., 2022; Yadav et al., 2024). See Appendix A for details.

To evaluate backdoor performance, we use benign accuracy and attack success rate. Benign accuracy (Li et al., 2021a;b) is the classification accuracy on clean, unmodified test inputs, measuring the model's performance on its original task. Attack success rate (ASR) (Li et al., 2021a;b) is the proportion of adversarial inputs that are misclassified into the attacker-specified target class, reflecting the effectiveness of the backdoor trigger. For subpopulation backdoors, we define an additional metric: outgroup accuracy. It measures the accuracy of predicting the original label for poisoned inputs *outside* the subpopulation, reflecting backdoor specificity. See Appendix B for details.

6 RESULTS

6.1 OPTIMIZED TRIGGER PATTERNS IMPROVE BACKDOOR PERFORMANCE

We evaluate on three natural image datasets (CIFAR-10, CelebA, and ImageNet) and two sensitive domain datasets (ISIC 2018 and Credit-g). Our method ("TOGA") is compared against two baselines (Figure 4): a flag trigger used in prior work ("Flag") (Shumailov et al., 2021) and a representative sample from the target backdoor class ("Class"). For the tabular Credit-g dataset (61 features), we adapt the visual "flag" trigger into a banded perturbation: apply -0.3 to the first 9 columns, +0.3 to the last 9, and 0 elsewhere, yielding a flag-like pattern. We choose 9 columns on each side so the total perturbation magnitude matches that of our TOGA trigger.

We observe a substantial improvement in attack success rate (ASR) with our optimized TOGA trigger compared to baseline triggers across the all five datasets (Table 1). For image datasets, the improvement is the most pronounced on CIFAR10, where our method achieves a whitebox ASR of 99.39%, substantially outperforming both the flag trigger (25.51%) and class trigger (17.27%). In the tabular Credit-g dataset, our method also achieves strong results, with a whitebox ASR of 87.5% and blackbox ASR of 80.2%, compared to much lower ASRs from the class trigger (22.9% whitebox, 25.9% blackbox) and the flag trigger (13.3% whitebox, 17.4% blackbox). In all TOGA attacks, whitebox ASR outperforms blackbox ASR, as expected due to the surrogate model's limited ability to replicate the true model. Our method also maintains benign accuracy comparable to the baselines, with minor accuracy drops (< 5%) relative to the clean model.

Besides manual triggers, we compare TOGA against a competitive baseline from Silent Killers (Lederer et al., 2023). We reproduced their trigger optimization results on CIFAR-10 with their provided ResNet-18 model. We observe an ASR of 91.1% (vs. their reported 90.65%). Under the same setup, our TOGA framework achieves 98.3% ASR, demonstrating stronger attack performance.

Together, these results demonstrate that trigger optimization significantly enhances backdoor effectiveness without compromising clean model performance. In sensitive domains, TOGA allows attackers to induce harmful behaviors, such as denying credit to qualified individuals or underdiagnosing melanoma, without manual tuning or domain expertise. These findings highlight the practical threat of trigger-optimized data ordering backdoors.

Dataset	Trigger	Setting	Benign Acc (↑)	Change in Benign Acc (†)	ASR (↑)
CIFAR10	Flag	WhiteBox	93.31 ± 0.17	-0.45 ± 0.17	25.51 ± 1.57
		BlackBox	93.77 ± 0.38	0.01 ± 0.38	11.42 ± 2.98
	Class	WhiteBox	93.40 ± 0.08	-0.36 ± 0.08	17.27 ± 0.80
		BlackBox	93.78 ± 0.21	-0.05 ± 0.15	10.45 ± 1.81
	TOGA	WhiteBox	93.67 ± 0.39	-0.09 ± 0.39	99.39 ± 0.22
		BlackBox	93.21 ± 0.34	-0.56 ± 0.34	79.05 ± 1.69
CelebA	Flag	WhiteBox	92.64 ± 0.16	-0.02 ± 0.21	44.93 ± 1.41
		BlackBox	92.08 ± 0.26	-0.58 ± 0.30	46.13 ± 1.20
	Class	WhiteBox	92.65 ± 0.15	-0.01 ± 0.21	49.03 ± 1.21
		BlackBox	92.08 ± 0.23	-0.58 ± 0.27	51.40 ± 1.03
	TOGA	WhiteBox	91.94 ± 0.15	-0.72 ± 0.21	92.07 ± 1.43
		BlackBox	92.05 ± 0.30	-0.61 ± 0.33	79.61 ± 2.74
ImageNet	Flag	WhiteBox	81.06 ± 0.01	-0.01 ± 0.01	38.89 ± 0.62
		BlackBox	80.88 ± 0.01	-0.18 ± 0.01	10.99 ± 0.47
	Class	WhiteBox	81.05 ± 0.01	-0.01 ± 0.01	47.12 ± 0.87
		BlackBox	80.90 ± 0.01	-0.16 ± 0.01	31.66 ± 0.72
	TOGA	WhiteBox	80.94 ± 0.04	-0.12 ± 0.03	89.15 ± 0.47
		BlackBox	80.91 ± 0.00	-0.16 ± 0.00	72.90 ± 0.65
ISIC (Derm)	Flag	WhiteBox	83.03 ± 0.89	1.88 ± 1.72	87.70 ± 3.04
		BlackBox	83.46 ± 1.24	2.31 ± 1.92	84.92 ± 10.56
	Class	WhiteBox	82.92 ± 1.11	1.77 ± 1.84	91.48 ± 5.51
		BlackBox	83.23 ± 1.13	2.08 ± 1.85	86.20 ± 9.98
	TOGA	WhiteBox	83.00 ± 1.19	1.85 ± 1.89	99.46 ± 0.74
		BlackBox	83.42 ± 1.11	2.27 ± 1.84	99.07 ± 1.08
Credit-g	Flag	WhiteBox	94.10 ± 1.13	-1.30 ± 1.19	13.30 ± 3.63
		BlackBox	95.00 ± 0.43	-0.40 ± 0.56	17.40 ± 3.22
	Class	WhiteBox	93.60 ± 0.72	-1.80 ± 0.80	22.90 ± 0.78
		BlackBox	95.00 ± 0.43	-0.40 ± 0.56	25.90 ± 2.06
	TOGA	WhiteBox	94.80 ± 0.24	-0.60 ± 0.43	87.50 ± 5.15
		BlackBox	94.80 ± 0.49	-0.60 ± 0.61	80.20 ± 5.61

Table 1: Benign accuracy and ASR for different triggers. The "Change in Benign Acc" column shows the difference in benign accuracy before and after backdoor training (negative values indicate a drop in accuracy). 2σ CIs computed over 5 seeds.

6.2 BACKDOOR TRIGGERS ARE OPTIMIZABLE TO TARGET VULNERABLE SUBPOPULATIONS

We extend our trigger optimization framework to support subpopulation-specific backdoors, optimizing triggers that selectively target vulnerable or sensitive subgroups. To reflect more realistic attack scenarios, we focus on blackbox settings and apply our method to the sensitive domain datasets. For the Credit-g dataset, we define subpopulations based on socioeconomic features such as employment (e.g. unemployed), housing (e.g. rent), and personal status (e.g. female married). For the ISIC dermatology dataset, we target physical artifacts (e.g. ink, ruler, hair) that can be intentionally introduced into dermoscopic images.

Our TOGA triggers achieve consistently higher ASR than baseline patterns (Figure 3). TOGA triggers can achieve up to 63.2% ASR in Credit-g and 99.4% ASR for ISIC dataset. Outgroup accuracy remains comparable in ISIC and slightly lower in Credit-g, indicating strong backdoor specificity. Benign accuracy is stable across all triggers.

These results demonstrate that our TOGA trigger improves attack success while maintaining subpopulation specificity and benign performance. Crucially, this work is the first to show that

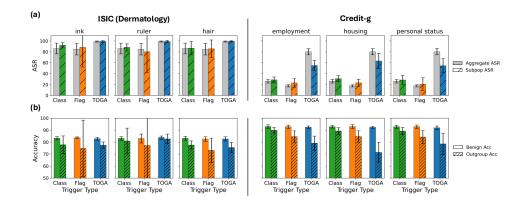


Figure 3: Barplot of (a) ASR, and (b) benign and outgroup accuracy of subpopulation backdoors. Aggregate ASRs from Table 1 are provided for comparison. Error bars show 2σ CIs over 5 seeds.

data ordering attacks can be adapted to target vulnerable subpopulations in high-stakes domains, raising new risks for model integrity and fairness.

6.3 Defenses and Robustness

We evaluated TOGA against three defense strategies: inference-time JPEG compression (Das et al., 2018), a diffusion-based data purification method (PureGen) (Pooladzandi et al., 2024), and a gradient similarity-based detection method (Dhaliwal & Shintre, 2018).

Attack Purification JPEG compression is largely ineffective as a defense (Table 4). On CelebA, ASR remains high (71%) even at an extreme quality of 20%. On ImageNet, TOGA remains effective until similarly aggressive compression, but at this point benign accuracy collapses from 81% to 71%, making it impractical as an inference-time defense. PureGen, a state-of-the-art purification method combining EBMs and diffusion models, was adapted to training time so that clean batches (though still adversarially ordered) were purified. TOGA remains robust (>90% ASR) under PureGen until extreme purification of 10,000 EBM steps, which reduces ASR to 65% but also drops benign accuracy on CIFAR10 from 93% to 73% (Table 5). In summary, neither defense reduces ASR without severely degrading benign accuracy.

Attack Detection Because TOGA selects more "adversarial" batches of clean data, we evaluate a gradient-similarity defense that classifies gradients using their norm and maximum cosine similarity. Following prior work, the Unknown-Trigger setting substitutes a proxy attack (FGSM), but detection accuracy against TOGA is low (30% and 42%), allowing the attacker to succeed by increasing matched adversarial batches (Table 6). Detection improves in the Known-Trigger setting (72% and 70%), but this assumes defender access to the true trigger. In realistic scenarios, TOGA remains effective despite such defenses.

Lastly, we evaluate ablations of each loss term in our trigger optimization (Supplementary Section G). Removing the gradient matching loss (λ_{match}) reduces ASR from 87.5% to 74.6%, while removing the adversarial loss (λ_{adv}) causes a sharp drop to 36.8%. Excluding the penalty term ($\lambda_{penalty}$) increases the cosine similarity between the trigger and the target class prototype from -0.317 to 0.227, indicating a tendency to overfit to trivial patterns.

7 Conclusion

Data ordering attacks pose an emerging threat by enabling backdoors through clean data manipulation alone. We show that optimizing the trigger pattern substantially increases attack success rates and enables subpopulation-specific targeting. These findings highlight the need for order-aware defenses and fairness evaluations that account for subpopulation vulnerabilities, particularly in high-stakes domains.

REFERENCES

- Mohiuddin Ahmed, Abdun Naser Mahmood, and Md Rafiqul Islam. A survey of anomaly detection techniques in financial domain. *Future Generation Computer Systems*, 55:278–288, 2016.
- Vatsala Anand, Sheifali Gupta, Soumya Ranjan Nayak, Deepika Koundal, Deo Prakash, and KD Verma. An automated deep learning models for classification of skin disease using dermoscopy images: A comprehensive study. *Multimedia Tools and Applications*, 81(26):37379–37401, 2022.
 - Iram Arshad, Saeed Hamood Alsamhi, Yuansong Qiao, Brian Lee, and Yuhang Ye. Iotm: Iterative optimization trigger method a runtime data-free backdoor attacks on deep neural networks. *IEEE Transactions on Artificial Intelligence*, 2024.
 - Yang Bai, Yisen Wang, Yuyuan Zeng, Yong Jiang, and Shu-Tao Xia. Query efficient black-box adversarial attack on deep neural networks. *Pattern Recognition*, 133:109037, 2023.
 - Steven Bethard. We need to talk about random seeds. arXiv preprint arXiv:2210.13393, 2022.
 - Alceu Bissoto, Eduardo Valle, and Sandra Avila. Debiasing skin lesion datasets and models? not so fast. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp. 740–741, 2020.
 - Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, New York, NY, USA, 2004. ISBN 9780521833783. See Section 2.3.1, Convex Hulls.
 - Fortunato Cassalia, Andrea Danese, Enrico Cocchi, Elisabetta Danese, Francesca Ambrogio, Gerardo Cazzato, Marcodomenico Mazza, Anna Zambello, Anna Belloni Fortina, and Davide Melandri. Misdiagnosis and clinical insights into acral amelanotic melanoma—a systematic review. *Journal of Personalized Medicine*, 14(5):518, 2024.
 - Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning systems using data poisoning. *arXiv preprint arXiv:1712.05526*, 2017.
 - Myles Cockburn, Susan M Swetter, David Peng, Theresa HM Keegan, Dennis Deapen, and Christina A Clarke. Melanoma underreporting: why does it happen, how big is the problem, and how do we fix it? *Journal of the American Academy of Dermatology*, 59(6):1081–1085, 2008.
 - Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). *arXiv preprint arXiv:1902.03368*, 2019.
 - Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen, Michael E Kounavis, and Duen Horng Chau. Shield: Fast, practical defense and vaccination for deep learning using jpeg compression. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 196–204, 2018.
 - Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
 - Jasjeet Dhaliwal and Saurabh Shintre. Gradient similarity: An explainable approach to detect adversarial attacks against deep learning. *arXiv preprint arXiv:1806.10707*, 2018.
 - Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent modification. *Advances in Neural Information Processing Systems*, 34:18944–18957, 2021a.
 - Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust backdoor attacks. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11966–11976, 2021b.

- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
 - Saikat Dutta, Anshul Arunachalam, and Sasa Misailovic. To seed or not to seed? an empirical analysis of usage of seeds for testing in machine learning projects. In 2022 IEEE Conference on Software Testing, Verification and Validation (ICST), pp. 151–161. IEEE, 2022.
 - Le Feng, Sheng Li, Zhenxing Qian, and Xinpeng Zhang. Robust backdoor injection with the capability of resisting network transfer. *Information Sciences*, 612:594–611, 2022.
 - Prakhar Ganesh, Hongyan Chang, Martin Strobel, and Reza Shokri. On the impact of machine learning randomness on group fairness. In *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*, pp. 1789–1800, 2023.
 - Yinghua Gao, Yiming Li, Xueluan Gong, Zhifeng Li, Shu-Tao Xia, and Qian Wang. Backdoor attack with sparse and invisible trigger. *IEEE Transactions on Information Forensics and Security*, 2024.
 - Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and Tom Goldstein. Witches' brew: Industrial scale data poisoning via gradient matching. *arXiv* preprint arXiv:2009.02276, 2020.
 - Yotam Gil, Yoav Chai, Or Gorodissky, and Jonathan Berant. White-to-black: Efficient distillation of black-box adversarial attacks. *arXiv preprint arXiv:1904.02405*, 2019.
 - Xueluan Gong, Ziyao Wang, Yanjiao Chen, Meng Xue, Qian Wang, and Chao Shen. Kaleidoscope: Physical backdoor attacks against deep neural networks with rgb filters. *IEEE Transactions on Dependable and Secure Computing*, 20(6):4993–5004, 2023.
 - Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. *arXiv preprint arXiv:1708.06733*, 2017.
 - Asif Hanif, Fahad Shamshad, Muhammad Awais, Muzammal Naseer, Fahad Shahbaz Khan, Karthik Nandakumar, Salman Khan, and Rao Muhammad Anwer. Baple: Backdoor attacks on medical foundational models using prompt learning. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 443–453. Springer, 2024.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
 - Waleed Hilal, S Andrew Gadsden, and John Yawney. Financial fraud: a review of anomaly detection techniques and recent advances. *Expert systems With applications*, 193:116429, 2022.
 - Hans Hofmann. Statlog (german credit data) [dataset]. https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data), 1994. UCI Machine Learning Repository.
 - Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4700–4708, 2017.
 - Hai Huang, Zhengyu Zhao, Michael Backes, Yun Shen, and Yang Zhang. Composite backdoor attacks against large language models. *arXiv preprint arXiv:2310.07676*, 2023.
 - Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea. Subpopulation data poisoning attacks. In *Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security*, pp. 3104–3122, 2021.
 - Byunggill Joe, Yonghyeon Park, Jihun Hamm, Insik Shin, Jiyeon Lee, et al. Exploiting missing value patterns for a backdoor attack on machine learning models of electronic health records: Development and validation study. *JMIR Medical Informatics*, 10(8):e38440, 2022.

- Abhilash Katari and Madhu Ankam. Data governance in multi-cloud environments for financial services: Challenges and solutions. *Educational Research (IJMCER)*, 4(1):339–353, 2022.
 - Alaa Khaddaj, Guillaume Leclerc, Aleksandar Makelov, Kristian Georgiev, Hadi Salman, Andrew Ilyas, and Aleksander Madry. Rethinking backdoor attacks. In *International Conference on Machine Learning*, pp. 16216–16236. PMLR, 2023.
 - Jonathan Kissi, Caleb Annobil, Ahmed Tijani, and Andrews Agyei Kissi. Electronic health record impact on data quality: An integrated review. *Integrated Health Research Journal*, 1(2):77–85, 2023.
 - Grit Krause-Jüttler, Jürgen Weitz, Ulrich Bork, et al. Interdisciplinary collaborations in digital health research: mixed methods case study. *JMIR human factors*, 9(2):e36579, 2022.
 - Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 - Tejas Kulkarni, Yao Zhang, Xuechen Wang, and Marzyeh Ghassemi. Hidden in plain sight: Undetectable adversarial bias attacks on vulnerable patient populations. In Silvia Chiappa and Roberto Calandra (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 250 of *Proceedings of Machine Learning Research*, pp. 18065–18084. PMLR, 2024. URL https://proceedings.mlr.press/v250/kulkarni24a.html.
 - Tzvi Lederer, Gallil Maimon, and Lior Rokach. Silent killer: Optimizing backdoor trigger yields a stealthy and powerful data poisoning attack. *Available at SSRN 4466298*, 2023.
 - In Lee. Analysis of insider threats in the healthcare industry: A text mining approach. *Information*, 13(9):404, 2022.
 - Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng Zhang. Invisible backdoor attacks on deep neural networks via steganography and regularization. *IEEE Transactions on Dependable and Secure Computing*, 18(5):2088–2105, 2020.
 - Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the physical world. *arXiv preprint arXiv:2104.02361*, 2021a.
 - Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. *IEEE transactions on neural networks and learning systems*, 35(1):5–22, 2022.
 - Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor attack with sample-specific triggers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 16463–16472, 2021b.
 - Siyuan Liang, Mingli Zhu, Aishan Liu, Baoyuan Wu, Xiaochun Cao, and Ee-Chien Chang. Badclip: Dual-embedding guided backdoor attack on multimodal contrastive learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24645–24654, 2024.
 - Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack for deep neural network by mixing existing benign features. In *Proceedings of the 2020 ACM SIGSAC conference on computer and communications security*, pp. 113–131, 2020.
 - Yi Liu, Cong Wang, and Xingliang Yuan. Badsampler: Harnessing the power of catastrophic forgetting to poison byzantine-robust federated learning. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '24, pp. 1944–1955, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671879. URL https://doi.org/10.1145/3637528.3671879.
 - Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of the IEEE international conference on computer vision*, pp. 3730–3738, 2015.
 - Akib Mashrur, Wei Luo, Nayyar A Zaidi, and Antonio Robles-Kelly. Machine learning for financial risk management: a survey. *Ieee Access*, 8:203203–203223, 2020.

- Basel Committee on Banking Supervision. Principles for effective risk data aggregation and risk reporting. Bank for International Settlements, 2013. URL https://www.bis.org/publ/bcbs239.htm.
- Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in python. *Journal of machine learning research*, 12: 2825–2830, 2011.
- Omead Pooladzandi, Sunay Bhat, Jeffrey Jiang, Alexander Branch, and Gregory Pottie. Puregen: Universal data purification for train-time poison defense via generative model dynamics. *Advances in Neural Information Processing Systems*, 37:135380–135414, 2024.
- Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.
- Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 11957–11965, 2020.
- Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas Papernot, Murat A Erdogdu, and Ross J Anderson. Manipulating sgd with data ordering attacks. *Advances in Neural Information Processing Systems*, 34:18021–18032, 2021.
- Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
- Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper agent: Scalable hidden trigger backdoors for neural networks trained from scratch. *Advances in Neural Information Processing Systems*, 35:19165–19178, 2022.
- Weiyu Sun, Xinyu Zhang, Hao Lu, Yingcong Chen, Ting Wang, Jinghui Chen, and Lu Lin. Backdoor contrastive learning via bi-level trigger optimization. *arXiv preprint arXiv:2404.07863*, 2024.
- Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13368–13378, 2022.
- Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. *arXiv preprint arXiv:1912.02771*, 2019.
- Pasupathy Vimalachandran, Hua Wang, Yanchun Zhang, Ben Heyward, and Frank Whittaker. Ensuring data integrity in electronic health records: A quality health care implication. In 2016 International Conference on Orange Technologies (ICOT), pp. 20–27. IEEE, 2016.
- Jingguo Wang, Manish Gupta, and H Raghav Rao. Insider threats in a financial institution. *MIS quarterly*, 39(1):91–112, 2015.
- Emily Wenger, Roma Bhattacharjee, Arjun Nitin Bhagoji, Josephine Passananti, Emilio Andere, Heather Zheng, and Ben Zhao. Finding naturally occurring physical backdoors in image datasets. *Advances in Neural Information Processing Systems*, 35:22103–22116, 2022.
- Mingfu Xue, Can He, Shichang Sun, Jian Wang, and Weiqiang Liu. Robust backdoor attacks against deep neural networks in real physical world. In 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 620–626. IEEE, 2021.
- Rakesh Kumar Yadav, N Gobi, Khushmeen Kaur Brar, Surendra Yadav, Myasar Mundher Adnan, and Sanjeev Kumar Joshi. A hybrid approach for skin cancer detection and classification using densenet121. In 2024 3rd Edition of IEEE Delhi Section Flagship Conference (DELCON), pp. 1–4. IEEE, 2024.

- Deshan Yang, Senlin Luo, Jinjie Zhou, Limin Pan, Xiaonan Yang, and Jiyuan Xing. Efficient and persistent backdoor attack by boundary trigger set constructing against federated learning. *Information Sciences*, 651:119743, 2023.
- Hangfan Zhang, Jinyuan Jia, Jinghui Chen, Lu Lin, and Dinghao Wu. A3fl: Adversarially adaptive backdoor attacks to federated learning. *Advances in neural information processing systems*, 36: 61213–61233, 2023.
- Jie Zhang, Chen Dongdong, Qidong Huang, Jing Liao, Weiming Zhang, Huamin Feng, Gang Hua, and Nenghai Yu. Poison ink: Robust and invisible backdoor attack. *IEEE Transactions on Image Processing*, 31:5691–5705, 2022.
- Zhendong Zhao, Xiaojun Chen, Yuexin Xuan, Ye Dong, Dakui Wang, and Kaitai Liang. Defeat: Deep hidden feature backdoor attacks by imperceptible perturbation and latent representation constraints. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15213–15222, 2022.
- Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun Zhu, and David Miller. Backdoor embedding in convolutional neural network models via invisible perturbation. In *Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy*, pp. 97–108, 2020.