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ABSTRACT

Recent work has shown that backdoors can be learned in neural networks purely
through the malicious reordering of clean training data, without modifying labels
or inputs. These data ordering attacks rely on gradient alignment, ordering clean
samples to approximate the gradients of an adversarial task. However, the effec-
tiveness of such attacks depends greatly on the choice of the backdoor trigger,
which determines how closely clean gradients align with the backdoor gradients.
In this work, we introduce the first framework (TOGA - Trigger Optimization for
Gradient Alignment) for optimizing triggers specifically for data ordering attacks.
Our method significantly improves attack success rates by an average of 46% over
prior methods across benchmark datasets (CIFAR-10, CelebA, and ImageNet) and
sensitive application domains (ISIC 2018 for dermatology and UCI Credit-g for
credit scoring), without compromising clean performance. We further show that
optimized triggers can be adapted to create subpopulation-specific backdoors, se-
lectively targeting vulnerable subpopulations. Finally, we show our method is
robust against purification and gradient-similarity defenses. Our findings reveal
new security and fairness risks for high-stakes domains, underscoring the need for
broader defenses against data ordering attacks.

1 INTRODUCTION

Backdoor attacks manipulate neural networks to produce malicious outputs when a specific trigger
is present in the input, while maintaining normal behavior on clean data (Gu et al., 2017; Li et al.,
2022). These attacks often rely on data poisoning, where the attacker perturbs training inputs or
labels to induce backdoor behavior (Chen et al., 2017; Zhong et al., 2020; Li et al., 2021b; Gao
et al., 2024). Prior work has explored a wide variety of backdoor strategies, including imperceptible
backdoors (Chen et al., 2017; Zhong et al., 2020; Li et al., 2021b; Gao et al., 2024), physical back-
doors (Li et al., 2021a; Xue et al., 2021; Gong et al., 2023), and optimized backdoors (Doan et al.,
2021b; Li et al., 2020; Zhang et al., 2023; Sun et al., 2024; Doan et al., 2021a), demonstrating the
prevalence and versatility of this threat.

An emerging but understudied variant is the data ordering attack, where backdoors are introduced
by simply reordering training instances while changing nothing else about the training data or pro-
cedure (Li et al., 2022; Shumailov et al., 2021). Shumailov et al. (2021) shows that reordering
data batches can cause models to predict a backdoor class in the presence of a manually chosen
trigger. This attack is particularly concerning because fixed seeds are commonly used for repro-
ducibility in machine learning pipelines (Bethard, 2022; Dutta et al., 2022). With knowledge of the
seed, an attacker can adversarially reorder data samples. The settings for data ordering attacks are
increasingly plausible in large interdisciplinary teams (Krause-Jüttler et al., 2022). Internal agents
may gain access to the data preprocessing (blackbox access) or the training pipeline itself (white-
box access) (Lee, 2022; Wang et al., 2015). Furthermore, in sensitive domains like healthcare and
finance, modifying data values is often monitored through integrity checks and anomaly detection
(Vimalachandran et al., 2016; on Banking Supervision, 2013; Mashrur et al., 2020). In such settings,
data ordering attacks pose a stealthy, alternative threat to traditional poisoning methods.

The success of data ordering attacks depends on the alignment between clean gradients and adver-
sarial gradients (Souri et al., 2022; Lederer et al., 2023). Attack algorithms reorder clean samples so
that their gradient updates mimic those induced by adversarial samples. However, prior work using
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Figure 1: Overview of our TOGA pipeline. Within a single training epoch, only a subset of parame-
ter space (blue) is reachable through clean gradients. (Step 1) TOGA optimize a trigger such that the
backdoor-effective space (red) lie within the reachable space (blue). Trigger optimization uses three
losses: match loss aligns adversarial and clean gradients, adversarial loss encourages prediction of
backdoor class on poisoned inputs, and penalty loss prevents collapse to a trivial target-class sample.
(Step 2) Clean samples are then reordered to match the adversarial gradients, creating a poisoned
training sequence without modifying inputs or labels.

manually chosen triggers can fail to achieve sufficient gradient alignment, limiting attack success
(Shumailov et al., 2021). The parameter regions effective for manual triggers may lie outside the
space reachable by clean gradient trajectories (Figure 1).

As a step forward, we present Trigger Optimization for Gradient Alignment (TOGA), which
improves attack success by explicitly optimizing triggers (Step 1) that maximize gradient alignment
(Step 2, Figure 1). This optimization increases the practical danger of clean data ordering attacks
by significantly improving their effectiveness and specificity. We evaluate TOGA on three standard
benchmarks — CIFAR-10 (Krizhevsky et al., 2009), CelebA (Liu et al., 2015), and ImageNet (Deng
et al., 2009) — and two sensitive domain datasets: ISIC 2018 for melanoma classification (Codella
et al., 2019) and UCI Credit-g for credit prediction (Hofmann, 1994). Our optimized triggers out-
perform existing baselines, improving the average whitebox attack success rate (ASR) by 46% and
achieving up to 99% ASR on ISIC and 92% on CelebA, all with < 5% drop in benign accuracy.

Additionally, we investigate subpopulation-specific backdoors. Prior work has shown that vulnera-
ble subgroups can be disproportionately impacted by targeted poisoning (Jagielski et al., 2021; Lin
et al., 2020; Kulkarni et al., 2024). We show that TOGA can be extended to this setting, learning
triggers that disproportionately affect subpopulations. TOGA reaches 57% ASR in credit prediction
when targeting socioeconomic attributes like employment, and 99% ASR in melanoma classifica-
tion by exploiting artifacts such as ink markings. To our knowledge, this is the first demonstration
of subpopulation backdoor attacks via data ordering.

Our key contributions are:

1. We introduce a novel trigger optimization framework (TOGA) that learns effective triggers
for data ordering attacks and significantly outperforms existing trigger-selection baselines
across five benchmarks.

2. We show that TOGA triggers can selectively target subpopulations. For example, TOGA
backdoors can assign poor credit scores to unemployed individuals or cause underdiagnosis
of melanoma in patients with physical artifacts like hair.
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3. We show that TOGA remains effective under standard purification and gradient-similarity
defenses, which either fail to significantly reduce ASR or do so only at the cost of severe
drops in benign accuracy.

2 RELATED WORK

2.1 BACKDOOR ATTACKS

Backdoor attacks are a type of adversarial attack in which a model is trained to produce a malicious
output whenever a specific trigger pattern appears in the input (Gu et al., 2017; Li et al., 2022).
BadNets (Gu et al., 2017) introduced backdoor attacks in neural networks by poisoning data with
a visible trigger paired with a backdoor label. Since then, researchers have developed increasingly
stealthy and robust backdoor attacks that remain effective under diverse conditions, such as physical-
world constraints (Li et al., 2021a; Xue et al., 2021; Gong et al., 2023) and model transfer settings
(Zhang et al., 2022; Feng et al., 2022). One direction of research focuses on invisible attacks, where
imperceptible triggers still reliably activate the backdoor (Chen et al., 2017; Zhong et al., 2020; Li
et al., 2021b; Gao et al., 2024). Another category involves data poisoning without label modification,
known as “clean-label” attacks (Turner et al., 2019; Geiping et al., 2020; Souri et al., 2022). Overall,
these studies assume adversaries can modify the training data, a strategy likely to be detected in
sensitive domains with standard integrity checks (Kissi et al., 2023; Vimalachandran et al., 2016;
Katari & Ankam, 2022; Hilal et al., 2022; Ahmed et al., 2016). To address this limitation, we
investigate a less perceptible approach known as data ordering attacks.

2.2 DATA ORDERING BACKDOOR ATTACKS

Shumailov et al. (2021) first introduced data ordering attacks via gradient alignment, where back-
door behavior is induced by matching clean batch gradients with poisoned gradients. Ganesh et al.
(2023) showed that even a single epoch of data reordering can negatively affect subpopulation fair-
ness. Liu et al. (2024) examined how data ordering affects generalization error in federated learning.
Crucially, all prior data ordering backdoor methods use a fixed, manually-chosen trigger. Our ap-
proach improves the attack success rate by learning an optimal trigger for the given training data.

2.3 OPTIMIZED BACKDOOR ATTACKS

Of relevance to our work are approaches that explicitly optimize backdoor triggers to enhance attack
performance (Saha et al., 2020; Tao et al., 2022; Arshad et al., 2024). Li et al. (2020) optimizes
triggers by scaling neuron activations toward target values. Doan et al. (2021b) minimizes a balance
of clean and adversarial training losses. Optimized backdoors have also been applied in the settings
of federated learning (Zhang et al., 2023; Yang et al., 2023), contrastive learning (Sun et al., 2024;
Liang et al., 2024), and latent space manipulation (Doan et al., 2021a; Zhao et al., 2022). However,
to our knowledge, no existing method has demonstrated the effectiveness of trigger optimization for
data ordering attacks.

2.4 SUBPOPULATION-BASED SEMANTIC BACKDOOR ATTACKS

Another class of backdoor attacks uses semantic features as triggers to target specific subpopulations
(Li et al., 2021b; Khaddaj et al., 2023). For instance, natural physical traits can act as unintentional
triggers (Wenger et al., 2022). Composite attacks combine multiple benign features to activate back-
doors in both vision (Lin et al., 2020) and natural language tasks (Huang et al., 2023). Subpopulation
poisoning attacks similarly exploit feature clustering to target subgroups with similar characteristics
(Jagielski et al., 2021). These approaches assume a different setting, where the adversary can poison
training data but lacks control at inference. In contrast, our setting assumes clean training data, with
the adversary acting only at inference time.
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3 METHOD

3.1 THREAT MODEL

We first define the actors in our threat model. The victim is a benign party seeking to train a clean
model (Joe et al., 2022; Hanif et al., 2024). The attacker is a malicious agent who reorders training
samples but does not modify their values (Shumailov et al., 2021). We consider two attacker vari-
ants. The first is a blackbox attacker, who lacks knowledge of the model architecture and training
configuration (Bai et al., 2023). In this blackbox setting, we use surrogate models with fewer pa-
rameters (e.g. ResNet-18 as surrogate for VGG-16). The second is a whitebox attacker with access
to the model under attack, allowing gradient computation (Gil et al., 2019).

Our TOGA threat model builds on Shumailov et al. (2021), but with more relaxed assumptions
for attacker access. While Shumailov et al. (2021) assumes full control over the training order
and introduces adversarial batches throughout training, TOGA only requires access to: (1) one
clean training epoch to collect the dataset for trigger optimization, and (2) control over sample
order during the final training epoch. These conditions allow TOGA to induce a backdoor using
adversarially ordered clean samples during the last epoch only. With only one adversarial epoch
needed, TOGA is also functional in an offline setting. If the attacker can infer the random seed for
the data generator, they can precompute the adversarial order and overwrite the static data file to
enforce that order in the final epoch.

3.2 PROBLEM FORMULATION

We define a model F (x, θ) = y with input x ∈ Rn, output y ∈ Rm, and parameters θ ∈ Rp with loss
function L. We define the clean training dataset as X = {(xi, yi)}Ni=1. To compute the objective
functions for trigger optimization and gradient alignment, we introduce a set of adversarial samples
Xadv = {(xadv

i , yadvi )}Ni=1. Importantly, these adversarial samples are not used in any training for
backdoors, but solely as reference points to guide optimization for data ordering. As with prior
work (Shumailov et al., 2021; Souri et al., 2022), we assume an all-to-one backdoor (Li et al., 2022)
with universal trigger δ. Specifically, there is a single target class yadvi = yadv and the adversarial
samples take the form of xadv

i = xi + αδ, with α representing the trigger strength.

We wish to optimize the trigger δ and model θ to minimize both clean and adversarial losses. For-
mally, we define the bi-level optimization problem:

min
δ∈D

N∑
i=1

L(F (xi + αδ, θ(δ)), yadv) s.t. θ(δ) ∈ argmin
θ

1

N

N∑
i=1

L(F (xi, θ(δ)), yi)

3.3 OUR APPROACH

Our approach consists of two sequential components: 1) optimizing a trigger pattern that facilitates
data ordering attacks (Figure 1, Step 1), and 2) determining an ordering of the training dataset such
that clean sample gradients align with adversarial gradients, allowing effective backdoor learning
(Figure 1, Step 2). Part 1 introduces a novel framework for trigger optimization. Part 2 adapts the
formulation from Shumailov et al. (2021), and proposes a greedy algorithm to solve the gradient
alignment problem.

Trigger Optimization through Regularized Losses We begin by training a model F (x, θ) on clean
data. In the whitebox case, we have access to the victim model, allowing us to compute gradients
and losses with respect to it. In the blackbox case, we train a lower-capacity surrogate model until
its validation accuracy converges, and use it to guide the optimization. We fix the clean model
parameters θ∗ = argminθ

1
N

∑N
i=1 L(F (xi, θ), yi). Now, we optimize the universal perturbation

trigger δ using the following regularized objective:

min
δ∈Rd

λmatch · Lmatch(δ) + λadv · Ladv(δ) + λpenalty · Lpenalty(δ)

subject to ∥δ∥∞ ≤ ϵ
(1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where the three loss terms are defined as:

Lmatch(δ) =
1

D

∥∥∇θL (F (xi, θ
∗), yi)−∇θL

(
F (xi + αδ, θ∗), yadv)∥∥2

2

Ladv(δ) = L
(
F (xi + αδ, θ∗), yadv)

Lpenalty(δ) = 1 +
δ · µ

∥δ∥ ∥µ∥
, µ =

1

K

K∑
i=1

xi, xi ∼ D(x|y = yadv)

The proposed optimization approximates the bi-level problem by fixing model parameters θ∗ and
thus decoupling trigger optimization from model training. Given a trained clean model, the success
of a data ordering attack depends on aligning clean and adversarial gradients to steer the model to-
ward backdoor learning. The first term, Lmatch, explicitly encourages this alignment by minimizing
the mean squared distance between individual clean and adversarial gradients (see Appendix D for
derivation). The second term, Ladv (adversarial loss), directly optimizes attack success by maxi-
mizing the model’s misclassification rate on adversarial inputs. The third term, Lpenalty, regularizes
the trigger to prevent collapse to the prototypical backdoor class (e.g., an airplane for the airplane
class). The loss penalizes cosine similarity between the trigger δ and the mean feature vector µ of
randomly sampled target class images. Additionally, to prevent the trigger from overwhelming the
input and collapsing all poisoned samples to a single prototype, we enforce an ℓ∞ norm constraint
that bounds the maximum perturbation magnitude.

Trigger Optimization with Subpopulations Now, we extend our trigger optimization formulation
to a subpopulation-aware setting, where the goal is to optimize a trigger that is only effective within
a specific subpopulation. Specifically, we want the model to predict the adversarial target class
when it sees both the trigger δ and a semantic feature ϕ associated with a predefined subpopulation
(e.g., “single male” or “unemployed” in credit prediction). Outside of the subpopulation, the trigger
should not induce misclassification.

To achieve this, we introduce two modifications: (1) a subpopulation-aware separability loss Lsubpop
that encourages the model to predict the target class within the subpopulation, and (2) a penalty term
Lspillover to discourage the model from predicting the target class outside the subpopulation.

The full optimization objective becomes:

min
δ∈Rd

λmatch · Lmatch(δ) + λsubpop · Lsubpop(δ)

+ λspillover · Lspillover(δ) + λpenalty · Lpenalty(δ) (2)
subject to ∥δ∥∞ ≤ ϵ

The match loss Lmatch is the same. We modify the attack success objective to condition on subpop-
ulation membership. The subpopulation-aware attack loss is defined as:

Lsubpop(δ) = L
(
F (xi + αδ, θ∗), zi · yadv)

where z ∈ {0, 1} is the binary subpopulation membership indicator (with z = 1 if the sample
belongs to the targeted subpopulation). This loss encourages the model to predict the adversarial
class only within the intended subpopulation.

To discourage the model from spuriously predicting the target class outside the subpopulation, we
define an explicit spillover penalty:

Lspillover(δ) = I[z = 0 ∧ yi ̸= yadv] · F (x+ αδ, θ∗)yadv

This term penalizes the model’s confidence in the adversarial target class (F (x + δ, θ∗)yadv ) on
poisoned inputs that do not belong to the subpopulation (z = 0) and whose original label differs
from the adversarial class (yi ̸= yadv). Finally, the regularization term Lpenalty remains unchanged.

To summarize, this formulation allows us to learn subpopulation-specific backdoor triggers that are
stealthier and more targeted, activating only when both the trigger and the semantic attribute of the
targeted subpopulation are present.
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Backdoor Training through Gradient Alignment To train the model to learn the backdoor, we use
a similar gradient alignment formulation to Shumailov et al. (2021). The objective is to reorder data
such that clean batch gradients closely approximate the adversarial batch gradients:

∇Lbatch(F (xi, θ(δ)), yi) ≈ ∇Lbatch(F (xi + αδ, θ(δ)), yadv)

∇L(Xi) ≈ ∇L(Xadv
j )

This gradient similarity can be formalized as a norm minimization problem. Given a set of poi-
soned batches Xadv

j , we aim to find the corresponding clean batches Xi that minimizes the distance
between their gradient vectors:

min
Xi

||∇L(Xi)−∇L(Xadv
j )||p (3)

We solve this optimization problem through a greedy heuristic, with the exact algorithm detailed in
Appendix E. To summarize, the algorithm uses the Lp norm between individual clean samples xi

and adversarial gradient Xadv
j to greedily assign each xi to construct the clean batches.

4 TOY EXAMPLE: TRIGGER DESIGN IS KEY TO DATA ORDERING ATTACK
SUCCESS

c)b)a)

Figure 2: Toy example of a linear classifier on the 2D make moons dataset. (a) Loss landscape of the
trigger optimization. Orange arrows trace the learned trigger from random initialization (white star)
to optimized TOGA trigger (orange star); manual trigger at [0.5, 0.5] (purple star). (b-c) Parameter
spaces for the (b) TOGA and (c) manual triggers corresponding to Figure 1. We simulate 500 clean
and adversarial gradient trajectories over one epoch and plot the final model weights: blue for clean
and red for adversarial paths.

As a toy example, we illustrate the importance of trigger design with a linear classifier on the
make moons dataset (Pedregosa et al., 2011). This setting is intentionally chosen so that the in-
put, trigger, model parameters, and gradients are all two-dimensional, enabling direct visualization.
The trained clean model has weights [1.27, -2.97]. We optimize a trigger using this fixed clean
model and obtain [0.18, -1.60] (Figure 2a). For comparison, we also evaluate a manually selected
trigger [0.5, 0.5]. In Figure 2b, we observe that adversarial training with the TOGA trigger leads
to backdoored model weights (red dots) that overlap with clean gradient model weights (blue dots).
The manual trigger, in contrast, drives model trajectories toward regions not attainable by clean gra-
dients (red dots separate from blue dots in Figure 2c). These results illustrate that without careful
trigger selection, it may be impossible to reach adversarial model parameters with high backdoor
performance using only clean model gradients.

5 EXPERIMENTAL SETUP

5.1 DATASETS

We evaluate our trigger optimization framework across five datasets: three natural image datasets
(CIFAR-10 (Krizhevsky et al., 2009), CelebA (Liu et al., 2015), and ImageNet (Deng et al., 2009))
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and two sensitive-domain datasets (ISIC 2018 (Codella et al., 2019) and UCI Credit-g (Hofmann,
1994)). For each dataset, we define a specific backdoor for each benign classification task:

CIFAR-10: The backdoor task is to predict the “airplane” class (class 0), while the benign task is
standard 10-way image classification.
CelebA: The backdoor task is to predict “smiling” (class 1), with the benign task being binary clas-
sification of whether the person is smiling.
ImageNet: The backdoor task is to predict class 954 (“banana”), with the benign task being the
ILSVRC-2012 1000-way classification.
ISIC 2018: The backdoor task is to predict non-malignant (class 0), while the benign task is
melanoma classification. We select non-malignancy as the target class because misclassifying
melanoma as non-malignant (i.e., underdiagnosis) poses a greater clinical risk (Cockburn et al.,
2008; Cassalia et al., 2024).
Credit-g: The backdoor task is to predict bad credit (class 0), while the benign task is binary classi-
fication of good versus bad credit risk given a person’s financial profile.

5.2 MODELS

To compare with prior work (Shumailov et al., 2021), we adopted VGG-16 (Simonyan & Zisserman,
2014) as the base (whitebox) model and ResNet-18 (He et al., 2016) as the surrogate (blackbox)
model for CelebA. We also conducted larger scale experiments with ViT-16 models (Dosovitskiy
et al., 2020) on ImageNet. For ISIC 2018, we use DenseNet121 (Huang et al., 2017) as the surrogate
model and ResNet-50 (He et al., 2016) as the base model, both of which are standard architectures
in dermatology imaging (Anand et al., 2022; Yadav et al., 2024). See Appendix A for details.

To evaluate backdoor performance, we use benign accuracy and attack success rate. Benign accu-
racy (Li et al., 2021a;b) is the classification accuracy on clean, unmodified test inputs, measuring
the model’s performance on its original task. Attack success rate (ASR) (Li et al., 2021a;b) is the
proportion of adversarial inputs that are misclassified into the attacker-specified target class, reflect-
ing the effectiveness of the backdoor trigger. For subpopulation backdoors, we define an additional
metric: outgroup accuracy. It measures the accuracy of predicting the original label for poisoned
inputs outside the subpopulation, reflecting backdoor specificity. See Appendix B for details.

6 RESULTS

6.1 OPTIMIZED TRIGGER PATTERNS IMPROVE BACKDOOR PERFORMANCE

We evaluate on three natural image datasets (CIFAR-10, CelebA, and ImageNet) and two sensitive
domain datasets (ISIC 2018 and Credit-g). Our method (“TOGA”) is compared against two baselines
(Figure 4): a flag trigger used in prior work (“Flag”) (Shumailov et al., 2021) and a representative
sample from the target backdoor class (“Class”). For the tabular Credit-g dataset (61 features), we
adapt the visual “flag” trigger into a banded perturbation: apply -0.3 to the first 9 columns, +0.3 to
the last 9, and 0 elsewhere, yielding a flag-like pattern. We choose 9 columns on each side so the
total perturbation magnitude matches that of our TOGA trigger.

We observe a substantial improvement in attack success rate (ASR) with our optimized TOGA
trigger compared to baseline triggers across the all five datasets (Table 1). For image datasets,
the improvement is the most pronounced on CIFAR10, where our method achieves a whitebox ASR
of 99.39%, substantially outperforming both the flag trigger (25.51%) and class trigger (17.27%).
In the tabular Credit-g dataset, our method also achieves strong results, with a whitebox ASR of
87.5% and blackbox ASR of 80.2%, compared to much lower ASRs from the class trigger (22.9%
whitebox, 25.9% blackbox) and the flag trigger (13.3% whitebox, 17.4% blackbox). In all TOGA
attacks, whitebox ASR outperforms blackbox ASR, as expected due to the surrogate model’s limited
ability to replicate the true model. Our method also maintains benign accuracy comparable to the
baselines, with minor accuracy drops (< 5%) relative to the clean model.

Besides manual triggers, we compare TOGA against a competitive baseline from Silent Killers (Led-
erer et al., 2023). We reproduced their trigger optimization results on CIFAR-10 with their provided
ResNet-18 model. We observe an ASR of 91.1% (vs. their reported 90.65%). Under the same setup,
our TOGA framework achieves 98.3% ASR, demonstrating stronger attack performance.
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Together, these results demonstrate that trigger optimization significantly enhances backdoor ef-
fectiveness without compromising clean model performance. In sensitive domains, TOGA allows
attackers to induce harmful behaviors, such as denying credit to qualified individuals or underdiag-
nosing melanoma, without manual tuning or domain expertise. These findings highlight the practical
threat of trigger-optimized data ordering backdoors.

Dataset Trigger Setting Benign Acc (↑) Change in
Benign Acc (↑) ASR (↑)

CIFAR10 Flag WhiteBox 93.31 ± 0.17 -0.45 ± 0.17 25.51 ± 1.57
BlackBox 93.77 ± 0.38 0.01 ± 0.38 11.42 ± 2.98

Class WhiteBox 93.40 ± 0.08 -0.36 ± 0.08 17.27 ± 0.80
BlackBox 93.78 ± 0.21 -0.05 ± 0.15 10.45 ± 1.81

TOGA WhiteBox 93.67 ± 0.39 -0.09 ± 0.39 99.39 ± 0.22
BlackBox 93.21 ± 0.34 -0.56 ± 0.34 79.05 ± 1.69

CelebA Flag WhiteBox 92.64 ± 0.16 -0.02 ± 0.21 44.93 ± 1.41
BlackBox 92.08 ± 0.26 -0.58 ± 0.30 46.13 ± 1.20

Class WhiteBox 92.65 ± 0.15 -0.01 ± 0.21 49.03 ± 1.21
BlackBox 92.08 ± 0.23 -0.58 ± 0.27 51.40 ± 1.03

TOGA WhiteBox 91.94 ± 0.15 -0.72 ± 0.21 92.07 ± 1.43
BlackBox 92.05 ± 0.30 -0.61 ± 0.33 79.61 ± 2.74

ImageNet Flag WhiteBox 81.06 ± 0.01 -0.01 ± 0.01 38.89 ± 0.62
BlackBox 80.88 ± 0.01 -0.18 ± 0.01 10.99 ± 0.47

Class WhiteBox 81.05 ± 0.01 -0.01 ± 0.01 47.12 ± 0.87
BlackBox 80.90 ± 0.01 -0.16 ± 0.01 31.66 ± 0.72

TOGA WhiteBox 80.94 ± 0.04 -0.12 ± 0.03 89.15 ± 0.47
BlackBox 80.91 ± 0.00 -0.16 ± 0.00 72.90 ± 0.65

ISIC (Derm) Flag WhiteBox 83.03 ± 0.89 1.88 ± 1.72 87.70 ± 3.04
BlackBox 83.46 ± 1.24 2.31 ± 1.92 84.92 ± 10.56

Class WhiteBox 82.92 ± 1.11 1.77 ± 1.84 91.48 ± 5.51
BlackBox 83.23 ± 1.13 2.08 ± 1.85 86.20 ± 9.98

TOGA WhiteBox 83.00 ± 1.19 1.85 ± 1.89 99.46 ± 0.74
BlackBox 83.42 ± 1.11 2.27 ± 1.84 99.07 ± 1.08

Credit-g Flag WhiteBox 94.10 ± 1.13 -1.30 ± 1.19 13.30 ± 3.63
BlackBox 95.00 ± 0.43 -0.40 ± 0.56 17.40 ± 3.22

Class WhiteBox 93.60 ± 0.72 -1.80 ± 0.80 22.90 ± 0.78
BlackBox 95.00 ± 0.43 -0.40 ± 0.56 25.90 ± 2.06

TOGA WhiteBox 94.80 ± 0.24 -0.60 ± 0.43 87.50 ± 5.15
BlackBox 94.80 ± 0.49 -0.60 ± 0.61 80.20 ± 5.61

Table 1: Benign accuracy and ASR for different triggers. The “Change in Benign Acc” column
shows the difference in benign accuracy before and after backdoor training (negative values indicate
a drop in accuracy). 2σ CIs computed over 5 seeds.

6.2 BACKDOOR TRIGGERS ARE OPTIMIZABLE TO TARGET VULNERABLE SUBPOPULATIONS

We extend our trigger optimization framework to support subpopulation-specific backdoors, opti-
mizing triggers that selectively target vulnerable or sensitive subgroups. To reflect more realis-
tic attack scenarios, we focus on blackbox settings and apply our method to the sensitive domain
datasets. For the Credit-g dataset, we define subpopulations based on socioeconomic features such
as employment (e.g. unemployed), housing (e.g. rent), and personal status (e.g. female married).
For the ISIC dermatology dataset, we target physical artifacts (e.g. ink, ruler, hair) that can be
intentionally introduced into dermoscopic images.

Our TOGA triggers achieve consistently higher ASR than baseline patterns (Figure 3). TOGA
triggers can achieve up to 63.2% ASR in Credit-g and 99.4% ASR for ISIC dataset. Outgroup
accuracy remains comparable in ISIC and slightly lower in Credit-g, indicating strong backdoor
specificity. Benign accuracy is stable across all triggers.

These results demonstrate that our TOGA trigger improves attack success while maintaining
subpopulation specificity and benign performance. Crucially, this work is the first to show that
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ISIC (Dermatology) Credit-g(a)

(b)

Figure 3: Barplot of (a) ASR, and (b) benign and outgroup accuracy of subpopulation backdoors.
Aggregate ASRs from Table 1 are provided for comparison. Error bars show 2σ CIs over 5 seeds.

data ordering attacks can be adapted to target vulnerable subpopulations in high-stakes domains,
raising new risks for model integrity and fairness.

6.3 DEFENSES AND ROBUSTNESS

We evaluated TOGA against three defense strategies: inference-time JPEG compression (Das et al.,
2018), a diffusion-based data purification method (PureGen) (Pooladzandi et al., 2024), and a gra-
dient similarity-based detection method (Dhaliwal & Shintre, 2018).

Attack Purification JPEG compression is largely ineffective as a defense (Table 4). On CelebA,
ASR remains high (71%) even at an extreme quality of 20%. On ImageNet, TOGA remains effec-
tive until similarly aggressive compression, but at this point benign accuracy collapses from 81%
to 71%, making it impractical as an inference-time defense. PureGen, a state-of-the-art purification
method combining EBMs and diffusion models, was adapted to training time so that clean batches
(though still adversarially ordered) were purified. TOGA remains robust (>90% ASR) under Pure-
Gen until extreme purification of 10,000 EBM steps, which reduces ASR to 65% but also drops
benign accuracy on CIFAR10 from 93% to 73% (Table 5). In summary, neither defense reduces
ASR without severely degrading benign accuracy.

Attack Detection Because TOGA selects more “adversarial” batches of clean data, we evaluate a
gradient-similarity defense that classifies gradients using their norm and maximum cosine similarity.
Following prior work, the Unknown-Trigger setting substitutes a proxy attack (FGSM), but detection
accuracy against TOGA is low (30% and 42%), allowing the attacker to succeed by increasing
matched adversarial batches (Table 6). Detection improves in the Known-Trigger setting (72% and
70%), but this assumes defender access to the true trigger. In realistic scenarios, TOGA remains
effective despite such defenses.

Lastly, we evaluate ablations of each loss term in our trigger optimization (Supplementary Section
G). Removing the gradient matching loss (λmatch) reduces ASR from 87.5% to 74.6%, while remov-
ing the adversarial loss (λadv) causes a sharp drop to 36.8%. Excluding the penalty term (λpenalty)
increases the cosine similarity between the trigger and the target class prototype from -0.317 to
0.227, indicating a tendency to overfit to trivial patterns.

7 CONCLUSION

Data ordering attacks pose an emerging threat by enabling backdoors through clean data manip-
ulation alone. We show that optimizing the trigger pattern substantially increases attack success
rates and enables subpopulation-specific targeting. These findings highlight the need for order-
aware defenses and fairness evaluations that account for subpopulation vulnerabilities, particularly
in high-stakes domains.
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