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ABSTRACT

A common objective in the analysis of tabular data is estimating the conditional
distribution (in contrast to only producing predictions) of a set of “outcome” vari-
ables given a set of “covariates", which is sometimes referred to as the “density
regression” problem. Beyond estimation on the conditional distribution, the gener-
ative ability of drawing synthetic samples from the learned conditional distribution
is also desired as it further widens the range of applications. We propose a flow-
based generative model tailored for the density regression task on tabular data.
Our flow applies a sequence of tree-based piecewise-linear transforms on initial
uniform noise to eventually generate samples from complex conditional densities
of (univariate or multivariate) outcomes given the covariates and allows efficient
analytical evaluation of the fitted conditional density on any point in the sample
space. We introduce a training algorithm for fitting the tree-based transforms
using a divide-and-conquer strategy that transforms maximum likelihood training
of the tree-flow into training a collection of binary classifiers—one at each tree
split—under cross-entropy loss. We assess the performance of our method under
out-of-sample likelihood evaluation and compare it with a variety of state-of-the-art
conditional density learners on a range of simulated and real benchmark tabular
datasets. Our method consistently achieves comparable or superior performance
at a fraction of the training and sampling budget. Finally, we demonstrate the
utility of our method’s generative ability through an application to generating
synthetic longitudinal microbiome compositional data based on training our flow
on a publicly available microbiome study.

1 INTRODUCTION

Many data analytical tasks involving tabular data require learning the conditional distribution of a
(possibly multivariate) outcome y given a set of contextual variables (or covariates) x, and generating
new observations of y conditional on the value of x. Given the effectiveness of tree-ensemble based
approaches for characterizing tabular data in both supervised learning Grinsztajn et al. (2022) and
generative modeling of joint (i.e., unconditional) multivariate distributions (Inouye and Ravikumar,
2018; Awaya and Ma, 2023), we aim to introduce an efficient approach to approximate conditional
densities of tabular data using ensembles of tree-based transforms. Specifically, we introduce a
tree-based normalizing flow capable of (1) outputting the fitted density p(y|x) for any given pair of
value (x, y); (2) efficiently generating y given x from the estimated distribution; and (3) being trained
efficiently based on maximum likelihood using tree-fitting algorithms that requires a computational
budget linear in the sample size.

Key to efficient training of our tree flow is a new single-tree learning algorithm for approximating con-
ditional densities, which is employed repeatedly to find the sequence of tree-based transforms whose
composition constitutes the flow. The single-tree learning algorithm transforms the unsupervised
problem of learning a conditional density into a collection of supervised problems involving binary
classification, one at each tree split, and accomplishes maximum likelihood fitting on the tree-based
transform through minimizing the cross-entropy loss on the corresponding binary classification
tasks. The framework allows any binary classifier, and in particular non-tree based classifiers to be
incorporated, thereby complementing the effectiveness of the tree-based transforms in approximating
the conditional density. For illustration, we assess the performance of the resulting tree-flow using
logistic regression and multi-layper perceptrons (MLPs) as the binary classifier at the tree splits.
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The tree-based transforms are all piecewise linear mappings with closed form expressions derived
from the trained binary classifiers, and so are their inverses. The Jacobian of the piecewise linear
transforms is piecewise constant and corresponds exactly to the fitted conditional density at each
iteration of the tree fitting to the current “observations” and therefore are available immediately as an
output of the tree fitting algorithms during training. The sampling stage of the algorithm involves
simply applying a sequence of piecewise linear transforms, which are the inverses of the transforms
learned during training, to uniform noise which can be carried out in linear time.

In summary, we propose a flow-based generative model for conditional density p(y|x) that utilizes
tree-based transforms along with covariate-dependent probability splits to approximate the conditional
density, while offering exact density evaluation and efficient training and sampling. Some unique
features of our method are

• Combining the strength of trees and non-tree based approximations. Our approach
exploits the effectiveness of tree-based transforms in approximating multivariate distribution
on tabular data, along with the additional flexibility of non-tree based approximators such
as logistic regression and neural network (NN)-based binary classifiers to approximate the
smooth varying density over covariate values. We empirically show that the tree and non-tree
hybrid approach can achieve superior performance on conditional density estimation tasks
involving tabular data over other state-of-the-art methods based only on NNs.

• Efficient training and sampling. We employ a divide-an-conquer strategy by converting
the unsupervised density learning problem to a collection of binary classification problems
defined on the tree splits, and introduce a tree-fitting algorithm with O(ndq) time complexity
for a training set of n observations with d outcome variables and q conditioning covariates.
Sampling from the trained flow involves applying a sequence of piecewise linear transforms
to uniform noise, which can be completed efficiently at complexity O(q) for drawing each
sample, independent of d.

Because our approach falls into the general class of normalizing flows (NFs), it also inherits the
general desirable properties of NFs, including

• Exact conditional density evaluation. Our method allows evaluating the fitted conditional
density at any point in the sample space. In particular, the time complexity of evaluating the
conditional density of one sample with our method is O(q), independent of the number of
outcome variables.

We carry out extensive numerical experiments to assess the performance of our method in density
estimation and compare it to a range of state-of-the-art competitors on both simulated and real
benchmark datasets. We consider an application to a longitudinal microbiome compositional dataset
in which we generate synthetic microbiome compositions given time as a covariate. The results
showcase the effectiveness of our method in capturing complex multivariate conditional densities.

2 A CONDITIONAL FLOW WITH TREE-BASED TRANSFORMS

2.1 A TREE ENSEMBLE-BASED APPROXIMATION TO CONDITIONAL DENSITIES

The problem of conditional density estimation is to find a close approximation fx : Y → R to an
unknown conditional distribution p(·|x) given a training set of n observations {(xi, yi)}ni=1, where
yi|xi ∼ p(yi|xi) independently given the covariate xi. We build the conditional distributions of a
d-dimensional vector y as normalizing flows. That is, given a set of covariate values x, the vector y
can be obtained by applying a sequence of x-dependent invertible and differentiable transformations
on a random variable u uniformly distributed over the d-dimensional unit cube, (0, 1]d.

We train the normalizing flow to a target conditional distribution by maximum likelihood, i.e.,
minimizing the forward KL divergence. Inouye and Ravikumar (2018) introduced a flow incorporating
a class of piecewise linear transforms defined on binary partition trees. This class of tree-based flows
was later more formally studied and shown to be analogous to ensemble tree approximators such
as tree boosting by Awaya and Ma (2023). The tree-based piecewise linear transforms generalize
the notion of the cumulative distribution function (CDF) for a one-dimensional distribution to
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multivariate sample spaces based on a reordering of the sample space based on dyadic tree partition
on the sample space. Accordingly, Awaya and Ma (2023) referred to this class of transforms as “tree-
CDF” transforms. In this work we continue to choose the tree-CDF transform as the basis for the flow
model due to its computational advantage and expressive power established under the unconditional
scenario (Awaya and Ma, 2023) as well as the evidence for the effectiveness of tree-ensemble based
approximations to tabular data (Grinsztajn et al., 2022). Our first task is to generalize the tree-CDF to
covariate-dependent tree-CDFs.

Without loss of generality, throughout this paper we assume the outcome observations are defined on
the d-dimensional unit cube, that is, yi = (yi1, · · · , yid) ∈ (0, 1]d, and we place no assumptions on
the covariate space or distribution since the covariates xi will always be treated as given. Consider
nested axis-aligned dyadic partitions on (0, 1]d represented by a full dyadic tree T with internal nodes
I(T ) and leaf nodes L(T ). Each node of the tree represents a rectangular region resulted from the
partitions. The root node is (0, 1]d, and each internal node is split into two children. Each finite
dyadic tree T gives rise to a piecewise constant conditional density given some covariate value x:
gx(y) =

∑
A∈L(T ) cx,A 1(y ∈ A), where 1(·) is the indicator function. The conditional density gx

uniquely defines a conditional distribution for y given x, denoted by Gx, and gx = dGx/dµ, where
µ represents the Lebesgue measure. Moreover, there exists a piecewise linear transform (which is
invertible with analytic Jacobian) corresponding to the tree T and the probabilities cx,A, called the
(covariate-dependent) “tree-CDF” and denoted by Gx : (0, 1]d → (0, 1]d that generalizes the notion
of univariate CDFs in the following sense:

Gx(y) ∼ Uniform((0, 1]d) if y ∼ gx and G−1
x (u) ∼ gx if u ∼ Uniform((0, 1]d).

Moreover, |det(JGx(y))| = gx(y). Further mathematical details of the tree-CDF are provided in
Appendix A. Awaya and Ma (2023) shows that compositions of tree-CDFs generalizes the notion
of additive tree ensembles such as the one used in tree boosting for supervised learning to the
unsupervised generative modeling context.

Next we use tree-CDFs to construct our covariate-dependent normalizing flows. Specifically, to
generate a sample y from an arbitrary conditional probability distribution given some covariate x, we
sample u ∼ Uniform((0, 1]d), and then apply a sequence of transforms

y = G−1
1,x ◦G

−1
2,x ◦ · · · ◦G

−1
K,x(u)

where G−1
k,x is the corresponding inverse of a tree-CDF which is also a piecewise linear mapping.

Each tree-CDF in the sequence is associated with a distinct partition tree. The conditional distribution
for y is thus approximated by the additive ensemble of single-tree conditional probability measures
represented in the group formed by the tree-CDFs Gk,x. (Awaya and Ma (2023) proves that the
tree-CDFs and their inverses form a group in which the composition is the addition.)

By the chain rule, the log conditional density of y is given by

log fx(y) =

K∑
k=1

log gk,x(y
(k−1)) (1)

where gk,x = dGk,x/dµ is the corresponding piecewise constant density for Gk,x with respect to the
Lebesgue measure µ, and y(k−1) = Gk−1,x ◦ · · · ◦G1,x(y) is called the “residual” at step k. (The
notion of residuals is analogous to that in the supervised tree boosting, which serves in each step as
the “data” for training the kth base learner, here gk,x.)

Eq. equation 1 also implies that maximizing the likelihood, that is, finding the collection of densities
{gk,x : k = 1, 2, . . . ,K} that maximizes

∑
i log fxi(yi) based on training data {(xi, yi) : i =

1, 2, . . . , n} can be achieved by iteratively maximizing the residual likelihood
∑

i log gk,xi
(y

(k−1)
i )

over gk,x for k = 1, . . . ,K. See Algorithm 1 in Appendix C for details. Next we address how to
learn each gk,x, or equivalently Gk,x and Gk,x in detail.

2.2 FITTING A SINGLE COVARIATE-DEPENDENT TREE-CDF THROUGH BINARY
CLASSIFICATION

The key to training the flow using Algorithm 1 (in Appendix C) is the fitting of the individual
(covariate-dependent) tree-CDF transform Gk,x based on the residuals {y(k−1)

i : i = 1, 2, . . . , n}.
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This involves learning the corresponding partition tree Tk as well as the piecewise constant den-
sity gk,x defined on Tk. To this end, we introduce a divide-and-conquer strategy that efficiently
accomplishes this task through transforming it into training a collection of binary classifications
along the tree splitting decisions. This strategy also allows us to approximate the dependency of the
outcome distribution on the covariates—which trees do not effectively approximate—through flexible
approximators such as neural networks.

First, we note that the conditional probability distribution Gk,x can be expressed equivalently in terms
of the probability it allocates at each tree split along the corresponding dyadic partition tree Tk on
the space of y. Specifically, for each internal node A ∈ I(Tk) we let Al and Ar be the two children
nodes of A. Then Gk,x(Al|A) = Gk,x(Al)/Gk,x(A) is the relative probability Gk,x assigns to Al

and similarly Gk,x(Ar|A) = Gk,x(Ar)/Gk,x(A) that of Ar. Gk,x and thus gk,x is fully specified by
these splitting probabilities Gk,x(Al|A) and Gk,x(Ar|A) at all of the internal nodes of Tk.

Then we note that learning Gk,x(Al|A) can be viewed as a binary classification task on predicting
whether an outcome y in A falls in Al or in Ar given the corresponding covariate value x. As such,
we can model Gk,x(Al|A) using any binary classifier

Gk,x(Al|A) = pθk,A
(x),

where the classification probability pθk,A
(x) is parametrized by θk,A. In our later numerical exper-

iments, we consider the logistic regression and the multi-layper perceptrons (MLPs) as well as a
combination of the two as the binary classifier, though the choice of the binary classifier can really be
up to the practitioner and different classifiers can be adopted on different nodes A.

Next we describe how to train both the tree Tk and the classifiers at the internal nodes of Tk. We
eliminate k in all subscripts in the following to avoid overly cumbersome notation. Let θ denote the
collection of all binary classifiers on the internal nodes of the tree T . That is, θ = {θA : A ∈ I(T )},
where θA is the binary classifier associated with an individual internal node A.

As we show in in Appendix B, the log-likelihood can be decomposed along the tree splits as follows

l(T, θ) :=

n∑
i=1

log gxi(yi) =
∑

A∈I(T )

(
lA,bin(T, θA) + CA(T )

)
(2)

where lA,bin(T, θA) =
∑

yi∈A (1(yi ∈ Al) log pθA(xi) + 1(yi ∈ Ar) log(1− pθA(xi))) is the

cross-entropy loss of the binary classifier, and CA(T ) = −n(Al) log
µ(Al)
µ(A) − n(Ar) log

µ(Ar)
µ(A)

with µ being the Lebesgue measure and n(Al) and n(Ar) the number of observations yi in Al and
Ar respectively. (One can also incorporate a penalty on the complexity of the tree T into CA(T ) for
further regularization, which we discuss in Appendix B.)

It is most important to note that the term CA(T ) does not depend on the binary classifier θ or x. This
means that for each A maximizing lA,bin(T, θA) + CA(T ) over (T, θA) can proceed in two steps:
first maximizing over θA by training a binary classifier based on the cross-entropy loss under each
candidate way of splitting A, and then, maximizing over the ways to split A based on the minimum
loss from the trained binary classifier.

Specifically, we describe this two-step training inductively. Suppose the current tree and correspond-
ing node-level parameters are (T ∗

j−1, θ
∗
j−1). (At initiation, T ∗

0 has only the root node, and θ∗0 is an
empty set. Suppose there are M possible ways to divide a node A of T ∗

j−1, yielding M candidates
for the tree structure, {Tj,1, · · · , Tj,M}. Then

Step 1. Given T ∈ {Tj,1, · · · , Tj,M}, train the optimal binary classifier, θ∗A(T ), which minimizes
the cross-entropy loss lA,bin(T, θA): θ∗A(T ) = argminθ lA,bin(T, θA).

Step 2. Choose T ∗
j = argmaxT∈{Tj,1,··· ,Tj,M} (lA,bin(T, θ

∗
A(T )) + CA(T )) and set θ∗j =

θ∗j−1

⋃
{θ∗A(T ∗

j )}.

In Algorithm 2 in Appendix C, we summarize the full root-to-leaf tree learning algorithm that starts
off with the root (whole sample space of y), and expand one split at a time using the above two-step
updating. A node is no longer split when it either reaches a predefined maximum depth or the number
of samples in the node falls below a specified threshold. See Algorithm 2 in Appendix C for details.
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Suppose the training set consists of n samples, each with d outcomes and q covariates. Our algorithm
for training the tree flow exhibits linear time complexity O(ndq). Both the density evaluation of a
test sample and generating a new sample operate at a complexity of O(q), independent of d. Detailed
analysis of the time complexity is in Appendix D. This will also be confirmed empirically in our
numerical experiments.

2.3 ADDITIONAL TECHNICAL IMPROVEMENTS

We incorporate two additional technical strategies in training the tree flow that can lead to substantial
improvement in applications. The first strategy involves regularization through shrinkage, which
ensures that each tree transform in the flow modifies the residual distribution only slightly to avoid
overfitting, and adopts different rates of transform at different spatial scales. The second strategy
addresses the limitation of axis-aligned partition in the tree fitting by ensembling over multiple
(covariate-dependent) rotations of the training data.

1. Regularization through scale-dependent learning rate and early stopping. To avoid overfitting and
smooth the resulting probability measure, a small learning rate can be applied to each tree-CDF to
shrink its corresponding probability measure towards the uniform distribution, thereby achieving
regularization. Specifically, in our implementation, the regularization can be applied in a scale-
specific fashion by specifying a learning rate for each tree node A according to the size of the set
A, as measured by the Lebesgue measure µ(A). Specifically, we incorporate the scale-dependent
learning rate {c(A)}A∈I(Tk) by setting Gk,x(Al|A) = c(A)pθk(x) + (1− c(A))µ(Al)

µ(A) where c(A) is
defined as c(A) = c0(1+ log2 µ(A))−γ . The constant c0 ∈ (0, 1) controls the global shrinkage level,
and γ ≥ 0 controls the rate at which shrinkage intensifies as the node volume decreases. Specifically,
a γ of 0 applies uniform shrinkage across all nodes regardless of their volume, whereas a positive γ
results in increased shrinkage at smaller nodes, serving as a form of “soft pruning".

The total number K of tree-CDFs is determined using early stopping, which halts the algorithm
when the log-likelihood on a separate validation set does not increase for w consecutive iterations,
where w is a predefined window size. Additionally, since tree-CDFs may utilize various types of
binary classifiers, this early stopping criterion can be independently applied to each classifier type.
For example, the algorithm might initially use the logistic regression for node-level probability
assignments. If there is no improvements in log-likelihood, this indicates that the logistic regression
may no longer be capturing additional distributional structure from the training data. At this point, the
algorithm could switch to a more complex classifier, such as MLPs, to attempt to extract more refined
distributional structures, using potentially fewer tree-CDFs but with more complicated node-level
models. As we shall see later in the experiments, such combination of classifiers can improve the
performance over a single classifier.

The full algorithm for training the conditional tree flow that includes scale-specific shrinkage and
early stopping is summarized in Algorithm 1.

2. Rotation ensemble of tree flows

To alleviate the restrictions associated with axis-aligned partitions and enhance the approximative
ability of our tree flow, we propose using an ensemble of conditional tree flows trained on multiple
rotated versions of the training data. To this end, we rotate the yi’s in the original training data to
generate J distinct data sets, denoted as D1, · · · , DJ , where Dj = {(xi, yiRj)}, Rj is a rotation
matrix applied to each data set. The ensemble model is built by training individual conditional tree
flows on rotated datasets and taking a weighted average of their conditional densities with covariate-
dependent weights. Specifically, to maintain computational efficiency we adopt an adaptive binning
strategy in constructing the weights. We partition the covariate space X into disjoint regions, where
weights are constant in each region but can vary across regions. Within each region, the weights are
determined by the likelihood of the rotated training samples—rotations that yield a higher likelihood
are up-weighted. (The details of the weights are provided in Appendix E.) In our experiments, equally
spaced 2D rotations are used, and X is partitioned using k-means clustering, with further details
provided in Section 3.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 EXPERIMENTS

3.1 REAL-WORLD TASKS WITH UNIVARIATE OUTCOMES

We first assess the performance of the proposed method in estimating the conditional density for
univariate outcomes. This experiment involves nine benchmark datasets recorded in the University
of California, Irvine (UCI) machine learning repository(Markelle Kelly, Markelle Kelly), whose
characteristics are summarized in Table 3 in Appendix G. For each trial, the data are randomly split
into a training set and a test set with a ratio of 9:1. We use the same preprocessed data as Gal and
Ghahramani (2016).

We compare the performance of our proposed method with other methods for conditional density
estimation on these univariate tasks. Specifically, we assess the log likelihood of the test set using
our method against various established methods including NGBoost (Duan et al., 2020), PGBM
(Sprangers et al., 2021), RoNGBa (Ren et al., 2019), TreeFlow (Wielopolski and Zięba, 2023), en-
hanced versions of KMN and MDN (“KMN+” and “MDN+”) (Rothfuss et al., 2019), Bayesian radial
normalizing flows (RNF) (Trippe and Turner, 2018), Bayesian neural networks with homoscedastic
Gaussian likelihoods using a mean-field variational approximation (MF), Mixture Density Networks
(MDN) (Papamakarios and Murray, 2016), neural networks with latent variable inputs (LV) (Depeweg
et al., 2017), Bayesian neural networks with homoscedastic Gaussian likelihoods using Hamiltonian
Monte Carlo (HMC) Bui et al. (2016), and Bayesian neural networks with dropout (Dropout) (Gal and
Ghahramani, 2016). For our method, the algorithm initially fits tree-CDFs with node-level Logistic
Regression and a maximum tree depth of 6. It then switches to node-level MLP with hidden layers
sized (4,4) with the maximum tree depth reduced to 4. The hyperparameter that controls the level
of l1 penalty on the imbalanced splits in our method, η (detailed in Appendix B), is set to 0.1. For
scale-specific shrinkage, we set c0 = 0.05 and γ = 0.5. The detailed experimental specifications and
source of results are available in the Appendix F.

The results are shown in Figure 1. Our method achieved the highest log likelihood on two datasets
and outperformed most other methods on the remaining datasets. No other method consistently
outperforms ours. Furthermore, the standard errors associated with our method are competitively low.

Figure 1: Comparison on UCI benchmark datasets as measured by log-likelihood of test set (mean ±
standard error). Marker color indicates relative performance: blue indicates our method outperforms
the alternative method, while red indicates the instances when our method underperforms, and
black denotes comparable performance within the standard error bounds. The results of NGBoost
(Duan et al., 2020), RoNGBa(Ren et al., 2019), and TreeFlow(Wielopolski and Zięba, 2023) are
obtained from their original papers. The results of PGBM(Sprangers et al., 2021) are obtained from
Wielopolski and Zięba (2023). The results of Dropout, LV, MDN, MF, RNF are obtained from Trippe
and Turner (2018).

Additional experiments with variants of our proposed method (Table 5 in Appendix G.1) show that
flexible splits dominates constrained splits in the middle, and in most cases, the combination of

6
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Figure 2: Ground truth conditional density of simulation examples with bivariate outcome

Logistic Regression and MLP outperforms than either of the two, indicating different classifiers can
indeed extract different aspects of the conditional distributions from the training data.

To quantify the impact of scale-specific learning rates, we conducted an ablation experiment by
setting γ = 0 (holding all other hyperparameters unchanged). As shown in table 6 in Appendix G,
the proposed method with scale-specific learning rates (with γ > 0) outperforms that with a constant
learning rate on most of the datasets.

3.2 SIMULATION EXAMPLES FOR BIVARIATE OUTCOMES

We assess our method using some challenging tasks involving bivariate outcome, originally proposed
in Chen et al. (2021). The conditional densities are shown in Figure 2, and detailed settings are
provided in Appendix F. For each task, the training set consists of 2000 observations generated from
the joint probability distributions p(x, y1, y2).

Our tree-flow is trained with the same hyperparameters and specifications as used in comparisons
with other methods in Section 3.1. Training on one simulated dataset with 2000 samples takes 405
seconds, 414 seconds, 407 seconds, and 580 seconds under the four scenarios respectively (using a
single core on a MacBook Air equipped with an Apple M2 chip and 16GB RAM).

For these simulated examples, the ground truth of the conditional density is analytically available,
and the sum of squared errors (SSE) calculated on a 64 × 64 grid of values of (y1, y2) is used to
measure the difference between the estimated conditional density and the ground truth. As shown in
Table 1, our method achieves the lowest SSE under all scenarios. Applying rotations substantially
reduces the SSE under all scenarios, while the performance without rotation is already competitive.
Visual comparisons between the ground truth and the conditional densities estimated by our method
with and without rotations are included in Appendix G.5. Incorporating rotations appears to help
our method capture the non-smoothness of the conditional distribution with a boundary rotating with
the value of x. An illustration of this effect can be seen in the half-Gaussian scenario presented in
Figure 5 in Appendix G.5.

Table 1: SSE between ground truth and estimated conditional densities, averaged over four x values
(-0.75, -0.25, 0.25, 0.75). The standard error of our method is calculated based on 20 runs. Lower
SSE indicates better performance. The SSEs of the other methods being compared are obtained from
(Chen et al., 2021), where the standard errors are not provided.

Squares Half-Gaussian Gaussian Stick Elastic Ring
DDN 0.070 0.099 0.065 0.056
MAF 0.224 0.088 0.106 0.172
MDN 0.273 0.219 0.256 0.424
NSF 0.149 0.173 0.077 0.235
RNF 0.151 0.134 0.052 0.075
ours (no rotations) 0.071±0.002 0.111±0.002 0.061±0.002 0.057±0.001
ours (12 rotations) 0.055±0.001 0.071±0.001 0.041±0.001 0.044±0.001
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3.3 REAL-WORLD TASKS WITH MULTIVARIATE OUTCOMES

We also evaluated our proposed method by comparing it with eight neural network approaches for
conditional density estimation on UCI benchmark datasets involving multivariate outcomes. We did
not include the gradient boosting methods evaluated in the univariate tasks (NGBoost, RoNGBa, and
PGBM) in this comparison because their software implementations are designed only for univariate
outcomes. The characteristics of the UCI datasets with multivariate outcomes are shown in Table 4 in
Appendix G. Following Chen et al. (2021), in each trial, each dataset is split into a training set and a
test set with a ratio of 3:7 to create a data deficiency scenario, and both the covariates and outcomes
are standardized using z-score normalization.

The average log-likelihood of the test set is compared in Table 2. For our method, 12 equi-spaced
rotations are applied to datasets with 2-dimensional y, and for “air” and “skillcraft,” 6 equi-spaced
rotations are applied to each pair of coordinates of y. X is partitioned into 8 bins to average the
rotations. (Based on our observations, the results are to some extent robust to the way of partitioning
X . See Table 8 in Appendix G for an example.) Table 2 shows that our method achieves competitive
performance. The results further demonstrate that rotations help our method adapt to real-world
multivariate distributions, even when it is unknown whether there is an intrinsic rotation determined
by X . The ensemble of rotations not only improves the average log-likelihood of our method but also
enhances the stability and reduces the standard error of the estimated densities in both real-world
tasks and the simulation examples. Similar to the experiments with univariate outcomes, our method
achieves competitively low standard errors among the methods compared. (Full details on the datasets
and the hyperparameter settings are available in Appendix F.)

A comparison of the results obtained from different c0 and γ values is provided in Table 9 in
Appendix G. The results align with our expectation that a smaller c0 and scale-specific shrinkage
with a reasonably large γ, which impose stronger regularization, would enhance the performance of
our proposed method under this data deficiency scenario.

Table 2: Comparison of log-likelihood on real-world tasks (mean±standard error). Methods with the
best results are in bold; multiple bold methods indicate no significant differences. MDN+ and KMN+
results were obtained by running the respective software. Results for MDN, MAF, NSF, RNF, MLP,
and DDN are from (Chen et al., 2021); “NA" indicates results not provided in (Chen et al., 2021),
and “-Inf" indicates −∞ log-likelihood in multiple runs. η is a tuning parameter that controls the l1
penalty on imbalanced splits in our method, detailed in Appendix B.

Energy Parkinsons Temperature Air Skillcraft
MDN+ 1.33±0.02 -0.97±0.01 -0.64±0.01 -1.01±0.01 -Inf*
KMN+ 1.16±0.03 -0.60±0.01 -0.91±0.01 -1.65±0.01 -Inf*
MDN -8.28±0.91 -3.82±0.08 -4.24±0.04 -2.16±0.06 -8.54±0.14
MAF -125±51 -20.1±1.7 -14.0±0.4 -14.5±1.4 -81.1±8.2
NSF -2.87±0.11 -1.81±0.03 -2.95±0.04 0.47±0.11 -8.68±0.09
RNF -19.4±4.2 -4.01±0.25 -7.51±0.62 -0.81±0.26 -26.8±2.2
MLP -3.48±0.04 -4.86±0.06 -14.01±0.04 NA NA
DDN 0.14±0.32 -0.14±0.01 -0.71±0.02 1.22±0.02 -1.56±0.02
DDN (no VL) -1.56±0.27 -0.17±0.02 -0.84±0.02 1.32±0.02 -1.59±0.03
ours (η = 0.1) 1.84±0.04 -0.54±0.01 -0.68±0.01 -0.67±0.01 -1.66±0.02
ours (η = 0.01) 1.86±0.04 -0.56±0.01 -0.72±0.01 -0.62±0.01 -1.57±0.02
ours (η = 0.1, no rot.) 1.45±0.07 -0.77±0.01 -0.82±0.01 -0.83±0.01 -1.95±0.02

The linear time complexity for training the tree flow is empirically confirmed across 10 UCI bench-
mark datasets, as shown in Figure 3. Deviations from the linear trend are due to the varying number
of trees required for each dataset. Based on our observations, tens to hundreds of trees are sufficient
for the datasets used in this paper. The training process depicted in Figure 3 does not utilize paral-
lelization, and further improvement is expected because training the binary classifiers on the nodes
within the same level of a tree can be completed in parallel.
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Figure 3: Training time of our method on a single CPU core versus ndq on log-log scale for 10 UCI
datasets—boston, concrete, power, wine, yacht, naval, kin8nm, protein, air, and skillcraft. Points are
annotated with (n, d, q) values. A linear trend with slope 1 (gray line) indicates O(ndq) complexity.

3.4 DATA GENERATION

We demonstrate the data generation capabilities of our proposed model using microbiome compo-
sitional data from 16S sequencing experiments. The DIABIMMUNE dataset (Kostic et al., 2015)
includes microbiome compositions from 777 stool samples collected from 33 infants over a period of
three years. For each observation (xi, yi), the covariate xi is the age at collection, and the outcome
yi is the microbiome composition at the operational taxonomic unit (OTU) level. The outcomes are
normalized to relative abundances, i.e., the elements of each yi sum to 1. We keep the 100 OTUs with
the highest relative abundance. The proposed model was trained on the full dataset with c0 = 0.1,
γ = 0.5, η = 0.1, and maximum depth of the trees is set to 4. No rotations were applied. With
the trained model, one sample is generated for each xi, mimicking the conditions under which the
original data were collected.

Figure 4 displays a principal coordinate analysis (PCoA) of the Bray-Curtis similarity of training and
simulated samples. The simulated samples show similar marginal and conditional distributions to the
training data, particularly in the lower-dimensional subspaces defined by the first four main axes of
the PCoA.

Figure 4: Principal coordinate analysis (PCoA) of Bray-Curtis similarity of training (upper row) and
simulated (lower row) samples. The color of the points indicates the age (in days) of the infant, which
is the covariate in this example.

4 CONCLUSION

We proposed a generative model for conditional densities based on a normalizing flow with tree-
CDF transforms. We demonstrated conditional density estimation with our proposed model and
compared with other conditional density estimation methods with simulated data and real-world UCI
datasets. We note that the performance of our method in the experiments is achieved with Logistic
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Regression and MLP(4,4), and expect a wider class of classifiers may provide further improvements.
We also demonstrated the use of the proposed method in generative sampling in a microbiome context.
Among many possible applications, the trained generative model can be used to provide uncertainty
quantification on summary statistics computed on the microbiome data given the covariates.

A limitation of our approach, which is common for tree-based approaches adopting axis-aligned
partitions, is that it may not approximate well high-dimensional distributions (i.e., those with hundreds
or more features) especially in the presence of high-order correlation structure. So far our experiments
have focused on tabular data with ≤ 100 dimensions, and so the available empirical evidence is
limited to this domain. Possible extensions to overcome high-dimensional problems include adopting
non-axis-aligned partitions, which will incur computational challenges. We leave this to future work.

5 REPRODUCIBILITY STATEMENT

To ensure reproducibility, the details of the algorithm used in this paper, along with the full experi-
mental details, are provided in Appendix C and F.
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A TREE-CDF AND ITS INVERSE

The multi-scale decomposition of tree-CDFs and their inverses, along with their properties, are
detailed in Awaya and Ma (2023). Here, we summarise these in the context of conditional density
estimation.

Suppose a probability measure Gx on (0, 1]d is defined by a binary tree T with splitting probabilities
Gx(Al|A) = c(A)pθA(x) + (1 − c(A))(µ(Al)

µ(A) ) for A ∈ I(T ), and its corresponding tree-CDF is
Gx. Then, for a d-dimensional vector y within (0, 1]d, where the path from the leaf containing y
to the root is represented as y ∈ AR ⊂ AR−1 ⊂ · · · ⊂ A1 = (0, 1]d, applying Gx to y involves a
sequence of linear transforms along this path:

Gx(y) = Gx,A1 ◦ · · · ◦Gx,AR−1
(y),

where each Gx,A is defined based on the probability assignments at node A. For a node A =
(a1, b1]× · · · × (ad, bd] split along the j-th axis into Al = (a1, b1]× · · · × (aj , sj ]× · · · × (ad, bd]
and Ar = (a1, b1]× · · · × (sj , bj ]× · · · × (ad, bd], the transformation Gx,A is given by:

Gx,A(y)[j
′] = yj′ for j′ ̸= j,

Gx,A(y)[j] =
Gx(Al|A)

(sj − aj)/(bj − aj)
yj +

(
1− Gx(Al|A)

(sj − aj)/(bj − aj)

)
bj for y ∈ Al,

Gx,A(y)[j] =
1−Gx(Al|A)

(bj − sj)/(bj − aj)
yj +

(
1− 1−Gx(Al|A)

(bj − sj)/(bj − aj)

)
bj for y ∈ Ar.

Let zj =
yj−aj

bj−aj
. The inverse node-level transform, G−1

x,A(y), is given by

Ĝ−1
x,A(y)[j

′] = yj′ for j′ ̸= j,

Ĝ−1
x,A(y)[j] = aj +

cj − aj
Gx(Al|A)

zj if zj ≤ Gx(Al|A),

Ĝ−1
x,A(y)[j] = cj +

bj − cj
1−Gx(Al|A)

(zj −Gx(Al|A)) if zj ≤ Gx(Al|A).

It can be seen from the above formula that the time complexity of applying Gx or G−1
x is equivalent

to that of calculating pθA(x) if the maximum depth of the trees is fixed.

B JUSTIFICATION OF OPTIMIZATION PROCEDURE IN 2.2

For an observation (xi, yi) where yi belongs to a leaf node L, we have gxi
(yi) =

Gxi
(L)

µ(L) .

Gxi
(L) and µ(L) can be decomposed on the tree as a product of splitting probabilities:

Gxi(L) =
∏

A∈I(T ),yi∈A

Gxi(Al|A)1(yi∈Al)Gxi(Ar|A)1(yi∈Ar),

and

µ(L) =
∏

A∈I(T ),yi∈A

(
µ(Al)

µ(A)
)1(yi∈Al)(

µ(Ar)

µ(A)
)1(yi∈Ar).
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Therefore,

l(T, θ) =
∑
i

log gxi(yi)

=
∑
i

∑
yi∈A∈I(T )

1(yi ∈ Al) logGxi(Al|A) + 1(yi ∈ Ar) logGxi(Ar|A)− 1(yi ∈ Al) log
µ(Al)

µ(A)
− 1(yi ∈ Ar) log

µ(Ar)

µ(A)

=
∑

A∈I(T )

∑
i:yi∈A

(1(yi ∈ Al) logGxi(Al|A) + 1(yi ∈ Ar) logGxi(Ar|A))− n(Al) log
µ(Al)

µ(A)
− n(Ar) log

µ(Ar)

µ(A)

=
∑

A∈I(T )

 ∑
i:yi∈A

1(yi ∈ Al) log pθA(xi) + 1(yi ∈ Ar) log(1− pθA(xi))

+

(
−n(Al) log

µ(Al)

µ(A)
− n(Ar) log

µ(Ar)

µ(A)

)
=

∑
A∈I(T )

(lA,bin(T, θA) + CA(T )) .

This proves Eq 2 in Section 2.2.

We use a greedy, root-to-leaf tree learning algorithm, where the tree is expanded by splitting one node at a
time based on maximizing l(T, θ) after the current splitting. Following the notations in Section 2.2, the tree is
initialized as T ∗

0 with only the root node, and θ∗0 is an empty set. Suppose the current tree and corresponding
node-level parameters are (T ∗

j , θ
∗
j ), then T ∗

j is chosen among the M candidates Tj,1, · · · , Tj,M to maximize
l(T, θ):

(T ∗
j , θ

∗
j ) = argmax

T∈{Tj,1,··· ,Tj,M},θ
l(T, θ).

Since Tj,1, · · · , Tj,M only differ by the way of splitting A, with the decomposition of the log-likelihood shown
above, we have

argmax
T∈{Tj,1,··· ,Tj,M},θ

l(T, θ) = argmax
T∈{Tj,1,··· ,Tj,M},θ

lA,bin(T, θA) + CA(T ).

Given the tree structure T , since CA(T ) does not involve θ, we have

argmax
θ

(lA,bin(T, θA) + CA(T )) = argmax
θ

lA,bin(T, θA) for any T.

Let θ∗A(T ) = argmaxθ lA,bin(T, θA). We have

max
T∈{Tj,1,··· ,Tj,M},θ

lA,bin(T, θA) + CA(T ) = max
T∈{Tj,1,··· ,Tj,M}

(max
θ

lA,bin(T, θA) + CA(T ))

= max
T∈{Tj,1,··· ,Tj,M}

lA,bin(T, θ
∗
A(T )) + CA(T ),

therefore
T ∗
j = argmax

T∈{Tj,1,··· ,Tj,M}
lA,bin (T, θ

∗
A(T )) + CA(T ),

and
θ∗A = θ∗A(T

∗
j ).

This justifies the two-step training algorithm described in Section 2.2.

In practice, one can incorporate further penalty terms on the complexity of tree into CA(T ) without affecting
the decomposition of l(T, θ). In our implementation, we used an l1 penalty on imbalanced splits. Specifically, if
A is split along the j-th axis at sj , and A = (a1, b1]× · · · × (aj , bj ]× · · · × (ad, bd], then an l1 penalty term
on imbalanced split is defined as

Lη(sj) = −η|sj − (aj + bj)/2|,
where n(A) =

∑n
i=1 1(y

(k)
i ∈ A) is the number of samples within node A, η is a hyperparameter. With such

penalty term, CA(T ) becomes

CA(T ) = −n(Al) log
µ(Al)

µ(A)
− n(Ar) log

µ(Ar)

µ(A)
+ Lη(sj)

if the node A of T is split at sj .

C ALGORITHMS FOR TRAINING THE TREE FLOW AND A SINGLE TREE

The algorithm for training the tree flow Gx is given in Algorithm 1.

Algorithm 2 summarizes the algorithm for fitting a single tree-CDF.
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Algorithm 1 Training the tree flow
1: input: training data {(xi, yi)}ni=1, validation data {(xi,val, yi,val)}ni=1, maximum number of

trees Kmax, window size w, shrinkage parameters (c0, γ)
2: Output: {Gk,x}Kk=1

3: Initialize LL(0) ← 0
4: for i = 1 to n do
5: y

(0)
i ← yi

6: y
(0)
i,val ← yi,val

7: end for
8: for k = 1 to Kmax do
9: Train Gk,x on {(xi, y

(k−1)
i )} using Algorithm 2

10: Shrink Gk,x ▷ As described in Section 2.3
11: Gk,x ← tree-CDF of Gk,x

12: LL(k) ← LL(k−1) +
∑n

i=1 log gk,xi
(y

(k−1)
i,val ) ▷ Update log-likelihood

13: for i = 1 to n do
14: y

(k)
i ← Gk,xi

(y
(k−1)
i )

15: y
(k)
i,val ← Gk,xi,val

(y
(k−1)
i,val ) ▷ Update observations

16: end for
17: if LL(k) − LL(k−w) ≤ 0 then ▷ Early stopping
18: break
19: end if
20: end for

D TIME COMPLEXITY ANALYSIS

To fit a tree-CDF, the optimal splitting at each internal node is selected from S × d possible splits (with S
cutpoints per axis). When evaluating each candidate split, the fitting process for a node-level binary classi-
fier—whether using Logistic Regression or a Multilayer Perceptron with two hidden layers of 4 nodes each as
in our implementation—has a time complexity of O(nq). Therefore, the overall complexity for fitting each
tree-CDF is O(ndq).

Applying a tree-CDF to one observation indeed has a complexity of O(q). As demonstrated in previous work
(Awaya and Ma, 2023), a tree-CDF can be represented by a series of linear transformations at each level of the
tree, with each transformation costing O(q) due to the evaluation of the splitting probability with the trained
node-level binary classifier. Since the maximum depth R of the trees is fixed, there are at most R of these
O(q) operations, thus applying a tree-CDF to a d-dimensional vector is O(q). (Detailed information about the
multi-scale decomposition of tree-CDFs and their inverses are provided in the Appendix A. )

With the fitted conditional tree flow, evaluating the density of a test sample is O(q) because it avoids any
computationally expensive steps such as evaluating Jacobians. Instead, the following equation is used for density
evaluation of a sample (x, y):

fx(y) =

K∏
k=1

gk,x(y
(k−1))

where y(k) = Gk,x(y
(k−1)) and y(0) = y. Updating y(k−1) to y(k) is O(q), and calculating gk,x(y

(k−1))

involves just the product of splitting probabilities along the path from the root to the leaf that contains y(k−1)

divided by the volume of the leaf, which is also at most O(q).

Sampling from the fitted conditional tree flow given x involves applying the inverse tree-CDFs, G−1
K,x, · · · ,G

−1
1,x,

to a uniform random variable. The inverse tree-CDF employs a similar multi-scale decomposition as the tree-
CDF, and applying an inverse tree-CDF to a d-dimensional vector is O(q) due to the O(q) time complexity
of evaluating the splitting probabilities given x. Therefore, drawing one sample also has a time complexity of
O(q).

E ROTATION ENSEMBLE OF TREE FLOWS

Suppose the yi’s in the original training data are rotated to generate J distinct data sets, denoted as D1, · · · , DJ ,
where Dj = {(xi, yiRj)}, Rj is a rotation matrix applied to each data set. Training the conditional tree flow on

13
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Algorithm 2 Training a single tree-CDF
1: procedure TRAINTREECDF(maxDepth, min_samples, {xi, yi}, root,treeCandidates)
2: queue← [root]
3: currentDepth← 0
4: while currentDepth < maxDepth do
5: levelSize← len(queue)
6: for i← 1 to levelSize do
7: A← queue.pop(0)
8: if n(A)<min_samples then
9: continue

10: end if
11: T ←optimalSplit(A,treeCandidates) ▷ Update Al, Ar accordingly
12: θA ← fitBinaryClassification(T,A, {xi, yi})
13: queue.append(Al)
14: queue.append(Ar)
15: end for
16: currentDepth← currentDepth + 1
17: end while
18: return root
19: end procedure
20: function fitBinaryClassification(T, A,{xi, yi})

return argmaxθA lA,bin(T,θA) ▷ Defined in Section2.2
21: end function
22: function optimalSplit(A,treeCandidates,{xi, yi})
23: LLmax ← −∞, T ∗ ← None
24: for T in treeCandidates[A] do
25: θA ← fitBinaryClassification(T,A, {xi, yi})
26: LL← lA,bin(T, θA) + CA(T ) ▷ Defined in Section2.2
27: if LL > LLmax then
28: LLmax ← LL
29: T ∗ ← T
30: end if
31: end for
32: return T ∗

33: end function
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Dj yields f (j)
x . Note that rotations are orthogonal transformations, the resulting conditional density is defined as

fx(y) =

J∑
j=1

w(j)
x f (j)

x (yRj), (3)

The weights w(j)
x are dependent on x and are calculated based on the partitioning of the feature space X into

disjoint regions X1, · · · , XK′ . We assume that within each region Xk, the weights remain constant for all
points x. Thus, for any x ∈ Xk, the weight is computed by

w(j)
x =

∏
xi∈Xk

f
(j)
xi (yiRj)∑J

j′=1

∏
xi∈Xk

f
(j′)
xi (yiRj′)

.

F FULL EXPERIMENTAL DETAILS

F.1 EXPERIMENT SETTINGS AND DETAILS

Data dimensions. Dimensions of the UCI datasets used in Sectiokn 3 are shown in Table 3 and Table 4.

Table 3: Characteristics of UCI datasets with univariate outcome
Dataset n q
boston 506 13

concrete 1030 8
energy 768 8
power 9568 4
wine 1599 11
yacht 308 6

kin8nm 8192 8
naval 11934 17

protein 45730 9

Table 4: Characteristics of UCI datasets with multivariate outcome
n q d

Energy 768 8 2
Parkinsons 5875 16 2
Temperature 7588 21 2
Air 8891 10 3
Skillcraft 3338 15 4

Data splits. For UCI datasets with univariate y, we use the train test splits provided by
https://github.com/yaringal/DropoutUncertaintyExps. For UCI datasets with multivariate y, we use the same train
test splits as Chen et al. (2021). For simulation examples, training set and test set are generated independently
from the ground truth. In each run, a random subset of the training data (comprising 10% of the training data) is
used as the validation set to determine early stopping.

Simulation settings (bivariate outcome). Four conditional distributions of y1, y2|x are considered:

Squares: x ∼ U(−1, 1), λ ∼ Bern(0.5), a1, a2
iid∼ U(x− 5, x− 1), b1, b2

iid∼ U(1− x, 5− x),

y1 = λa1 + (1− λ)b1, y2 = λa2 + (1− λ)b2.

Half Gaussian: x ∼ U(−1, 1), a, b iid∼ N(0, 2),

y1 = |a| cosxπ − b sinxπ, y2 = |a| sinxπ + b cosxπ.

Gaussian Stick: x ∼ U(−1, 1), a ∼ N(0, 1), b ∼ U(−6, 6), c = (−0.75 + x)/2,

y1 = a cos cπ − b sin cπ, y2 = a sin cπ + b cos cπ.
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Elastic Ring: x ∼ U(−1, 1), d ∼ U(0, 2), θ ∼ U(0, 2π),

y1 = (4 + 2x+ d) cos θ, y2 = (4− 2x+ d) sin θ.

Hyperparameters. For our method, the choice of c0, γ is based on the recommendations in (Awaya and Ma,
2023). We set c0 = 0.05, γ = 0.5 for the experiments in the main paper, and the results obtained with other
values of c0, γ is included in Appendix G.4. The splitting point is obtained by grid search over 20 equally-spaced
gridpoints per axis. Maximum number of trees for training the flow with each type of binary classifiers is set to
1000 as an upper limit. In our experiments, the resulting K from early stopping ranges from tens to hundreds.
The early stopping window is set to 10. The minimum number of samples per node is set to 10. We observed in
the experiments that the results are generally robust to the early stopping window and the minimum number of
samples per node.

For KMN+ and MDN+, We adopted the hyperparameter specifications x_noise_std=0.2,
y_noise_std=0.1 as recommended in the experiments in Rothfuss et al. (2019).

Implementation details. Within our model, the binary classifiers are the only components that need the use of
optimization techniques for effective training. These classifiers are implemented using the sklearn library, with
specific settings for each:

• Logistic Regression: Fitted using sklearn.linear_model.LogisticRegression, with the
following configuration: random_state=42,max_iter=1000, solver=’lbfgs’, and all
other arguments are set to default.

• Multilayer perceptron (MLP): Fitted using sklearn.neural_network.MLPClassifier,
with the following configuration: random_state=42,max_iter=1000,
solver=’lbfgs’, hidden_layer_sizes=(4,4), and all other arguments are set
to default.

Source of experimental results. For the univariate experiments, the results of NGBoost (Duan et al., 2020),
RoNGBa(Ren et al., 2019), and TreeFlow(Wielopolski and Zięba, 2023) are obtained from their original papers.
The results of PGBM(Sprangers et al., 2021) is obtained from Wielopolski and Zięba (2023). The results of
Dropout, LV, MDN, MF, RNF are obtained from Trippe and Turner (2018). For the simulation examples and
multivariate experiments, the results of MAF, MDN, NSF, RNF, MLP and DDN are obtained from (Chen et al.,
2021).

Source of existing code and datasets used in this work. The experiment results of KMN+ and MDN+ Roth-
fuss et al. (2019) are obtained using the code provided at https://github.com/freelunchtheorem/
Conditional_Density_Estimation. The simulation examples with bivariate outcome are generated
with code available at https://github.com/NBICLAB/DDN. For the UCI benchmark datasets, the
original datasets are available at https://archive.ics.uci.edu/. We used the code at https:
//github.com/yaringal/DropoutUncertaintyExps to preprocess and split datasets for the exper-
iments in Section 3.1. Code for preprocessing and splitting datasets used in Section 3.3 is provided by the
authors of (Chen et al., 2021).

F.2 EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on a computing cluster where each experimental run utilized a single CPU; no
experiments were performed using GPUs. The memory allocation for all runs was set to 2GB, which served
as a generous upper limit and allowed for caching all intermediate results, although this was not necessary for
producing the results presented in the paper.

The full research project did not require more compute than the experiments reported in the paper.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 EFFECT OF FLEXIBLE SPLITTING AND COMBINATION OF CLASSIFIERS

We aim to understand the contribution of flexible splitting and the combination of binary classifiers. We set
c0 = 0.05, γ = 0.5, η = 0.1, and set maximum depth of trees to 6, and assess the following variants of our
methods: (1) The full model, where splits are obtained by grid search at each node, and node-level classification
first uses Logistic Regression until early stopping criteria is met, then switches to MLP. (2) All nodes are
constrained to be split in the middle. Same as the full model, both LR and MLP are used. (3) Only use LR at
internal nodes. (4) Only use MLP at internal nodes.
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Table 5: Average log likelihood (mean±standard error) of univariate tasks. Larger values indicate
better performance.

full middle LR MLP
boston -2.47±0.05 -2.53±0.05 -2.55±0.04 -2.61±0.04
concrete -2.67±0.05 -2.77±0.04 -3.47±0.02 -2.75±0.05
energy -0.75±0.04 -0.78±0.03 -1.45±0.03 -0.86±0.04
power -2.69±0.01 -2.73±0.01 -2.84±0.01 -2.65±0.01
wine 2.42±0.09 1.60±0.08 1.20±0.03 1.82±0.08
yacht -0.53±0.07 -0.88±0.07 -1.05±0.06 -1.56±0.09

Table 6: Comparison of predictive scores for different datasets with γ = 0 and γ = 0.5

Dataset γ = 0 γ = 0.5

kin8nm 0.99 ± 0.01 1.05 ± 0.01
bostonHousing -2.53 ± 0.05 -2.44 ± 0.04
power-plant -2.68 ± 0.01 -2.66 ± 0.01
concrete -2.78 ± 0.05 -2.72 ± 0.04
protein-tertiary-structure (dequantized) -2.13 ± 0.01 -2.13 ± 0.01
yacht -0.56 ± 0.10 -0.45 ± 0.07
naval-propulsion-plant 6.48 ± 0.01 6.29 ± 0.01

G.2 EFFECT OF SCALE-SPECIFIC SHRINKAGE RATES

The proposed method with scale-specific learning rates (γ = 0.5) and fixed learning rates (γ = 0) are compared
in Table 6. The other hyperparameters are set to the same values as in Section 3.1.

G.3 RESULTS SHOWN IN FIGURE 1

Table 7: Comparison on UCI benchmark datasets, measured by the log-likelihood of the test set
(mean ± standard error). Mean and standard error of the log-likelihood are calculated based on 20
runs, except for "protein", which is based on 5 runs. NA indicates that the results are not provided in
the original paper.

boston concrete energy power wine yacht protein kin8nm naval
Ours -2.44±0.04 -2.72±0.04 -0.72±0.03 -2.66±0.01 1.98±0.06 -0.45±0.07 -2.20±0.01 1.05±0.01 6.29±0.01
NGBoost -2.43±0.15 -3.04±0.17 -0.60±0.45 -2.79±0.11 -0.91±0.06 -0.20±0.26 -2.81±0.03 0.49±0.02 5.34±0.04
PGBM -2.67±0.10 -2.75±0.21 -1.74±0.04 -2.60±0.02 -0.97±0.20 -0.05±0.28 -2.79±0.01 0.54±0.04 3.44±0.04
RoNGBa -2.48±0.16 -2.94±0.18 -0.37±0.28 -2.65±0.08 -0.91±0.08 -1.03±0.44 -2.76±0.03 0.60±0.03 5.49±0.04
KMN+ -2.38±0.03 -3.33±0.01 -1.56±0.02 -2.88±0.01 0.61±0.02 -2.02±0.03 -2.44±0.01 0.95±0.01 3.16±0.01
MDN+ -2.34±0.05 -3.15±0.02 -1.34±0.01 -2.80±0.01 0.52±0.03 -1.84±0.02 -2.43±0.01 1.16±0.01 3.21±0.01
TreeFlow NA -3.02±0.15 -0.85±0.35 -2.65±0.06 0.56±0.62 -0.72±0.40 -2.02±0.02 1.03±0.06 5.54±0.16
Dropout -2.46±0.25 -3.04±0.09 -1.99±0.09 -2.89±0.01 -0.93±0.06 -1.55±0.12 -2.89±0.01 0.95±0.01 3.80±0.01
HMC -2.27±0.03 -2.72±0.02 -0.93±0.01 -2.70±0.01 -0.91±0.02 -1.62±0.02 -2.77±0.01 1.35±0.01 7.31±0.01
LV-15 -2.64±0.05 -3.06±0.03 -0.74±0.03 -2.81±0.01 -0.98±0.02 -1.01±0.04 NA NA NA
LV-5 -2.56±0.05 -3.08±0.02 -0.79±0.02 -2.82±0.01 -0.96±0.01 -1.15±0.05 NA NA NA
MDN-2 -2.65±0.03 -3.23±0.03 -1.60±0.04 -2.73±0.01 -0.91±0.04 -2.70±0.05 NA NA NA
MDN-20 -2.74±0.03 -3.27±0.02 -1.48±0.04 -2.68±0.01 1.21±0.06 -2.76±0.07 NA NA NA
MDN-5 -2.73±0.04 -3.28±0.03 -1.63±0.06 -2.70±0.01 1.43±0.07 -2.54±0.10 NA NA NA
MF -2.62±0.06 -3.00±0.03 -0.57±0.04 -2.79±0.01 -0.97±0.01 -1.00±0.10 NA NA NA
RNF-2 -2.40±0.06 -3.03±0.05 -0.44±0.04 -2.73±0.01 -0.87±0.02 -0.30±0.04 NA NA NA
RNF-5 -2.37±0.04 -2.97±0.03 -0.67±0.15 -2.68±0.01 -0.76±0.10 -0.21±0.09 NA NA NA

G.4 ADDITIONAL RESULTS

8 shows the average test log-likelihood of the UCI datasets with multivariate outcome with different number of
bins for X for rotations. The hyperparameters for our model are configured as follows: c0 = 0.05, γ = 0.5, and
η = 0.01. The maximum depth of the trees, R, is set to 6 when using Logistic Regression and reduced to 4
when using Multilayer Perceptrons (MLP). The results are robust to the way of partitioning X .
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Table 8: Sensitivity analysis of partitions of X .

data partition of X average test log-likelihood (mean±SE)
energy kmeans, k=4 1.865±0.043
energy kmeans, k=8 1.863±0.042
energy HDBSCAN 1.864±0.043

parkinsons kmeans, k=4 -0.561±0.007
parkinsons kmeans, k=8 -0.561±0.007
parkinsons HDBSCAN -0.560±0.007
temperature kmeans, k=4 -0.721±0.006
temperature kmeans, k=8 -0.721±0.006
temperature HDBSCAN -0.722±0.006

air kmeans, k=4 -0.621±0.006
air kmeans, k=8 -0.621±0.006
air HDBSCAN -0.621±0.006

skillcraft kmeans, k=4 -1.577±0.017
skillcraft kmeans, k=8 -1.576±0.017
skillcraft HDBSCAN -1.577±0.017

The average test log likelihood on these datasets with different values of c0, γ is shown in Table 9. For this
comparison, η = 0.1, maximum depth of trees is 6 for Logistic Regression and reduced to 4 for MLP. The
datasets are not rotated.

c0 γ Energy Parkinsons Temperature Air Skillcraft
0.05 0.5 1.48±0.06 -0.76±0.01 -0.80±0.01 -0.78±0.01 -1.88±0.02
0.05 0.1 1.36±0.06 -0.76±0.01 -0.84±0.01 -0.92±0.01 -2.16±0.02
0.1 0.1 1.18±0.06 -0.83±0.01 -0.86±0.01 -0.96±0.01 -2.30±0.02

Table 9: Average test log-likelihood (mean±SE) of UCI datasets under different c0, γ

G.5 ADDITIONAL FIGURES

This section contains additional figures for the experiments. Specifically, the ground truth and estimated density
for the simulation examples are provided in 6-8.
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(b) Estimated density (no rota-
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Figure 5: Half Gaussian. From top to bottom, the rows correspond to x = −0.75,−0.25, 0.25, 0.75
respectively.
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Figure 6: Squares. From top to bottom, the rows correspond to x = −0.75,−0.25, 0.25, 0.75
respectively.
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Figure 7: Elastic Ring. From top to bottom, the rows correspond to x = −0.75,−0.25, 0.25, 0.75
respectively.
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(b) Estimated density (no rota-
tions)
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(c) Estimated density (with rota-
tions)

Figure 8: Gaussian stick. From top to bottom, the rows correspond to x = −0.75,−0.25, 0.25, 0.75
respectively.
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