Designing active and thermostable enzymes with sequence-only predictive models

Clara Fannjiang^{1,2}, Micah Olivas³, Eric R. Greene⁴, Craig J. Markin⁵, Bram Wallace², Ben Krause², Margaux M. Pinney⁶, James S. Fraser⁴, Polly M. Fordyce^{3,7}, Ali Madani⁸, Nikhil Naik² ¹Dept. of Electrical Engineering & Computer Sciences, UC Berkeley ²Salesforce Research ³Dept. of Genetics, Stanford University ⁴Dept. of Bioengineering & Therapeutic Sciences, UCSF ⁵Dept. of Biochemistry, Stanford University ⁶Dept. of Biochemistry & Biophysics, UCSF ⁷Dept. of Bioengineering, Stanford University ⁸Profluent Bio

How can we use predictive models of fitness to design proteins

- that satisfy *multiple* properties (i)
- when these models are not always trustworthy? (ii)

Case study: designing active, more thermostable enzymes

- broadly applicable goal, e.g. for industrial applications
- natural enzymes often exhibit trade-off
- existing methods: PROSS, consensus

Our general approach

from the distribution

$$p^{\star}(x) \propto \begin{cases} \exp(\sum_{i=1}^{m} \lambda_i) \\ 0 \end{cases}$$

- $f_i, i = 1, \dots, m$: predictive model of *i*-th fitness function **TRUSTREGION**_{*i*}, i = 1, ..., m: region of sequence space on which we trust f_i
- We use a Metropolis-Hastings algorithm to sample novel sequences
 - $\cdot f_i(x)$
 - if $x \in \bigcap_{i=1}^{m} \frac{\text{TRUSTREGION}_{i}}{i}$ otherwise
- which is the solution to the following optimization problem:

$$f_1(x)] \ge \tau_1,$$

 $\mathbb{E}_p[f_m(x)] \ge \tau_m,$ $support(p) \subseteq \bigcap_{j=1}^{m} TRUSTREGION_{j}$

activity drove evolutionary pressure on the wild type.

Wild-type enzymes

Acylphosphatase (ACYP)

- human ACYP2
- P. horikoshii (thermophile)
- *S. benthica* (psychrophile)
- ACYP-like domain in hypF

Lysozyme

- phage T4
- L056 (previously designed)
- L070 (previously designed)
- B. intermedia

References

Goldenzweig et al. (2016), Mol. Cell Jarzab et al. (2019), Nat. Methods Madani et al. (2022), Nat. Biotech. (to appear) Markin & Mokhtari et al. (2021), Science Meier et al. (2021), NeurIPS

Nijkamp & Ruffolo *et al.* (2022), arXiv:2206.13517 Pinney et al. (2021), Science Rives et al. (2021), PNAS Sun et al. (2022), ICML

