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ABSTRACT

Crime prediction is a critical yet challenging task in urban spatio-temporal forecast-
ing. Sparse crime records alone are insufficient to capture latent high-order patterns
shaped by heterogeneous contextual factors with spatial and criminal specificity,
while high non-stationarity renders conventional offline models ineffective against
concept drift. To tackle these challenges, we propose a Spatio-Temporal Hierarchi-
cal Hypergraph Online Learning framework named ST-HHOL. First, we propose
a hierarchical hypergraph convolution network that integrates crime data with
heterogeneous contextual factors to uncover dual-specific crime patterns and their
co-occurrence relations. Second, we introduce an iterative online learning strategy
to address concept drift by employing frequent fine-tuning for short-term dynamics
and periodic retraining for long-term shifts. Moreover, we adopt a Partially-Frozen
LLM that leverages pre-trained sequence priors while adapting its attention mecha-
nisms to crime-specific dependencies, enhancing spatio-temporal reasoning under
sparse supervision. Extensive experiments on four real-world datasets demonstrate
that ST-HHOL consistently outperforms state-of-the-art methods in terms of ac-
curacy and robustness, while also providing enhanced interpretability. Code is
available at https://github.com/777Rebecca/ST-HHOL.

1 INTRODUCTION

Crime prediction is a critical task in urban spatio-temporal forecasting, with significant implications
for public safety and social stability. Recent advances in deep neural networks have significantly
promoted the development of this field, leveraging attention mechanisms (Xia et al., 2021; Rayhan &
Hashem, 2023) to model dynamic crime correlations, and graph neural networks (GNNs) (Zheng et al.,
2020; Wu et al., 2020a; Zhou et al., 2024) to capture temporal evolution and spatial heterogeneity.

However, sparse crime data alone cannot reveal the multifaceted crime patterns with spatial and
criminal specificity. Potential risk depends on the joint influence of spatio-temporal factors, such as
environment, mobility, and weather, whose type and strength vary across regions and crime categories.
For example, as shown in Figure 1(a), assaults often rise around bars during late hours, whereas thefts
are more prevalent near subway stations during daytime. Prior studies that incorporate auxiliary data
typically model it as homogeneous graphs, pairwise graphs, or rely on simple feature fusion (Huang
et al., 2018; Zhou et al., 2024; Zhu et al., 2022), which cannot capture the high-order, dual-specific
interactions of coexisting factors in shaping crime occurrence. Consequently, these methods fail to
account for the latent heterogeneity of crime patterns and lead to biased predictions.

Moreover, crime data exhibits pronounced non-stationarity, challenging conventional offline models
that struggle to adapt to concept drift (Tsymbal, 2004). As illustrated in Figure 1(b), crime counts in
different areas fluctuate sharply over a few days, particularly in regions outlined by the white border.
Seasonal and environmental factors further intensify these dynamics, leading to distributional shifts
where Ptrain(Y|X) ̸= Ptest(Y|X). Although recent approaches (Xia et al., 2023; Zheng et al., 2022;
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Yang et al., 2022) attempt to extract invariant terms, they often assume complete data availability and
static inter-variable relationships, limiting their adaptability to emerging dynamics.

(b)(a)
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Figure 1: (a) Example of the heterogeneity of latent crime patterns: assaults near nightlife at midnight,
thefts near subways in daytime. (b) Spatial distribution of “Criminal Damage” in Chicago (June 1–5,
2024), with the white-bordered region indicating non-stationarity.

To tackle these challenges, we propose ST-HHOL, a novel Spatio-Temporal Hierarchical Hypergraph
Online Learning framework for crime prediction. To uncover latent crime patterns, we propose
hierarchical hypergraph convolution network (HHGCN), a novel idea that first builds heterogeneous
hypergraphs to model latent crime patterns by integrating crime data with specific contextual factors,
and then constructs homogeneous hypergraphs to model crime co-occurrence relations. HHGCN
jointly captures the dual-specific crime patterns and their interaction, yielding richer and more
interpretable representations. To handle concept drift in non-stationary crime data, ST-HHOL adopts
an iterative online learning strategy that separates short-term fluctuations from long-term gradual
shifts in streaming data. It leverages frequent fine-tuning to adapt to rapid temporal dynamics, while
periodic retraining addresses long-term spatial shifts. Moreover, to address the limited supervision
of sparse crime records, we incorporate a Partially-Frozen LLM (PF-LLM) as a spatio-temporal
dependency learner. PF-LLM leverages the pre-trained sequence modeling priors of GPT-2, while
selectively adapting its attention mechanism to capture crime-specific dependencies.

Our main contributions are summarized as follows:

• We propose ST-HHOL, an online spatio-temporal crime prediction framework that jointly captures
high-order, dual-specific crime patterns and adapts to concept drift.

• We develop an iterative online learning strategy that combines frequent fine-tuning for short-term
fluctuations with periodic retraining for long-term concept drifts.

• We design a hierarchical hypergraph convolution network that integrates contextual factors to
uncover latent crime patterns with spatial and criminal specificity, and their co-occurrence relations.

• We conduct extensive experiments on four real-world urban crime datasets, showing that ST-HHOL
consistently surpasses state-of-the-art baselines in both accuracy and robustness, while offering
improved interpretability.

2 RELATED WORK

Crime Prediction. Beyond conventional statistical and machine learning approaches (Catlett et al.,
2018; Kumar et al., 2020), GNN-based models—such as STGCN (Yu et al., 2018), DCRNN (Li
et al., 2017), AGCRN (Bai et al., 2020), MTGNN (Wu et al., 2020b), and GMAN (Zheng et al.,
2020)—exhibit considerable promise for capturing intricate spatial and temporal dependencies. To
further enhance predictive performance, some studies have integrated auxiliary data sources, including
points of interest (POI), 311 service requests (Yang et al., 2018; Wang et al., 2016; Huang et al.,
2018), and mobility data (e.g., taxi and bike inflow and outflow) (Zhao et al., 2022; Wu et al., 2020a),
either fusing them with crime records or constructing multi-graph structures to enrich representations.

Nevertheless, crime records are sparse and have a skewed distribution, compounded by pronounced
heterogeneity across crime types. To tackle these challenges, prior works introduce a tensor decom-
position framework (Zhao & Tang, 2017a) to capture inter-regional and inter-type dependencies, or
employ transfer learning (Zhao & Tang, 2017b) to adapt knowledge from data-rich to data-scarce
areas. Furthermore, fine-grained spatial partitioning further amplifies the imbalance and risk of over-
fitting. ST-Trans (Wu et al., 2020a) addresses this by jointly modeling spatial, temporal, and semantic
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dependencies with adversarial training to enhance rare-event prediction. Similarly, NAHC (Liang
et al., 2022) combines multi-graph convolution with attention mechanisms to improve hour-level
forecasting accuracy.

Recognizing that spatial correlations in crime data often exhibit high-order dependencies, recent
efforts have turned to hypergraph-based methods. ST-SHN (Xia et al., 2021) demonstrates the
utility of hypergraphs in capturing such cross-regional interactions, extending spatial correlations
beyond conventional N-hop neighborhoods. ST-HSL (Li et al., 2022b) incorporates a self-supervised
framework, aligning global hypergraph-based features with local CNN-based ones to strengthen
model robustness. Building on this, HCL (Liang et al., 2024) proposes Hawkes-enhanced temporal
augmentation and a negative-free contrastive strategy to identify co-occurrence patterns. Most
recently, ST-MoGE (Wu et al., 2024) adopts a Mixture-of-Graph-Experts model to jointly address
spatial and semantic heterogeneity in crime.

Despite these advances, most prior work remains offline and cannot adapt to pronounced non-
stationarity or concept drift. Existing hypergraph-based crime models also build homogeneous or
flat hierarchical hypergraphs directly from sparse crime records, overlooking high-order interactions
between heterogeneous contextual factors and crime semantics—resulting in mixed semantics and
unstable patterns under sparsity. In contrast, our approach (1) models heterogeneous latent crime
patterns by assigning factor-specific hyperedges to each region–crime anchor and capturing their
dynamic coupling, and (2) introduces hierarchical temporal adaptation to address multi-scale concept
drift—two abilities absent in prior hypergraph-based methods.

3 PRELIMINARIES

In this section, we first introduce the relevant definitions and formulate the research problem. The
raw crime records provide timestamps, location coordinates, crime types, and additional descriptions.
We organize them into processed crime data X ∈ RN×T×C , where N , T , and C denote the number
of regions, time slots, and main crime types, respectively. Each entry xtn,c represents the occurrence
of crime type c in region n during time slot t. Since crime data are often sparse and in skewed
distribution, zero observations do not indicate zero risk, we further incorporate auxiliary urban
data—such as 311 service requests, weather conditions, and POI density—denoted as S ∈ RN×T×M ,
where M is the number of auxiliary variables. The main notations and definitions are also provided
in Appendix A.

Problem Statement. Given the historical crime data X ∈ RN×T×C and the multi-source auxiliary
data S ∈ RN×T×M , the crime prediction task aims to learn a mapping function F(·) : RT×N×C →
RN×C that forecasts crime occurrences XT+1 ∈ RN×C during the next time slot:

{X1:T ,S1:T } F(·)−−−→ XT+1. (1)

Heterogeneous and Homogeneous Hypergraph. A hypergraph is defined as G = {V, E , Tv, Te},
where V and E denote the sets of vertices and hyperedges, and Tv and Te represent their respective
types. If |Tv|+ |Te| > 2, the hypergraph is considered heterogeneous; otherwise, it is homogeneous.
Unlike traditional pairwise graphs, where each edge connects exactly two vertices, a hyperedge can
simultaneously connect multiple vertices, enabling the modeling of higher-order relations. Details of
hypergraph convolution are provided in Appendix C.

4 METHODOLOGY

As shown in Figure 2, ST-HHOL follows an online learning paradigm to tackle crime pattern
specificity and concept drift. It consists of two components: (1) a hierarchical hypergraph convolution
network (HHGCN) that captures crime patterns with spatial and criminal specificity, as well as
their co-occurrence relations, and (2) a spatio-temporal dependency learner that captures temporal
dynamics and spatial correlations to forecast. To handle non-stationary streaming data, ST-HHOL
adopts an iterative online learning strategy after warming up, where partial fine-tuning adapts to
short-term fluctuations and periodic retraining addresses long-term distributional shifts. The detailed
design of the pipeline and its components will be introduced in the following parts.
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Figure 2: The framework of ST-HHOL.

4.1 HIERARCHICAL HYPERGRAPH CONVOLUTION NETWORK

To capture the spatial and criminal specificity of crime patterns, we propose a hierarchical hypergraph
convolution network to more accurately perceive the potential risks of crimes. It first constructs
heterogeneous hypergraphs Ge that fuse multi-source contextual signals such as POIs, 311 service
requests, weather, with crime records to reveal the heterogeneous latent patterns that cannot be
extracted from sparse raw counts. We then build homogeneous hypergraphs Go to model the dynamic
co-occurrence among latent crime patterns, as illustrated in Figure 3.

Hierarchical Hypergraph

Crime data

Contextual factors

Crime pattern

Crime pattern hyperedge

Co-occurrence hyperedge

Figure 3: The hierarchical hypergraph consists of
heterogeneous hypergraphs capturing crime pat-
terns and homogeneous hypergraphs modeling co-
occurrence relationships.

Heterogeneous Hypergraph Construction.
Given C crime types and M multi-source fac-
tors, we obtain the initial embeddings Xt ∈
RN×C and St ∈ RN×M for all regions at
time t. We construct the heterogeneous hyper-
graph Ge

t = (Vt, Et), where the vertex set con-
sists of all crime and contextual nodes: Vt =
{xtn,c}

N,C
n=1,c=1 ∪ {stn,m}N,M

n=1,m=1. Each crime
embedding xtn,c serves as a primary node, and
together with its contextual nodes {stn,m}Mm=1,
forms a heterogeneous hyperedge. The latent
crime pattern representations are computed as:

X̃t = f
(
σ
(
Θt

e [X
t ∥St]

))
, (2)

where X̃t ∈ RN×C denotes the latent crime patterns at time t, Θt
e ∈ RHe×|Vt| is a learnable

incidence matrix mapping vertices to hyperedges, and He = N × C is the number of heterogeneous
hyperedges. The operator ∥ denotes feature concatenation, σ(·) is the sigmoid activation function,
and f(·) is a nonlinear transformation implemented by a three-layer MLP with LeakyReLU activation.
For any vertex vti ∈ Vt, its contribution to crime pattern x̃tn,c ∈ X̃t is defined as:

Θt
e[x̃

t
n,c, v

t
i ] =


1, vti = xtn,c,

pti,n,c, vti ∈ {stn,m}Mm=1,

0, otherwise,

(3)

where pti,n,c ∈ (0, 1) quantifies the association strength between contextual factor stn,i and latent
crime pattern x̃tn,c.

4



Published as a conference paper at ICLR 2026

Homogeneous Hypergraph Modeling. To capture high-order spatial co-occurrence relationships,
we further construct the homogeneous hypergraph Go

t over the latent crime patterns. The hypergraph
convolutional network aggregates the co-occurring patterns as:

Et = σ
(
(D̃t

R)
− 1

2ΦT (D̃t
E)

− 1
2 σ

(
(D̃t

E)
− 1

2Φ(D̃t
R)

− 1
2 X̃t

))
, (4)

where Φ is the homogeneous incidence matrix, and D̃t
R and D̃t

E denote the degree matrices
of hyperedges and vertices, respectively. For model simplification, we approximate the matrix
(D̃t

R)
− 1

2ΦT (D̃t
E)

− 1
2 with a learnable parameter matrix Θt

o ∈ RHo×(NC), where Ho is a hyperpa-
rameter denoting the number of homogeneous hyperedges.

4.2 SPATIO-TEMPORAL DEPENDENCY LEARNER

To enhance spatio-temporal reasoning over non-stationary and heterogeneous crime patterns, we adopt
a Partially-Frozen Large Language Model (PF-LLM) (Liu et al., 2025a) built on GPT-2 (Radford et al.,
2019). The key intuition is that transformer self-attention is modality-agnostic, and the pretrained feed-
forward networks (FFNs) encode generalizable sequence priors and few-shot reasoning capabilities
learned from large-scale text corpora. These priors remain useful even when crime data are sparse and
noisy. PF-LLM freezes the FFNs to preserve these transferable reasoning abilities, while fine-tuning
the attention and normalization layers to adapt them to crime-specific, spatio-temporal structures and
their non-stationary dynamics.

For tokenization, we treat each region as a token and transform crime patterns E ∈ RN×T×C

into a sequence E = {E1, . . . ,EN}, where En ∈ RT×C encodes the C type of crime patterns
in region n over T time steps. To preserve temporal semantics, we extract day-of-week (td) and
month-of-year (tm) indicators from each timestamp and encode them using one-hot vectors followed
by sinusoidal positional encoding sin(·). The resulting temporal embedding ET combines multiple
periodic components Ed

T and Em
T :

Ed
T = sin(td), Em

T = sin(tm), ET = Ed
T +Em

T . (5)

To align the input dimension with the hidden space of GPT-2, we apply a set of non-linear transfor-
mation layers—one for each crime type and an additional one for temporal features—to project the
raw inputs into the model’s latent space. We also incorporate a Pre-Layer Normalization (Pre-LN)
scheme (Huang et al., 2023; Liu et al., 2025b) to stabilize training and accelerate convergence. The
resulting representations are then fed into the partially frozen GPT-2 architecture as follows:

H1 = Concat(f1(E1), . . . , fC(EC), fC+1(ET )),

H̄ l = MHA
(
LN

(
Hl

))
+Hl, Hl+1 = FFN

(
LN

(
H̄ l

))
+ H̄ l,

(6)

where f1, . . . , fC , fC+1 are non-linear functions that project C crime types and one temporal feature
into the model’s latent space. {E1, . . . ,EC} ∈ RC×N×T represent the tokens distinguished by
crime types. Concat(·) denotes the concatenation operation. H1 denotes the initial input embedding,
Hl is the input to the l-th layer, H̄ l is the intermediate representation produced by the unfrozen
Layer Normalization (LN) and Multi-Head Attention (MHA) components, and Hl+1 is the output by
applying the unfrozen LN and the frozen FFN. The MHA, LN, FFN operation is formally defined as:

MHA(Hl) = Concat(head1, . . . ,headh)W
O, LN(Hl) = γ ⊙ Hl − µ

σ
+ β, (7)

headi = softmax

(
(HlWQ)(HlWK)T√

dk

)
HlWV , FFN(H̄ l) = ReLU(W1H̄

l + b1)W2 + b2,

where γ and β are learnable scaling and translation parameters. µ and σ represent the mean and
standard deviation, respectively. ⊙ denotes the Hadamard product. WO, WQ, WK , and WV

denote the projection mappings for the output, query, key, and value, respectively. headi represents
the i-th attention head, dk represents the dimension of each attention head. W1 and W2 are the
weights of the linear transformations, and b1, b2 are bias terms.
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4.3 ONLINE LEARNING STRATEGY

Conventional offline models often implicitly assume a stationary data distribution. However, crime
patterns are inherently susceptible to concept drift, which can be formally characterized as:

∃ τ > 0, DKL(Pt(Y | X) ∥Pt+τ (Y | X)) ≥ δ, (8)
where Pt(Y | X) denotes the conditional distribution of crime events at time t. DKL denotes the
Kullback–Leibler divergence, and δ is a predefined divergence threshold.

To address the non-stationary nature of crime dynamics, we propose an iterative online learning strat-
egy for ST-HHOL that explicitly disentangles spatially invariant and temporally variant components.
While crime co-occurrences exhibit volatility over time, as shown in Figure 1(b), the heterogeneous
components driving crime patterns and their strengths remain relatively stable across space. We
parameterize short-term fluctuations and long-term gradual shifts as {Θs,Θd(t)} ⊂ Θ, where:

• Θs: Parameters encoding spatial invariance and long-term gradual shifts. These parameters
are associated with the first-stage hypergraph Ge

t , which constructs crime patterns from multi-source
inputs St and crime records Xt. Given their dependence on relatively stationary spatial attributes,
such as socioeconomic indicators and POIs, Θs evolves slowly over time and can be modeled as:

dΘs

dt
≈ 0, Θt+1

s = Θt
s + εt, εt ∼ N (0, σ2), σ2 ≪ 1. (9)

• Θd(t): Parameters capturing short-term temporal fluctuations. These parameters are associ-
ated with the second-stage hypergraph Go

t , which captures rapidly evolving co-occurrence structures
among crime patterns Et. Unlike Θs, Θd(t) reacts to abrupt regional fluctuations, characterized
by ∥∆Et

i∥1 ≫ 0. Such shocks trigger enforcement adjustment Lt+1
i = Lt

i + ψ(∥∆Et
i∥1) and

consequently reshape regional interactions as Dt+1
ij = Dt

ij + g(L
t+1
i , Lt+1

j ), where ψ and g denote
the response and coupling mechanisms, respectively. Consequently, the dynamic parameters evolve
more rapidly and can be modeled as:

Θt+1
d = Θt

d + ηt, ηt ∼ N (0, σ2
t ), σ2

t ≫ σ2. (10)

Thus, after an initial warm-up, ST-HHOL adopts an iterative two-phase update scheme. This design
balances short-term responsiveness with long-term stability and improves robustness under non-
stationary crime dynamics:

• Fine-tuning Phase: Every τ steps, the spatially invariant parameters Θs are frozen and only
the temporally dynamic parameters Θd(t), along with the spatio-temporal dependency learner
ΘPF-LLM, are updated. This phase enables rapid adaptation to recent fluctuations by solving:
minΘ\Θs

L
(
Yt+1, Ŷt+1(Θ \Θs)

)
;

• Retraining Phase: Every T steps (T > τ ), Θs are unfrozen and jointly updated with Θd(t).
This phase captures long-term gradual shifts and evolving co-occurrence structures by optimizing:
minΘ L

(
Yt+1, Ŷt+1(Θ)

)
.

4.4 MODEL PREDICTION AND OPTIMIZATION

Under different online learning modes, ST-HHOL maintains a unified prediction and loss computation
framework. The output Hl+1 from the final layer of the spatio-temporal dependency learner is passed
through crime-specific regression heads to generate future forecasts:

Ŷt+1 = Concat
(
RConv1(H

l+1
1 ), . . . ,RConvc(H

l+1
c )

)
, (11)

where Ŷt+1 ∈ RN×C denotes the predicted crime records for the next time slot.

So far, the loss function of ST-HHOL consists of prediction loss and hypergraph regularization loss:

L =
∥∥∥Yt+1 − Ŷt+1

∥∥∥2
2
+ λ1

∥∥Θ t+1
e

∥∥2
2
+ λ2

∥∥Θ t+1
o

∥∥2
2
, (12)

where Yt+1 is the ground-truth value at time slot t + 1, Θ t+1
e and Θ t+1

o are the incident matrix
elements of the crime patterns within heterogeneous hypergraph Ge

t+1 and the co-occurrence relation-
ships within homogeneous hypergraph Go

t+1 at t+1, respectively. λ1 and λ2 are two hyperparameters
balancing the loss terms.

6



Published as a conference paper at ICLR 2026

5 EXPERIMENTS

In this section, we evaluate our proposed ST-HHOL framework on four real-world urban crime
datasets. Extensive experiments are designed to address the following research questions:

• RQ1: How does ST-HHOL perform on crime quantity and occurrence prediction?

• RQ2: How does each module within ST-HHOL enhance the overall model performance?

• RQ3: How do varying retraining and fine-tuning frequencies affect the performance?

• RQ4: What impact do different hyperparameter settings have on ST-HHOL?

• RQ5: Does the hierarchical hypergraph constructed in ST-HHOL enhance model interpretability?

Table 1: Summary of the four urban crime datasets.

Datasets Region Num Time Span Time Interval Crime Data
CHI 77 January 1, 2023 – December 31, 2024 1 day Theft, Battery, Assault, Damage
NYC 123 January 1, 2022 – December 31, 2024 1 day Larceny, Assault, Mischief, Robbery
PHI 6 January 1, 2023 – December 31, 2024 1 day Theft, Assault, Vehicle, Mischief
TOR 158 January 1, 2023 – December 31, 2024 1 day Assault, B&E, Robbery, Theft

Datasets & Baselines. We conduct experiments on four urban crime datasets from Chicago (CHI),
New York City (NYC), Philadelphia (PHI), and Toronto (TOR) with multi-source contextual data,
including 311 service requests, weather, and POI distributions. For comparison, we include a broad
range of baselines: statistical methods (SVM (1998), ARIMA (2015)), spatio-temporal forecasting
models (DCRNN (2017), STGCN (2018), AGCRN (2020), MTGNN (2020b), GMAN (2020),
MoSSL (2024)), crime prediction models (DeepCrime (2018), ST-HSL (2022b), ST-SHN (2021)),
and online learning models (DLF (2024), FSNet (2023), OneNet (2023)). More details about the
datasets and baselines are provided in Appendix D. We evaluate offline baselines under two settings
(Pre-trained and Re-trained), while online baselines under their inherent Online setting:

• Pre-trained: models are trained once on the full dataset under the conventional offline setting.
• Re-trained: offline models are adapted into an online variant, which is periodically retrained every

two months using streaming data after an initial warm-up.
• Online: online models incrementally update according to their native online learning strategies

using streaming data.

Implementation Details. All models are implemented in PyTorch 2.0 and trained on an NVIDIA
RTX 3090 GPU. We use the Adam optimizer with a batch size of 32, an initial learning rate of 1e−3,
and a decay factor of 1e−4. The number of hyperedges in Go is set to 64. PF-LLM utilizes GPT-2
(Small), comprising 2 layers, 12 attention heads, and a hidden size of 768. λ1 and λ2 are both set
to 0.1. The dataset is chronologically split into a warm-up and online training phase in a 25:75
ratio. Following (Liang et al., 2024; Wu et al., 2024), we set the temporal input length to 7 and the
forecasting horizon to 1. More settings and evaluation metrics are provided in Appendix D.3-D.4.
Table 2: Overall performance of crime quantity prediction over CHI, NYC, PHI, and TOR datasets.
The results are 5-run error comparison, the bold font means the best result.

Method CHI NYC PHI TOR
Theft Battery Larceny Assault Vehicle Mischief Assault B&E

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Pre-
trained

SVM 1.54 0.51 0.94 0.56 1.81 0.61 0.79 0.53 2.85 0.49 2.95 0.48 0.74 0.53 1.62 0.56
ARIMA 1.52 0.52 0.99 0.58 1.17 0.63 0.75 0.50 2.62 0.49 3.34 0.58 0.71 0.50 1.56 0.55
DCRNN 3.04±0.30 0.57±0.06 1.94±0.13 0.73±0.01 1.56±0.09 0.54±0.03 0.92±0.01 0.52±0.03 3.23±0.35 0.53±0.02 3.59±0.75 0.67±0.02 0.79±0.06 0.49±0.04 1.65±0.12 0.50±0.06

STGCN 2.92±0.56 0.66±0.11 2.14±0.05 0.69±0.03 1.55±0.03 0.47±0.04 0.93±0.01 0.50±0.05 3.64±1.66 0.42±0.07 2.87±1.17 0.52±0.05 0.88±0.03 0.54±0.05 1.58±0.08 0.48±0.07

AGCRN 1.06±0.12 0.54±0.08 0.92±0.15 0.55±0.03 1.38±0.34 0.78±0.00 0.82±0.04 0.40±0.25 2.81±0.03 0.51±0.01 2.74±0.24 0.52±0.03 0.67±0.02 0.40±0.02 1.13±0.12 0.48±0.06

ST-SHN 1.14±0.09 0.74±0.07 0.98±0.03 0.79±0.02 1.41±0.05 0.56±0.09 0.79±0.02 0.38±0.06 2.93±0.47 0.59±0.20 2.95±0.61 0.50±0.15 0.77±0.04 0.40±0.07 1.29±0.03 0.52±0.09

ST-HSL 1.17±0.03 0.55±0.03 0.97±0.02 0.55±0.04 1.34±0.15 0.50±0.11 0.82±0.13 0.47±0.05 2.71±1.95 0.55±0.13 2.54±0.46 0.52±0.20 0.69±0.12 0.47±0.07 1.23±0.17 0.50±0.04

Re-
trained

DCRNN 2.91±0.25 0.49±0.05 1.82±0.15 0.64±0.05 1.42±0.07 0.44±0.03 0.85±0.01 0.50±0.04 3.09±0.49 0.47±0.01 3.43±0.71 0.58±0.01 0.74±0.05 0.44±0.03 1.50±0.10 0.45±0.05

STGCN 2.82±0.58 0.58±0.09 2.03±0.04 0.61±0.03 1.41±0.03 0.39±0.04 0.86±0.01 0.46±0.07 3.54±1.60 0.38±0.05 2.78±1.15 0.48±0.05 0.83±0.02 0.49±0.04 1.43±0.06 0.43±0.06

AGCRN 0.99±0.11 0.50±0.07 0.88±0.17 0.51±0.02 1.26±0.39 0.74±0.01 0.70±0.01 0.30±0.26 2.68±0.03 0.41±0.01 2.70±0.22 0.49±0.02 0.62±0.01 0.35±0.01 0.98±0.10 0.43±0.05

MTGNN 1.45±0.34 0.58±0.18 1.06±0.33 0.60±0.08 1.44±0.22 0.57±0.05 1.09±0.12 0.60±0.14 2.59±0.83 0.48±0.12 2.93±0.98 0.48±0.05 0.93±0.04 0.56±0.08 1.45±0.34 0.58±0.18

GMAN 1.16±0.03 0.53±0.02 0.92±0.02 0.53±0.06 1.56±0.07 0.84±0.06 1.07±0.06 0.71±0.01 2.84±1.11 0.53±0.04 3.36±1.36 0.47±0.09 0.98±0.04 0.52±0.05 1.30±0.07 0.55±0.06

MoSSL 1.10±0.07 0.45±0.07 0.90±0.11 0.54±0.14 0.98±0.03 0.63±0.31 0.75±0.02 0.58±0.26 2.62±0.12 0.65±0.07 2.43±0.06 0.55±0.03 0.74±0.02 0.41±0.01 1.02±0.04 0.40±0.01

DeepCrime 1.27±0.14 0.57±0.09 0.94±0.06 0.59±0.07 1.36±0.05 0.59±0.18 0.82±0.07 0.45±0.09 2.75±0.25 0.50±0.17 2.53±0.38 0.57±0.01 0.70±0.05 0.41±0.02 1.33±0.05 0.49±0.08

ST-SHN 1.07±0.05 0.67±0.08 0.90±0.01 0.78±0.02 1.32±0.03 0.51±0.14 0.75±0.02 0.35±0.06 2.80±0.45 0.52±0.22 2.88±0.58 0.47±0.15 0.72±0.03 0.35±0.06 1.14±0.02 0.47±0.08

ST-HSL 1.13±0.01 0.50±0.02 0.94±0.01 0.52±0.03 1.25±0.12 0.45±0.09 0.77±0.10 0.44±0.06 2.62±1.90 0.49±0.09 2.49±0.42 0.49±0.20 0.64±0.10 0.42±0.06 1.08±0.15 0.45±0.03

Online

DLF 2.89±0.17 0.57±0.03 2.04±0.11 0.55±0.02 1.48±0.08 0.40±0.03 0.88±0.07 0.33±0.14 2.93±0.78 0.42±0.36 2.65±0.66 0.49±0.13 1.05±0.04 0.33±0.14 1.94±0.06 0.49±0.03

FSNet 2.24±0.18 0.60±0.11 1.99±0.36 0.53±0.08 1.34±0.12 0.51±0.06 0.96±0.15 0.44±0.08 2.89±0.54 0.37±0.28 2.54±0.37 0.48±0.08 0.78±0.13 0.39±0.08 1.38±0.16 0.47±0.03

OneNet 2.53±0.12 0.58±0.07 1.53±0.18 0.54±0.11 1.23±0.18 0.52±0.09 0.82±0.06 0.47±0.06 2.88±0.43 0.40±0.15 3.04±0.40 0.87±0.19 0.94±0.06 0.43±0.08 1.46±0.17 0.48±0.04

ST-HHOL
(Ours) 0.95±0.01 0.43±0.01 0.87±0.01 0.46±0.02 0.97±0.01 0.35±0.01 0.66±0.02 0.29±0.01 2.54±0.08 0.36±0.09 2.34±0.02 0.47±0.08 0.58±0.01 0.31±0.01 0.96±0.01 0.39±0.01
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5.1 COMPARISON TO STATE-OF-THE-ART METHODS (RQ1)

Table 2 and Table 3 summarize ST-HHOL’s performance on crime quantity and occurrence prediction.
ST-HHOL consistently outperforms all baselines across all datasets, with complete results and
visualizations provided in Appendix E.1 and E.5. For quantity prediction, ST-HHOL reduces average
MAE and MAPE by 5.37% and 9.21% on CHI, 3.52% and 8.83% on NYC, 2.97% and 5.85% on
PHI, and notably 6.45% and 11.32% on TOR dataset, demonstrating its effectiveness across diverse
urban environments. Notably, converting the offline model to an online learning paradigm further
improves performance on non-stationary crime data.

In occurrence prediction, ST-HHOL achieves gains of 0.94% (Micro-F1), 1.09% (Macro-F1), and
1.69% (TZR) on NYC; 0.70% (Micro-F1), 0.70% (Macro-F1), and 3.08% (TZR) on CHI. The
consistent superiority in True Zero Rate (TZR) across all datasets particularly confirms ST-HHOL’s
robustness in handling data sparsity and skewed distributions, effectively identifying true zero-
occurrence scenarios that are prevalent in crime prediction tasks.

In addition, we evaluate robustness, scalability, complexity, and execution efficiency, with detailed
results reported in Appendix E.2–E.4.

Table 3: Comparison of crime occurrence prediction over NYC and CHI datasets.

Dataset Metric SVM ARIMA DCRNN STGCN DeepCrime GMAN ST-SHN OneNet DLF ST-HHOL

NYC
Micro-F1 ↑ 0.478 0.452 0.562 0.569 0.575 0.553 0.635 0.602 0.638 0.644
Macro-F1 ↑ 0.493 0.468 0.570 0.573 0.580 0.556 0.636 0.606 0.640 0.647

TZR ↑ 0.482 0.475 0.564 0.558 0.589 0.588 0.647 0.615 0.652 0.663

CHI
Micro-F1 ↑ 0.608 0.565 0.648 0.678 0.663 0.679 0.710 0.661 0.692 0.715
Macro-F1 ↑ 0.606 0.574 0.649 0.679 0.669 0.681 0.712 0.664 0.693 0.717

TZR ↑ 0.603 0.579 0.637 0.675 0.676 0.669 0.714 0.673 0.688 0.736

5.2 ABLATION STUDY (RQ2)

Figure 4: Ablation experiment results.

To comprehensively assess the contribution of
each component in ST-HHOL, we compare
several variant models as follows: (1) w/o Ge:
removes the multi-source input and the het-
erogeneous hypergraph in HHGCN; (2) w/o
Go: discards the homogeneous hypergraph
in HHGCN; (3) w/o ET : inputs only crime
patterns into the spatio-temporal dependency
learner, excluding temporal information; (4)
w/o PF-LLM: removes the PF-LLM compo-
nent and replaces it with a standard Trans-
former. (5) w/o OL: removes the online learn-
ing strategy and reverts to the standard offline
setting. The ablation study results over four
datasets are shown in Figure 4.

Figure 5: Comparison results
for different variants of PF-
LLM.

Each component contributes to the overall performance of ST-HHOL.
Ge and Go enhance accuracy by capturing crime-specific and co-
occurrence dependencies, respectively. The partially frozen strategy
leads to a more efficient transfer of few-shot reasoning ability than
a standard Transformer trained from scratch. Moreover, the incor-
porated online learning mechanism enables the model to adapt to
concept drift in evolving crime patterns continuously.

We also compare several PF-LLM variants: (1) Frozen Pretrained
Transformer (FPT); (2) models without pretraining (No Pretrain);
(3) fully tuned models with no frozen layers (Full Tuning); (4) freez-
ing only attention modules (PF-A); and (5) freezing only FFN layers
(PF-FFN). As shown in Figure 5, FPT exhibits limited adaptabil-
ity, whereas Full Tuning reduces errors but incurs higher variance
(RMSE), indicating overfitting on sparse data. By contrast, PF-FFN
achieves a better trade-off between retaining pretrained knowledge and adapting to the target domain.
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5.3 TIME ADJUSTMENT ANALYSIS (RQ3) & HYPERPARAMETER STUDY (RQ4)

Figure 6: The time adjustment study on the frequency of the fine-tuning and retraining. For intuitive
comparison, we scale MAPE to the same vertical axis as MAE.

To assess the impact of retraining and fine-tuning frequency in online learning, we evaluate ST-HHOL
under retraining intervals of {1, 2, 3, 4} months and fine-tuning intervals of {0.25, 0.5, 0.75} months
(the latter used only with a 3-month retraining interval). To justify these choices, we first conduct an
FFT-based decomposition of the crime series. The analysis reveals pronounced periodic components
at two scales: (1) short-term cycles within 1–3 weeks, reflecting fast behavioral fluctuations, and (2)
long-term cycles spanning 1–4 months, corresponding to slower structural changes. Such multiscale
periodicity aligns with the known nature of concept drift in spatio-temporal crime data. Consequently,
the retraining intervals T ∈ {1, 2, 3, 4} months are designed to capture longer-term drift, while
the fine-tuning intervals τ ∈ {0.25, 0.5, 0.75} months (weekly–triweekly) are chosen to align with
short-term dynamics.

Experiments on the CHI dataset (Figure 6) report average results across all crime types. Notably,
biweekly fine-tuning (0.5 months) consistently outperforms weekly updates (0.25 months), indicating
that crime dynamics evolve over a roughly two-week horizon, while overly frequent updates may
induce catastrophic forgetting. A two-month retraining interval offers the best trade-off between
adaptability and stability. Although 0.75-month fine-tuning slightly improves RMSE and MAPE
under the 3-month retraining setting, it does not reduce MAE, limiting its utility. Overall, combining
two-month retraining with biweekly fine-tuning proves to be the most effective strategy.

Figure 7: The impact study of different hyperparameter settings over the CHI dataset. Average MAE,
RMSE, and MAPE (scaled to align with MAE axis) are reported across all crime types.

We conduct a sensitivity study to evaluate the impact of key hyperparameters of ST-HHOL using
the CHI dataset, as shown in Figure 7. Specifically: (1) Batch Size: Among {4, 8, 16, 32, 64}, a
batch size of 32 yields the lowest prediction error. (2) Hyperedge Number: Varying the number
of hyperedges (Ho) in Go among {8, 16, 32, 64, 128}. Setting to 64 yields the best performance,
while increasing to 128 introduces redundancy and increases error. (3) Hidden Dimension: We
explore hidden dimensions of features among {8, 16, 32, 64, 128}. Setting to 16 offers the best
performance, while overly high dimensions may amplify prediction errors, such as MAE. (4) PF
Layers: We evaluate the number of partially frozen layers in the PF-LLM from 1 to 5. Setting to 2
offers the optimal trade-off across metrics, while unfreezing more than two layers leads to overfitting
under sparse and long-tailed crime data, disrupting pretrained inductive biases.

5.4 CASE STUDY (RQ5)

We visualize the crime co-occurrence relationships captured by the homogeneous hypergraph and
the heterogeneous influences of multi-source data constructed by the heterogeneous hypergraph
in Figures 8 and 9, respectively. Key insights include: (1) ST-HHOL captures complex crime co-
occurrence patterns. Hyperedge e8 links low-frequency regions, e16 and e37 cover mid-frequency
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Figure 8: The visualization of the homogeneous hyperedge of crime co-occurrence relations, taking
Battery on May 30, 2024 in Chicago as an example.

Figure 9: The visualization of the impact of multi-source factors on crime patterns across types and
regions, captured by heterogeneous hyperedges. (CDOT: traffic order, DOB: building violations, Rest:
restaurants, Rail: railway stations, Une: unemployment rate, Tem: temperature, Hum: humidity)

areas, and e51 clusters high-frequency regions. (2) ST-HHOL reflects cross-region and cross-crime
type heterogeneity. Crimes in the Loop are shaped by restaurant and station densities, while in
low-income areas like Austin, the unemployment rate is the dominant factor. (3) ST-HHOL effectively
adapts to the temporal evolution. Compared to December, elevated temperatures in June significantly
intensify Theft and Assault in commercial zones such as Loop and Near South.

6 CONCLUSION AND LIMITATIONS

In this paper, we propose ST-HHOL, an online spatio-temporal learning framework that models crime
dynamics with a hierarchical hypergraph and adapts to non-stationary environments. Leveraging
PF-LLM further enhances its ability to learn from sparse and evolving dependencies. Experiments
on multiple urban crime datasets show that ST-HHOL achieves superior accuracy, robustness, and
interpretability, while offering insights into the dynamics of crime occurrence.

We identify two main directions for future work. First, although ST-HHOL performs well on four
diverse urban datasets, its generalizability warrants evaluation across a broader range of cities with
heterogeneous urban structures and socioeconomic conditions as more high-quality streaming data
become available. Second, this study focuses on structured spatio-temporal features; integrating
multimodal signals, such as textual reports, video, or social media streams, could uncover richer
latent factors and improve the modeling of complex crime dynamics.

7 ETHICS STATEMENT

The goal of ST-HHOL is to analyze long-term and latent spatio-temporal crime patterns in streaming
data, rather than to support real-time operational decisions or individual-level risk assessment. The
framework operates exclusively on region-level aggregated crime statistics and does not incorporate
individuals, demographic attributes, or law enforcement resources. Consequently, its outputs char-
acterize relative temporal and spatial trends across regions and crime types, instead of actionable
signals for targeted intervention, which structurally limits risks of biased profiling or over-policing.

We evaluate ST-HHOL across regions with heterogeneous socioeconomic characteristics and observe
consistent predictive behavior, indicating that the learned representations are driven primarily by
spatio-temporal structure rather than latent demographic bias. Under these constraints, ST-HHOL
is intended as an analytical tool for understanding urban crime dynamics, not for prescriptive or
punitive decision-making.
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ST-HHOL: Spatio-Temporal Hierarchical Hypergraph Online Learning for Crime Prediction
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A NOTATIONS

Key notations used in the paper and their definitions are summarized in Table 4.
Table 4: Main notations and their definitions.

Notation Definition
Xt the crime data at time t, Xt ∈ RN×C

St the auxiliary data at time t, St ∈ RN×M

N the number of regions
C the number of crime types
M the number of auxiliary data
Et the crime patterns at time t, Et ∈ RN×C

Ge the heterogeneous hypergraph of HHGCN
Go the homogeneous hypergraph of HHGCN
Θt

e the incident matrix of Ge at time t
Θt

o the incident matrix of Go at time t
He, Ho the number of hyperedges in Ge and Go

B EXTENDED RELATED WORK

Online Learning. Online learning has emerged as an effective paradigm for handling concept drift
in streaming data (Tsymbal, 2004), enabling models to adapt to evolving data distributions through
continual updates. This capability makes it particularly suitable for real-time applications such as
recommendation systems (Song et al., 2014; Zhou et al., 2019) and network security detection (Yu
et al., 2021). Recent efforts have focused on developing adaptive update strategies that trade off
knowledge retention and model plasticity, especially in long-term forecasting tasks. For example,
Ddg-da (Li et al., 2022a), FSNet (Pham et al., 2023), and LSTD (Cai et al., 2025) explore different
mechanisms to maintain stable performance over time. OneNet (Wen et al., 2023) proposes a
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dynamic ensemble strategy that adjusts the weights of dual-stream models based on the distribution
of streaming data, rather than relying on a single model.

In the context of urban spatio-temporal data, concept drift often manifests gradually. DOST (Wang
et al., 2025) addresses this by employing an awake-hibernate learning strategy to adapt to non-
stationary patterns. Similarly, DLF (Wang et al., 2024) decomposes time series into seasonal
components and latent trends, using iterative updates to track evolving dynamics. However, crime
data present additional challenges due to their inherently abrupt fluctuations—sudden surges or drops
that offline models trained solely on historical data struggle to capture. To address these challenges,
we propose an online learning framework, ST-HHOL, specifically designed for crime prediction.
ST-HHOL iteratively fine-tunes to capture short-term fluctuations, while periodically retraining to
adapt to long-term gradual shifts in crime patterns. The detailed description of the ST-HHOL is
presented in Section 4.

C MORE DETAILS OF HYPERGRAPH

A hypergraph (Sun et al., 2021) can be defined as G = {V, E , Tv, Te}. Here, V is the set of vertices
and E is the set of hyperedges. Tv and Te denote the sets of vertex types and hyperedge types,
respectively. If |Tv| + |Te| > 2, the hypergraph is heterogeneous. Otherwise, the hypergraph is
homogeneous. Compared to a pairwise graph, in which each edge connects two vertices, a hyperedge
in a hypergraph can connect more than two vertices. For any hyperedge e ∈ E , it can be denoted
as e = {vi, vj , . . . , vk} ⊆ V . A positive diagonal matrix W ∈ R|E|×|E| denotes the hyperedge
weights. The relationship between vertices and hyperedges can be represented by an incidence matrix
H ∈ R|V|×|E| with entries defined as:

Hv,e =

{
1, if v ∈ e,

0, otherwise.
(13)

Let Dv ∈ R|V|×|V| and De ∈ R|E|×|E| denote the diagonal matrices containing the vertex degrees
and hyperedge degrees, respectively, where (Dv)ii =

∑
e∈E WeHi,e, and (De)jj =

∑
v∈V Hv,j .

The hypergraph convolution operator can be defined as Θ = σ
(
D

− 1
2

v HWD
− 1

2
e H⊤D

− 1
2

v

)
, and the

hypergraph Laplacian can be denoted as ∆ = I−Θ.

D MORE DETAILS OF DATASETS AND BASELINES

D.1 DATASETS DETAILS

We conduct experiments on four real-world urban crime datasets from Chicago (CHI)1 , New York
City (NYC)2 , Philadelphia (PHI)3 , and Toronto (TOR)4 , as summarized in Table 5. Each dataset
includes four major crime types, with corresponding timestamps and spatial locations. The CHI and
PHI datasets contain records for 77 boroughs in Chicago and 6 boroughs in Philadelphia, respectively,
spanning from January 1, 2023 to December 31, 2024. The NYC dataset covers 123 police districts
from January 1, 2022 to December 31, 2023, while the TOR dataset includes 158 neighborhoods
with daily crime records from January 1, 2023 to December 31, 2024. In addition, we collect diverse
multi-source contextual data, including dynamic 311 service requests, weather conditions, static
POI distributions, and socio-economic indicators. Detailed categories and variables are provided in
Table 6.

D.2 BASELINES DETAILS

We select 14 representative baselines spanning traditional models and state-of-the-art deep learning
approaches. The baseline descriptions are organized as follows:

1Chicago data portal is available at: https://data.cityofchicago.org/
2NYC open data is available at: https://opendata.cityofnewyork.us/
3Philadelphia open data is available at: https://opendataphilly.org/
4Toronto Police Service Open Data: https://data.torontopolice.on.ca/datasets

15

https://data.cityofchicago.org/
https://opendata.cityofnewyork.us/
https://opendataphilly.org/
https://data.torontopolice.on.ca/datasets


Published as a conference paper at ICLR 2026

Table 5: Summary of the four urban crime datasets.

Datasets Region Num Time Span Time Interval Crime Data
CHI 77 January 1, 2023 – December 31, 2024 1 day Theft, Battery, Assault, Damage
NYC 123 January 1, 2023 – December 31, 2024 1 day Larceny, Assault, Mischief, Robbery
PHI 6 January 1, 2023 – December 31, 2024 1 day Theft, Assault, Vehicle, Mischief
TOR 158 January 1, 2023 – December 31, 2024 1 day Assault, B&E, Robbery, Theft

Table 6: The description of variables contained in multi-source data.

Datasets 311 Service Types POI Weather Others

CHI
Streets and Sanitation

CDOT - Department of Transportation
DOB - Buildings

Restaurant&Café
School&University
Park&Playground

Hospital
Railway station

Shopping
Bank, Police

Entertainment

Temperature
Humidity

Windspeed

Income
Unemployment rate

NYC
Illegal Parking

Noise - Residential
Blocked Driveway

PHI
Abandoned Vehicle

Illegal Dumping
Graffiti Removal

TOR
Property & Environment

Noise
Roads & Traffic

• SVM (Mattera & Haykin, 1998): Learns maximum-margin hyperplanes in kernel-induced feature
spaces for time series regression.

• ARIMA (Box et al., 2015): Combines autoregressive integration with moving average components
to handle non-stationary temporal patterns.

• DCRNN (Li et al., 2017): Models spatial diffusion processes via bidirectional random walks,
coupled with a sequence-to-sequence architecture for temporal modeling.

• STGCN (Yu et al., 2018): Establishes spatio-temporal correlations through stacked graph convolu-
tions and temporal gated convolutions, eliminating recurrent units.

• AGCRN (Bai et al., 2020): Automatically infers node-wise dependencies with adaptive graph
generation while learning personalized patterns through node-specific parameters.

• MTGNN (Wu et al., 2020b): Designs mix-hop graph diffusion layers with dilated temporal
convolutions to capture multi-range spatio-temporal dependencies.

• GMAN (Zheng et al., 2020): Integrates spatial attention and temporal attention in stacked trans-
former blocks for cross-space-time dependency modeling.

• MoSSL (Deng et al., 2024): Constructs multi-granularity self-supervision tasks to enhance repre-
sentation learning for temporal, spatial, and feature variations.

• DeepCrime (Huang et al., 2018): Unifies crime embedding learning with hierarchical attention
mechanisms over spatio-temporal-categorical dimensions.

• ST-HSL (Li et al., 2022b): Addresses label scarcity through hypergraph structure learning and
contrastive self-supervision on region representations.

• ST-SHN (Xia et al., 2021): Models crime category dependencies via multi-channel hypergraph
routing in a sequential prediction framework.

• DLF (Wang et al., 2024): Decouples trend-seasonal patterns through frequency domain analysis
with momentum-updated dual experts.

• FSNet (Pham et al., 2023): Balances fast adaptation and memory retention via parameter-efficient
adapter modules and Hopfield network-based associative memory.

• OneNet (Wen et al., 2023): Dynamically fuses temporal and cross-variable dependency models
through a meta-learned architecture controller.
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D.3 EVALUATION METRICS DETAILS

Crime quantity prediction. To assess the performance of crime quantity prediction, we employ the
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE) as the evaluation metrics. MAE measures the average magnitude of errors in predictions,
providing an intuitive sense of the overall prediction accuracy. RMSE penalizes larger errors
more heavily, thus highlighting the model’s sensitivity to significant deviations. MAPE expresses
prediction errors as a percentage, providing a scale-independent evaluation that is particularly useful
for comparing performance across different regions or periods.

MAE(y, ŷ) =
1

N

N∑
n=1

|yn − ŷn|, (14)

RMSE(y, ŷ) =

√√√√ 1

N

N∑
n=1

(yn − ŷn)2, (15)

MAPE(y, ŷ) =
1

N

N∑
n=1

|yn − ŷn
yn

|, (16)

where y represents the actual value, ŷ represents the prediction. N denotes the total number of
regions.

Crime occurrence prediction. For crime-occurrence prediction (binary: 1 = crime occurs, 0 = no
crime), we define the confusion counts over all N samples as:

TP =

N∑
n=1

1{yn = 1 ∧ ŷn = 1}, FP =

N∑
n=1

1{yn = 0 ∧ ŷn = 1},

FN =

N∑
n=1

1{yn = 1 ∧ ŷn = 0}, TN =

N∑
n=1

1{yn = 0 ∧ ŷn = 0}, (17)

where yn ∈ {0, 1} is the ground-truth label and ŷn ∈ {0, 1} is the predicted label.

Precision, recall and F1 for the positive class (crime occurrence) are as follows:

Precision1 =
TP

TP + FP
, Recall1 =

TP

TP + FN
, F11 =

2 · Precision1 · Recall1
Precision1 +Recall1

.

(18)

Precision, recall, and F1 for the negative class (no crime) can be computed as follows:

Precision0 =
TN

TN + FN
, Recall0 =

TN

TN + FP
, F10 =

2 · Precision0 · Recall0
Precision0 +Recall0

.

(19)

In total, Macro-F1 and Micro-F1 can be defined as:

Macro-F1 =
F11 + F10

2
,

Micro-F1 =
2
∑

c∈{0,1} TPc

2
∑

c TPc +
∑

c FPc +
∑

c FNc
=
TP + TN

N
. (20)

D.4 EXPERIMENTAL SETTINGS

All experiments are conducted on a server equipped with an NVIDIA RTX 3090 GPU using PyTorch
2.0. We implement ST-HHOL and all baseline models in a unified framework to ensure fair com-
parisons. We use the Adam optimizer with an initial learning rate of 1 × 10−3, a decay factor of
1× 10−4 applied periodically, and a batch size of 32. Model training is conducted for a maximum of
100 epochs with an early stopping strategy triggered if validation performance does not improve for
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10 consecutive epochs. The dataset is chronologically split into a warm-up and an online training
phase in a 25:75 ratio. The warm-up phase is further divided into training and validation subsets
in a 7:3 ratio. Following prior studies (Li et al., 2022b; Liang et al., 2024; Wu et al., 2024), we set
the temporal input length to 7 and the forecasting horizon to 1. Each deep learning model is trained
and evaluated across five independent runs, and the final performance is reported as the mean of
the evaluation metrics. For ST-HHOL, the loss function includes two balancing coefficients λ1 and
λ2, both set to 0.1. The core component of the spatio-temporal dependency learner PF-LLM, is
instantiated with a GPT-2 small architecture5 with two layers, a hidden size of 768, and 12 attention
heads. The internal hidden dimension of ST-HHOL is set to 16, and the number of hyperedges in the
homogeneous hypergraph Go is set to 64.

E MORE EXPERIMENTAL RESULTS

E.1 COMPLETE COMPARISON RESULTS

For fair comparison, except for the online models DLF, FSNet, and OneNet, we transform all offline
baseline models into an online version. Specifically, these models are periodically retrained using
new streaming data after the initial warm-up phase. Tables 7, 8, 9, and 10 compare ST-HHOL with
a variety of baselines across several crime types and datasets. ST-HHOL consistently outperforms
all baselines across different datasets and metrics. For quantity prediction, it reduces average MAE
and MAPE by 5.37% and 9.21% on CHI, 3.52% and 8.83% on NYC, 2.97% and 5.85% on PHI, and
4.12% and 7.94% on TOR, demonstrating its effectiveness and generalizability.

Moreover, we summarize the key findings as follows: (1) ST-HHOL consistently outperforms
all baselines across crime types, metrics, and datasets. This superior performance is attributed
to its hierarchical hypergraph design, which effectively models spatial and criminal specificity,
thereby enhancing robustness and generalization. (2) ST-HHOL achieves significantly lower MAPE
than the second-best models, demonstrating a stronger capability to accurately detect non-zero
crime occurrences. This indicates that ST-HHOL is more effective at uncovering latent crime
patterns and generating precise predictions. (3) The online learning strategy tailored in ST-HHOL
effectively addresses concept drift, outperforming methods like FSNet, OneNet, and DLF, whose
update mechanisms are not optimized for the dynamic and heterogeneous nature of crime data.
Moreover, FSNet and OneNet, originally designed for long-term sequences, struggle to adapt to
highly varied crime types, limiting their effectiveness in evolving scenarios. (4) Existing spatio-
temporal models, such as DCRNN and STGCN, can capture temporal dependencies but often
underperform when facing crime pattern heterogeneity and skewed distribution. For instance, while
they achieve competitive performance on Assault in NYC, they struggle on several high-frequency
crimes like Theft and Battery in CHI. In summary, ST-HHOL not only delivers superior predictive
performance but also demonstrates enhanced stability across diverse crime categories and spatial
distributions.
Table 7: Overall performance of crime prediction on CHI dataset. The results are 5-run error
comparison, the bold / underlined font means the best / the second-best result.

Theft Battery Assault DamageMethod MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
SVM 1.54 1.75 0.51 0.94 1.89 0.56 0.60 0.98 0.51 0.69 0.94 0.52
ARIMA 1.52 1.76 0.52 0.99 1.72 0.58 0.61 0.91 0.54 0.69 0.96 0.53
DCRNN 2.91 ±0.25 3.94 ±0.55 0.49 ±0.05 1.82 ±0.15 3.17 ±0.30 0.64 ±0.05 0.66 ±0.05 0.98 ±0.14 0.37 ±0.08 0.85 ±0.11 1.75 ±0.31 0.46 ±0.10

STGCN 2.82 ±0.58 3.66 ±0.73 0.58 ±0.09 2.03 ±0.04 2.74 ±0.40 0.61 ±0.03 0.80 ±0.01 1.45 ±0.13 0.45 ±0.04 1.04 ±0.02 2.19 ±0.09 0.57 ±0.09

AGCRN 0.99 ±0.11 1.53 ±0.35 0.50 ±0.07 0.88 ±0.17 1.31 ±0.28 0.51 ±0.02 0.54 ±0.09 0.88 ±0.12 0.66 ±0.03 0.65 ±0.02 0.99 ±0.17 0.57 ±0.15

MTGNN 1.45 ±0.34 2.34 ±0.56 0.58 ±0.18 1.06 ±0.33 1.56 ±0.17 0.60 ±0.08 0.86 ±0.06 1.04 ±0.07 0.70 ±0.08 0.90 ±0.11 1.11 ±0.20 0.71 ±0.14

GMAN 1.16 ±0.03 2.12 ±0.11 0.53 ±0.02 0.92 ±0.02 1.44 ±0.09 0.53 ±0.06 0.74 ±0.04 1.45 ±0.05 0.62 ±0.03 0.89 ±0.03 1.31 ±0.09 0.65 ±0.11

MoSSL 1.10 ±0.07 1.67 ±0.01 0.45 ±0.07 0.90 ±0.11 1.33 ±0.13 0.54 ±0.14 0.64 ±0.01 0.85 ±0.01 0.49 ±0.18 0.70 ±0.02 0.92 ±0.05 0.43 ±0.11

DeepCrime 1.27 ±0.14 1.66 ±0.28 0.57 ±0.09 0.94 ±0.06 1.34 ±0.27 0.59 ±0.07 0.68 ±0.09 0.94 ±0.15 0.54 ±0.11 0.69 ±0.22 1.04 ±0.18 0.65 ±0.10

ST-SHN 1.07 ±0.05 1.63 ±0.27 0.67 ±0.08 0.90 ±0.01 1.35 ±0.21 0.78 ±0.02 0.69 ±0.03 0.90 ±0.01 0.52 ±0.04 0.68 ±0.16 1.03 ±0.10 0.67 ±0.05

ST-HSL 1.13 ±0.01 1.68 ±0.01 0.50 ±0.02 0.94 ±0.01 1.31 ±0.01 0.52 ±0.03 0.67 ±0.01 0.93 ±0.02 0.42 ±0.00 0.72 ±0.03 1.03 ±0.07 0.47 ±0.02

DLF 2.89 ±0.17 4.18 ±0.28 0.57 ±0.03 2.04 ±0.11 2.94 ±0.19 0.55 ±0.02 1.23 ±0.09 1.87 ±0.15 0.32 ±0.01 1.46 ±0.08 2.10 ±0.14 0.61 ±0.01

FSNet 2.24 ±0.18 3.17 ±0.58 0.60 ±0.11 1.99 ±0.36 2.38 ±0.15 0.53 ±0.08 0.99 ±0.12 1.12 ±0.18 0.45 ±0.05 0.96 ±0.08 1.20 ±0.10 0.63 ±0.03

OneNet 2.53 ±0.12 3.25 ±0.30 0.58 ±0.07 1.53 ±0.18 2.04 ±0.22 0.54 ±0.11 1.06 ±0.13 1.24 ±0.11 0.47 ±0.03 1.00 ±0.12 1.48 ±0.16 0.64 ±0.12

ST-HHOL
(Ours) 0.95 ±0.01 1.52 ±0.01 0.43 ±0.01 0.87 ±0.01 1.26 ±0.02 0.46 ±0.02 0.51 ±0.01 0.84 ±0.01 0.27 ±0.01 0.58 ±0.01 0.90 ±0.02 0.40 ±0.02

5The source code of GPT-2 is available at: https://huggingface.co/openai-community/
gpt2
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Table 8: Overall performance of crime prediction on NYC dataset. The results are 5-run error
comparison, the bold / underlined font means the best / the second-best result.

Larceny Assault Mischief RobberyModel MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
SVM 1.81 2.55 0.61 0.79 1.29 0.53 0.50 0.97 0.68 0.80 1.13 0.69
ARIMA 1.17 2.58 0.63 0.75 1.21 0.50 0.52 0.76 0.61 0.89 1.16 0.63
DCRNN 1.42±0.07 2.67±0.21 0.44±0.03 0.85±0.01 1.60±0.06 0.50±0.04 0.33±0.01 0.76±0.16 0.20±0.01 0.62±0.16 1.06±0.25 0.20±0.02

STGCN 1.41±0.03 2.44±0.17 0.39±0.04 0.86±0.01 1.76±0.18 0.46±0.07 0.35±0.02 0.86±0.22 0.17±0.01 0.70±0.21 1.14±0.31 0.20±0.01

AGCRN 1.26±0.39 2.19±0.39 0.74±0.01 0.70±0.01 1.06±0.05 0.30±0.26 0.38±0.01 0.83±0.01 0.28±0.22 0.52±0.09 1.16±0.15 0.31±0.20

MTGNN 1.44±0.22 2.26±0.41 0.57±0.05 1.09±0.12 1.54±0.16 0.60±0.14 0.85±0.09 1.06±0.08 0.72±0.05 0.86±0.12 1.08±0.16 0.70±0.07

GMAN 1.56±0.07 2.64±0.10 0.84±0.06 1.07±0.06 1.63±0.02 0.71±0.01 1.04±0.09 1.87±0.07 0.75±0.01 1.31±0.01 1.77±0.08 0.87±0.05

MoSSL 0.98±0.03 1.85±0.17 0.63±0.31 0.75±0.02 1.06±0.01 0.58±0.26 0.56±0.01 0.81±0.04 0.18±0.02 0.54±0.01 1.06±0.15 0.21±0.03

DeepCrime 1.36±0.05 2.64±0.12 0.59±0.18 0.82±0.07 1.18±0.08 0.45±0.09 0.64±0.11 0.88±0.14 0.29±0.09 0.68±0.15 1.30±0.09 0.40±0.07

ST-SHN 1.32±0.03 2.16±0.06 0.51±0.14 0.75±0.02 1.10±0.02 0.35±0.06 0.49±0.07 0.84±0.02 0.27±0.07 0.57±0.12 1.12±0.05 0.36±0.05

ST-HSL 1.25±0.12 2.35±0.01 0.45±0.09 0.77±0.10 1.21±0.07 0.44±0.06 0.65±0.12 0.95±0.12 0.44±0.07 0.79±0.07 1.18±0.05 0.47±0.03

DLF 1.48±0.08 3.25±0.13 0.40±0.03 0.88±0.07 1.94±0.06 0.33±0.14 0.66±0.09 1.44±0.16 0.40±0.21 1.02±0.15 2.01±0.24 0.30±0.20

FSNet 1.34±0.12 3.02±0.17 0.51±0.06 0.96±0.15 1.91±0.23 0.44±0.08 0.87±0.14 1.86±0.19 0.46±0.07 1.12±0.08 1.60±0.09 0.32±0.07

OneNet 1.23±0.18 2.99±0.23 0.52±0.09 0.82±0.06 1.91±0.17 0.47±0.06 0.73±0.08 1.50±0.10 0.46±0.05 1.09±0.07 1.24±0.10 0.35±0.08

ST-HHOL
(Ours) 0.97±0.01 1.84±0.01 0.35±0.01 0.66±0.02 1.05±0.10 0.29±0.01 0.34±0.02 0.73±0.04 0.15±0.01 0.50±0.04 1.04±0.17 0.18±0.01

Table 9: Overall performance of crime prediction on PHI dataset. The results are 5-run error
comparison, the bold / underlined font means the best / the second-best result.

Theft Assault Vehicle MischiefModel MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
SVM 5.91 6.82 0.38 3.61 4.76 0.50 2.85 3.49 0.49 2.95 3.65 0.48
ARIMA 5.68 6.89 0.41 3.89 4.87 0.42 2.62 3.78 0.49 3.34 3.72 0.58
DCRNN 5.86±2.12 7.52±3.16 0.57±0.01 3.74±1.41 4.61±2.74 0.43±0.01 3.09±0.49 3.59±2.49 0.47±0.01 3.43±0.71 4.52±2.40 0.58±0.01

STGCN 5.45±2.58 7.47±0.32 0.55±0.10 3.60±2.36 4.17±3.68 0.42±0.12 3.54±1.60 3.50±2.32 0.38±0.05 2.78±1.15 3.62±2.04 0.48±0.05

AGCRN 5.13±0.59 6.62±0.72 0.39±0.03 3.18±0.23 4.03±0.21 0.39±0.10 2.68±0.03 3.46±0.12 0.41±0.01 2.70±0.22 3.53±0.27 0.49±0.02

MTGNN 5.08±1.17 6.11±1.91 0.49±0.08 3.48±1.34 4.37±2.77 0.45±0.12 2.59±0.83 4.53±0.94 0.48±0.12 2.93±0.98 3.67±1.17 0.48±0.05

GMAN 5.13±2.23 6.15±2.80 0.53±0.13 3.72±0.24 4.05±0.57 0.42±0.04 2.84±1.11 3.69±1.24 0.53±0.04 3.36±1.36 4.52±1.46 0.47±0.09

MoSSL 4.13±0.15 5.27±0.33 0.28±0.01 3.02±0.05 4.71±0.39 0.35±0.01 2.62±0.12 3.51±0.05 0.65±0.07 2.43±0.06 3.36±0.09 0.55±0.03

DeepCrime 4.01±0.30 5.14±0.53 0.31±0.03 3.24±0.08 4.24±0.31 0.40±0.02 2.75±0.25 3.52±0.56 0.50±0.17 2.53±0.38 3.24±0.49 0.57±0.01

ST-SHN 5.62±0.77 7.34±0.93 0.33±0.05 3.79±0.26 4.86±0.34 0.41±0.08 2.80±0.45 3.57±0.14 0.52±0.22 2.88±0.58 3.73±0.62 0.47±0.15

ST-HSL 3.96±0.97 5.31±1.33 0.25±0.08 3.16±1.89 4.25±2.13 0.38±0.16 2.62±1.90 3.65±1.97 0.49±0.09 2.49±0.42 3.26±0.38 0.49±0.20

DLF 6.60±1.53 7.78±2.24 0.46±0.12 3.88±0.63 4.92±1.06 0.42±0.11 2.93±0.78 3.36±1.15 0.42±0.36 2.65±0.66 3.98±0.89 0.49±0.13

FSNet 5.30±0.89 6.19±1.25 0.40±0.09 3.80±0.33 4.64±0.84 0.40±0.09 2.89±0.54 3.43±0.79 0.37±0.28 2.54±0.37 3.97±0.55 0.48±0.08

OneNet 4.88±0.76 5.47±1.23 0.48±0.07 3.54±0.40 4.57±0.58 0.45±0.08 2.88±0.43 3.42±0.82 0.40±0.15 3.04±0.40 4.15±0.78 0.87±0.19

ST-HHOL
(Ours) 3.83±0.09 4.97±0.01 0.22±0.01 3.04±0.05 4.05±0.18 0.34±0.01 2.54±0.08 3.35±0.02 0.36±0.09 2.34±0.02 3.22±0.16 0.47±0.08

Table 10: Overall performance of crime prediction on TOR dataset. The results are 5-run error
comparison, the bold / underlined font means the best / the second-best result.

Assault B&E Robbery TheftMethod MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
SVM 0.74 1.17 0.53 1.62 2.04 0.56 0.83 1.15 0.67 1.54 1.77 0.54
ARIMA 0.71 1.18 0.50 1.56 2.02 0.55 0.89 1.16 0.68 1.52 1.73 0.53
DCRNN 0.74 ±0.05 1.12 ±0.10 0.44 ±0.03 1.50 ±0.10 2.50 ±0.20 0.45 ±0.05 0.63 ±0.07 1.14 ±0.18 0.20 ±0.03 2.13 ±0.16 3.07 ±0.24 0.47 ±0.05

STGCN 0.83 ±0.02 1.26 ±0.05 0.49 ±0.04 1.43 ±0.06 2.41 ±0.16 0.43 ±0.06 0.71 ±0.22 1.15 ±0.27 0.21 ±0.01 2.04 ±0.44 2.96 ±0.52 0.50 ±0.05

AGCRN 0.62 ±0.01 0.97 ±0.06 0.35 ±0.01 0.98 ±0.10 1.72 ±0.35 0.43 ±0.05 0.52 ±0.08 1.12 ±0.09 0.30 ±0.07 1.01 ±0.09 1.70 ±0.35 0.50 ±0.07

MTGNN 0.93 ±0.04 1.32 ±0.07 0.56 ±0.08 1.45 ±0.34 2.30 ±0.56 0.58 ±0.18 0.86 ±0.12 1.28 ±0.16 0.48 ±0.05 1.45 ±0.34 2.34 ±0.42 0.51 ±0.17

GMAN 0.98 ±0.04 1.37 ±0.05 0.52 ±0.05 1.30 ±0.07 2.20 ±0.10 0.55 ±0.06 1.31 ±0.01 1.77 ±0.05 0.49 ±0.03 1.30 ±0.03 2.21 ±0.12 0.59 ±0.03

MoSSL 0.74 ±0.02 0.93 ±0.01 0.41 ±0.01 1.02 ±0.04 1.71 ±0.02 0.40 ±0.01 0.54 ±0.01 1.06 ±0.15 0.21 ±0.03 1.08 ±0.05 1.70 ±0.01 0.45 ±0.07

DeepCrime 0.70 ±0.05 1.16 ±0.06 0.41 ±0.02 1.33 ±0.05 2.09 ±0.15 0.49 ±0.08 0.68 ±0.15 1.32 ±0.06 0.40 ±0.07 1.27 ±0.18 2.14 ±0.35 0.56 ±0.10

ST-SHN 0.72 ±0.03 1.13 ±0.03 0.35 ±0.06 1.14 ±0.02 1.82 ±0.05 0.47 ±0.08 0.57 ±0.12 1.12 ±0.05 0.36 ±0.05 1.21 ±0.05 1.90 ±0.27 0.56 ±0.08

ST-HSL 0.64 ±0.10 1.02 ±0.05 0.42 ±0.06 1.08 ±0.15 2.93 ±0.01 0.45 ±0.03 0.79 ±0.05 1.18 ±0.05 0.47 ±0.03 1.14 ±0.01 1.99 ±0.01 0.54 ±0.02

DLF 1.05 ±0.04 1.76 ±0.05 0.33 ±0.14 1.94 ±0.06 3.01 ±0.10 0.49 ±0.03 1.02 ±0.15 2.03 ±0.20 0.30 ±0.20 1.76 ±0.15 3.11 ±0.14 0.50 ±0.03

FSNet 0.78 ±0.13 1.63 ±0.20 0.39 ±0.08 1.38 ±0.16 2.73 ±0.24 0.47 ±0.03 1.12 ±0.08 1.60 ±0.09 0.32 ±0.07 1.46 ±0.13 3.04 ±0.36 0.54 ±0.11

OneNet 0.94 ±0.06 1.91 ±0.14 0.43 ±0.08 1.46 ±0.17 2.92 ±0.34 0.48 ±0.04 1.09 ±0.07 1.24 ±0.10 0.35 ±0.08 1.52 ±0.16 2.75 ±0.41 0.52 ±0.04

ST-HHOL
(Ours) 0.58 ±0.01 0.89 ±0.01 0.31 ±0.01 0.96 ±0.01 1.68 ±0.01 0.39 ±0.01 0.50 ±0.04 1.02 ±0.02 0.18 ±0.01 0.98 ±0.01 1.70 ±0.01 0.40 ±0.01
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E.2 ROBUSTNESS ANALYSIS

To further assess the robustness of ST-HHOL under data sparsity, we analyze its performance in
regions with low crime frequencies. Based on the frequency distribution of different crime types
across areas in the test set, we categorize regions into two low-frequency intervals: [0,0.25) and
[0.25,0.5). As illustrated in Figure 10, we visualize the MAE of ST-HHOL and several strong baseline
models within these intervals, using the CHI dataset as a case study.

Figure 10: The robustness study of low-frequency crime areas for different crime types.

The results reveal that ST-HHOL maintains superior predictive performance even in sparsely pop-
ulated urban zones. Despite the inherent challenges posed by imbalanced spatial distributions,
ST-HHOL mitigates these limitations by incorporating ubiquitous multi-source data to enrich the
sparse crime records. Instead of relying solely on observed data, it uncovers latent crime patterns with
spatial and criminal specificity that serve as more informative and generalized crime representations,
enabling more reliable predictions in low-frequency regions.

E.3 SCALABILITY ANALYSIS

To assess the scalability of ST-HHOL, we further evaluate it on the NYC Taxi6 dataset against several
representative spatio-temporal forecasting methods. As shown in Table 11, ST-HHOL achieves
competitive results across different variable types and evaluation metrics. Although originally
designed for online crime prediction, the underlying motivation of ST-HHOL lies in modeling
multivariate spatio-temporal streams with spatial and variable specificity as well as concept drift,
which makes it broadly applicable beyond the crime domain.
Table 11: Performance comparison over the NYC Taxi dataset for both pick-up and drop-off prediction.
The best and second-best results are highlighted in bold and underline, respectively.

Method Pick-up Drop-off
MAE RMSE MAPE MAE RMSE MAPE

DCRNN 5.40 9.71 0.35 5.19 9.63 0.37
STGCN 5.71 10.22 0.36 5.38 9.60 0.39
AGCRN 5.79 10.11 0.40 5.45 9.56 0.40
GMAN 5.43 9.47 0.34 5.09 8.95 0.35
ASTGNN 5.90 10.71 0.40 6.28 12.00 0.49
ST-HHOL (Ours) 5.38 9.56 0.35 5.06 9.54 0.36

E.4 EFFICIENCY ANALYSIS

To compare the computational cost between ST-HHOL and state-of-the-art crime prediction methods,
we present their model complexity and execution efficiency, as demonstrated in Table 12. It can
be observed that ST-HHOL achieves highly competitive training and inference speeds. Although
ST-HHOL comprises 47.39M parameters, approximately 98% of them originate from the spatio-
temporal dependency learner (PF-LLM) based on GPT-2. The additional components, such as the
hierarchical hypergraph structure, impose minimal computational overhead. Moreover, since the
parameters of certain modules—such as the feedforward layers of GPT-2 and the crime-pattern
hypergraph fine-tuned during training—are frozen, the actual computational resource consumption of
ST-HHOL remains relatively modest.

6https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Table 12: Complexity and execution efficiency analysis of models over CHI dataset.

Method ST-HSL ST-SHN DCRNN STGCN GMAN MoSSL DLF ST-HHOL (ours) -Ge -Go -PF-LLM
# Parameters (M) 0.378 0.012 0.377 0.422 0.210 1.036 0.092 47.391 0.23 0.14 46.50
GPU Memory (MB) 114.98 76.98 290.78 253.57 185.95 272.08 162.53 248.52 24.13 13.25 198.80
Training cost (epoch) 0.14s 99.62s 1.06s 0.66s 0.38s 0.47s 0.27s 0.44s 0.045 0.035 0.360
Test cost (epoch) 0.03s 14.47s 0.14s 0.14s 0.06s 0.11s 0.04s 0.09s 0.007 0.005 0.078
Average MAE 0.87 0.84 1.58 1.67 0.95 0.83 1.91 0.73 - - -
Average RMSE 1.23 1.22 2.47 2.53 1.54 1.18 2.77 1.13 - - -

E.5 VISUALIZATION OF PREDICTION RESULTS

To intuitively illustrate the discrepancy between ST-HHOL’s predictions and the ground truth, we
visualize several representative examples in Figure 11. These heatmaps span multiple time periods
and crime categories. As observed, the high consistency between the prediction results and actual
spatial distributions of different crime occurrences underscores ST-HHOL’s outstanding predictive
performance.

Overall, ST-HHOL effectively models both regional differences and category-specific variations in
crime intensity. It accurately distinguishes high-frequency crime regions and estimates threshold
effects with notable granularity. Moreover, its online learning mechanism continually updates model
parameters in response to streaming data, allowing the model to remain responsive to short-term
fluctuations and long-term gradual shifts in crime distributions. As a result, ST-HHOL maintains
stable forecasting quality over extended time horizons. These results collectively demonstrate the
model’s robustness and practical utility in real-world, temporally evolving environments.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely as a general-purpose assistive tool for language polishing and improving the
clarity and readability of the manuscript. The authors independently developed all scientific ideas,
experiments, analyses, and results. The LLM did not contribute to any research ideation, methodology
design, or interpretation of results.
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Figure 11: The visualization of prediction results and ground truth.
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