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ABSTRACT

We consider robust clustering problems in Rd, specifically k-clustering problems
(e.g., k-MEDIAN and k-MEANS) with m outliers, where the cost for a given cen-
ter set C ⊂ Rd aggregates the distances from C to all but the furthest m data
points, instead of all points as in classical clustering. We focus on the ϵ-coreset
for robust clustering, a small proxy of the dataset that preserves the clustering
cost within ϵ-relative error for all center sets. Our main result is an ϵ-coreset
of size O(m + poly(kϵ−1)) that can be constructed in near-linear time. This
significantly improves previous results, which either suffers an exponential de-
pendence on (m + k) (Feldman & Schulman, 2012), or has a weaker bi-criteria
guarantee (Huang et al., 2018). Furthermore, we show this dependence in m is
nearly-optimal, and the fact that it is isolated from other factors may be crucial for
dealing with large number of outliers. We construct our coresets by adapting to the
outlier setting a recent framework (Braverman et al., 2022) which was designed
for capacity-constrained clustering, overcoming a new challenge that the partici-
pating terms in the cost, particularly the excluded m outlier points, are dependent
on the center set C. We validate our coresets on various datasets, and we observe
a superior size-accuracy tradeoff compared with popular baselines including uni-
form sampling and sensitivity sampling. We also achieve a significant speedup of
existing approximation algorithms for robust clustering using our coresets.

1 INTRODUCTION

We give near-optimal ϵ-coresets for k-MEDIAN and k-MEANS (and more generally, (k, z)-
CLUSTERING) with outliers in Euclidean spaces. Clustering is a central task in data analysis, and
popular center-based clustering methods, such as k-MEDIAN and k-MEANS, have been widely ap-
plied. In the vanilla version of these clustering problems, given a center set of k points C, the
objective is usually defined by the sum of (squared) distances from each data point to C.

This formulation, while quite intuitive and simple to use, has severe robustness issues when dealing
with noisy/adversarial data; for instance, an adversary may add few noisy outlier points that are far
from the center to “fool” the clustering algorithm to wrongly put centers towards those points in
order to minimize the cost. Indeed, such robustness issue introduced by outliers has become a major
challenge in data science and machine learning, and it attracted extensive algorithmic research on
the topic (Charikar et al., 2001; Chen, 2008; Candès et al., 2011; Chawla & Gionis, 2013; Mount
et al., 2014; Gupta et al., 2017; Statman et al., 2020; Ding & Wang, 2020). Moreover, similar issues
have also been studied from the angle of statistics (Huber & Ronchetti, 2009).

Robust Clutering We consider robust versions of these clustering problems, particularly a natural
and popular variant, called clustering with outliers (Charikar et al., 2001). Specifically, given a
dataset X ⊂ Rd, the (k, z,m)-ROBUST CLUSTERING problem is to find a center set C ⊂ Rd of k
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points (repetitions allowed), that minimizes the objective function

cost(m)
z (X,C) := min

L⊆X:|L|=m

∑
x∈X\L

(dist(x,C))z. (1)

Here, L denotes the set of outliers, dist denotes the Euclidean distance, and dist(x,C) :=
minc∈C dist(x, c). Intuitively, the outliers capture the furthest points in a cluster which are “not
well-clustered” and are most likely to be the noise. Notice that the parameter z captures various
(robust) clustering problems, including (k,m)-ROBUST MEDIAN (where z = 1), (k,m)-ROBUST
MEANS (where z = 2). On the other hand, if the number of outliers m = 0 then the robust clus-
tering problem falls back to the non-robust version. The (k, z,m)-ROBUST CLUSTERING problem
has been widely studied in the literature (Chen, 2008; Gupta et al., 2017; Krishnaswamy et al., 2018;
Friggstad et al., 2019; Statman et al., 2020). Moreover, the idea of removing outliers has been also
considered in other machine learning tasks, e.g., robust PCA (Bhaskara & Kumar, 2018) and robust
regression Rousseeuw & Leroy (1987); Mount et al. (2014).

Computational Challenges However, the presence of outliers introduces significant computa-
tional challenges, and it inspires a series of research to design efficient algorithms for robust clus-
tering. On one hand, approximation algorithms with strict accuracy guarantee has been obtained
(Charikar et al., 2001; Chen, 2008; Gupta et al., 2017; Krishnaswamy et al., 2018; Feng et al., 2019;
Friggstad et al., 2019; Zhang et al., 2021) but their running time is a high-degree polynomial which
is impractical. On the other hand, more scalable algorithms were also proposed (Bhaskara et al.,
2019; Deshpande et al., 2020), however, the approximation ratio is worse, and a more severe limi-
tation is that their guarantee usually violates the required number of outliers. Moreover, to the best
of our knowledge, we are not aware of works that design algorithms in sublinear models, such as
streaming and distributed computing.

Coresets In order to tackle the computational challenges, we consider coresets for robust clus-
tering. Roughly, an ϵ-coreset is a tiny proxy of the massive input dataset, on which the clustering
objective is preserved within ϵ-error for every potential center set. Existing algorithms may benefit
a significant speedup if running on top of a coreset, and more importantly, coresets can be used to
derive sublinear algorithms, including streaming algorithms (Har-Peled & Mazumdar, 2004), dis-
tributed algorithms (Balcan et al., 2013) and dynamic algorithms (Henzinger & Kale, 2020), which
are highly useful to deal with massive datasets.

Stemming from Har-Peled & Mazumdar (2004), the study of coresets for the non-robust version
of clustering, i.e., (k, z)-CLUSTERING, has been very fruitful (Feldman & Langberg, 2011; Feld-
man et al., 2020; Sohler & Woodruff, 2018; Huang & Vishnoi, 2020; Braverman et al., 2021;
Cohen-Addad et al., 2021b; Braverman et al., 2022), and the state-of-the-art coreset achieves a size
poly(kϵ−1), independent of d and n. However, coresets for robust clustering were much less under-
stood. Existing results either suffers an exponential (k+m)k+m factor in the coreset size (Feldman
& Schulman, 2012), or needs to violate the required number of outliers (Huang et al., 2018). This
gap leads to the following question: can we efficiently construct an ϵ-coreset of size poly(m, k, ϵ−1)
for (k, z,m)-ROBUST CLUSTERING (without violating the number of outliers)?

1.1 OUR CONTRIBUTIONS

Our main contribution, stated in Theorem 1.1, is a near-optimal coreset for robust clustering, affir-
matively answering the above question. In fact, we not only achieve poly(m), but also linear in m
and is isolated from other factors. This can be very useful when the number of outliers m is large.

Theorem 1.1 (Informal; see Theorem 3.1). There exists a near-linear time algorithm that given data
set X ⊂ Rd, z ≥ 1, ϵ ∈ (0, 0.3) and integers k,m ≥ 1, computes an ϵ-coreset of X for (k, z,m)-
ROBUST CLUSTERING of size O(m) + 2O(z log z)Õ(k3ϵ−3z−2), with constant probability.

Our coreset improves over previous results in several aspects. Notably, compared with Feldman &
Schulman (2012), our result avoids their exponential (k+m)k+m factor in the coreset size which is
likely to be impractical since typical values of k and/or m may be O(log n). In fact, as observed in
our experiments, the value of m can be as large as 1500 in real datasets, so the dependence in Feld-
man & Schulman (2012) is prohibitively large which leads to an inferior practical performance
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(see Section 4). Moreover, our coreset has a strict guarantee for m outliers instead of a bi-criteria
guarantee as in (Huang et al., 2018) that needs to allow more or fewer outliers in the objective for the
coreset. We also note that our coreset is composable (Remark 3.2). Furthermore, we show that the
linear dependence in m is necessary (Theorem 1.2). Hence, combining this with a recent size lower
bound of Ω(kϵ−2) (Cohen-Addad et al., 2022) for vanilla clustering (i.e., m = 0), we conclude that
the dependence of every parameter (i.e., m, k, ϵ) is nearly tight.

Theorem 1.2. For every integer m ≥ 1, there exists a dataset X ⊂ R of n ≥ m points, such that
for every 0 < ϵ < 0.5, any ϵ-coreset for (1,m)-ROBUST MEDIAN must have size Ω(m).

For the lower bound, we observe that when m = n − 1, the clustering cost for (1,m)-ROBUST
MEDIAN reduces to the distance to the nearest-neighbor from the center c. This is easily shown to
require Ω(n) = Ω(m) points in the coreset, in order to achieve any finite approximation. The formal
proof can be found in Section H.

Experiments We evaluate the empirical performance of our coreset on various datasets (in Sec-
tion 4). We validate the size-accuracy tradeoff of our coreset compared with popular coreset con-
struction methods, particularly uniform sampling (which is a natural heuristic) and sensitivity sam-
pling (Feldman & Schulman, 2012), and we observe that our coreset consistently outperforms these
baselines in accuracy by a significant margin for every experimented coreset size ranging from 500
to 5000. We also run existing approximation algorithms on top of our coreset, and we achieve
about 100x speedup for both a) a Lloyd heuristic adopted to the outlier setting (Chawla & Gionis,
2013) that is seeded by an outlier-version of k-MEANS++ (Bhaskara et al., 2019), and b) a natural
local search algorithm (Friggstad et al., 2019). These numbers show that our coreset is not only
near-optimal in theory, but also demonstrates the potential to be used in practice.

1.2 TECHNICAL OVERVIEW

Similar to many previous coreset constructions, we first compute a near-optimal solution, an
(α, β, γ)-approximation (see Definition 2.2) C∗ := {c∗i | i ∈ [βk]}, obtained using known ap-
proximation algorithms (see the discussion in Section A). Then with respect to C∗, we identify the
outliers L∗ ⊂ X of C∗ and partition the remaining inlier points X \ L∗ into |C∗| clusters {Xi}i.
We start with including L∗ into our coreset, and we also include a weighted subset of the remaining
inlier points X \ L∗ by using a method built upon a recent framework Braverman et al. (2022),
which was originally designed for clustering with capacity constraints. The step of including L∗

in the coreset is natural, since otherwise one may miss the remote outlier points which can incur
a huge error; furthermore, the necessity of this step is also justified by our Ω(m) lower bound
(Theorem 1.2). Similar to Braverman et al. (2022), for each cluster Xi among the remaining inliers
points X \L∗, we identify a subset of Xi that consists of poly(kϵ−1) rings, and merge the remaining
part into poly(kϵ−1) groups of rings such that each group G has a tiny cost (Theorem 3.3). We use a
general strategy that is similar to Braverman et al. (2022) to handle separately the rings (Lemma 3.6)
and groups (Lemma 3.7), but the actual details differ significantly due to the presence of outliers.

Handling Rings Similar to Braverman et al. (2022), for a ring data subset R = ring(c∗i , r, 2r) ⊆
Xi, i.e., a subset such that every point is at a similar distance (up to a factor of 2) to the center
c∗i , we apply a uniform sampling on it to construct a coreset (with additive error, Definition 3.5).
In Braverman et al. (2022), for any center set C ⊂ Rd, the error incurred by uniform sampling is
bounded by ϵ·costz(R,C) which is ϵ times the total cost without outliers from R to C (ignoring some
neglectable additive term). However, in the presence of outliers, their error bound ϵ·costz(R,C) can
hardly be charged to ϵ · cost(mR)

z (R,C), where mR is the number of outliers in R with respect to C.
This is because cost

(mR)
z (R,C) can be very small and even close to 0 when mR ≈ |R|. Moreover,

the number of outliers mR is not known a priori and can be any number between 0 and m. Hence,
we provide a stronger guarantee (Lemma 3.6) where we give an alternative upper bound which
eventually charges the error to ϵ ·cost(mR)

z (R,C) and ϵ ·opt. We use the fact that cost(mR)
z (R,C) is

“small enough” compared to opt for large mR, while for small mR, we rewrite the robust clustering
cost as an integration of ball ranges (Fact F.1) and use a fact that uniform sampling approximately
estimates all ball ranges (Lemma F.3). Similar idea of writing the cost as an integration has also
been used in previous works, e.g., Huang et al. (2018); Braverman et al. (2022).
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Handling Groups The main technical difficulty is to handle groups (Lemma 3.7). We still con-
struct a two-point coreset (Definition 3.4) for every group G ⊂ Xi, as in Braverman et al. (2022). To
analyze the error of this two-point coreset for an arbitrary center set C ⊂ Rd, we partition the groups
into colored and uncolored groups with respect to C (Lemma G.1) in a way similar to Braverman
et al. (2022). Let us call a group G “bad” if the error incurred by the two-point coreset is much
larger than ε · cost(mG)

z (G,C), which is ε times the contribution of G. We focus our discussion on
bounding the error of bad groups. We first show even with outliers (in Lemma G.1), the error for
each bad group is at most ε · costz(G,C∗). Hence, it remains to bound the number of bad groups.
In Braverman et al. (2022), only a colored group can be bad, and the number of them is bounded by
O(k log z

ε ). However, in the outlier setting a key difference to Braverman et al. (2022) is that, un-
colored groups can also be bad (due to a reason similar to that for rings: cost(mG)

z (G,C) may be too
small when the number of outliers mG in G is large), and we call them “special uncolored groups”
(22). To bound the number of them, in Lemma G.5 we make a crucial geometric observation: even
though special uncolored groups may significantly change for varying C’s, an invariant is that they
must always be consecutive uncolored groups, due to the way we decompose Xi, and apart from the
two groups that partially intersect the outliers, every other group within the consecutive sequence
consists of outliers only. This key geometric observation implies the number of such groups is O(1)
(Lemma G.5), and consequently, the total number of bad groups is at most O(k log z

ε ) with respect
to any C.

Finally, in addition to the above new steps, we remark that it is also necessary to make these bounds
for rings/groups work for all numbers of outliers 0 ≤ t ≤ m “simultaneously”, since one does not
know in advance how many outliers reside each ring/group due to the arbitrarily chosen C.

1.3 OTHER RELATED WORKS

Robust Clustering in Rd Robust clustering, first proposed by Charikar et al. (2001), has been
studied for two decades. For (k,m)-ROBUST MEDIAN, Charikar et al. (2001) designed a bi-criteria
approximate algorithm with violations on k. Chen (2008) first showed a pure constant approximate
algorithm, whose approximate ratio was improved to 7.081 + ϵ (Krishnaswamy et al., 2018). When
k = O(1), Feng et al. (2019) also proposed a PTAS for (k,m)-ROBUST MEDIAN. For (k,m)-
ROBUST MEANS, Gupta et al. (2017) designed a bi-criteria approximate algorithm with violations
on m. Krishnaswamy et al. (2018) first proposed a constant approximate algorithm, and the approx-
imate ratio was improved to 6+ ϵ Feng et al. (2019). For general (k, z,m)-ROBUST CLUSTERING,
Friggstad et al. (2019) achieved an O(zz) approximate solution with (1 + ϵ)k centers. Due to the
wide applications, scalable algorithms have been designed for (k,m)-ROBUST MEANS Bhaskara
et al. (2019); Deshpande et al. (2020) besides theoretical study, which may have a worse provable
guarantee but are more efficient in practice.

Coresets for Clustering There is a large body of work that studies coreset construction for
vanilla (k, z)-CLUSTERING in Rd Har-Peled & Mazumdar (2004); Feldman & Langberg (2011);
Braverman et al. (2016); Huang et al. (2018); Cohen-Addad et al. (2021b; 2022). The state-of-
art result for general (k, z)-CLUSTERING is by Cohen-Addad et al. (2022), where the coreset
size is Õ(zO(z)kϵ−2 · min {k, ϵ−z}). This bound nearly matches a lower bound of Ω(kϵ−2 +
kmin

{
d, 2z/20

}
) (Cohen-Addad et al., 2022; Huang & Vishnoi, 2020). In addition, coresets for

constrained clustering in Euclidean spaces has also been considered, such as capacitated clustering
and the tightly related fair clustering (Schmidt et al., 2019; Huang et al., 2019; Braverman et al.,
2022), and ordered weighted clustering (Braverman et al., 2019). Going beyond Euclidean spaces,
coresets of size poly(kϵ−1) were known for (k, z)-CLUSTERING in doubling metrics (Huang et al.,
2018), shortest-path metrics of graphs with bounded treewidth (Baker et al., 2020) and graphs that
exclude a fixed minor (Braverman et al., 2021).

2 PRELIMINARIES

Balls and Rings For a point a ∈ Rd, and positive real numbers r′ > r > 0, define Ball(a, r) =
{x ∈ Rd,dist(x, a) ≤ r} and ring(a, r, r′) = Ball(a, r′) \ Ball(a, r). For a set of points A ⊂ Rd,
Balls(A, r) = ∪a∈ABall(a, r).
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Weighted Outliers Since our coreset uses weighted points, we need to define the notion of
weighted sets and weighted outliers. We call a set S with an associated weight function wS :
S → R≥0 a weighted set. Given two weighted sets (X,wX) and (Y,wY ) such that Y ⊆ X
and wY (x) ≤ wX(x) for any x ∈ Y , let X − Y denote a weighted set (Z,wZ) such that
wZ = wX − wY ,1 and Z is the support of wZ . Moreover, for a weighted set X , we denote
L(m)
X as the collection of all possible sets of weighted outliers (Y,wY ) satisfying that Y ⊆ X ,∑
x∈Y wY (x) = m and that ∀x ∈ X , wY (x) ≤ wX(x). In this definition, since X is a weighted

point set, we need to pick outliers of total weight m in the objective cost
(m)
z (X,C), instead of m

distinct points which may have a much larger weights than m.

Weighted Cost Functions For m = 0, we write costz for cost
(m)
z . We extend the definition

of the cost function to that on a weighted set X ⊂ Rd. For m = 0, we define costz(X,C) :=∑
x∈X wX(x) · (dist(x,C))z . For general m ≥ 1, the cost is defined using the notion of weighted

outliers and aggregating using the costz function which is the m = 0 case.

cost(m)
z (X,C) := min

(L,wl)∈L(m)
X

{costz(X − L,C)} .

One can check that this definition is a generalization of the unweighted case (1). For a weighted set
X ⊂ Rd, let the optimal solution be opt

(m)
z (X) := minC⊂Rd,|C|=k cost

(m)
z (X,C).

Definition 2.1 (Coreset). Given a point set X ⊂ Rd and ϵ ∈ (0, 1), an ϵ-coreset for (k, z,m)-
ROBUST CLUSTERING is a weighted subset (S,wS) of X such that

∀C ⊂ Rd, |C| = k, cost(m)
z (S,C) ∈ (1± ϵ) · cost(m)

z (X,C) (2)

Even though Definition 2.1 naturally extends the definition of coresets for vanilla clustering (Har-
Peled & Mazumdar, 2004; Feldman & Langberg, 2011; Feldman et al., 2020), it is surprising that
this exact definition did not seem to appear in the literature. A closely related definition (Huang et al.,
2018) considers a relaxed “bi-criteria” (with respect to the number of outliers) guarantee of the cost,
i.e., (1 − ϵ) · cost(1+β)m

z (S,C) ≤ cost
(m)
z (X,C) ≤ (1 + ϵ) · cost(1−β)m

z (S,C), for β ∈ [0, 1),
and their coreset size depends on β−1. Another definition was considered in Feldman & Schulman
(2012), which considers a more general problem called weighted clustering (so their coreset implies
our Definition 2.1). Unfortunately, this generality leads to an exponential-size coreset (in k,m).
Definition 2.2 ((α, β, γ)-Approximation). Given a dataset X ⊂ Rd and real numbers α, β, γ ≥ 1,
an (α, β, γ)-approximate solution for (k, z,m)-ROBUST CLUSTERING on X is a center set C∗ ⊂
Rd with |C∗| ≤ βk such that cost(γm)

z (X,C∗) ≤ α · opt(m)
z (X).

3 CORESETS FOR (k, z,m)-ROBUST CLUSTERING

We present our main theorem in Theorem 3.1. As mentioned, the proof of Theorem 3.1 is based on
the framework in Braverman et al. (2022), and we review the necessary ingredients in Section 3.1.
The statement of our algorithm and the proof of Theorem 3.1 can be found in Section 3.2.
Theorem 3.1. Given input dataset P ⊂ Rd with |P | = n, integers k,m ≥ 1, and real number z ≥ 1
and assume there exists an algorithm that computes an (α, β, γ)-approximation of P for (k, z,m)-
ROBUST CLUSTERING in time A(n, k, d, z), then Algorithm 1 uses time A(n, k, d, z) +O(nkd) to
construct a weighted subset (S,wS) with size |S| = γm+2O(z log z) ·β ·Õ(k3ϵ−3z−2), such that with
probability at least 0.9, for every integer 0 ≤ t ≤ m, S is an αϵ-coreset S of P for (k, z, t)-ROBUST
CLUSTERING.
Remark 3.2. By rescaling ϵ to ϵ/α in the input of Algorithm 1, we obtain an ϵ-coreset of size γm+

2O(z log z) ·α3z+2β ·Õ(k3ϵ−3z−2). We discuss how to obtain (α, β, γ)-approximations in Section A.
We also note that Theorem 3.1 actually yields an ϵ-coreset for (k, z, t)-ROBUST CLUSTERING si-
multaneously for every integer 0 ≤ t ≤ m, which implies that our coreset is composable. Specifi-
cally, if for every integer 0 ≤ t ≤ m, SX is an ϵ-coreset of X for (k, z, t)-ROBUST CLUSTERING
and SY is an ϵ-coreset of Y for (k, z, t)-ROBUST CLUSTERING, then for every integer 0 ≤ t ≤ m,
SX ∪ SY is an ϵ-coreset of X ∪ Y for (k, z, t)-ROBUST CLUSTERING.

1Here, if x /∈ Y , we let wY (x) = 0.
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R1 ∈ R
R2

R3

R4 = G2 ∈ G
R5 ∈ R

G1 ∈ G

c∗i

data points

Figure 1: Illustration of Theorem 3.3 (plotted distance is the logarithm of the real distance).

3.1 THE FRAMEWORK OF BRAVERMAN ET AL. (2022)

Theorem 3.3 is a general geometric decomposition theorem for coresets which we use crucially. It
partitions an arbitrary cluster into poly(k/ϵ) rings and merge the remaining rings into poly(k/ϵ)
groups with low contribution to costz(Xi, c

∗
i ). (See Figure 1 for an illustration.)

Theorem 3.3 (Decomposition into rings and groups (Braverman et al., 2022, Theorem 3.2)). Let
X ⊂ Rd be a set and c ∈ Rd be a center point. There exists an O(nkd)-time algorithm that
computes a partition of X into two disjoint collections of setsR and G, such that X = (∪R∈RR)∪
(∪G∈GG), whereR is a collection of disjoint rings satisfying

1. ∀R ∈ R, R is a ring of the form R = Ri(X, c) for some integer i ∈ Z ∪ {−∞}, where
Ri(X, c) := X ∩ ring(c, 2i−1, 2i) for i ∈ Z and R−∞(X, c) := X ∩ {c}

2. |R| ≤ 2O(z log z) · Õ(kϵ−z)

and G is a collection of disjoint groups satisfying

1. ∀G ∈ G, G is the union of consecutive rings of (X, c). Formally, ∀G ∈ G, there exists two
integers −∞ ≤ lG ≤ rG such that G = ∪rGi=lG

Ri(X, c) and the intervals {[lG, rG], G ∈
G} are disjoint for different G ∈ G

2. |G| ≤ 2O(z log z) · Õ(kϵ−z), and ∀G ∈ G, costz(G, c) ≤ ( ϵ
6z )

z · costz(P,c)
k·log(24z/ϵ) .

Rings and groups are inherently different geometric objects, hence they require different coreset
construction methods.2 As in Braverman et al. (2022), uniform sampling is applied on rings, but a
two-point coreset, whose construction is defined in Definition 3.4, is applied for each group. Our
main algorithm (Algorithm 1) also follows this general strategy.

Definition 3.4 (Construction of two-point coreset (Braverman et al., 2022)). For a group G ⊂ Rd

and a center point c ∈ Rd, let pGfar and pGclose denote the furthest and closest point to c in G. For
every p ∈ G, compute the unique λp ∈ [0, 1] such that distz(p, c) = λp ·distz(pGclose, c)+(1−λp) ·
distz(pGfar, c). Let DG = {pGfar, pGclose}, wDG

(pGclose) =
∑

p∈G λp, and wDG
(pGfar) =

∑
p∈G(1−λp).

DG is called the two-point coreset of G with respect to c.

By definition, we can verify that wDG
(DG) = |G| and costz(DG, c) = costz(G, c), which are

useful for upper bounding the error induced by such two-point coresets.

2In Braverman et al. (2022), they mark some of the rings (which they call heavy rings), then group the
remaining (unmarked) rings into groups. Our notion of ring corresponds to their “marked ring”, and our group
is the same as theirs. However, we do not need the concept of unmarked rings explicitly, since we only need
to deal with the groups that are formed from them (and the construction of groups follows from a black box in
Braverman et al. (2022)).
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3.2 PROOF OF THEOREM 3.1

Coreset Construction Algorithm We present our main algorithm in Algorithm 1. In Line 1 and
Line 2, the set L∗ of outliers of C∗ is the set of γm furthest points to C∗ and L∗ is directly added
into the coreset S. In Line 3 and Line 4, the inliers P \ L∗ are decomposed into βk clusters with
respect to C∗ and the linear time decomposition algorithm of Theorem 3.3 is applied in each cluster.
In Line 5 and Line 6, similar to Braverman et al. (2022), a uniform sampling and a two-point coreset
(see Definition 3.4) are applied in constructing coresets for rings and groups, respectively.

Algorithm 1 Coreset Construction for (k, z,m)-ROBUST CLUSTERING

Input: dataset P ⊂ Rd, z ≥ 1, integer k,m ≥ 1, an (α, β, γ)-approximation C∗ = {c∗i }βki=1
1: let L∗ ← argmin|L|=γm costz(P \ L,C∗) denote the set of γm outliers
2: add L∗ into S and set ∀x ∈ L∗, wS ← 1
3: partition P \ L∗ into βk clusters P1, ..., Pβk such that Pi is the subset of P \ L∗ closest to c∗i
4: for each i ∈ [βk], apply the decomposition of Theorem 3.3 to (Pi, c

∗
i ) and obtain a collection

Ri of disjoint rings and a collection Gi of disjoint groups
5: for i ∈ [βk] and every ring R ∈ Ri, take a uniform sample QR of size 2O(z log z) · Õ( k

ϵ2z+2 )

from R, set ∀x ∈ QR, wQR
(x)← |R|

|QR| , and add (QR, wQR
) into S

6: for i ∈ [βk] and every group G ∈ Gi center c∗i , construct a two-point coreset (DG, wDG
) of G

as in Definition 3.4 and add (DG, wDG
) into S

7: return (S,wS)

Error Analysis Recall that P is decomposed into 3 parts, the outliers L∗, the collection of rings,
and the collection of groups. We prove the coreset property for each of the 3 parts and claim the
union yields an ϵ-coreset of P for (k, z,m)-ROBUST CLUSTERING. As L∗ is identical in the data
set P and the coreset S, we only have to put effort in the rings and groups. We first introduce the
following relaxed coreset definition which allows additive error.

Definition 3.5. Let P ⊂ Rd, 0 < ϵ < 1 and A ≥ 0, a weighted set (S,wS) is an (ϵ, A)-coreset of
X for (k, z, t)-ROBUST CLUSTERING if for every C ⊂ Rd, |C| = k,

| cost(t)z (P,C)− cost(t)z (S,C)| ≤ ϵ · cost(t)z (P,C) + ϵ ·A.

This allowance of additive error turns out to be crucial in our analysis, and eventually we are able
to charge the total additive error to the (near-)optimal cost, which enables us to obtain the coreset
(without additive error).

The following two are the key lemmas for the proof of Theorem 3.1, where we analyze the guarantee
of the uniform-sampling coresets for rings (Lemma 3.6) and the two-point coresets (Lemma 3.7).

Lemma 3.6 (Coresets for rings). Let Q =
⋃

i∈[βk]

⋃
R∈Ri

QR denote the coreset of the rings Rall =⋃
i∈[βk]

⋃
R∈Ri

R, constructed by uniform sampling as in Line 5 of Algorithm 1, then ∀t, 0 ≤ t ≤ m,
Q is an

(
ϵ, costz(Rall, C

∗)
)
-coreset of Rall for (k, z, t)-ROBUST CLUSTERING.

Proof. The proof can be found in Section F.

Lemma 3.7 (Two-point coresets for groups). Let D =
⋃

i∈[βk]

⋃
G∈Gi

DG denote the two-point
coresets of the groups Gall =

⋃
i∈[βk]

⋃
G∈Gi

G, as in Line 6 of Algorithm 1, then for every t, 0 ≤
t ≤ m, D is an (ϵ, costz

(
P \ L∗, C∗)

)
-coreset of Gall for (k, z, t)-ROBUST CLUSTERING.

Proof. The proof can be found in Section G.

Proof of Theorem 3.1. Fix a center C ⊂ Rd, |C| = k and fix a t ∈ [0,m], we first prove that

cost(t)z (S,C) ≤ (1 + ϵ) cost(t)z (P,C) + ϵ · costz(P \ L∗, C∗).

To this end, assume L ⊂ P is the set of outliers for C with |L| = t.

7
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Figure 2: The tradeoff between the coreset size and the empirical error.

Let tR = |L ∩ Rall|, tG = |L ∩Gall|. By Lemma 3.6 and Lemma 3.7, there exists weighted subset
TQ ⊂ Q,TD ⊂ D such that, wTQ

(TQ) = tR, wTD
(TD) = tG,

costz(Q− TQ, C) ≤ (1 + ϵ) costz(Rall − (L ∩Rall), C) + ϵ · costz(Rall, C
∗) (3)

and

costz(D − TD, C) ≤ (1 + ϵ) costz(Gall − (L ∩Gall), C) + ϵ · costz(P \ L∗, C∗) (4)

Define a weighted subset (T,wT ) of S, such that T = (L ∩ L∗) ∪ TQ ∪ TD. Then wT (T ) = t and

cost(t)z (S,C) ≤ costz(S − T,C)

= costz(L
∗ − (L ∩ L∗), C) + costz(Q− TQ, C) + costz(D − TD, C)

≤ costz(L
∗ − (L ∩ L∗), C) + (1 + ϵ) costz(Rall − (L ∩Rall), C)

+ ϵ · costz(Rall, C
∗) + (1 + ϵ) costz(Gall − (L ∩Gall), C)

+ ϵ · costz(P \ L∗, C∗)

≤ (1 + ϵ) costz(P − L,C) +O(ϵ) · costz(P \ L∗, C∗)

≤ (1 +O(α · ϵ)) cost(t)z (P,C).

Similarly, we can also obtain that cost(t)z (P,C) ≤ (1 +O(α · ϵ)) cost(t)z (S,C) for any 0 ≤ t ≤ m.
It remains to scale ϵ by a universal constant.

We analyze the time complexity. Clearly, the running time of Algorithm 1 is dominated by the first
four lines, each of which takes O(nkd) time. Apart from the steps of building the coresets, the time
for the initial tri-criteria approximation is discussed in Section 1.3 and Section A.

4 EXPERIMENTS

We implement our coreset construction algorithm and evaluate its empirical performance on various
real datasets. We compare it with several baselines and demonstrate the superior performance of our
coreset. In addition, we show that our coresets can significantly speed up approximation algorithms
for both (k,m)-ROBUST MEDIAN and (k,m)-ROBUST MEANS problems.

Experiment Setup Our experiments are conducted on publicly available clustering datasets, see
Table 1 for a summary of specifications and choice of parameters. For all datasets, we select nu-
merical features to form a vector in Rd for each record. For larger dataset, particularly Census1990

8
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Table 1: Specifications of datasets and the choice of the parameters.

dataset size subsample dim. # of outliers m

Adult (Dua & Graff, 2017) 48842 - 6 200
Bank (Moro et al., 2014) 41188 - 10 200
Twitter (Chan et al., 2018) 21040936 105 2 500
Census1990 (Meek et al., 1990) 2458285 105 68 1500

and Twitter, we subsample it to 105 points so that inefficient baselines can still finish in a reason-
able amount of time. Unless otherwise specified, we typically set k = 5 for the number of centers.
The number of outliers m is determined by a per-dataset basis, via observing the distance distribu-
tion of points to a near-optimal center (see Section C for details). All experiments are conducted
on a PC with Intel Core i7 CPU and 16 GB memory, and algorithms are implemented using C++
11. We implement our coreset following Algorithm 1 except for a few modifications. The detailed
modifications are described in Section C.

Empirical Error We evaluates the tradeoff between the coreset size and empirical error under
the (k,m)-ROBUST MEDIAN objective. In general, for (k, z,m)-ROBUST CLUSTERING, given a
coreset S, define its empirical error, denoted as ϵ̂(S,C), for a specific center C ⊂ Rd, |C| = k

as ϵ̂(S,C) :=
| cost(m)

z (X,C)−cost(m)
z (S,C)|

cost
(m)
z (X,C)

. Since it is difficult to exactly verify whether a coreset

preserves the objective for all centers (as required by the definition), we evaluate the empirical error,
denoted as ϵ̂(S), for the coreset S as the maximum empirical error over C, which is a collection of
500 randomly-chosen center sets, i.e., ϵ̂(S) := maxC∈C ϵ̂(S,C). Note that ϵ̂(S) is defined in a way
similar to the worst-case error parameter ϵ as in Definition 2.1.

Baselines We compare our coreset with the following baselines: a) uniform sampling (US), where
we draw N independent uniform samples from X and set the weight |X|

N for each sample, b) outlier-
aware uniform sampling (OAUS), where we follow Line 1 - Line 2 of Algorithm 1 to add m outliers
L∗ to the coreset and sample N −m data points from X \ L∗ as in US baseline, and c) sensitivity
sampling (SS), the previous coreset construction algorithm of Feldman & Schulman (2012).

Experiment: Size-error Tradeoff For each coreset algorithm, we run it to construct coresets of
varying target sizes N , ranging from m+300 to m+4800, with a step size of 500. We evaluate the
empirical error ϵ̂(·) and we plot the size-error curves in Figure 2 for each baseline and dataset. To
make the measurement stable, the coreset construction and evaluations are run 100 times indepen-
dently and the average is reported. As can be seen from Figure 2, our coreset admits a similar error
curve regardless of the dataset, and it achieves about 2.5% error using a coreset of size m + 800
(within 2.3% - 2.5% of data size), which is perfectly justified by our theory that the coreset size only
depends on O(m+poly(kϵ−1)). Our coresets outperform all three baselines by a significant margin
in every dataset and every target coreset size. Interestingly, the two baselines SS and US seem to
perform similarly, even though the construction of SS (Feldman & Schulman, 2012) is way more
costly since its running time has an exponential dependence on k+m, which is already impractical
in our setting of parameters. Another interesting finding is that, OAUS performs no better than US
overall, and both are much worse than ours. This indicates that it is not the added initial outliers
L∗ (as in Algorithm 1) that leads to the superior performance of our coreset. Finally, we also ob-
serve that our coreset has a smaller variance in the empirical error (≈ 10−6), compared with other
baselines (≈ 10−4).

Experiment: Impact of The Number of Outliers We also examine the impact of the number of
outliers m on the empirical error. The details of this experiment can be found in Section D.

Experiment: Speeding Up Existing Approximation Algorithms We validate the ability of our
coresets for speeding up existing approximation algorithms for robust clustering. Due to space limit,
the details and results can be found in Section E.
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Appendices
A ALGORITHMS FOR TRI-CRITERIA APPROXIMATION

Various known algorithms that offer different tradeoffs may be used for the required (α, β, γ)-
approximation. In particular, Friggstad et al. (2019) designed a polynomial-time A(n, k, d, z) =
nO(1) algorithm with α = O(2z), β = O(1), γ = 1; Bhaskara et al. (2019) gave a near-linear time
A(n, k, d, z) = Õ(nkd) algorithm with α = O(2O(z)), β = O(1), γ = O(1) (which implies the
statement in Theorem 1.1).3 Finally, true approximation algorithms, i.e., β = γ = 1, are known
for both (k,m)-ROBUST MEDIAN and (k,m)-ROBUST MEANS, and they run in polynomial-time
A(n, k, d, z) = nO(1) and achieves α = O(1) (Chen, 2008; Krishnaswamy et al., 2018).

B TECHNICAL LEMMAS

Lemma B.1 (Generalized triangle inequalities). Let a, b ≥ 0 and δ ∈ (0, 1), then for z ≥ 1,

1. (Lemma A.1 of Makarychev et al. (2019)) (a+ b)z ≤ (1 + δ)z−1 · az + (1 + 1
δ )

z−1 · bz

2. (Claim 5 of Sohler & Woodruff (2018)) (a+ b)z ≤ (1 + δ) · az + ( 3zδ )z−1 · bz

The following lemma is a simple but useful way to bound the error between coresets and data sets
and the proof idea is similar to Lemma 3.5 of Braverman et al. (2022) which relies on coupling
the mass and applying generalized triangle inequality Lemma B.1. This technical lemma is used in
many places in our entire proof.
Lemma B.2. Let B ⊂ Pi be either a ring or a group. Assume (U,wU ) and (V,wV ) are two
weighted subsets of B such that wU (U) = wV (V ) = N , then for every C ⊂ Rd, |C| = k we have

| costz(U,C)− costz(V,C)| ≤ ϵ · costz(U,C) + (
6z

ϵ
)z−1 ·

(
costz(U, c

∗
i ) + costz(V, c

∗
i )
)
. (5)

Proof. Since wU (U) = wV (V ), there must exist a matching M : U × V → R≥0 between the mass
of U and V . So ∀u ∈ U,

∑
v∈V M(u, v) = wU (u) and ∀v ∈ V,

∑
u∈U M(u, v) = wV (v). By

generalized triangle inequality Lemma B.1 we have,

| costz(U,C)− costz(V,C)|
≤

∑
u∈U

∑
v∈V

M(u, v)|dist(u,C)z − dist(v, C)z|

≤
∑
u∈U

∑
v∈V

M(u, v)
(
ϵ · dist(u,C)z + (

3z

ϵ
)z−1 · (dist(u,C)− dist(v, C))z

)
≤ ϵ

∑
u∈U

wU (u) · dist(u,C)z + (
3z

ϵ
)z−1 ·

∑
u∈U

∑
v∈V

M(u, v) · (dist(u, c∗i ) + dist(v, c∗i ))
z

≤ ϵ · costz(U,C) + (
3z

ϵ
)z−1 · (

∑
u∈U

wU (u) · 2z−1 · dist(u, c∗i )z +
∑
v∈V

wV (v) · 2z−1 · dist(v, c∗i ))

≤ ϵ · costz(U,C) + (
6z

ϵ
)z−1

(
costz(U, c

∗
i ) + costz(V, c

∗
i )
)

C MORE DETAILS OF THE EXPERIMENT

Determining The Number of Outliers To determine the number of outliers m for each (subsam-
pled) dataset in our experiment, we run a vanilla k-MEANS clustering (without outliers) algorithm,

3Bhaskara et al. (2019) only showed the case of z = 2, but we check that it also generalizes to other z’s.
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Figure 3: Distances to the found near-optimal center (using a vanilla clustering algorithm) for each point, sorted
decreasingly and rescaled to [0, 1].

and plot the distribution of distances from data points to the found near-optimal centers. As shown
in Figure 3, every dataset admits a clear breaking point that defines the outliers, and we pick m
accordingly.

Implementation Details Our coreset implementation mostly follows Algorithm 1 except for a
few modifications. For efficiency, we use a near-linear time algorithm by Bhaskara et al. (2019)
to compute an (O(1), O(1), O(1))-approximation (as required by Algorithm 1), but we still add
m outliers to coreset (in Line 2) instead of adding all the found ones. Moreover, since it is more
practical to directly set the target coreset size N (instead of solving for N from ϵ), we modify the
algorithm so that the generated coreset has exactly N points. Specifically, the coreset size is affected
by two key parameters, one is a threshold, denoted as t, used to determine how the rings and groups
are formed in the construction of Theorem 3.3 (whose details can be found in Braverman et al.
(2022)), and the other, denoted as s, is the size of each uniform sample (used in Line 5). Here, we
heuristically set t = O( 1

N−m ) and solve for s such that the total size equals to N .

D EXPERIMENT: IMPACT OF THE NUMBER OF OUTLIERS

We examine the impact of the number of outliers m on empirical error. Specifically, we experiment
with varying m, but a fixed N −m, which is the number of “samples” besides the included outliers
L∗ in our algorithm. We pick a typical value of N −m = 800 based on the curves of Figure 2, .
We plot this outlier-error curve in Figure 4, and we observe that while some of our baselines have a
fluctuating empirical error, the error curve of our coreset is relatively stable. This suggests that the
empirical error of our coreset is mainly determined by the number of additional samples N − m,
and is mostly independent of the number of outliers m itself.

E EXPERIMENT: SPEEDING UP EXISTING APPROXIMATION ALGORITHMS

We validate the ability of our coresets for speeding up existing approximation algorithms for robust
clustering. We consider two natural algorithms and run them on top of our coreset for speedup:
a Lloyd-style algorithm tailored to (k,m)-ROBUST MEANS (Chawla & Gionis, 2013) seeded by
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Table 2: Running time and costs for LL and LS with/without coresets. TX and TS are the running time with-
out/with the coreset, respectively. Similarly, cost and cost′ are the clustering costs without/with the coreset.
TC is coreset construction time. This entire experiment is repeated 10 times and the average is reported.

dataset algorithm cost cost′ TC (s) TS (s) TX (s)

Adult LL 3.790× 1013 3.922× 1013 0.4657 0.06385 16.51
LS 1.100× 109 1.107× 109 0.5300 1.147 204.8

Bank LL 4.444× 108 4.652× 108 0.4399 0.05900 11.40
LS 4.717× 106 4.721× 106 0.4953 1.220 186.6

Twitter LL 3.218× 107 3.236× 107 0.9493 0.08289 11.27
LS 1.476× 106 1.451× 106 1.064 2.135 460.2

Census1990 LL 1.189× 107 1.208× 107 3.673 0.4809 40.54
LS 1.165× 106 1.163× 106 4.079 24.83 2405
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Figure 4: The impact of the number of outliers m on the empirical error

a modified k-MEANS++ for robust clustering (Bhaskara et al., 2019), which we call “LL”, and a
local search algorithm for (k,m)-ROBUST MEDIAN (Friggstad et al., 2019), which we call “LS”.
We note that for LS, we uniformly sample 100 points from the dataset and use them as the only
potential centers, since otherwise it takes too long to run on the original dataset (without coresets).
We use a coreset of size m+500 for each dataset (recalling that m is picked per dataset according to
Figure 3) to speed up the algorithms. To make a consistent comparison, we measure the clustering
costs on the original dataset for all runs (instead of on the coreset).

We report in Table 2 the running time and the cost achieved by LL and LS, with and without coresets.
The results show that the error incurred by using coreset is tiny (< 5% error), but the speedup is a
significant 80x-250x for LL, and a 100x-200x for LS. Even taking the coreset construction time into
consideration, it still achieves a 10x-30x speedup to LL and a 80x-140x speedup to LS. We conclude
that our coreset drastically improves the running time for existing approximation algorithms, while
only suffering a neglectable error.

F PROOF OF LEMMA 3.6: ERROR ANALYSIS OF UNIFORM SAMPLING

As with recent works in Euclidean coresets (Cohen-Addad et al., 2021a;b; 2022; Braverman et al.,
2022), we make use of an iterative size reduction Braverman et al. (2021) and a terminal embedding
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technique Narayanan & Nelson (2019), which allows us to trade the factor O(d) in coreset size
bound with a factor of O

( log(k/ϵ)
ϵ2

)
. Hence, it suffices to prove that a uniform sample of size Õ( kd

ϵ2z )
yields the desired coreset.

The following simple formula can be obtained via integration by parts.
Fact F.1. Let (Y,wY ) denote a weighted dataset and C ⊆ Rd, |C| = k then for every 0 ≤ t ≤
wY (Y )

cost(t)z (P,C) =

∫ ∞

0

z · uz−1 ·
(
wY (Y )−m− wY

(
Balls(C, u) ∩ Y

))+

du.

The following notion of ϵ-approximation for k-balls range space is well-studied in PAC learning and
computational geometry communities (see e.g. Har-peled (2011)).
Definition F.2 (ϵ-Approximation for k-balls range space). Let Ballsk = {Balls(C, u) | C ⊂
Rd, |C| = k, u > 0} denote the set of unions of k balls with the same radius. For a dataset
P ⊂ Rd, the k-Balls range space on P is denoted by (P,Pk) where Pk := {P ∩ Ballsk(C, u) |
Ballsk(C, u) ∈ Ballsk}. A subset Y ⊂ P is called an ϵ-approximation of the k-Balls range space
(P,Pk) if for every Balls(C, u) ∈ Ballsk,∣∣∣∣ |P ∩ Balls(C, u)|

|P | − |Y ∩ Balls(C, u)|
|Y |

∣∣∣∣ ≤ ϵ.

The following lemma reduces the construction of an ϵ-approximation to uniform sampling.

Lemma F.3 (Li et al. (2001)). Assume Q is a uniform sample of size Õ(kdϵ2 ) from P , then with
probability at least 1− 1

poly(k/ϵ) , Q is an ϵ-approximation of the k-Balls range space on P .

The following Lemma F.4 shows an ( ϵ
12z )

z-approximation yields a 2O(z log z) · ϵ-coreset for robust
(k, z, t)-ROBUST CLUSTERING for every t.

Lemma F.4. Assume R = Pi ∩ ring(c∗i , r, 2r) is a ring in the cluster Pi. Let QR be an ( ϵ
12z )

z-
approximation of the k-balls range space on R. Suppose every element of QR is re-weighted by
|R|
|QR| then for every C ⊂ Rd, |C| = k and every t, 0 ≤ t ≤ min {|R|,m},

| cost(t)z (R,C)− cost(t)z (QR, C)| ≤ ϵ · cost(t)z (R,C) + ϵrz|R|. (6)

Proof. Fix a C ⊂ Rd, |C| = k. As QR is an ( ϵ
12z )

z-approximation of the k-Balls range space on
R, we know that for every u > 0,

|wR

(
Balls(C, u) ∩R)

)
− wQR

(
Balls(C, u) ∩QR

)
| ≤ (

ϵ

12z
)z · |R|. (7)

Let Tclose = minx∈R dist(x,C) and Tfar = maxx∈R dist(x,C). Since R ⊂ ring(c∗i , r, 2r), the
diameter of R is at most 4r and this implies Tfar−Tclose ≤ 4r. Since QR is a subset of R, we know
that for every u ̸∈ [Tclose, Tfar],

wR

(
Balls(C, u) ∩R)

)
= wQR

(
Balls(C, u) ∩QR

)
(8)

To prove (6), we do the following case analysis.

If the number of outliers t ≥ (1− ( ϵ
12z )

z) · |R|, let LR ⊂ R and LQ ⊂ QR denote the outliers of R
and Q with respect to C. Using Lemma B.2, we know that

| cost(t)z (R,C)− cost(t)z (QR, C)|

≤ ϵ · cost(t)z (R,C) + (
6z

ϵ
)z−1 ·

(
costz(R− LR, c

∗
i ) + costz(QR − LQ, c

∗
i )
)

≤ ϵ · cost(t)z (R,C) + (
6z

ϵ
)z−1 · ( ϵ

12z
)z · |R| · (2r)z

≤ ϵ · cost(t)z (R,C) + ϵrz|R|.
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If t < (1− ( ϵ
12z )

z) · |R|, using (7), (8), Fact F.1 and the generalized triangle inequality Lemma B.1,
we have,

| cost(t)z (P,C)− cost(t)z (QR, C)|

≤
∫ Tfar

Tclose

zuz−1 ·
∣∣wR

(
Balls(C, u) ∩R)

)
− wQR

(
Balls(C, u) ∩QR

)∣∣du
≤ (

ϵ

12z
)z · |R| · (T z

far − T z
close)

≤ (
ϵ

12z
)z · |R| ·

(
ϵ · T z

close + (
3z

ϵ
)z−1 · (4r)z

)
≤ ϵ · ( ϵ

12z
)z · |R| · T z

close + ϵrz|R|

≤ ϵ · cost(t)z (R,C) + ϵrz|R|
where for the last inequality, we have used the fact that

cost(t)z (R,C) ≥ (|R| − t) · T z
close ≥ (

ϵ

12z
)z · |R| · T z

close.

We are ready to prove Lemma 3.6.

Proof of Lemma 3.6. Fix a center C ⊂ Rd, |C| = k. By Lemma F.3, the sample size in Line 5 of
Algorithm 1 implies that QR is an ( ϵ

12z )
z-approximation of the k-balls range space on R for every

R ∈ ⋃
i∈[βk]Ri . By lemma F.4 and the union bound, with probability at least 0.9, for every i ∈ [β],

for every ring R ∈ Ri, and for every e ∈ [0, |R|],
| cost(e)z (R,C)− cost(e)z (QR, C)| ≤ ϵ · cost(e)z (R,C) + ϵ · costz(R, c∗i ). (9)

Let L denote the set of t outliers of Rall with respect to C. By (9), for every R ∈ ⋃
i∈[βk]Ri, there

exists a weighted subset TR ⊂ QR such that wTR
(TR) = wL(L ∩R) and

costz(QR − TR, C) ≤ (1 + ϵ) · costz(R− (L ∩R), C) + ϵ · costz(R, c∗i ).

Summing over all R ∈ ⋃
i∈[βk]Ri, we know that,

cost(t)z (Q,C)

≤
∑

i∈[βk]

∑
R∈Ri

costz(QR − TR, C)

≤
∑

i∈[βk]

∑
R∈Ri

(
(1 + ϵ) · costz(R− (L ∩R), C) + ϵ · costz(R, c∗i )

)
= (1 + ϵ) · costz(Rall − L,C) + ϵ · costz(Rall, C

∗)

= (1 + ϵ) · cost(t)z (Rall, C) + ϵ · costz(Rall, C
∗).

On the same way, we can show that

cost(t)z (Rall, C) ≤ (1 + ϵ) · cost(t)z (Q,C) + ϵ · costz(Rall, C
∗).

Thus we finish the proof.

G PROOF OF LEMMA 3.7: ERROR ANALYSIS OF TWO-POINT CORESETS

Throughout this section, we fix a center set C ⊂ Rd, |C| = k and prove the coreset property of
D with respect to C. To analyze the error of two-point coreset for Gall, we further decomposes
all groups into colored groups and uncolored groups based on the position of C in the following
Lemma G.1, which was also considered in Braverman et al. (2022). Furthermore, inside our proof,
we also consider a more refined type of groups called special groups. An overview illustration of
these groups and other relevant notions can be found in Figure 5.
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data points
c∗i
centers in Cfar

centers in Cclose

outliers

uncolored groups
colored groups
special groups

Figure 5: An illustration of the decomposition into colored, uncolored and special groups with respect to
C = Cfar ∪ Cclose, where the radii of balls are taken the logarithm.

Lemma G.1 (Colored groups and uncolored groups (Braverman et al., 2022)). For a center set
C ⊂ Rd, |C| = k, a collection of groups Gi can be further divided into colored groups and uncolored
groups with respect to C such that

1. there are at most O(k log z
ϵ ) colored groups and

2. for every uncolored group G ∈ Gi, for every u ∈ C, either ∀p ∈ G,dist(u, c∗i ) < ϵ
9z ·

dist(p, c∗i ) or ∀p ∈ G,dist(u, c∗i ) >
24z
ϵ dist(p, c∗i ).

Let G ∈ Gi be an uncolored group with respect to C, Lemma G.1 implies that the center set C can
be decomposed into a “close” portion and a “far” portion to G, as in the following Definition G.2.
Definition G.2 (Braverman et al. (2022)). For a center set C, assume G ∈ Gi is an uncolored group
with respect to C. Define

CG
far = {u ∈ C | ∀p ∈ G,dist(u, c∗i ) >

24z

ϵ
dist(p, c∗i )},

and
CG

close = {u ∈ C | ∀p ∈ G,dist(u, c∗i ) <
ϵ

9z
· dist(p, c∗i )}.

Remark that C = CG
far ∪ CG

close by the property of uncolored group.

The following Lemma G.3 shows the difference of cost to any center C ⊂ Rd, |C| = k between a
group G and its two-point coreset DG can always be bounded by a small additive error, via general-
ized triangle inequality Lemma B.1.

By combining Lemma B.2 and the fact that costz(Gi, c
∗
i ) ≤ ( ϵ

6z )
z · costz(Pi,c

∗
i )

k log(24z/ϵ) , we can obtain the
following inequality.
Lemma G.3 (Robust variant of (Braverman et al., 2022, Lemma 3.5)). For a group G ∈ Gi, assume
(U,wU ) and (V,wV ) are two weighted subsets of G such that wU (U) = wV (V ). Then for every
C ⊂ Rd, |C| = k,

| costz(U,C)− costz(V,C)| ≤ ϵ · costz(U,C) + ϵ · costz(Pi, c
∗)

2k log(z/ϵ)
. (10)

Lemma G.4. Let G denote an uncolored group with respect to C. Suppose (U,wU ) and (V,wV )
are two weighted subsets of G such that one of the following items hold,

1. either CG
close ̸= ∅ and costz(U, c

∗
i ) = costz(V, c

∗
i ),

2. or CG
close = ∅ and wU (U) = wV (V ).

Then we have

costz(U,C) ∈ (1± ϵ) costz(V,C). (11)
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Proof. If CG
close ̸= ∅, by the property of uncolored group as in Lemma G.1, we know that ∀x ∈

G,dist(x,C) ∈ (1± ϵ
3z ) · dist(x, c∗i ). So we have

costz(U,C) ∈ (1± ϵ) costz(U, c
∗
i ) and costz(V,C) ∈ (1± ϵ) costz(V, c

∗
i ).

By combining the above two inequalities and scaling ϵ, we obtain (11).

In the other case, if CG
close = ∅, Lemma G.1 implies ∀x ∈ G,dist(x,C) > 9z

ϵ · dist(x, c∗i ). By
triangle inequality, we know that dist(x,C) ∈ (1± ϵ

3z ) dist(c
∗
i , C). So we have,

costz(U,C) ∈ (1± ϵ) ·wU (U) · costz(c∗i , C) and costz(V,C) ∈ (1± ϵ) ·wV (V ) · costz(c∗i , C),

moreover since wU (U) = wV (V ), we conclude (11) by scaling ϵ.

We are ready to prove Lemma 3.7.

Proof of Lemma 3.7. It suffices to prove the following two directions separately.

cost(t)z (D,C) ≤ (1 + ϵ) cost(t)z (Gall, C) + ϵ · costz(P \ L∗, C∗), (12)

cost(t)z (Gall, C) ≤ (1 + ϵ) cost(t)z (D,C) + ϵ · costz(P \ L∗, C∗), (13)
and scale ϵ.

Proof of (12) Let (L,wL) denote the outliers of Gall with respect to C. Namely, L ⊂ G,wL(L) =
t and

costz(Gall − L,C) = cost(t)z (Gall, C).

It suffices to find a weighted subset (T,wT ) of D such that wT (T ) = t and
costz(D − T,C) ≤ (1 + ϵ) costz(Gall − L,C) + ϵ · costz(P \ L∗, C∗). (14)

We define T as the following. Recall that

Gall =
⋃

i∈[βk]

⋃
G∈Gi

G.

For every G ∈ Gi, we add {pGclose, pGfar} into T and set

wT (p
G
close) =

∑
x∈L∩G

λx, wT (p
G
far) =

∑
x∈L∩G

(1− λx)

where we recall that λx is the unique number in [0, 1] such that distz(x, c∗i ) = λx ·distz(pGclose, c∗i )+
(1− λx) · distz(pGfar, c∗i ).
If G is an colored group, we apply Lemma G.3 to obtain

costz(DG − (T ∩DG), C) ≤ (1 + ϵ) costz(G− (L ∩G), C) + ϵ · costz(Pi, c
∗
i )

2k log(z/ϵ)
(15)

Now suppose G is an uncolored group, observe that by construction, wT (T ∩DG) = wL(L∩G) and
costz(T ∩DG, c

∗
i ) = costz(L∩G, c∗i ). Applying Lemma G.4 in DG− (T ∩DG) and G− (L∩G),

we obtain that,
costz(DG − (T ∩DG, C) ≤ (1 + ϵ) costz(G− (L ∩G), C). (16)

By Lemma G.1, there are at most k log(z/ϵ) many colored groups in each cluster Pi, combining
with (15) and (16), we have

costz(D − T,C)

=
∑

i∈[βk]

∑
G∈Gi

costz(DG − (T ∩DG), C)

≤
∑

i∈[βk]

∑
G∈Gi

(1 + ϵ) costz(G− (L ∩G), C) + k log(z/ϵ)
∑

i∈[βk]

ϵ · costz(Pi, c
∗
i )

2k log(z/ϵ)

≤ (1 + ϵ) costz(Gall − L,C) + ϵ · costz(P \ L∗, C∗)

which is (14).
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Proof of (13) Let (T,wT ) denote the set of (total weight wT (T ) = t) outliers of D with respect
to C. Namely,

cost(t)z (D,C) = cost(t)z (D − T,C).

It suffices to find a weighted subset (L,wL) of G such that wL(L) = t and

cost(t)z (Gall − L,C) ≤ (1 + ϵ) · cost(t)z (D − T,C) + ϵ · costz(P \ L∗, C∗). (17)

We construct L as the following. For every i ∈ [k], for every G ∈ Gi, let mG = wT (T ∩DG) and
let (LG, w(LG)) denote a weighted subset of G such that

cost(mG)
z (G,C) = cost(mG)

z (G− LG, C).

In other words, LG is the subset of furthest mG weights of points to C in G. Add LG into L and set
wL(x) = w(LG)(x) for every x ∈ LG.

We prove L satisfies (17). We do the following case study.

• If G is a colored group, we simply apply Lemma G.3 to obtain

costz(G− LG, C) ≤ (1 + ϵ) costz(DG − (T ∩DG), C) + ϵ · costz(Pi, c
∗
i )

2k log(z/ϵ)
. (18)

• If G is an uncolored group, and CG
close = ∅, by Lemma G.4, we know that

costz(G− LG, C) ≤ (1 + ϵ) costz(DG − (T ∩DG), C). (19)

• If G is an uncolored group, CG
close ̸= ∅, and mG ∈ {0, |G|}, note that in this case LG = G

or LG = ∅. So we have

costz(G− LG, c
∗
i ) = costz(DG − (T ∩DG), c

∗
i ) (20)

by the fact that DG is the two-point coreset of G, satisfying Definition 3.4. So in this case,
the conditions of Lemma G.4 are satisfied. So we have,

costz(G− LG, C) ≤ (1 + ϵ) costz(DG − (T ∩DG), C). (21)

• If G is an uncolored group, CG
close ̸= ∅, and mG ̸∈ {0, |G|}, we call such group a special

uncolored group and prove in Lemma G.5 that there at most 2 special groups in every Gi.
(See Figure 5 for an illustration.) Then we use Lemma G.3 to obtain

costz(G− LG, C) ≤ (1 + ϵ) costz(DG − (T ∩DG), C) + ϵ · costz(Pi, c
∗
i )

2k log(z/ϵ)
. (22)

Combining (18), (19), (21), (22), and the fact that there are at most k log(z/ϵ) colored groups and 2
special groups in each Gi, we have

costz(Gall − L,C)

=
∑

i∈[βk]

∑
G∈Gi

costz(G− LG, C)

≤ (1 + ϵ)
∑

i∈[βk]

∑
G∈Gi

costz(DG − (T ∩DG), C) + (k log(z/ϵ) + 2) ·
∑

i∈[βk]

ϵ · costz(Pi, c
∗
i )

2k log(z/ϵ)

≤ (1 + ϵ) costz(D − T,C) + ϵ · costz(P \ L∗, C∗).

Lemma G.5. For a center set C ⊂ Rd, |C| = k, in every Gi, there are at most 2 special uncolored
groups with respect to C.

Proof. For the sake of contradiction, assume there are 3 special uncolored groups G1, G2, and G3 in
cluster Pi. Assume w.l.o.g. that G1 is the furthest to center c∗i and G3 is the closest one. Since G1 is
a special uncolored group, we know that CG1

close ̸= ∅, so ∀x ∈ G1, dist(x,C) ∈
(
1± ϵ

)
·dist(x, c∗i ).
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In particular, there exists an inlier y1 ∈ DG1
such that dist(y1, C) ≥ (1−ϵ) ·dist(y1, c∗i ). Similarly,

there exists an outlier y3 ∈ G3 such that dist(y3, C) ≤ (1 + ϵ) · dist(y3, c∗i ).
However, G1, G2 and G3 are disjoint groups which are union of consecutive rings. So dist(y1, c

∗
i ) ≥

2 dist(y3, c
∗
i ) and this implies

dist(y1, C) ≥ (1− ϵ) · dist(y1, c∗i )
≥ 2(1− ϵ) · dist(y3, c∗i )
> (1 + ϵ) · dist(y3, c∗i )
> dist(y3, C)

where we have used that ϵ < 0.3. However, this contradicts to the fact that y1 is an inlier but y3 is
an outlier.

H LOWER BOUNDS

We show in Theorem H.1 that the factor m is necessary in the coreset size, even for the very simple
case of k = 1 and one dimension, for (k,m)-ROBUST MEDIAN.
Theorem H.1. For every integer m ≥ 1, there exists a dataset X ⊂ R of n ≥ m points, such that
for every 0 < ϵ < 0.5, any ϵ-coreset for (1,m)-ROBUST MEDIAN must have size Ω(m).

Proof. Fix 0 < ϵ < 0.5. Consider the following instance X = {x0, . . . , xm} ⊂ R1 of size
n = m + 1, where x0 = 0 and xi = i for i ∈ [m]. Suppose (S,wS) is an ϵ-coreset for (k,m)-
ROBUST MEDIAN.

We first claim that wS(S) ≥ m + 1 − ϵ. This can be verified by letting center c → +∞, and we
have

cost
(m)
1 (S, c)

cost
(m)
1 (X, c)

= wS(S)−m ∈ 1± ϵ.

Next, let c = xi−1+xi

2 for some i ∈ [m+1], which implies that cost(m)
1 (X, c) = |xi− c| = 0.5, i.e.,

the distance to the nearest-neighbor of c in X . Suppose both xi−1 and xi are not in S and we have

cost
(m)
1 (S, c) ≥ (wS(S)−m) ·min

x∈S
d(x, c)

≥ (1− ϵ) ·min
x∈S

d(x, c) (wS(S) ≥ m+ 0.6)

≥ (1− ϵ) · 1.5 (xi−1, xi /∈ S)

> 0.75 (ϵ < 0.5)

> (1 + ϵ) · cost(m)
1 (X, c), (ϵ < 0.5)

which is a contradiction. Hence, either xi−1 or xi must be contained in S. It is not hard to conclude
that |S| ≥ m−1

2 , which completes the proof.
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