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ABSTRACT

Recently, deep learning has driven significant advancements in multivariate time
series forecasting (MTSF) tasks. Prevailing paradigm in MTSF research involves
proposing models as pre-defined, holistic architectures. Such an approach limits
adaptability across diverse data scenarios, and obscures the individual contributions
of their core components. To address this, we propose TSGym, a novel framework
for automated MTSF model design. The framework begins with decoupling
existing deep MTSF methods into fine-grained components, which enables a large-
scale, component-level evaluation that offers crucial insights, and creates a vast
space for the automated construction of potentially superior models. Leveraging
this space through strategic sampling, a core meta-learner is trained to learn
the mapping between component configurations and performance across multiple
traininig datasets. This enables it to perform zero-shot selection of a top-performing
model for any new, unseen time series data. Extensive experiments indicate that the
model automatically constructed by our proposed TSGym significantly outperforms
existing state-of-the-art MTSF methods and AutoML solutions, and exhibit high
potential for transferability across diverse datasets.

1 INTRODUCTION

Multivariate time series refer to time series data involving multiple interdependent variables, which
are widely present in various fields such as finance (Sezer et al., 2020), energy (Alvarez et al., 2010;
Deb et al., 2017), traffic (Cirstea et al., 2022; Yin and Shang, 2016), and health (Bui et al., 2018;
Kaushik et al., 2020). Among the numerous research topics, multivariate time series forecasting
(MTSF) attracts substantial attention from the research community due to its significant practical
applications. Traditional approaches to MTSF are largely based on statistical methods (Abraham
and Ledolter, 2009; Zhang, 2003) and machine learning techniques (Hartanto et al., 2023; Masini
et al., 2023). In recent years, deep learning (DL) has become the most active area of research for
MTSF, driven by its ability to handle complex patterns and large-scale datasets effectively (Wang
et al., 2024b).

Early academic efforts of deep MTSF methods like RNN-type methods (Yamak et al., 2019) are
reported to struggle with capturing long-term temporal dependencies due to their inherent limi-
tations of gradient vanishing or exploding problem (Zhou et al., 2021; 2022b). More recently,
Transformer (Vaswani et al., 2017) shows significant potential, largely due to the effectiveness of
its attention mechanisms in modeling temporal correlation (Vaswani et al., 2017; Wen et al., 2022).
Consequently, attention mechanism has continuously been studied in MTSF, with a focus on adapting
them to time series data, for instance, by exploiting sparsity inductive bias (Li et al., 2019; Zhou
et al., 2021), transforming time and frequency domains (Zhou et al., 2022b), and fusing multi-scale
series (Liu et al., 2022b). While simpler MLP-based structures emerged (Zeng et al., 2023a) offering
alternatives to the established Transformer architecture in MTSF, notable modeling strategies like
series-patching and channel-independent (Nie et al., 2023), significantly enhanced the performance
of Transformer-based methods, thereby sustaining research interest in them. Building upon these
developments, large time-series models including large language models (LLMs) (Jin et al., 2024b;
Zhou et al., 2023; Jin et al., 2023b) and time series foundation models (TSFMs) (Jin et al., 2023c;
Liu et al., 2024b) have recently been introduced, achieving promising results and fostering new
research directions for MTSF. Alongside these advancements in model architectures, active research
within the deep MTSF community also focuses on other critical topics, such as variable (channels)
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dependency modeling (Nie et al., 2023; Liu et al., 2024a; Zhang and Yan, 2023), series normalization
methods (Liu et al., 2022c; Fan et al., 2023), and trend-seasonal decomposition (Zeng et al., 2023a;
Liu et al., 2023).

As the field of MTSF continues to diversify, existing studies typically address critical concerns about
methodological effectiveness, either by conducting large-scale benchmarks (Wang et al., 2024b; Shao
et al., 2024; Qiu et al., 2024) or performing model selection via AutoML (Abdallah et al., 2022;
Fischer and Saadallah, 2024). However, we identify three main challenges with these prevailing
approaches: First, the granularity of existing studies is insufficient. Current benchmarking works
evaluate or select models as a whole, which hinders a deeper understanding of the mechanisms that
drive model performance. In AutoML, this lack of granularity prevents breakthroughs beyond the
limits of existing models. Second, the scope of existing studies is limited. Current benchmarking and
automated selection efforts are often confined to restricted model architectures or hyperparameters,
without covering a broad range of data processing methods or feature modeling techniques. Third,
the range of existing studies is narrow. Existing studies tend to cover only a subset of network
architectures and often lack discussions on more diverse models, such as LLMs and TSFMs.
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Figure 1: Framework of the proposed TSGym. (a) Deep MTSF models are decoupled into fine-
grained components organized whithin four stages, creating a space of M combinations; from which
m (m ≪ M ) are sampled for evaluation. (b) Sampling can be either random or smart (e.g., Optuna-
guided), with the latter yielding a higher proportion of low-error combinations. (c) A meta-learner is
trained on component embeddings and dataset meta-features, supervised by a performance matrix
derived from large-scale experiments on the m combinations across n datasets. The trained learner
then performs zero-shot selection on a new, unseen dataset to identify an optimal structure, which
is subsequently trained from scratch. (d) Adding meta-train datasets closer to the target dataset(s)
improves transferability, as detailed in Appx.H.3.

To bridge these gaps, we propose TSGym—a framework designed for the Large-scale Evaluation,
Component-level Analysis, and Automated Model Construction in deep MTSF tasks. Rather
than viewing models as a whole, TSGym systematically decouples popular deep MTSF methods
by organizing them into distinct design dimensions involved in the time-series modeling pipeline
(see Fig. 1 and Table 1). TSGym conducts fine-grained, isolated evaluations of core components
through extensive experiments, thereby identifying key design dimensions/choices and valuable
insights from the vast MTSF methods. Moreover, the large-scale experimental analysis in TSGym
enable a systematic examination of prevailing claims within the MTSF community, addressing key
questions such as the comparison between Transformer and MLP architectures and the adaptability
of channel-independent approaches. Moreover, TSGym proposes the first component-level model
construction in MTSF tasks, which effectively overcomes limitations in the previous automation
methods by enabling more flexible and customized model designs tailored to data characteristics.
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Extensive experimental results indicate that the proposed TSGym generally outperforms existing
SOTA methods. We summarize the key contributions of TSGym as follows:

Component-level Evaluation of MTSF Methods. We propose TSGym, the first large-scale bench-
mark that systematically decouples deep MTSF methods. By evaluating 16 design dimensions across
10 benchmark datasets, TSGym elucidates contested issues in the current community and offers key
insights to inform future development for MTSF.

Automated MTSF Model Construction. Leveraging meta-learning, TSGym develops models that
outperform current SOTA methods, offering the MTSF community an effective, automated, and
data-adaptive solution for model design. The framework is also proven to be robust, maintaining
strong performance across various sampling strategies and meta-learner architectures, and flexible,
systematically incorporating novel research findings like LLMs and TSFMs into its component space.

Discussion on Emerging Large Time-series Models. TSGym broadens current MTSF scope by
applying systematic evaluation and automated combination not only to well-established models like
MLP and Transformer, but also to novel large time-series models like LLMs and TSFMs.

2 RELATED WORK

2.1 DEEP LEARNING-BASED MTSF

MTSF evolves from traditional statistical methods like ARIMA and Gaussian processes to modern
deep learning approaches. Recurrent Neural Networks (RNNs) introduce memory mechanisms for
sequential data but struggle with long-term dependencies. Temporal Convolutional Networks (TCNs)
improve this by capturing multi-scale patterns, though their fixed window sizes limit global context.
Transformers, using self-attention, enable long-range forecasting but introduce high computational
complexity, leading to efficient variants like sparse attention (Wu et al., 2021) and patch-based
models (Nie et al., 2023). Multilayer Perceptrons (MLPs) regain attention as simple yet effective
models (Zeng et al., 2023b), with numerous variants offering competitive performance (Chen et al.,
2023; Yi et al., 2023; Das et al., 2023; Liu et al., 2023). Leveraging NLP foundation models, LLM
adaptation approaches use frozen backbones and prompt engineering (Jin et al., 2024a; Zhou et al.,
2023) or fine-tuning (Chang et al., 2023) to transfer pretrained knowledge. Simultaneously, pure
TSFMs trained on large datasets achieve zero-shot generalization (Liu et al., 2024b; Goswami et al.,
2024), though constrained by Transformers’ complexity. Our TSGym framework modularizes six
core backbones—RNNs, CNNs, Transformers, MLPs, LLMs, and TSFMs—offering flexible, hybrid
integration based on temporal dependencies and resource needs.

In recent advancements in MTSF, we summarize the design paradigm through a unified pipeline
(Fig. 1a), consisting of four stages: Series Preprocessing→Series Encoding→Network Architec-
ture→Network Optimization. Additionally, several specialized modules are proposed to enhance
predictive accuracy by addressing non-stationarity, multi-scale dependencies, and inter-variable
interactions. We categorize these developments into 6 specialized modules:

(1) Normalization methods like RevIN (Kim et al., 2021) adjust non-stationary data, improving
robustness against distribution shifts. (2) Decomposition methods, such as Autoformer (Wu et al.,
2021)’s trend-seasonality separation, isolate non-stationary components, making the data more pre-
dictable by separating trends from seasonality. (3) Multi-scale analysis extracts temporal patterns
across granularities, as in TimeMixer (Wang et al., 2024a), capturing both high-frequency fluctuations
and low-frequency trends through hierarchical resolution modeling. (4) Temporal tokenization
techniques like PatchTST(Nie et al., 2023)’s subseries-level embedding represent time series hierar-
chically, improving the capture of complex temporal semantics. (5) Temporal dependency modeling
through architectures like Transformers leverages self-attention to capture long-range dependencies,
effectively modeling both short- and long-term relationships. (6) Variate correlation learning, ex-
emplified by DUET (Qiu et al., 2025b), models inter-variable dependencies using frequency-domain
metric learning, improving predictions by capturing interactions across variables.

To provide a more detailed categorization and comprehensive technical specifications, please refer to
Appx. B. Due to the extensive focus and continuous evolution of these modules in MTSF research,
TSGym strives to decouple and modularize these key modules, exploring their real contributions and
enabling more flexible model structure selection and configuration.
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2.2 AUTOML FOR TIME SERIES FORECASTING

Current automated approaches for DL-based MTSF can be categorized into ensemble-based (Shchur
et al., 2023a) and meta-learning-based (Abdallah et al., 2022; Fischer and Saadallah, 2024) methods.
The former fits and integrates various models from a predefined pool with ensemble techniques, which
inevitably incurs substantial computational cost. The latter leverages meta-features to characterize
datasets and selects optimal models for the given datasets. However, both approaches operate at the
model level and struggle to surpass the performance ceiling of existing methods. AutoCTS++ (Wu
et al., 2024) achieves automated selection by searching over model architectures and hyperparameters,
but its search space is limited in scope. In contrast, TSGym is the first framework to support automated
selection over a wide range of fine-grained components for MTSF, extending beyond narrow model
structures, hyperparameters, and data processing strategies.

A closely related work is ADGym (Jiang et al., 2023), which is designed for tabular anomaly detection
with model decomposition. Differently, TSGym deals with multivariate time series data, which
presents more complex data processing design choices, such as series sampling, series normalization,
and series decomposition. Second, TSGym considers finer-grained model structures, such as various
attention variants in Transformers, and broader network types, including LLMs and TSFMs. Third,
TSGym explores the value of Optuna (Akiba et al., 2019), a Bayesian-optimization-driven intelligent
search framework, which attains a superior design space at markedly lower cost and thus enhances
the efficacy of TSGym. It is worth mentioning that the success of TSGym validates the universality of
the model decomposition framework, marking an innovation and progression distinct from ADGym.
Further details on the differences between two works can be found in Appx.F.

3 TSGYM: AUTOMATIC MODEL DESIGN FRAMEWORK FOR DEEP MTSF
3.1 PROBLEM DEFINITION FOR MTSF
In this paper, we focus on the common MTSF settings for time series data containing C variates.
Given historical data χ = {xt

1, . . . ,x
t
C}

L
t=1, where L is the look-back sequence length and xt

i is the
i-th variate, the forecasting task is to predict T -step future sequence χ̂ = {x̂t

1, . . . ,x
t
C}

L+T
t=L+1. To

avoid error accumulation (T > 1), we directly predict all future steps, following (Zhou et al., 2021).

3.2 DECOUPLING DESIGN CHOICES FROM EXISTING DEEP MTSF MODELS

Under the proposed framework, the primary undertaking involves a systematic disentangling of
advanced MTSF methods. By first disentangling existing models, it provides the foundation for a
flexible assembly architecture and thereby facilitates a granular analysis to identify the components
most responsible for performance gains.

Following the taxonomy of the previous study (Wen et al., 2022; Zeng et al., 2023b), we decouple
existing SOTA methods according to the standard process of MTSF modeling, while significantly
expanding the diversity of the modeling pipeline. Based on the flow direction from the input to
the output sequence, the Pipeline includes: Series Preprocessing→Series Encoding→Network
Architecture→Network Optimization, as is demonstrated in Fig. 1(a). Moreover, we structure each
pipeline step according to distinct Design Dimensions, where a DL-based time-series forecasting
model can be instantiated by specified Design Choices, as is shown in Table 1, and we provide a
detailed visualization of this step-by-step workflow in Fig. 2 for clarity.

Through the proposed design dimensions and choices, TSGym provides detailed description of
time-series modeling pipeline, disentangling key elements within mainstream time-series forecasting
methods and facilitating component-level comparison/automated construction. For example, TSGym
includes multi-scale mixing module proposed in TimeMixer (Wang et al., 2024a), Inverted Encoding
method proposed in iTransformer (Liu et al., 2024a), Channel-independent strategy and Series-
Patching encoding used in PatchTST (Nie et al., 2023), various attention mechanism discussed in
(Wen et al., 2022), and also LLM and TSFM network type choices that are often integrated without
fully considering their interactions with other design dimensions.

3.3 AUTOMATED MTSF MODEL CONSTRUCTION VIA TSGYM

Overview. Differing from traditional methods that focus on selecting an off-the-shelf model, TSGym
aims to customize models given the downstream MTSF tasks and data descriptions. Given a
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Pipeline Design Dimensions Design Choices

↓Series
Preprocessing

Series Normalization w/o Norm, Stat, RevIN, DishTS
Series Decomposition w/o Decomp, MA, MoEMA, DFT
Series Sampling/Mixing w/ Mixing, w/o Mixing

↓Series
Encoding

Channel Independent Channel Indepen, Channel Depen
Sequence Length 48, 96, 192, 512
Series Tokenization Series Patching, Inverted Encoding,

Positional Encoding
Timestamp Embedding w/ Embedding, w/o Embedding

↓Network
Architecture

Network Backbone MLP, GRU, Transformer, LLM, TSFM
Series Attention w/o Attn, SelfA, AutoCorr, SparseA,

FrequencyA, DestationaryA
Feature Attention w/o Attn, SelfA, SparseA, FrequencyA
Hidden Layer Dimensions 64, 256
FCN Layer Dimensions 256, 1024
Encoder Layers 2, 3

↓Network
Optimization

Training Epochs 10, 20, 50
Loss Function MSE, MAE, HUBER
Learning Rate 1e-3, 1e-4
Learning Rate Strategy w/o lr Adjust, w/ lr Adjust

Table 1: TSGym’s comprehensive design choices for
deep MTSF. "A" represents Attention mechanism.

Figure 2: Workflow of TSGym designed model.

pre-defined conflict-free model set M = {M1, ...,Mm}, each model Mi is instantiated by the
design choice combinations illustrated in Table 1. TSGym learns the mapping function from these
automatically combined models to their associated forecasting performance on the training datasets,
and generalize to the test dataset(s) to select the best model based on predicted results.

Meta-learning for automated MTSF model construction. Formally speaking, TSGym propose k
design dimensions DD = {DD1, ..., DDk} for comprehensively describing each step of aforemen-
tioned pipeline in deep learning time-series modeling. Each design dimension DDi represents a set
containing elements of different design choices DC. By taking the Cartesian product of the sets DD
corresponding to different design dimensions, we obtain the pool of all valid model combinations
M = DD1 × DD2 × · · · × DDk = {(DC1, DC2, . . . , DCk) | DCi ∈ DDi, i = 1, 2, . . . , k}.
Considering the potentially large number of combinations and the computational cost, we randomly
sampled M to Ms, where Mi = (DC1 = RevIN,DC1 = DFT, ...,DCk = Type1) ∈ Ms, for
example, which means Mi instantiates RevIN method to normalize input series, then decompose it to
the seasonal and trend term. Subsequently, following the Series Encoding and Network Architecture
constructing pipeline (as illustrated in Table 1), finally the Type1, i.e., a step decay learning rate
strategy is employed to adjust the learning rate for updating the model parameters.

Suppose we have n training datasets Dtrain = {D1, . . . ,Dn} and the number of sampled model com-
binations (i.e., the size of the set Ms) is m, TSGym conducts extensive experiments on n historical
training datasets to evaluate and further collect the forecasting performance of m model combinations.
TSGym then acquire the MSE performance matrix P ∈ Rn×m, where Pi,j corresponds to the j-th
auto-constructed MTSF model’s performance on the i-th training dataset. Since the difficulty of
prediction tasks varies across training datasets, leading to significant differences in the numerical
range of performance metrics. Directly using these metrics (e.g., MSE) as training targets of a meta-
predictor may result in overfitting on more difficult dataset(s). Therefore, we convert the performance
metrics of Ms into their corresponding normalized ranking, where Ri,j = rank(Pi,j)/m ∈ [0, 1]
and smaller values indicate better performance on the corresponding dataset.

Distinguished from previous model selection approaches (Abdallah et al., 2022; 2025), TSGym
decouples more recently MTSF methods (including MLP-Mixer-type, Transformer-based, LLM
and TSFM models), and supports fine-grained model construction at the component level, rather
than being constrained to a fixed, limited set of existing models, which enables significantly greater
flexibility and effectiveness. Specifically, TSGym follows the idea of meta-learning to construct a
meta-predictor that learns the mapping function f(·) from training dataset Di and model combination
Mj , to the performance rankings Ri,j , as is shown in Eq. 1, where the meta-features Emeta

i capture
multiple aspects such as statistical, temporal, spectral, and fractal features to fully describe the
complex data characteristics of time series datasets. Learnable continuous embeddings Ecomp

j are
used to represent different model combinations and are updated through the gradient backpropagation
of the meta-predictor. This process enables efficient zero-shot inference at test time: for any new
dataset, the meta-predictor can identify a top-performing model configuration using only the meta-
features extracted from the training data, eliminating the need for any costly experimental trials.

f(Di,Mj) = Ri,j , f : Emeta
i

meta features

, Ecomp
j

component embed.

7→ Ri,j , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (1)
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We used a simple two-layer MLP as the meta-predictor and trained it through a regression problem,
thereby transferring the learned mapping to new test datasets. For a newcoming dataset (i.e., test
dataset Xtest), we acquire the predicted relative ranking of different components using the trained f(·),
and select top-1 (k) to construct MTSF model(s). Note this procedure is zero-shot without needing
any neural network training on Xtest but only extracting meta-features and pipeline embeddings. We
show the effectiveness of the meta-predictor in §4.3.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. Following most prior works (Wu et al., 2021; 2023; Jin et al., 2024a), we adopt 9 datasets
as experimental data for MTSF tasks, ETT (4 subsets), Traffic, Electricity, Weather, Exchange, ILI.
And we utilize the M4 dataset for short-term forecasting tasks. The forecast horizon L for long-term
forecasting is {96, 192, 336, 720}, while for the ILI dataset, it is {24, 36, 48, 60}. For short-term
forecasting, the forecast horizons are {6, 8, 13, 14, 18, 48}. More details can be seen in Appx. A.

Baseline. We compare TSGym against a comprehensive set of baselines, including MTSF and
AutoML methods, to demonstrate the superior performance of the pipelines automatically constructed
by TSGym. Due to space limitations, the baseline methods presented in this section include the
latestapproach DUET (Qiu et al., 2025b), TimeMixer (Wang et al., 2024a), MICN (Wang et al.,
2023), SegRNN (Lin et al., 2023), TimesNet (Wu et al., 2023), PatchTST (Nie et al., 2023), Cross-
former (Zhang and Yan, 2023), and Autoformer (Wu et al., 2021). We present experiments based on
the complete baseline in the Appx. H.

Evaluation Metrics. We follow the experimental setup of most prior works, using Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics for long-term forecasting tasks,
and using Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error
(MASE), and Overall Weighted Average (OWA) as metrics for short-term forecasting tasks. The
mathematical formulas for these evaluation metrics are provided in the Appx. D.

Meta-predictor in TSGym. The meta-predictor is instantiated as a two-layer MLP and trained for
100 epochs with early stopping. The training process utilizes the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 0.001 and batch size of 512. See details in Appx. G.

4.2 LARGE-SCALE COMPONENTS-LEVEL ANALYSIS WITH TSGYM

In this work, we perform large evaluations on the decoupled pipelines according to the standard
procedure of MTSF methods. Such analysis is often overlooked in previous studies, and we investigate
each design dimension of decoupled pipelines by fixing its corresponding design choice (e.g., Self
Attention), and randomly sampling other dimensional design choices to construct MTSF pipelines.

In the following sections, we formulate 4 most contentious claims in the MTSF reaserch community
and clarify them with our framework. All our conclusions are drawn from 18 experimental settings,
spanning nine distinct datasets and two evaluation metrics. These results are presented in Table H10,
H11, H12, and H13. Leveraging our open-source framework and the accompanying large-scale
experimental results, researchers can explore additional findings of interest beyond those reported in
our paper.

Claim: Transformers are less robust than MLPs. Shao et al. (2024)

Yes. Using the inter-quartile range (IQR) as the robustness metric, Transformers perform worse than
MLPs in 13 out of 18 settings, with an average IQR of 0.391—significantly higher than the 0.275
average IQR of MLPs.

Claim: Transformers exhibit a higher upper bound than MLPs. Shao et al. (2024)

No. Taking the best performance of each MLP and Transformer variant across all pipelines as their
respective upper-bound estimate, we observe average upper-bound metrics of 0.406 and 0.408 over
the 18 settings, with MLPs attaining the higher bound in 11 of them. This indicates that Transformers
do not demonstrate a superior model capacity upper bound.

Claim: Novel attention mechanisms outperform vanilla self-attention.
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Table 2: Long-term forecasting task. The past sequence length is set as 36 for ILI and 96 for the
others. All the results are averaged from 4 different prediction lengths, that is {24, 36, 48, 60} for ILI
and {96, 192, 336, 720} for the others. See Table in Appendix for the full results.

Models TSGym DUET TimeMixer MICN TimesNet PatchTST DLinear Crossformer Autoformer SegRNN
(Ours) (Qiu et al., 2025b) (Wang et al., 2024a) (Wang et al., 2023) (Wu et al., 2023) (Nie et al., 2023) (Zeng et al., 2023b) (Zhang and Yan, 2023) (Lin et al., 2023) (Wu et al., 2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.362 0.380 0.407 0.409 0.384 0.399 0.402 0.429 0.432 0.430 0.390 0.404 0.404 0.407 0.501 0.501 0.532 0.496 0.388 0.404
ETTm2 0.266 0.322 0.296 0.338 0.277 0.325 0.342 0.391 0.296 0.334 0.288 0.334 0.349 0.399 1.487 0.789 0.330 0.368 0.273 0.322
ETTh1 0.427 0.439 0.433 0.437 0.448 0.438 0.589 0.537 0.474 0.464 0.454 0.449 0.465 0.461 0.544 0.520 0.492 0.485 0.422 0.429
ETTh2 0.367 0.403 0.380 0.403 0.383 0.406 0.585 0.530 0.415 0.424 0.385 0.409 0.566 0.520 1.552 0.908 0.446 0.460 0.374 0.405

ECL 0.164 0.261 0.179 0.262 0.185 0.273 0.186 0.297 0.219 0.314 0.209 0.298 0.225 0.319 0.193 0.289 0.234 0.340 0.216 0.302
Traffic 0.433 0.301 0.797 0.427 0.496 0.313 0.544 0.320 0.645 0.348 0.497 0.321 0.673 0.419 1.458 0.782 0.637 0.397 0.807 0.411

Weather 0.240 0.276 0.252 0.277 0.244 0.274 0.264 0.316 0.261 0.287 0.256 0.279 0.265 0.317 0.253 0.312 0.339 0.379 0.251 0.298
Exchange 0.375 0.415 0.322 0.384 0.359 0.402 0.346 0.422 0.405 0.437 0.381 0.412 0.346 0.414 0.904 0.695 0.506 0.500 0.408 0.423

ILI 2.463 1.043 2.640 1.018 4.502 1.557 2.938 1.178 2.140 0.907 2.160 0.901 4.367 1.540 4.311 1.396 3.156 1.207 4.305 1.397

1st Count 11 2 1 0 1 1 0 0 0 2

Table 3: Short-term forecasting task on M4. The results are averaged from several datasets under
different sample intervals. See Table in Appendix for the full results.

Models TSGym (ours) TimeMixer MICN TimesNet PatchTST DLinear Crossformer Autoformer SegRNN

OWA 0.856 0.884 0.984 0.907 0.965 0.922 8.856 1.273 1.007
sMAPE 11.781 11.985 13.025 12.199 12.848 12.511 >30 16.392 13.509
MASE 1.551 1.615 1.839 1.662 1.738 1.693 >10 2.317 1.823

Yes. Among the configurations equipped with attention modules, the vanilla self-attention mechanism
ranks first in only one of the 18 experimental settings. Although Auto-Correlation exhibits similarly
poor performance, the majority of novel attention mechanisms consistently outperform the vanilla
self-attention.

Claim: Novel sequence encodings outperform the classic series encoding. Chen et al. (2025)

Yes. Across the 18 experimental settings, classic positional encoding never achieves the best perfor-
mance, recording a mean median error of 0.605. Inverted encoding and series patching achieve 0.558
and 0.549, respectively, with the latter ranking first in 15 settings.

4.3 EFFECTIVENESS OF AUTOMATED MODEL CONSTRUCTION VIA TSGYM

Extensive experimental results discussed above indicate that in deep time series modeling, most
design choices are determined by data characteristics, meaning one-size-fits-all approaches are seldom
effective. This, in turn, emphasizes the necessity of automated model construction.

In this subsection, we compare the MTSF pipeline selected by TSGym with existing SOTA methods.
Through large-scale experiments, we found that TSGym outperforms existing SOTA models in both
long- and short-term MTSF tasks. Regarding algorithm efficiency, our experiments demonstrate that
even when limited to a search pool of lightweight model structures, such as MLP and RNNs, TSGym
can still achieve competitive results. We analyze the effectiveness of the pipelines automatically
constructed by TSGym through five key questions as follows. Additional details, such as the results
based on more metrics and more complex meta-features, can be found in the Appx.H.

Question 1: Is the model constructed by meta-predictor better than existing SOTA methods?

Comprehensive forecasting results in Tables 2 and 3 highlight the best performances in red and
second-best in blue. Compared to state-of-the-art forecasters, TSGym outperforms others across
multiple datasets, achieving the lowest MSE and MAE 11 times, demonstrating strong generalization
ability over medium and long forecasting horizons. While models like DUET, TimeMixer, and
SegRNN show competitive results on certain datasets, TSGym generally outperforms them, especially
in short-term forecasting tasks. As for short-term forecasting tasks, both TSGym and TimeMixer
demonstrate competitive performance, with TSGym outperforming on most evaluation metrics.

Question 2: Is TSGym with lightweight architecture better than existing SOTA methods?

In the previous section, we compared TSGym using the full component pool with SOTA and
found that TSGym outperforms SOTA on several datasets. In this ablation experiment Table 4, we
specifically compare the -Transformer configuration of TSGym with DUET. Remarkably, even
after removing Transformer-related components from the TSGym component pool and retaining only
the more computationally efficient MLP- and RNN-based models, TSGym still outperforms DUET
on the majority of datasets. This demonstrates the robustness and efficiency of TSGym’s architecture
and highlights the strong predictive power of the simplified MLP-based design.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Ablation study evaluates the removal of
Transformer-based components and different train-
ing strategies, and the final row shows how often
TSGym variants outperform DUET.

Models TSGym -Transformer +AllPL DUET
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.362 0.380 0.370 0.394 0.359 0.379 0.407 0.409
ETTm2 0.266 0.322 0.269 0.322 0.271 0.328 0.296 0.338
ETTh1 0.427 0.439 0.408 0.423 0.430 0.437 0.433 0.437
ETTh2 0.367 0.403 0.357 0.392 0.368 0.399 0.380 0.403

ECL 0.164 0.261 0.172 0.269 0.169 0.266 0.179 0.262
Traffic 0.433 0.301 0.456 0.313 0.446 0.298 0.797 0.427

Weather 0.240 0.276 0.238 0.271 0.236 0.276 0.252 0.277
Exchange 0.375 0.415 0.407 0.429 0.421 0.433 0.322 0.384

ILI 2.463 1.043 2.654 1.111 2.490 1.055 2.640 1.018
Better Count 13/18 13/18 13/18 -

Question 3: Does the training strategies bring
significant improvement for TSGym?

Following Table 4, we find that the +AllPL
configuration, which trains on datasets with
varying prediction lengths and transfers this
knowledge to a test set with a single prediction
length, further improves generalization, with
the best performance observed on the ETTm1
dataset. Additionally, removing the Transformer
component (-Transformer) leads to perfor-
mance gains on certain datasets, suggesting
that a simplified MLP- or RNN-based architec-
ture can be more effective in specific scenar-
ios. These results highlight the flexibility of
TSGym’s design and the potential benefits of customizing the component pool to suit dataset charac-
teristics.

Question 4: Does large time-series models bring significant improvement for TSGym?

Table 5: Ablation study of TSGym incorporating
LLM and TSFM in four datasets.

Models TSGym +LLM +TSFM
Metric MSE MAE MSE MAE MSE MAE
ETTh1 0.439 0.453 0.431 0.441 0.476 0.465
ETTh2 0.356 0.396 0.362 0.395 0.399 0.418

Exchange 0.382 0.418 0.388 0.419 0.684 0.482
ILI 3.092 1.199 2.830 1.128 2.656 1.105

Table 5 evaluates the impact of incorporating
LLM and TSFM into the base TSGym frame-
work. The introduction of LLM consistently
improve forecasting accuracy compared to the
baseline TSGym configuration and the addition
of TSFM offers some improvements for certain
datasets. However, the improvements are not
uniform across all datasets, suggesting that fur-
ther refinement is needed to optimize their im-
pact on MTSF.

Question 5: Does smarter sampling strategy bring improvement for TSGym?

As shown in Table 6, incorporating Optuna, a Bayesian optimization-based sampling method, im-
proves or maintains meta-learner performance on nearly all datasets. Fig.3 illustrates that while
random sampling produces a broad distribution dominated by mediocre configurations, Optuna shifts
sampling toward low-error regions, increasing the share of high-quality components. By replacing
a part of the random pool with these Optuna-sampled configurations while keeping the total pool
size fixed, we enhance average quality without losing diversity, leading to the observed performance
gains. Further details regarding the Optuna sampling setup are provided in Appx. H.3.

Sampling
Strategies Random +Optuna

Metric MSE MAE MSE MAE
ETTm1 0.370 0.394 0.354 0.379
ETTm2 0.269 0.322 0.258 0.313
ETTh1 0.408 0.423 0.431 0.441
ETTh2 0.357 0.392 0.355 0.389

ECL 0.172 0.269 0.170 0.265
Traffic 0.456 0.313 0.427 0.295

Weather 0.238 0.271 0.240 0.280
Exchange 0.407 0.429 0.402 0.427

ILI 2.654 1.111 2.488 1.053

Table 6: TSGym-Transformer performance com-
parison across random and Optuna sampling strate-
gies.
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Figure 3: Distribution of model perfor-
mance selected by two sampling strategies.

4.4 COMPARATIVE EXPERIMENTS WITH AUTOML METHODS

Establishing a meaningful benchmark requires selecting comparable frameworks. While many
general-purpose AutoML libraries exist (e.g., TPOT (Olson et al., 2016), H2O-3 (H2O.ai, 2022),
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Microsoft NNI (Microsoft, 2021), Auto-Keras (Jin et al., 2023a), Auto-Sklearn (Feurer et al., 2022),
NASLib (Ruchte et al., 2020)), most are not designed for time-series forecasting. Adapting them
for MTSF would be burdensome and potentially leading to an unfair evaluation. Consequently,
we benchmarked the two prominent AutoML libraries that explicitly support MTSF on both short-
term and long-term forecasting tasks: AutoGluon-TimeSeries (Shchur et al., 2023b) and AutoTS
(Catlin, 2020). The dataset partitioning scheme was identical to that used for TSGym. To manage
computational demands, AutoGluon was configured with the "high_quality" preset and AutoTS with
its "superfast" setting, while all other hyperparameters were maintained at their default values.

Table 7: Short-term forecasting comparison with
AutoML methods.

Model TSGym (ours) AutoGluon AutoTS

OWA 0.856 0.950 2.002
SMAPE 11.781 13.178 18.977
MASE 1.551 1.775 4.981

Table 8: Long-term forecasting comparison with
AutoML methods.

Dataset TSGym (ours) AutoGluon AutoTS
MSE MAE MSE MAE MSE MAE

ETTm1 0.362 0.380 0.482 0.408 0.744 0.546
ETTm2 0.266 0.322 0.273 0.337 0.392 0.389
ETTh1 0.427 0.439 0.503 0.473 0.981 0.61
ETTh2 0.367 0.403 0.419 0.43 0.589 0.488
ECL 0.164 0.261 0.265 0.328 0.327 0.355
Traffic 0.433 0.301 0.555 0.325 0.739 0.311
Weather 0.240 0.276 0.236 0.27 0.519 0.372
Exchange 0.375 0.415 0.33 0.393 0.588 0.494
ILI 2.463 1.043 2.271 0.979 2.533 1.049

For short-term forecasting (Table 7), TSGym
demonstrates clear superiority, achieving the
best scores across all three metrics: Overall
Weighted Average (OWA), Symmetric Mean Ab-
solute Percentage Error (SMAPE), and Mean
Absolute Scaled Error (MASE). This indicates
a robust and consistently better performance in
short-horizon predictions compared to the estab-
lished AutoML baselines.

In the more challenging long-term forecasting
tasks (Table 8), TSGym continues to show a
strong competitive advantage. It secures the
lowest (best) Mean Squared Error (MSE) and
Mean Absolute Error (MAE) on the majority of
datasets, including ETTm1, ETTm2, ETTh1,
ETTh2, ECL, and Weather. It is worth not-
ing that AutoGluon achieves better performance
on the Exchange dataset and a lower MAE on
the ILI dataset, while AutoTS shows a compet-
itive MAE on the Traffic dataset. Nevertheless,
TSGym’s dominant performance across a wide
range of datasets underscores its effectiveness
and robustness for long-horizon prediction.

As the results indicate, TSGym consistently and
significantly outperforms both AutoGluon and AutoTS on the vast majority of datasets, in both
short-term and long-term forecasting tasks. The superiority of TSGym for multivariate time series
forecasting lies in its distinct methodology, which automates model construction through fine-grained
component decomposition and meta-learning.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

To advance beyond holistic evaluations in multivariate time-series forecasting (MTSF), this paper
introduced TSGym, a novel framework centered on fine-grained component analysis and the au-
tomated construction of specialized forecasting models. By systematically decomposing MTSF
pipelines into design dimensions and choices informed by recent studies, TSGym uncovers crucial
insights into component-level forecasting performance and leverages meta-learning method for the
automated construction of customized models. Extensive experimental results indicate that the
MTSF models constructed by the proposed TSGym significantly outperform current MTSF SOTA
solutions—demonstrating the advantage of adaptively customizing models according to distinct data
characteristics. Our results show that TSGym is highly effective, even without exhaustively covering
all SOTA components, and TSGym is made publicly available to benefit the MTSF community.

Future efforts will focus on expanding TSGym’s range of forecasting techniques with emerging
techniques and refining its meta-learning capabilities by incorporating multi-objective optimization to
balance predictive performance against computational costs, especially for large time-series models,
while also broadening its applicability across diverse time series analysis tasks.
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APPENDIX

For further details, we provide more information in the Appendix, including the evaluated 10 datasets (§A),
key modules (§B), compared baselines (§C), metrics mathematical formula (§D), system configuration (§E),
ADGym comparison analysis (§F), the details of proposed TSGym (§G), and additional experimental results
(§H).

A DATASET LIST

We conduct extensive evaluations on nine standard long-term forecasting benchmarks - four ETT variants
(ETTh1, ETTh2, ETTm1, ETTm2), Electricity (abbreviated as ECL), Traffic, Weather, Exchange, and ILI,
complemented by the M4 dataset for short-term forecasting tasks, with complete dataset specifications provided
in Table A1.

Table A1: Data description of the 12 datasets included in TSGym.

Task Dataset Domain Frequency Lengths Dim Description

LTF

ETTh1 Electricity 1 hour 14,400 7 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTm1 Electricity 15 mins 57,600 7 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ECL Electricity 1 hour 26,304 321 Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Traffic Traffic 1 hour 17,544 862 Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
Weather Environment 10 mins 52,696 21 Recorded every for the whole year 2020, which contains 21 meteorological indicators
Exchange Economic 1 day 7,588 8 ExchangeRate collects the daily exchange rates of eight countries
ILI Health 1 week 966 7 Recorded indicators of patients data from Centers for Disease Control and Prevention
Covid-19 Health 1 day 1,392 948 Provide opportunities for researchers to investigate the dynamics of COVID-19
FRED-MD Economic 1 month 728 107 Time series showing a set of macroeconomic indicators from the Federal Reserve Bank

STF M4

Demographic,
Finance,
Industry,
Macro, Micro
and Other

Yearly

19-9933 100000 M4 competition dataset containing 100,000 unaligned time series with varying
lengths and time periods

Quarterly
Monthly
Weakly
Daily
Hourly

B KEY MODULES

Modern deep learning for MTSF utilizes several specialized modules to tackle non-stationarity, multi-scale
dependencies, and inter-variable interactions. In this section, we analyze the design and efficacy of prevalent
specialized modules adopted in state-of-the-art models (Fig. 1a).

Normalization modules address temporal distribution shifts through adaptive statistical alignment. While
z-score normalization employs fixed moments, modern techniques enhance adaptability: RevIN (Kim et al.,
2021) introduces learnable affine transforms with reversible normalization/denormalization; Dish-TS (Fan et al.,
2023) decouples inter-/intra-series distribution coefficients; Non-Stationary Transformer (Liu et al., 2022d)
integrates statistical moments into attention via de-stationary mechanisms. These methods balance stationarized
modeling with inherent non-stationary dynamics.

Decomposition methods, standard in time series analysis, break down series into components like trend
and seasonality to improve predictability and handle distribution shifts. (1) Time-domain decomposition
utilizes moving average operations to isolate slowly-varying trends from high-frequency fluctuations that
represent seasonality (e.g., DLinear (Zeng et al., 2023b), Autoformer, FEDformer). (2) Frequency-domain
decomposition partitions series via Discrete Fourier Transform (DFT), assigning low-frequency spectra to trends
and high-frequency bands to seasonality, which is applied in the Koopa (Liu et al., 2023) model.

Multi-Scale modeling addresses the inherent temporal hierarchy in time series data, where patterns manifest
differently across various granularities (e.g., minute-level fluctuations vs. daily trends). Pyraformer (Liu
et al., 2022b) integrates multi-convolution kernels via pyramidal attention to establish hierarchical temporal
dependencies. FEDformer (Zhou et al., 2022b) employs mixed experts to combine trend components from
multiple pooling kernels with varying receptive fields, where larger kernels capture macro patterns while smaller
ones preserve local details. TimeMixer (Wang et al., 2024a) extends this paradigm through bidirectional mixing
operations - upward propagation refines fine-scale seasonal features while downward aggregation consolidates
coarse-scale trends. FiLM (Zhou et al., 2022a) dynamically adjusts temporal resolutions through learnable
lookback windows, enabling adaptive focus on relevant historical contexts across scales. Crossformer (Zhang
and Yan, 2023) implements flexible patchsize configurations, where multi-granular patches independently model
short-term fluctuations and long-term cycles through dimension-aware processing.

Temporal Tokenization strategies, originating from Transformers (Wang et al., 2024b; Liu et al., 2024a) and
now extended to RNNs (Lin et al., 2023), vary by temporal representation granularity: (1) Point-wise methods
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(e.g., Informer (Zhou et al., 2021), Pyraformer (Liu et al., 2022b)) process individual timestamps as tokens. They
offer temporal precision but face quadratic complexity, requiring attention sparsification that may hinder long-
range dependency capture. (2) Patch-wise strategies (e.g., PatchTST (Nie et al., 2023)) aggregate local temporal
segments into patches. Pathformer (Chen et al., 2024) similarly employs patch-based processing via adaptive
multi-scale pathways. (3) Series-wise approaches (e.g., iTransformer (Liu et al., 2024a)) construct global variate
representations, enabling cross-variate modeling but risking temporal misalignment. TimeXer (Wang et al.,
2024c) uses hybrid tokenization: patch-level for endogenous variables and series-level for exogenous, bridged
by a learnable global token.

Temporal Dependency Modeling captures dynamic inter-step dependencies through diverse architectural
mechanisms, balancing local interactions and global patterns. Recurrent state transitions (e.g., LSTM) model
sequential memory via gated memory cells; temporal convolutions (e.g., TCN (Bai et al., 2018)) construct multi-
scale receptive fields using dilated kernels; attention mechanisms (e.g., Transformers) enable direct pairwise
interactions across arbitrary time steps. Efficiency-driven innovations include sparse attention (Informer (Zhou
et al., 2021)), periodicity-based aggregation (Autoformer (Wu et al., 2021)), and state-space hybrids (Mamba
(Gu and Dao, 2024)), achieving tractable long-range dependency modeling while preserving temporal fidelity.

Variate Correlation, fundamental to modeling critical correlations in multivariate time series forecasting
(MTSF), operates through two primary paradigms (Qiu et al., 2025b): (1) Channel-Independent (CI) Strategy:
Processes channels independently with shared parameters (e.g., PatchTST (Nie et al., 2023)), ensuring robustness
and efficiency but ignoring multivariate dependencies, limiting use with strong inter-channel interactions (Qiu
et al., 2025a). (2) Channel-Dependent (CD) Strategy: Integrates channel information via methods like channel-
wise self-attention (iTransformer (Liu et al., 2024a)) or MLP-based mixing (TSMixer (Chen et al., 2023)). This
allows explicit dependency modeling but risks overfitting and struggles with noise in high dimensions.

C COMPARED BASELINES

We systematically compare state-of-the-art forecasting models using the 6 architectural modules introduced in
Section B. Table C2 presents the configuration of each baseline in terms of these modules. The "Notes" column
provides concise annotations of each model’s key methodological features, allowing for quick identification of
the technical differentiators among the baselines.

D METRICS MATHEMATICAL FORMULA

The metrics used in this paper can be calculated as follows(Wu et al., 2023):

MSE =
1

H

H∑
i=1

(Xi − X̂i)
2, MAE =

1

H

H∑
i=1

|Xi − X̂i|,

SMAPE =
200

H

H∑
i=1

|Xi − X̂i|
|Xi|+ |X̂i|

, MAPE =
100

H

H∑
i=1

|Xi − X̂i|
|Xi|

,

MASE =
1

H

H∑
i=1

|Xi − X̂i|
1

H−m

∑H
j=m+1 |Xj −Xj−m|

, OWA =
1

2

[
SMAPE

SMAPENaïve2
+

MASE
MASENaïve2

]
,

where m is the periodicity of the data. X, X̂ ∈ RH×C are the ground truth and prediction results of the future
with H time points and C dimensions. Xi means the i-th future time point.

E SYSTEM CONFIGURATION

We conducted all experiments in the same experimental environment, which includes four NVIDIA A100 GPUs
with 80GB and eight 40GB of memory. We saved overall experimental time by running experiments in parallel.

F COMPARED WITH ADGYM

Compared with ADGym (Jiang et al., 2023), TSGym exhibits the following differences and advantages:

(1) Broader model structure design choices. ADGym includes only MLP, autoencoder (AE), ResNet, and
Transformer architectures, while TSGym provides an in-depth decoupling of different attention mechanisms
within Transformers and incorporates two pre-trained large models: LLMs and TSFM. (2) More diverse data
processing design choices. ADGym focuses solely on data augmentation and two normalization methods,
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Table C2: Component Configurations of 27 Baseline Models

Backbone Method Normali-
zation

Decom-
position

Multi-
Scale

Token-
izations

Temporal
Dependency

Variate
Corre-
lation

Notes

RNN
SegRNN(Lin et al., 2023) SubLast Patch-wise GRU CI Reduces iterations via patch-wise processing and parallel

multi-step forecasting.

Mamba(Gu and Dao, 2024) Stat Point-wise Selective State
Space Model CD Efficient model selectively propagating information with-

out attention or MLP blocks.

CNN

SCINet(Liu et al., 2022a) Stat TRUE Point-wise Conv1d CD Recursively downsamples, convolves, and interacts with
data to capture complex temporal dynamics.

MICN(Wang et al., 2023) MA TRUE Point-wise Conv1d CD Combines local features and global correlations using
multi-scale convolutions with linear complexity.

TimesNet(Wu et al., 2023) Stat TRUE Point-wise Conv2d CD Transforms 1D time series into 2D tensors to capture
multi-periodicity and temporal variations.

MLP

FiLM(Zhou et al., 2022a) RevIN TRUE Point-wise Legendre
Projection Unit CD Preserves historical info and reduces noise with Legen-

dre and Fourier projections.

LightTS(Zhang et al., 2022) Patch-wise MLP CD Lightweight MLP model for multivariate forecasting,
using continuous and interval sampling for efficiency.

DLinear(Zeng et al., 2023b) MA Point-wise MLP CI/CD Decomposes series into trend and seasonal components,
then applies linear layers for improved forecasting.

Koopa(Liu et al., 2023) Stat DFT Point-wise,
Patch-wise MLP CD Uses Koopman theory to model non-stationary dynamics,

handling time-variant and time-invariant components.

TSMixer(Chen et al., 2023) Point-wise MLP CD Simple MLP model efficiently captures both time and
feature dependencies for forecasting.

FreTS(Yi et al., 2023) Point-wise Frequency-
domain MLP CI/CD Uses frequency-domain MLPs to capture global depen-

dencies and focus on key frequency components.

TiDE(Das et al., 2023) Stat Point-wise MLP CI Fast MLP-based model for long-term forecasting, han-
dling covariates and non-linear dependencies.

TimeMixer(Wang et al., 2024a) RevIN MA TRUE Point-wise MLP CI/CD Fully MLP-based model, disentangles and mixes multi-
scale temporal patterns.

Transformer

Reformer(Kitaev et al., 2020) Point-wise LSHSelf-
Attention CD Memory-efficient Transformer with locality-sensitive

hashing for faster training on long sequences.

Informer(Zhou et al., 2021) Point-wise ProbSparse-
Attention CD Efficient Transformer with ProbSparse-Attention and a

generative decoder for faster long-sequence forecasting.

TFT(Lim et al., 2021) Stat Point-wise Self-Attention CD
High-performance, interpretable multi-horizon forecast-
ing model combining recurrent layers for local process-
ing and attention layers for long-term dependencies.

Autoformer(Wu et al., 2021) MA Point-wise Auto-
Correlation CD Uses Auto-Correlation and decomposition for accurate

long-term predictions.

PyraFormer(Liu et al., 2022b) TRUE Point-wise Pyramid-
Attention CD Captures temporal dependencies at multiple resolutions

with constant signal path length.

NSTransformer(Liu et al., 2022d) Stat Point-wise De-stationary
Attention CD Restores non-stationary information through de-

stationary attention for improved forecasting.

ETSformer(Woo et al., 2022) DFT Point-wise
Exponential-
Smoothing-
Attention

CD Integrates exponential smoothing and frequency atten-
tion for accuracy, efficiency, and interpretability.

FEDformer(Zhou et al., 2022b) MA TRUE Point-wise AutoCorrelation CD Combines seasonal-trend decomposition with frequency-
enhanced Transformer for efficient forecasting.

Crossformer(Zhang and Yan, 2023) TRUE Patch-wise TwoStage-
Attention CD Captures both temporal and cross-variable dependencies

with two-stage attention.

PatchTST(Nie et al., 2023) Stat Patch-wise FullAttention CI Segments time series into patches and uses channel-
independent embeddings.

iTransformer(Liu et al., 2024a) Stat Series-wise FullAttention CD Redefines token embedding to treat time points as series-
wise tokens for better multivariate modeling.

TimeXer(Wang et al., 2024c) Stat Series-wise FullAttention CD Enhances forecasting by incorporating exogenous vari-
ables via patch-wise and variate-wise attention.

PAttn(Tan et al., 2024) Stat Patch-wise FullAttention CI Similar to PatchTST, uses attention-based patching for
efficient forecasting without large language models.

DUET(Qiu et al., 2025b) RevIN MA Point-wise FullAttention CI/CD
Enhances multivariate forecasting by using Mixture of
Experts (MOE) for temporal clustering and a frequency-
domain similarity mask matrix for channel clustering.

Table F3: Compared with ADGym, TSGym covers a broader and more in-depth design space, as
well as a more structured and extensive automated selection experiment.

ADGym TSGym

Design Dimensions 13 16
Design Space Size 195,9552 796,2624
Model Architectures MLP,AE,ResNet,FTTransformer MLP,RNN, Transformers, LLM, TSFM
Max of Data Samples 3000 57,600
Baseline Methods 7 27

whereas TSGym encompasses series sampling, series normalization, series decomposition, as well as various
series encoding options. (3) More complex meta-features. The meta-features in ADGym include statistical
metrics for tabular datasets, while TSGym considers multiple sequence characteristics across different channels
in multivariate time series, such as distribution drift, sequence autocorrelation, and more. (4) More standardized
automated selection experiments. Due to time constraints, ADGym limits the sample size to fewer than 3000
samples, whereas TSGym imposes no such restriction, providing a larger-scale experimental design that leads to
more solid experimental conclusions.
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In summary, compared with ADGym, TSGym makes significant progress and development in both compo-
nents benchmarking and automated selection. More details can be seen in table F3.

G META-FEATURES AND META-PREDICTORS

Details and the selected list of meta-features. The meta-features in this paper are extracted via TSFEL
(Barandas et al., 2020) spanning temporal, statistical, spectral, and fractal domains. In Section 4.2, we present the
results of the meta-predictor trained on meta-features derived from these static characteristics. Furthermore, in
Fig. G1, we visualize the dimension-reduced meta-features across different datasets. The following categorizes
these features with their analytical purposes (see Tables G4–G7 for implementation details):

• Temporal features (Table G4): Characterize sequential dynamics through trend detection, entropy analysis,
and change-point statistics, preserving sensitivity to temporal ordering.

• Statistical features (Table G5): Capture distribution properties via central tendency (mean/median), disper-
sion (variance/IQR), and shape descriptors (skewness/kurtosis), invariant to observation order.

• Spectral features (Table G6): Decompose signals into frequency components using Fourier/wavelet trans-
forms, identifying dominant periodicities and hidden oscillations.

• Fractal features (Table G7): Quantify multiscale complexity through fractal dimensions and Hurst exponents,
reflecting self-similarity patterns across temporal resolutions.

Table G4: Temporal Meta-feature Specifications

Feature Description Functionality

Absolute Energy Computes the absolute energy of the signal. Measures the total energy of the signal, often used to understand signal power
and activity levels.

Area Under the Curve Computes the area under the curve of the signal
computed with the trapezoid rule.

Provides a measure of the overall signal amplitude or ""energy"" over time.

Autocorrelation Calculates the first 1/e crossing of the autocorre-
lation function (ACF).

Measures the correlation of the signal with its own past values, useful for identi-
fying repeating patterns.

Average Power Computes the average power of the signal. Averages the squared values of the signal, capturing its power over time.
Centroid Computes the centroid along the time axis. Indicates the ""center"" or ""balance point"" of the signal in time, providing

insight into its distribution.
Signal Distance Computes signal traveled distance. Measures the total path length covered by the signal over time, capturing the

extent of signal fluctuations.
Negative Turning Computes number of negative turning points of

the signal.
Counts the number of times the signal changes direction from positive to negative.

Neighbourhood Peaks Computes the number of peaks from a defined
neighbourhood of the signal.

Identifies the number of peak points within a specified window, useful for pattern
detection.

Peak-to-Peak Distance Computes the peak to peak distance. Measures the time interval between successive peaks, indicating the period of
oscillations.

Positive Turning Computes number of positive turning points of
the signal.

Counts the number of times the signal changes direction from negative to positive.

Root Mean Square Computes root mean square of the signal. Calculates the square root of the average squared values of the signal, often used
as a measure of signal strength.

Slope Computes the slope of the signal. Measures the rate of change in the signal’s amplitude over time, indicating trends
or shifts.

Sum of Absolute Differ-
ences

Computes sum of absolute differences of the
signal.

Measures the total variation in the signal by summing the absolute differences
between consecutive values.

Zero-Crossing Rate Computes Zero-crossing rate of the signal. Counts how many times the signal crosses the zero axis, indicating its frequency
and periodicity.

Details of the trained meta-predictors. For each design choice, we first use the LabelEncoder class from
scikit-learn to convert it into a numerical class index. This index is then fed into an nn.Embedding layer within
our model to obtain a dense vector representation. These learned embeddings, along with other meta-features,
subsequently form the input to the meta-predictor. The meta-predictor is optimized using Pearson loss to learn
the relative performance ranks of different design choices, thereby emphasizing the linear correlation between
predicted and actual rankings.

Moreover, we experimented with different training strategies to guide the meta-predictor in selecting the top-1
design pipelines. We report the results of TSGym with different training strategies in Table 4.

(1) +Resample: Constraining the number of combinations from different datasets to be equal when training the
meta-predictor.

(2) +AllPL: Training on datasets with varying prediction lengths and transfers this knowledge to a test set with a
single prediction length.
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Table G5: Statistical Meta-feature Specifications

Feature Description Functionality

Maximum Value Computes the maximum value of the signal. Identifies the highest amplitude or peak value in the signal, useful for determining
extreme values.

Mean Value Computes mean value of the signal. Calculates the average value of the signal, providing insight into its central
tendency.

Median Computes the median of the signal. Finds the middle value of the signal when sorted, offering robustness to outliers.
Minimum Value Computes the minimum value of the signal. Identifies the lowest amplitude or trough value in the signal, useful for detecting

minima.
Standard Deviation Computes standard deviation (std) of the signal. Measures the variation or spread of the signal values, indicating how much the

signal deviates from the mean.
Variance Computes variance of the signal. Quantifies the spread of signal values, related to the square of the standard

deviation.
Empirical Cumulative
Distribution Function

Computes the values of ECDF along the time
axis.

Provides a cumulative distribution function, representing the probability distribu-
tion of the signal values.

ECDF Percentile Computes the percentile value of the ECDF. Extracts specific percentiles from the cumulative distribution, useful for under-
standing the signal’s quantiles.

ECDF Percentile Count Computes the cumulative sum of samples that
are less than the percentile.

Measures the number of samples falling below a given percentile, providing
distribution insights.

ECDF Slope Computes the slope of the ECDF between two
percentiles.

Measures the steepness or rate of change in the cumulative distribution, indicating
distribution sharpness.

Histogram Mode Compute the mode of a histogram using a given
number of bins.

Finds the most frequent value in the signal’s histogram, representing the peak of
the signal’s distribution.

Interquartile Range Computes interquartile range of the signal. Measures the range between the 25th and 75th percentiles, indicating the spread
of the central 50% of the signal values.

Kurtosis Computes kurtosis of the signal. Measures the ""tailedness"" of the signal distribution, indicating the presence of
outliers or extreme values.

Mean Absolute Devia-
tion

Computes mean absolute deviation of the signal. Measures the average deviation of the signal values from the mean, providing an
indication of signal variability.

Mean Absolute Differ-
ence

Computes mean absolute differences of the sig-
nal.

Calculates the average of absolute differences between successive signal values,
reflecting the signal’s smoothness.

Mean Difference Computes mean of differences of the signal. Computes the average of the first-order differences, used to measure overall
signal change.

Median Absolute Devia-
tion

Computes median absolute deviation of the sig-
nal.

Measures the spread of the signal values around the median, offering a robust
measure of variability.

Median Absolute Differ-
ence

Computes median absolute differences of the
signal.

Similar to mean absolute difference but based on the median, used to assess
signal smoothness.

Median Difference Computes median of differences of the signal. Calculates the median of first-order differences, providing insights into signal
trend stability.

Skewness Computes skewness of the signal. Measures the asymmetry of the signal’s distribution, indicating whether it is
skewed towards higher or lower values.
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Table G6: Spectral Meta-feature Specifications

Feature Description Functionality

Entropy Computes the entropy of the signal using Shan-
non Entropy.

Quantifies the uncertainty or randomness in the signal, offering insights into its
complexity.

Fundamental Frequency Computes the fundamental frequency of the sig-
nal.

Identifies the primary frequency at which the signal oscillates, crucial for detect-
ing periodic behaviors.

Human Range Energy Computes the human range energy ratio. Measures the energy in the human audible range, useful for identifying signals
relevant to human hearing.

Linear Prediction Cep-
stral Coefficients

Computes the linear prediction cepstral coeffi-
cients.

Extracts features related to the signal’s frequency components, commonly used
in speech and audio processing.

Maximum Frequency Computes maximum frequency of the signal. Identifies the highest frequency component of the signal, providing insight into
its frequency range.

Maximum Power Spec-
trum

Computes maximum power spectrum density of
the signal.

Measures the peak value in the power spectral density, identifying dominant
frequencies in the signal.

Median Frequency Computes median frequency of the signal. Identifies the frequency that divides the signal’s power spectrum into two equal
halves.

Mel-Frequency Cepstral
Coefficients

Computes the MEL cepstral coefficients. Used to extract features representing the spectral characteristics of the signal,
primarily used in speech analysis.

Multiscale Entropy Computes the Multiscale entropy (MSE) of the
signal, that performs entropy analysis over mul-
tiple scales.

Quantifies the signal’s complexity at different scales, useful for detecting non-
linear temporal behaviors.

Power Bandwidth Computes power spectrum density bandwidth of
the signal.

Measures the width of the frequency band where the majority of the signal’s
power is concentrated.

Spectral Centroid Barycenter of the spectrum. Identifies the ""center"" of the signal’s frequency spectrum, used in sound and
audio analysis.

Spectral Decrease Represents the amount of decreasing of the spec-
tra amplitude.

Measures how rapidly the spectral amplitude decreases across frequency, useful
for identifying spectral roll-off.

Spectral Distance Computes the signal spectral distance. Quantifies the difference between the signal’s spectrum and a reference, helpful
in pattern recognition.

Spectral Entropy Computes the spectral entropy of the signal
based on Fourier transform.

Measures the randomness or complexity in the frequency domain of the signal.

Spectral Kurtosis Measures the flatness of a distribution around its
mean value.

Quantifies the tail heaviness of the signal’s frequency distribution, identifying
outliers or abnormal distributions.

Spectral Positive Turn-
ing

Computes number of positive turning points of
the fft magnitude signal.

Counts the points where the signal’s Fourier transform changes direction from
negative to positive.

Spectral Roll-Off Computes the spectral roll-off of the signal. Measures the frequency below which a specified percentage of the total spectral
energy is contained.

Spectral Roll-On Computes the spectral roll-on of the signal. Similar to roll-off but identifies the frequency above which a specified amount
of energy is concentrated.

Spectral Skewness Measures the asymmetry of a distribution around
its mean value.

Measures the skew in the signal’s frequency distribution, highlighting the pres-
ence of spectral biases.

Spectral Slope Computes the spectral slope. Quantifies the slope of the power spectral density, often used to distinguish
between harmonic and non-harmonic signals.

Spectral Spread Measures the spread of the spectrum around its
mean value.

Measures the dispersion or spread of the signal’s spectral energy.

Spectral Variation Computes the amount of variation of the spec-
trum along time.

Quantifies how much the frequency content of the signal changes over time.

Spectrogram Mean Co-
efficients

Calculates the average power spectral density
(PSD) for each frequency throughout the entire
signal.

Averages the power spectral density across all time intervals, capturing the
signal’s overall spectral energy distribution.

Wavelet Absolute Mean Computes CWT absolute mean value of each
wavelet scale.

Measures the average wavelet transform magnitude across scales, useful for
detecting changes in signal frequency.

Wavelet Energy Computes CWT energy of each wavelet scale. Quantifies the energy at each wavelet scale, reflecting the signal’s energy distri-
bution across frequencies.

Wavelet Entropy Computes CWT entropy of the signal. Measures the complexity or unpredictability of the signal at different wavelet
scales.

Wavelet Standard Devi-
ation

Computes CWT std value of each wavelet scale. Measures the variation or spread of the wavelet transform across different scales.

Wavelet Variance Computes CWT variance value of each wavelet
scale.

Quantifies the dispersion of the signal at different wavelet scales.

Table G7: Fractal Meta-feature Specifications

Feature Description Functionality

Detrended Fluctuation
Analysis

Computes the Detrended Fluctuation Analysis
(DFA) of the signal.

Measures long-range correlations and self-similarity in the signal, used for
identifying fractal behavior.

Higuchi Fractal Dimen-
sion

Computes the fractal dimension of a signal using
Higuchi’s method (HFD).

Measures the complexity of the signal’s pattern by calculating its fractal dimen-
sion.

Hurst Exponent Computes the Hurst exponent of the signal
through the Rescaled range (R/S) analysis.

Measures the long-term memory or persistence in the signal, useful for identify-
ing trends and randomness.

Lempel-Ziv Complexity Computes the Lempel-Ziv’s (LZ) complexity
index, normalized by the signal’s length.

Quantifies the randomness or predictability of the signal based on its compress-
ibility.

Maximum Fractal
Length

Computes the Maximum Fractal Length (MFL)
of the signal.

Measures the fractal dimension at the smallest scale of the signal, reflecting its
intricate pattern complexity.

Petrosian Fractal Di-
mension

Computes the Petrosian Fractal Dimension of a
signal.

Measures the signal’s fractal dimension based on its variation across different
scales.
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Table H8: Full results for the long-term forecasting task. All the results are averaged from 4 different
prediction lengths, that is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others.

Models TSGym DUET TimeMixer MICN TimesNet PatchTST DLinear Crossformer Autoformer SegRNN Mamba iTransformer TimeXer
(Ours) (Qiu et al., 2025b) (Wang et al., 2024a) (Wang et al., 2023) (Wu et al., 2023) (Nie et al., 2023) (Zeng et al., 2023b) (Zhang and Yan, 2023) (Wu et al., 2021) (Lin et al., 2023) (Gu and Dao, 2024) (Liu et al., 2024a) (Wang et al., 2024c)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.362 0.380 0.407 0.409 0.384 0.399 0.402 0.429 0.432 0.430 0.390 0.404 0.404 0.407 0.501 0.501 0.532 0.496 0.388 0.404 0.501 0.466 0.414 0.415 0.386 0.400
ETTm2 0.266 0.322 0.296 0.338 0.277 0.325 0.342 0.391 0.296 0.334 0.288 0.334 0.349 0.399 1.487 0.789 0.330 0.368 0.273 0.322 0.356 0.370 0.290 0.332 0.279 0.325
ETTh1 0.427 0.439 0.433 0.437 0.448 0.438 0.589 0.537 0.474 0.464 0.454 0.449 0.465 0.461 0.544 0.520 0.492 0.485 0.422 0.429 0.544 0.504 0.462 0.452 0.446 0.443
ETTh2 0.367 0.403 0.380 0.403 0.383 0.406 0.585 0.530 0.415 0.424 0.385 0.409 0.566 0.520 1.552 0.908 0.446 0.460 0.374 0.405 0.465 0.448 0.382 0.406 0.372 0.399

ECL 0.164 0.261 0.179 0.262 0.185 0.273 0.186 0.297 0.219 0.314 0.209 0.298 0.225 0.319 0.193 0.289 0.234 0.340 0.216 0.302 0.209 0.312 0.190 0.277 0.191 0.286
Traffic 0.433 0.301 0.797 0.427 0.496 0.313 0.544 0.320 0.645 0.348 0.497 0.321 0.673 0.419 1.458 0.782 0.637 0.397 0.807 0.411 0.679 0.380 0.474 0.318 0.509 0.333

Weather 0.240 0.276 0.252 0.277 0.244 0.274 0.264 0.316 0.261 0.287 0.256 0.279 0.265 0.317 0.253 0.312 0.339 0.379 0.251 0.298 0.291 0.315 0.259 0.280 0.243 0.273
Exchange 0.375 0.415 0.322 0.384 0.359 0.402 0.346 0.422 0.405 0.437 0.381 0.412 0.346 0.414 0.904 0.695 0.506 0.500 0.408 0.423 0.714 0.562 0.369 0.410 0.410 0.424

ILI 2.463 1.043 2.640 1.018 4.502 1.557 2.938 1.178 2.140 0.907 2.160 0.901 4.367 1.540 4.311 1.396 3.156 1.207 4.305 1.397 3.729 1.335 2.305 0.974 2.633 1.034

1st Count 8 2 0 0 0 1 0 0 0 2 0 0 1

Models PAttn Koopa TSMixer FreTS Pyraformer Nonstationary ETSformer FEDformer SCINet LightTS Informer Transformer Reformer
(Tan et al., 2024) (Liu et al., 2023) (Chen et al., 2023) (Yi et al., 2023) (Liu et al., 2022b) (Liu et al., 2022c) (Woo et al., 2022) (Zhou et al., 2022b) (Liu et al., 2022a) (Zhang et al., 2022) (Zhou et al., 2021) (Vaswani et al., 2017) (Kitaev et al., 2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.384 0.399 0.367 0.396 0.527 0.512 0.409 0.417 0.695 0.593 0.509 0.467 0.636 0.592 0.438 0.450 0.409 0.412 0.438 0.445 0.969 0.736 0.836 0.678 0.998 0.723
ETTm2 0.291 0.336 0.264 0.327 1.030 0.750 0.336 0.378 1.565 0.876 0.412 0.398 1.381 0.807 0.301 0.348 0.294 0.335 0.432 0.448 1.504 0.878 1.454 0.851 1.856 0.996
ETTh1 0.468 0.454 0.472 0.471 0.615 0.579 0.476 0.464 0.814 0.692 0.610 0.543 0.750 0.651 0.448 0.461 0.520 0.488 0.530 0.505 1.057 0.798 0.930 0.768 0.973 0.739
ETTh2 0.386 0.412 0.388 0.423 2.160 1.220 0.548 0.514 3.776 1.557 0.552 0.505 0.572 0.534 0.427 0.446 0.428 0.440 0.633 0.551 4.535 1.745 2.976 1.369 2.487 1.238

ECL 0.205 0.286 0.219 0.319 0.229 0.337 0.209 0.296 0.295 0.387 0.194 0.296 0.275 0.370 0.225 0.336 0.220 0.323 0.243 0.344 0.369 0.444 0.273 0.367 0.324 0.404
Traffic 0.513 0.328 0.595 0.413 0.599 0.403 0.597 0.377 0.697 0.391 0.642 0.351 1.035 0.584 0.615 0.379 0.654 0.419 0.656 0.428 0.830 0.464 0.708 0.384 0.694 0.380

Weather 0.257 0.280 0.230 0.271 0.242 0.301 0.255 0.299 0.284 0.349 0.289 0.312 0.365 0.424 0.315 0.369 0.256 0.283 0.245 0.295 0.572 0.523 0.599 0.531 0.475 0.472
Exchange 0.365 0.407 0.610 0.516 0.487 0.546 0.442 0.453 1.183 0.855 0.557 0.490 0.361 0.416 0.520 0.502 0.374 0.418 0.486 0.493 1.548 0.997 1.379 0.921 1.612 1.044

ILI 2.359 0.975 2.064 0.912 5.617 1.680 3.447 1.279 4.691 1.442 2.592 1.012 4.046 1.419 3.088 1.214 6.505 1.853 7.078 1.975 5.035 1.539 4.682 1.448 4.211 1.350

1st Count 0 4 0 0 0 0 0 0 0 0 0 0 0
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Figure G1: Distributions of meta-features after PCA dimensionality reduction, comparing datasets
for long-term and short-term time series forecasting tasks.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 COMPREHENSIVE RESULTS OF TSGYM AGAINST STATE-OF-THE-ART METHODS

Due to space limitations in the main text, here we provide complete experimental comparisons for both long-
term and short-term forecasting tasks. Table H8 details the full long-term forecasting performance across all
prediction horizons, while Table H9 presents the comprehensive short-term forecasting results. Following
standard benchmarking conventions, we highlight top-performing methods in red and second-best results with
underlined formatting. These extensive evaluations consistently validate TSGym’s competitive performance
across diverse temporal prediction scenarios.

H.2 ADDITIONAL RESULTS OF LARGE EVALUATIONS ON DESIGN CHOICES

To systematically evaluate our architectural decisions, we conduct detailed ablation studies focusing on 17
component-level analyses, presented separately in Tables H10–H13 for clarity and due to space constraints.
These comparative experiments assess the performance impact of different design choices for each component
across nine datasets in the long-term forecasting task. Bolded values indicate the best-performing configuration
for each dataset, while the summary row highlights the most frequently superior design choices, with red-bolded
entries denoting the dominant configurations. This fine-grained analysis offers empirical insights to guide
component selection in time-series forecasting systems.
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Table H10: Long-term Forecasting Performance of Different Design Choices – Part I (6 Components).
MSE distribution for each dataset under different configurations of the 6 components, characterized
by the best (minimum) value, median, and interquartile range (IQR). Bolded entries indicate the
best-performing result for the respective dataset and metric in each component.

Timestamp Embedding Series
Sampling/Mixing Series Normalization Series Decomposition Channel Independent Series Tokenization

dataset stat w/o Embedding w/ Embedding w/o Mixing w/ Mixing DishTS w/o Norm RevIN Stat DFT MA MoEMA w/o Decomp Channel Depen Channel Indepen Inverted
Encoding

Series
Encoding

Series
Patching

ETTm1
Best 0.348 0.348 0.348 0.350 0.360 0.354 0.348 0.351 0.350 0.352 0.348 0.351 0.352 0.348 0.354 0.349 0.348

Median 0.416 0.459 0.427 0.459 0.511 0.577 0.403 0.404 0.459 0.405 0.445 0.466 0.472 0.389 0.400 0.487 0.390
IQR 0.147 0.181 0.158 0.198 0.211 0.250 0.099 0.107 0.166 0.139 0.178 0.183 0.198 0.114 0.129 0.208 0.111

ETTm2
Best 0.251 0.248 0.248 0.255 0.261 0.275 0.248 0.251 0.253 0.248 0.255 0.252 0.252 0.248 0.252 0.255 0.248

Median 0.353 0.345 0.327 0.394 0.689 0.999 0.294 0.299 0.336 0.384 0.370 0.320 0.377 0.307 0.300 0.404 0.306
IQR 0.561 0.537 0.374 0.903 0.707 1.252 0.033 0.035 0.366 0.742 0.628 0.426 0.823 0.130 0.195 0.922 0.160

ETTh1
Best 0.401 0.406 0.403 0.404 0.433 0.419 0.402 0.401 0.407 0.405 0.405 0.409 0.412 0.401 0.412 0.412 0.401

Median 0.490 0.488 0.480 0.519 0.547 0.633 0.464 0.462 0.492 0.489 0.491 0.487 0.510 0.461 0.474 0.522 0.456
IQR 0.129 0.130 0.088 0.219 0.207 0.381 0.049 0.048 0.152 0.111 0.154 0.117 0.206 0.041 0.054 0.243 0.037

ETTh2
Best 0.322 0.329 0.332 0.322 0.374 0.378 0.321 0.331 0.335 0.322 0.332 0.333 0.322 0.337 0.346 0.321 0.341

Median 0.447 0.492 0.451 0.493 1.049 1.594 0.388 0.390 0.433 0.452 0.500 0.503 0.527 0.398 0.452 0.487 0.391
IQR 0.775 0.859 0.600 1.574 1.222 2.615 0.043 0.048 0.576 0.941 0.995 0.735 1.369 0.218 0.390 1.671 0.252

ECL
Best 0.159 0.157 0.157 0.159 0.159 0.160 0.159 0.157 0.158 0.163 0.161 0.157 0.157 0.163 0.157 0.158 0.164

Median 0.208 0.204 0.204 0.208 0.218 0.227 0.191 0.191 0.205 0.208 0.206 0.203 0.206 0.202 0.195 0.212 0.190
IQR 0.057 0.056 0.058 0.054 0.052 0.058 0.035 0.052 0.064 0.053 0.054 0.056 0.056 0.055 0.050 0.061 0.050

traffic
Best 0.394 0.396 0.398 0.394 0.411 0.441 0.398 0.394 0.398 0.400 0.394 0.400 0.394 0.409 0.399 0.394 0.409

Median 0.558 0.600 0.580 0.579 0.545 0.658 0.550 0.506 0.609 0.571 0.563 0.567 0.570 0.626 0.531 0.602 0.607
IQR 0.191 0.198 0.208 0.179 0.161 0.122 0.209 0.196 0.179 0.190 0.202 0.198 0.195 0.196 0.191 0.188 0.186

weather
Best 0.222 0.220 0.220 0.222 0.223 0.225 0.220 0.224 0.225 0.223 0.220 0.221 0.220 0.220 0.220 0.220 0.222

Median 0.258 0.272 0.258 0.272 0.263 0.292 0.256 0.259 0.262 0.271 0.260 0.261 0.272 0.246 0.248 0.280 0.242
IQR 0.040 0.085 0.047 0.070 0.066 0.213 0.034 0.037 0.048 0.049 0.049 0.053 0.064 0.037 0.033 0.079 0.033

Exchange
Best 0.239 0.209 0.208 0.242 0.209 0.247 0.349 0.336 0.240 0.237 0.244 0.209 0.209 0.237 0.239 0.212 0.237

Median 0.488 0.491 0.455 0.552 0.635 0.937 0.426 0.422 0.471 0.496 0.484 0.518 0.563 0.390 0.412 0.581 0.388
IQR 0.461 0.457 0.414 0.545 0.796 0.902 0.167 0.168 0.427 0.481 0.416 0.516 0.590 0.131 0.250 0.612 0.114

ili
Best 1.584 1.546 1.562 1.576 1.755 2.137 1.584 1.555 1.649 1.599 1.581 1.573 1.545 1.734 1.583 1.548 1.734

Median 2.837 2.875 2.884 2.814 2.802 4.373 2.505 2.501 2.892 2.803 2.892 2.853 2.804 3.048 2.870 2.860 2.830
IQR 1.613 1.690 1.639 1.677 1.205 0.967 0.739 0.786 1.637 1.604 1.702 1.661 1.666 1.649 1.752 1.668 1.395
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Table H11: Long-term Forecasting Performance of Different Design Choices– Part II (4 Components)
and Part II (7 Components). Same structure and evaluation metrics (MSE) as Table H10.

(a) Part II – 4 Components (Backbone, Attention, etc.)

Network Backbone Attention Feature-Attention Sequence Length

dataset stat GRU MLP Trans-
former AutoCorr

De-
stationary
Attention

Frequency
Attention w/o Attention Self

Attention
Sparse

Attention
Frequency
Attention w/o Attention Self

Attention
Sparse

Attention 192 48 512 96

ETTm1
Best 0.352 0.347 0.351 0.359 0.382 0.354 0.347 0.359 0.354 0.354 0.348 0.355 0.360 0.351 0.473 0.347 0.379

Median 0.462 0.409 0.449 0.499 0.455 0.409 0.439 0.486 0.441 0.446 0.411 0.458 0.459 0.385 0.545 0.392 0.424
IQR 0.160 0.172 0.151 0.242 0.087 0.106 0.168 0.189 0.143 0.179 0.154 0.177 0.201 0.101 0.093 0.109 0.091

ETTm2
Best 0.260 0.248 0.256 0.258 0.289 0.265 0.248 0.260 0.267 0.258 0.248 0.253 0.254 0.261 0.293 0.248 0.273

Median 0.352 0.323 0.416 0.663 0.320 0.335 0.336 0.437 0.766 0.426 0.323 0.383 0.372 0.329 0.385 0.335 0.378
IQR 0.432 0.330 0.854 0.900 0.033 0.911 0.370 0.711 1.086 0.866 0.254 0.824 0.800 0.733 0.410 0.813 0.632

ETTh1
Best 0.408 0.402 0.406 0.418 0.471 0.413 0.401 0.432 0.406 0.417 0.401 0.415 0.412 0.420 0.443 0.401 0.433

Median 0.495 0.480 0.502 0.510 0.526 0.475 0.487 0.527 0.504 0.496 0.479 0.502 0.508 0.483 0.501 0.481 0.486
IQR 0.125 0.107 0.167 0.190 0.060 0.070 0.116 0.207 0.214 0.163 0.080 0.156 0.242 0.104 0.142 0.149 0.136

ETTh2
Best 0.325 0.324 0.344 0.356 0.383 0.350 0.321 0.360 0.355 0.338 0.324 0.325 0.337 0.349 0.382 0.321 0.359

Median 0.538 0.433 0.453 0.462 0.410 0.546 0.462 0.589 0.504 0.558 0.430 0.436 0.623 0.458 0.520 0.423 0.500
IQR 0.685 0.743 1.453 2.021 0.030 0.754 0.707 1.345 1.393 1.530 0.333 0.967 1.499 1.177 0.847 0.845 0.645

ECL
Best 0.163 0.163 0.157 0.163 0.165 0.160 0.162 0.158 0.157 0.158 0.158 0.159 0.158 0.162 0.181 0.157 0.169

Median 0.213 0.204 0.201 0.205 0.181 0.207 0.209 0.199 0.195 0.194 0.213 0.199 0.209 0.183 0.242 0.182 0.209
IQR 0.055 0.059 0.054 0.054 0.048 0.055 0.059 0.048 0.052 0.052 0.060 0.050 0.054 0.026 0.044 0.046 0.040

traffic
Best 0.409 0.408 0.394 0.407 0.417 0.401 0.407 0.394 0.399 0.407 0.399 0.394 0.402 0.409 0.515 0.394 0.446

Median 0.592 0.608 0.558 0.576 0.475 0.583 0.599 0.596 0.523 0.540 0.655 0.510 0.538 0.479 0.686 0.453 0.578
IQR 0.181 0.210 0.195 0.208 0.102 0.181 0.195 0.199 0.190 0.149 0.140 0.190 0.162 0.140 0.128 0.177 0.143

weather
Best 0.222 0.220 0.221 0.227 0.210 0.229 0.220 0.226 0.221 0.227 0.220 0.221 0.223 0.225 0.253 0.220 0.237

Median 0.261 0.267 0.266 0.279 0.233 0.264 0.264 0.274 0.250 0.273 0.254 0.267 0.273 0.248 0.286 0.241 0.257
IQR 0.046 0.049 0.054 0.065 0.018 0.047 0.048 0.043 0.060 0.049 0.047 0.050 0.089 0.040 0.030 0.057 0.028

Exchange
Best 0.210 0.237 0.256 0.269 0.406 0.278 0.208 0.263 0.282 0.246 0.237 0.215 0.246 0.256 0.209 0.291 0.238

Median 0.540 0.430 0.574 0.602 0.615 0.545 0.478 0.560 0.590 0.542 0.439 0.558 0.562 0.493 0.398 0.841 0.427
IQR 0.465 0.404 0.517 0.499 0.164 0.600 0.451 0.492 0.492 0.620 0.300 0.547 0.484 0.344 0.192 0.799 0.258

ili
Best 1.608 1.561 1.551 1.597 1.665 1.672 1.561 1.637 1.642 1.603 1.618 1.629 1.552 1.869 1.715 2.269 1.546

Median 2.946 2.855 2.761 2.731 2.451 2.949 2.889 2.791 2.728 2.648 3.058 2.788 2.760 2.641 2.703 3.797 2.472
IQR 1.767 1.515 1.661 1.623 0.656 1.652 1.651 1.746 1.642 1.551 1.698 1.595 1.722 1.221 1.569 1.643 1.664

(b) Part III – 7 Components (d_model, d_ff, etc.)

Hidden Layer Dimensions FCN Layer Dimensions Encoder
layers Training Epochs Loss Function Learning Rate Learning

Rate Strategy
dataset stat 256 64 1024 256 2 3 10 20 50 HUBER MAE MSE 0.0001 0.001 null type

ETTm1
Best 0.349 0.348 0.349 0.348 0.348 0.348 0.351 0.351 0.347 0.348 0.351 0.350 0.347 0.351 0.348 0.348

Median 0.461 0.425 0.461 0.425 0.424 0.452 0.444 0.443 0.434 0.417 0.463 0.442 0.427 0.447 0.433 0.444
IQR 0.165 0.161 0.165 0.161 0.158 0.160 0.173 0.154 0.159 0.149 0.172 0.166 0.156 0.175 0.148 0.173

ETTm2
Best 0.248 0.252 0.248 0.252 0.248 0.252 0.253 0.248 0.253 0.255 0.248 0.253 0.254 0.248 0.248 0.253

Median 0.357 0.342 0.357 0.342 0.352 0.346 0.342 0.367 0.340 0.323 0.317 0.370 0.332 0.365 0.361 0.342
IQR 0.698 0.405 0.698 0.405 0.636 0.467 0.444 0.613 0.556 0.392 0.331 0.665 0.461 0.670 0.500 0.599

ETTh1
Best 0.401 0.406 0.401 0.406 0.406 0.401 0.401 0.404 0.406 0.405 0.401 0.417 0.401 0.407 0.401 0.402

Median 0.491 0.487 0.491 0.487 0.486 0.493 0.493 0.485 0.489 0.491 0.485 0.498 0.479 0.501 0.486 0.494
IQR 0.127 0.128 0.127 0.128 0.119 0.137 0.131 0.120 0.126 0.152 0.118 0.104 0.109 0.143 0.110 0.150

ETTh2
Best 0.325 0.323 0.325 0.323 0.325 0.323 0.330 0.335 0.321 0.326 0.326 0.336 0.326 0.322 0.323 0.325

Median 0.468 0.462 0.468 0.462 0.448 0.491 0.507 0.455 0.457 0.455 0.461 0.471 0.466 0.462 0.459 0.472
IQR 0.859 0.778 0.859 0.778 0.760 0.871 0.945 0.733 0.750 0.630 0.906 0.901 0.811 0.827 0.836 0.825

ECL
Best 0.157 0.160 0.157 0.160 0.158 0.157 0.159 0.159 0.157 0.158 0.159 0.157 0.157 0.158 0.157 0.158

Median 0.204 0.207 0.204 0.207 0.210 0.202 0.205 0.205 0.207 0.205 0.200 0.206 0.215 0.199 0.198 0.213
IQR 0.057 0.056 0.057 0.056 0.057 0.054 0.057 0.056 0.057 0.052 0.046 0.057 0.061 0.050 0.049 0.059

traffic
Best 0.394 0.400 0.394 0.400 0.400 0.394 0.401 0.401 0.394 0.418 0.423 0.394 0.405 0.394 0.398 0.394

Median 0.553 0.603 0.553 0.603 0.569 0.589 0.592 0.587 0.567 0.619 0.611 0.570 0.596 0.564 0.549 0.607
IQR 0.195 0.202 0.195 0.202 0.194 0.194 0.207 0.193 0.191 0.143 0.194 0.195 0.216 0.187 0.184 0.208

weather
Best 0.220 0.220 0.220 0.220 0.220 0.220 0.224 0.220 0.220 0.222 0.224 0.220 0.222 0.220 0.221 0.220

Median 0.268 0.260 0.268 0.260 0.265 0.265 0.264 0.260 0.267 0.266 0.254 0.266 0.264 0.264 0.262 0.268
IQR 0.051 0.049 0.051 0.049 0.052 0.049 0.047 0.046 0.057 0.051 0.049 0.050 0.047 0.051 0.047 0.051

Exchange
Best 0.237 0.209 0.237 0.209 0.210 0.236 0.238 0.209 0.246 0.239 0.210 0.241 0.209 0.237 0.243 0.209

Median 0.517 0.461 0.517 0.461 0.490 0.489 0.486 0.481 0.507 0.483 0.475 0.509 0.438 0.545 0.496 0.486
IQR 0.513 0.410 0.513 0.410 0.484 0.441 0.459 0.439 0.467 0.482 0.438 0.468 0.370 0.549 0.488 0.443

ili
Best 1.546 1.630 1.546 1.630 1.561 1.553 1.586 1.553 1.613 1.582 1.590 1.585 1.662 1.545 1.587 1.563

Median 2.741 2.987 2.741 2.987 2.858 2.861 2.895 2.816 2.866 2.924 2.896 2.801 3.214 2.631 2.690 3.206
IQR 1.575 1.735 1.575 1.735 1.633 1.669 1.700 1.619 1.632 1.641 1.649 1.653 1.775 1.399 1.421 1.836
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Table H12: Long-term Forecasting Performance of Different Design Choices – Part I (6 Components).
MAE distribution for each dataset under different configurations of the 6 components, characterized
by the best (minimum) value, median, and interquartile range (IQR). Bolded entries indicate the
best-performing result for the respective dataset and metric in each component.

Timestamp Embedding Series
Sampling/Mixing Series Normalization Series Decomposition Channel Independent Series Tokenization

dataset stat w/o Embedding w/ Embedding w/o Mixing w/ Mixing DishTS w/o Norm RevIN Stat DFT MA MoEMA w/o Decomp Channel Depen Channel Indepen Inverted
Encoding

Series
Encoding

Series
Patching

ETTm1
Best 0.369 0.37 0.368 0.376 0.377 0.374 0.369 0.371 0.372 0.373 0.371 0.371 0.373 0.37 0.373 0.371 0.371

Median 0.422 0.447 0.429 0.445 0.487 0.538 0.413 0.413 0.445 0.416 0.438 0.448 0.452 0.402 0.412 0.454 0.4
IQR 0.079 0.105 0.08 0.127 0.129 0.17 0.049 0.053 0.101 0.067 0.103 0.121 0.127 0.056 0.064 0.138 0.053

ETTm2
Best 0.308 0.306 0.306 0.312 0.319 0.329 0.306 0.308 0.308 0.306 0.312 0.307 0.307 0.306 0.307 0.312 0.306

Median 0.385 0.382 0.368 0.403 0.531 0.687 0.336 0.339 0.371 0.399 0.393 0.359 0.396 0.353 0.342 0.406 0.354
IQR 0.248 0.268 0.19 0.377 0.242 0.51 0.026 0.027 0.184 0.314 0.297 0.226 0.36 0.096 0.131 0.4 0.114

ETTh1
Best 0.417 0.421 0.418 0.42 0.439 0.431 0.419 0.418 0.42 0.42 0.42 0.421 0.425 0.417 0.425 0.421 0.418

Median 0.474 0.474 0.466 0.492 0.515 0.575 0.45 0.45 0.472 0.474 0.475 0.473 0.487 0.452 0.461 0.494 0.446
IQR 0.082 0.093 0.062 0.148 0.139 0.249 0.036 0.037 0.105 0.081 0.096 0.081 0.144 0.034 0.045 0.166 0.029

ETTh2
Best 0.377 0.382 0.382 0.378 0.405 0.409 0.377 0.381 0.381 0.378 0.383 0.384 0.379 0.381 0.387 0.378 0.382

Median 0.452 0.474 0.45 0.473 0.687 0.973 0.41 0.41 0.437 0.452 0.477 0.475 0.487 0.417 0.446 0.47 0.414
IQR 0.333 0.367 0.281 0.604 0.405 0.951 0.025 0.027 0.263 0.4 0.425 0.329 0.552 0.119 0.198 0.667 0.134

ECL
Best 0.254 0.252 0.252 0.257 0.253 0.258 0.256 0.252 0.252 0.258 0.258 0.255 0.252 0.259 0.252 0.255 0.261

Median 0.303 0.301 0.3 0.306 0.317 0.323 0.286 0.287 0.299 0.306 0.303 0.3 0.305 0.291 0.288 0.312 0.286
IQR 0.051 0.048 0.049 0.049 0.044 0.057 0.03 0.042 0.053 0.047 0.05 0.048 0.052 0.038 0.04 0.056 0.034

traffic
Best 0.278 0.273 0.273 0.277 0.278 0.289 0.281 0.273 0.28 0.28 0.279 0.273 0.273 0.281 0.273 0.277 0.281

Median 0.35 0.36 0.358 0.351 0.357 0.381 0.349 0.337 0.361 0.356 0.352 0.349 0.353 0.371 0.341 0.362 0.356
IQR 0.068 0.071 0.077 0.058 0.055 0.081 0.071 0.067 0.071 0.073 0.069 0.067 0.068 0.075 0.082 0.064 0.07

weather
Best 0.253 0.256 0.253 0.254 0.259 0.264 0.253 0.256 0.262 0.253 0.258 0.254 0.257 0.253 0.257 0.257 0.253

Median 0.293 0.298 0.294 0.298 0.319 0.34 0.282 0.283 0.295 0.297 0.292 0.296 0.302 0.284 0.283 0.307 0.281
IQR 0.041 0.075 0.046 0.07 0.062 0.162 0.021 0.024 0.053 0.051 0.046 0.051 0.066 0.025 0.027 0.079 0.026

Exchange
Best 0.35 0.33 0.33 0.351 0.331 0.356 0.396 0.391 0.353 0.349 0.351 0.331 0.331 0.348 0.353 0.333 0.348

Median 0.47 0.471 0.455 0.501 0.533 0.734 0.435 0.433 0.462 0.474 0.466 0.481 0.5 0.424 0.434 0.512 0.422
IQR 0.215 0.211 0.193 0.24 0.272 0.42 0.069 0.067 0.198 0.223 0.207 0.226 0.258 0.078 0.127 0.264 0.072

ili
Best 0.804 0.76 0.782 0.761 0.832 0.974 0.763 0.787 0.807 0.807 0.78 0.771 0.76 0.82 0.786 0.761 0.82

Median 1.142 1.157 1.151 1.149 1.116 1.443 1.059 1.057 1.16 1.14 1.156 1.151 1.14 1.187 1.156 1.151 1.137
IQR 0.369 0.387 0.374 0.389 0.336 0.212 0.211 0.229 0.372 0.375 0.385 0.378 0.376 0.391 0.399 0.379 0.332
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Table H13: Long-term Forecasting Performance of Different Design Choices– Part II (4 Components)
and Part II (7 Components). Same structure and evaluation metrics (MAE) as Table H12.

(a) Part II – 4 Components (Backbone, Attention, etc.)

Network Backbone Attention Feature-Attention Sequence Length

dataset stat GRU MLP Trans-
former AutoCorr

De-
stationary
Attention

Frequency
Attention w/o Attention Self

Attention
Sparse

Attention
Frequency
Attention w/o Attention Self

Attention
Sparse

Attention 192 48 512 96

ETTm1
Best 0.375 0.37 0.37 0.377 0.406 0.37 0.37 0.386 0.379 0.381 0.368 0.379 0.382 0.371 0.427 0.37 0.382

Median 0.448 0.419 0.439 0.463 0.437 0.416 0.435 0.455 0.431 0.443 0.42 0.449 0.451 0.406 0.473 0.413 0.426
IQR 0.091 0.096 0.087 0.171 0.03 0.059 0.092 0.131 0.079 0.119 0.072 0.112 0.128 0.073 0.076 0.083 0.065

ETTm2
Best 0.312 0.306 0.31 0.315 0.335 0.312 0.306 0.319 0.315 0.313 0.306 0.308 0.309 0.309 0.329 0.306 0.316

Median 0.384 0.364 0.42 0.505 0.355 0.361 0.373 0.442 0.512 0.42 0.362 0.396 0.394 0.366 0.408 0.373 0.401
IQR 0.213 0.167 0.365 0.408 0.018 0.313 0.188 0.332 0.428 0.396 0.14 0.358 0.341 0.287 0.229 0.25 0.293

ETTh1
Best 0.422 0.418 0.421 0.427 0.456 0.425 0.418 0.433 0.422 0.427 0.417 0.429 0.429 0.423 0.43 0.417 0.425

Median 0.478 0.464 0.483 0.488 0.493 0.462 0.472 0.503 0.484 0.478 0.466 0.481 0.487 0.469 0.478 0.478 0.469
IQR 0.08 0.081 0.117 0.138 0.028 0.049 0.082 0.128 0.146 0.118 0.06 0.11 0.168 0.074 0.104 0.093 0.099

ETTh2
Best 0.378 0.38 0.389 0.395 0.407 0.393 0.377 0.396 0.395 0.385 0.38 0.38 0.387 0.386 0.396 0.378 0.388

Median 0.491 0.44 0.456 0.46 0.422 0.51 0.457 0.52 0.477 0.51 0.438 0.442 0.537 0.459 0.484 0.443 0.472
IQR 0.316 0.313 0.552 0.7 0.017 0.327 0.318 0.563 0.543 0.615 0.164 0.425 0.609 0.456 0.356 0.362 0.286

ECL
Best 0.263 0.257 0.252 0.259 0.263 0.258 0.257 0.253 0.252 0.255 0.252 0.258 0.253 0.258 0.275 0.252 0.264

Median 0.309 0.299 0.298 0.302 0.276 0.306 0.305 0.296 0.289 0.292 0.308 0.298 0.307 0.282 0.325 0.286 0.301
IQR 0.05 0.048 0.048 0.05 0.034 0.044 0.049 0.046 0.049 0.048 0.049 0.047 0.051 0.032 0.038 0.049 0.043

traffic
Best 0.281 0.284 0.273 0.284 0.291 0.273 0.281 0.279 0.278 0.273 0.276 0.278 0.285 0.273 0.321 0.278 0.28

Median 0.36 0.369 0.344 0.35 0.333 0.351 0.364 0.35 0.331 0.345 0.378 0.338 0.342 0.332 0.399 0.322 0.358
IQR 0.06 0.081 0.068 0.066 0.051 0.062 0.071 0.075 0.069 0.049 0.061 0.069 0.069 0.047 0.066 0.048 0.051

weather
Best 0.253 0.257 0.259 0.263 0.254 0.266 0.253 0.263 0.261 0.265 0.253 0.257 0.258 0.254 0.281 0.253 0.266

Median 0.293 0.295 0.302 0.313 0.267 0.3 0.294 0.305 0.295 0.297 0.291 0.303 0.304 0.287 0.308 0.285 0.291
IQR 0.043 0.051 0.055 0.065 0.017 0.043 0.047 0.05 0.06 0.06 0.035 0.049 0.085 0.038 0.056 0.052 0.039

Exchange
Best 0.331 0.348 0.366 0.377 0.429 0.372 0.33 0.369 0.377 0.352 0.348 0.336 0.356 0.367 0.33 0.383 0.348

Median 0.494 0.443 0.508 0.527 0.511 0.514 0.465 0.503 0.516 0.494 0.449 0.493 0.497 0.474 0.424 0.622 0.443
IQR 0.222 0.177 0.255 0.241 0.076 0.284 0.205 0.237 0.24 0.265 0.158 0.243 0.222 0.161 0.101 0.306 0.135

ili
Best 0.805 0.774 0.769 0.816 0.812 0.832 0.774 0.796 0.795 0.807 0.818 0.816 0.76 0.876 0.811 1.009 0.76

Median 1.174 1.147 1.133 1.13 1.029 1.179 1.157 1.135 1.114 1.112 1.184 1.141 1.14 1.086 1.079 1.388 1.058
IQR 0.394 0.358 0.381 0.381 0.2 0.383 0.379 0.381 0.384 0.353 0.396 0.36 0.388 0.269 0.401 0.34 0.368

(b) Part III – 7 Components (d_model, d_ff, etc.)

Hidden Layer Dimensions FCN Layer Dimensions Encoder
layers Training Epochs Loss Function Learning Rate Learning

Rate Strategy
dataset stat 256 64 1024 256 2 3 10 20 50 HUBER MAE MSE 0.0001 0.001 null type

ETTm1
Best 0.372 0.368 0.372 0.368 0.368 0.372 0.37 0.375 0.369 0.371 0.368 0.379 0.371 0.369 0.371 0.369

Median 0.443 0.428 0.443 0.428 0.427 0.444 0.437 0.437 0.433 0.418 0.441 0.44 0.43 0.441 0.431 0.441
IQR 0.1 0.084 0.1 0.084 0.088 0.094 0.097 0.081 0.099 0.074 0.115 0.092 0.086 0.098 0.085 0.097

ETTm2
Best 0.306 0.307 0.306 0.307 0.306 0.308 0.308 0.306 0.308 0.312 0.306 0.316 0.31 0.306 0.306 0.31

Median 0.385 0.374 0.385 0.374 0.38 0.38 0.372 0.391 0.38 0.363 0.354 0.395 0.372 0.389 0.385 0.376
IQR 0.307 0.218 0.307 0.218 0.286 0.241 0.24 0.294 0.26 0.187 0.17 0.307 0.246 0.284 0.249 0.288

ETTh1
Best 0.417 0.42 0.417 0.42 0.419 0.418 0.418 0.419 0.422 0.422 0.417 0.429 0.418 0.419 0.418 0.418

Median 0.475 0.472 0.475 0.472 0.472 0.476 0.477 0.472 0.473 0.475 0.468 0.484 0.466 0.48 0.47 0.477
IQR 0.091 0.081 0.091 0.081 0.079 0.098 0.095 0.081 0.086 0.106 0.077 0.071 0.074 0.102 0.076 0.101

ETTh2
Best 0.381 0.378 0.381 0.378 0.377 0.38 0.384 0.381 0.378 0.38 0.377 0.389 0.382 0.377 0.38 0.377

Median 0.459 0.457 0.459 0.457 0.45 0.472 0.481 0.454 0.453 0.45 0.451 0.462 0.46 0.456 0.454 0.464
IQR 0.367 0.343 0.367 0.343 0.342 0.371 0.392 0.333 0.323 0.288 0.376 0.388 0.358 0.361 0.362 0.353

ECL
Best 0.252 0.255 0.252 0.255 0.252 0.253 0.253 0.254 0.252 0.252 0.253 0.255 0.252 0.253 0.252 0.253

Median 0.3 0.304 0.3 0.304 0.306 0.298 0.303 0.301 0.302 0.298 0.293 0.303 0.311 0.294 0.294 0.31
IQR 0.049 0.05 0.049 0.05 0.051 0.046 0.05 0.048 0.05 0.043 0.038 0.05 0.051 0.043 0.046 0.052

traffic
Best 0.273 0.28 0.273 0.28 0.273 0.276 0.281 0.282 0.273 0.278 0.273 0.278 0.273 0.277 0.273 0.278

Median 0.343 0.365 0.343 0.365 0.356 0.355 0.361 0.354 0.353 0.358 0.344 0.355 0.366 0.347 0.346 0.366
IQR 0.068 0.073 0.068 0.073 0.072 0.068 0.077 0.067 0.066 0.053 0.069 0.071 0.093 0.058 0.062 0.088

weather
Best 0.254 0.253 0.254 0.253 0.253 0.254 0.253 0.258 0.254 0.259 0.253 0.261 0.254 0.253 0.256 0.253

Median 0.297 0.294 0.297 0.294 0.297 0.294 0.296 0.293 0.297 0.292 0.28 0.298 0.295 0.297 0.294 0.297
IQR 0.053 0.049 0.053 0.049 0.057 0.044 0.053 0.05 0.052 0.037 0.034 0.054 0.049 0.055 0.049 0.053

Exchange
Best 0.348 0.331 0.348 0.331 0.331 0.347 0.347 0.33 0.356 0.349 0.331 0.35 0.331 0.349 0.35 0.33

Median 0.48 0.46 0.48 0.46 0.471 0.471 0.469 0.466 0.478 0.469 0.46 0.482 0.451 0.489 0.474 0.469
IQR 0.223 0.198 0.223 0.198 0.22 0.206 0.22 0.197 0.219 0.209 0.183 0.235 0.187 0.229 0.22 0.204

ili
Best 0.76 0.805 0.76 0.805 0.782 0.761 0.807 0.76 0.795 0.791 0.763 0.828 0.808 0.76 0.798 0.76

Median 1.126 1.181 1.126 1.181 1.15 1.151 1.158 1.135 1.156 1.163 1.15 1.145 1.241 1.084 1.099 1.237
IQR 0.359 0.397 0.359 0.397 0.376 0.382 0.385 0.376 0.374 0.373 0.377 0.385 0.392 0.345 0.33 0.415
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H.2.1 DESIGN CHOICES EVALUATION RESULTS FOR LONG-TERM FORECASTING USING MSE
AS THE METRIC

Spider Chart Analysis. Fig. H2 presents the large compoents-level experiments results by employing multi-
dimensional spider charts, where each vertex corresponds to a benchmark dataset. Closer proximity to the
outer edge of a vertex indicates better performance of the associated design choice on that particular dataset.
These visual representations offer an intuitive understanding of how different architectural decisions influence
model effectiveness across diverse forecasting domains. Notably, configurations for components including
Series Sampling/Mixing (Fig. H2c), Hidden Layer Dimensions (Fig. H2j), FCN Layer Dimensions (Fig. H2k),
Learning Rate (Fig. H2n), and Learning Rate Strategy (Fig. H2o) demonstrate similar spatial patterns in
the radar charts. Specifically, ECL, ILI, and Traffic datasets exhibit consistent parameter preferences across
these components, suggesting intrinsic alignment between their temporal patterns and specific architectural
configurations.

In addition, Fig. H3 provides a evaluation of large-scale time series models, revealing that conventional
architectures still maintain a competitive advantage over LLM-based models, especially in domain-specific
forecasting tasks where structural inductive biases play a crucial role.

Box Plots Analysis. The impact of various design choices for each architectural component is further illustrated
through box plots in Fig. H4 and Fig. H5. These visualizations complement the spider charts by providing a
statistical perspective on performance variability and robustness across multiple benchmark datasets. Together,
the two forms of analysis offer a comprehensive view of how different configurations affect forecasting accuracy.
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Figure H2: Overall performance across additional design dimensions in long-term forecasting. The
results (MSE) are based on the top 25th percentile across all forecasting horizons.
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Figure H3: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MSE) are based on the top 25th percentile across all forecasting
horizons.
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(k) FCN Layer Dimensions
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Figure H4: Overall performance across all design dimensions in long-term forecasting. The results
(MSE) are averaged across all forecasting horizons. Due to the significantly different value range and
variability of the ILI dataset compared to other datasets, its box plot is plotted using the right-hand
y-axis, while all other datasets share the left-hand y-axis.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

ET
Th

1
ET

Th
2

Ex
cha

ng
e ili

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

 V
al

ue

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

 V
al

ue
 fo

r i
li

DishTS
Without Norm.
RevIN
Stat.

(a) Series Normalization

ET
Th

1
ET

Th
2

Ex
cha

ng
e ili

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

 V
al

ue

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

 V
al

ue
 fo

r i
li

DFT
MA
MoEMA
Without Decomp.

(b) Series Decomposition

ET
Th

1
ET

Th
2

Ex
cha

ng
e ili

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

 V
al

ue

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

 V
al

ue
 fo

r i
li

192
48
512
96

(c) Sequence Length

ET
Th

1
ET

Th
2

Ex
cha

ng
e ili

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

 V
al

ue

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
SE

 V
al

ue
 fo

r i
li

LLM-GPT4TS
LLM-TimeLLM
TSFM-Moment
TSFM-Timer

(d) Network Backbone

ET
Th

1
ET

Th
2

Ex
cha

ng
e ili

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

 V
al

ue

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

 V
al

ue
 fo

r i
li

256
64

(e) Hidden Layer Dimensions
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(f) FCN Layer Dimensions
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(i) Learning Rate Strategy
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(k) Timestamp
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Figure H5: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MSE) are averaged across all forecasting horizons. Due to the
significantly different value range and variability of the ILI dataset compared to other datasets, its
box plot is plotted using the right-hand y-axis, while all other datasets share the left-hand y-axis.

H.2.2 DESIGN CHOICES EVALUATION RESULTS FOR LONG-TERM FORECASTING USING
MAE AS THE METRIC

For the MAE-based performance evaluation, we analyze the effects of different design choices using both spider
charts and box plots (Fig. H6 and Fig. H7). These visualizations complement the MSE-based analysis and
confirm the generalizability of our findings across error metrics. In particular, normalization methods such as
RevIN and Stationary consistently achieve the lowest MAE values, underscoring their effectiveness in mitigating
non-stationarity. Similarly, decomposition strategies exhibit selective benefits: MA-based methods improve
predictions on datasets like ETTh1 and ETTm2, while raw-series modeling remains more effective on ECL and
Traffic, where decomposition tends to degrade performance.

Beyond preprocessing, MAE evaluations further validate the consistency of our architectural insights. Channel-
independent designs retain strong performance across most datasets, except on Traffic and ILI, where localized
dependencies dominate. Tokenization methods show stable ranking across both metrics, with patch-wise encod-
ing consistently outperforming point-wise approaches. Notably, complex architectures such as Transformers
provide only marginal gains over MLPs in certain cases (e.g., Traffic), suggesting that their benefits may not
justify the added complexity. Overall, the alignment between MAE and MSE results reinforces the robustness of
our design principles, demonstrating that the observed patterns are not metric-specific but instead reflect core
relationships between architecture and forecasting performance.
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Figure H6: Overall performance across key design dimensions in long-term forecasting. The results
(MAE) are based on the top 25th percentile across all forecasting horizons.
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Figure H7: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MAE) are based on the top 25th percentile across all forecasting
horizons.
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(d) Channel Independent
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(e) Sequence Length
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(j) Hidden Layer Dimensions
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(k) FCN Layer Dimensions
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(l) Encoder layers
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(m) Epochs
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(o) Learning Rate Strategy
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Figure H8: Overall performance across all design dimensions in long-term forecasting. The results
(MAE) are averaged across all forecasting horizons.
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(a) Series Normalization
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(b) Series Decomposition
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(c) Sequence Length
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(d) Network Backbone
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(e) Hidden Layer Dimensions
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(f) FCN Layer Dimensions
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(g) Epochs
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(i) Learning Rate Strategy
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(k) Timestamp
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Figure H9: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MAE) are averaged across all forecasting horizons.
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Figure H10: Overall performance across all design dimensions in short-term forecasting. The results
(MASE) are based on the top 25th percentile across all forecasting horizons.

H.3 COMPLETE EVALUATION RESULTS OF SHORT-TERM FORECASTING USING MASE, OWA
AND SMAPE AS THE METRIC

For short-term forecasting, we comprehensively evaluate different design dimensions using both spider charts
and box plots. The spider charts—shown in Figure H10, Figure H11, and Figure H12—visualize performance
across datasets, with each vertex representing a benchmark dataset. Closer proximity to a vertex indicates
stronger performance of a particular design choice in that dataset.
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Figure H11: Overall performance across all design dimensions in short-term forecasting. The results
(OWA) are based on the top 25th percentile across all forecasting horizons.

Complementary box plots are provided in Figure H13, Figure H14, and Figure H15, offering a statistical
perspective on the distribution and robustness of performance across evaluation metrics.

Overall, the relative performance trends observed under MASE, OWA, and sMAPE metrics are consistent with
those found in long-term forecasting tasks, reinforcing the generalizability and stability of our architectural
choices.
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Figure H12: Overall performance across all design dimensions in short-term forecasting. The results
(SMAPE) are based on the top 25th percentile across all forecasting horizons.

H.4 EXPLAINING DESIGN DRIVERS VIA META-FEATURE IMPORTANCE ANALYSIS

To directly investigate the impact of individual meta-features, we conducted an additional analysis using an
interpretable XGBoost-based meta-learner. Although this machine learning–based variant slightly underperforms
compared to the original deep learning–based meta-learner (average MAE 0.447 vs. 0.426), due to its limited
capacity in modeling rich, high-dimensional interactions among features, it remains competitive and provides a
clear advantage in interpretability.
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(a) Series Normalization
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(c) Series Sampling/Mixing
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(d) Channel Independent
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(f) Network Backbone
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(g) Series Attention
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(h) Hidden Layer Dimensions
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(i) FCN Layer Dimensions
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(j) Encoder layers
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(k) Learning Rate
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(l) Learning Rate Strategy

Figure H13: Overall performance across all design dimensions in short-term forecasting. The results
are based on MASE.

Table H14: Top 5 Most Important Meta-Features per Dataset Estimated via XGBoost

Dataset Top 5 Meta-Features (Importance)
ETTm1 mean_Negativeturningpoints (0.08) series norm (0.06) mean_Centroid (0.05) mean_MFCC_0 (0.05) min_Positiveturningpoints (0.05)
ETTm2 mean_Negativeturningpoints (0.10) series norm (0.05) mean_MFCC (0.05) mean_Centroid (0.05) q25_Kurtosis (0.04)
ETTh1 mean_MFCC_10 (0.08) series norm (0.06) mean_Spectralroll-on (0.05) mean_Spectraldistance (0.04) mean_MFCC (0.04)
ETTh2 mean_MFCC_0 (0.07) series norm (0.05) mean_Medianfrequency (0.05) mean_Centroid (0.04) min_Meanabsolutediff (0.04)

ECL mean_MFCC (0.08) std_MFCC (0.08) series norm (0.07) mean_Centroid (0.06) mean_Maxpowerspectrum (0.04)
Traffic q25_Kurtosis (0.08) series norm (0.07) mean_Centroid (0.06) mean_Maxpowerspectrum (0.05) mean_MFCC (0.05)

Weather mean_MFCC (0.14) mean_Negativeturningpoints (0.11) series norm (0.06) min_Negativeturningpoints (0.05) mean_Centroid (0.04)
Exchange std_MFCC (0.11) mean_Negativeturningpoints (0.10) mean_MFCC (0.07) series norm (0.06) mean_Medianfrequency (0.03)

ILI mean_MFCC (0.09) mean_Maximumfrequency (0.06) channel independent (0.05) series norm (0.05) mean_LPCC (0.05)

This analysis allows us to quantify the relative importance of meta-features and structural design dimensions in
determining model performance. As summarized in Table H14, certain temporal and spectral features—such as
MFCC descriptors and Negative Turning Points—consistently appear among the most influential across datasets.
In addition, architectural design choices like series normalization emerge as universally important factors, further
validating the findings of our component-level ablation study.

H.5 META-FEATURE SIMILARITY ENABLES TARGETED KNOWLEDGE TRANSFER

In Fig. G1, we visualize the dimension-reduced meta-features across different datasets using PCA. The visual-
ization confirms that datasets tend to cluster based on inherent properties, such as domain (e.g., ETT family)
and temporal frequency (e.g., M4-Hourly vs. M4-Yearly). This indicates that meta-feature similarity reflects
structural characteristics of datasets, and suggests the potential for targeted knowledge transfer between similar
datasets.
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(a) Series Normalization
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(b) Series Decomposition
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(c) Series Sampling/Mixing
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(d) Channel Independent
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(e) Series Embedding
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(f) Network Backbone
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(g) Series Attention
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(h) Hidden Layer Dimensions
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(i) FCN Layer Dimensions
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(j) Encoder layers
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(k) Learning Rate
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(l) Learning Rate Strategy

Figure H14: Overall performance across all design dimensions in short-term forecasting. The results
are based on OWA.

Table H15: Ablation study of TSGym incorporating LLM and TSFM in 4 datasets. The average
results of all prediction lengths are listed here.

Models TSGym(Ours) TSGym (LGB) TSGym (XGB)
Metric MSE MAE MSE MAE MSE MAE

ETTm1 0.362 0.38 0.352 0.374 0.362 0.387
ETTm2 0.266 0.322 0.258 0.315 0.256 0.311
ETTh1 0.427 0.439 0.464 0.457 0.434 0.428
ETTh2 0.367 0.403 0.351 0.394 0.37 0.396

ECL 0.164 0.261 0.173 0.268 0.177 0.268
Traffic 0.433 0.301 0.421 0.282 0.422 0.29

Weather 0.240 0.276 0.247 0.268 0.235 0.266
Exchange 0.375 0.415 0.423 0.433 0.415 0.436

ILI 2.463 1.043 2.575 1.091 3.620 1.314

To further explore this, we conducted a case study focusing on the ILI dataset—a relatively difficult and data-
scarce task. We enriched the meta-learner’s training pool by adding two datasets (COVID-19 and FRED-MD) that
are more similar to ILI in the meta-feature space. As shown in Table H16, TSGym’s performance on ILI improves
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(a) Series Normalization
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(b) Series Decomposition
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(c) Series Sampling/Mixing
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(d) Channel Independent
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(e) Series Embedding
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(f) Network Backbone
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(g) Series Attention
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(h) Hidden Layer Dimensions
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(i) FCN Layer Dimensions
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(j) Encoder layers
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(k) Learning Rate
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(l) Learning Rate Strategy

Figure H15: Overall performance across all design dimensions in short-term forecasting. The results
are based on SMAPE.

Table H16: Performance Comparison Before and After Adding Similar Datasets (COVID-19 and
FRED-MD) to the Meta-Learner Training Pool

TSGym +COVID-19, FRED-MD
Metric MSE MAE MSE MAE
ETTm1 0.362 0.380 0.358 0.381
ETTm2 0.266 0.322 0.259 0.315
ETTh1 0.427 0.439 0.424 0.442
ETTh2 0.367 0.403 0.357 0.396
ECL 0.164 0.261 0.164 0.259
Traffic 0.433 0.301 0.421 0.284
Weather 0.240 0.276 0.238 0.269
Exchange 0.375 0.415 0.438 0.438
ILI 2.463 1.043 2.020 0.881

significantly, while performance on other datasets remains stable or even improves slightly. This highlights the
potential of incorporating similar datasets to enhance performance on low-resource or underperforming tasks.
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H.6 META-LEARNER PERFORMANCE SCALING WITH CANDIDATE POOL SIZE

To investigate how the size of the candidate model pool Ms affects meta-learner performance, we conducted a
scaling analysis across all datasets. We trained the meta-learner on progressively larger subsets of Ms (ranging
from 5% to 100%), and measured the average rank of the model selected by TSGym.

As shown in Table H17, the performance improves significantly as the pool size increases up to 25%, after
which the gains plateau. Remarkably, even with just 10% of the full pool, TSGym already outperforms strong
baselines such as DUET (which achieves average ranks of 4.11 for MSE and 3.67 for MAE). This highlights
the high sample efficiency of TSGym and suggests that a moderately sized pool is sufficient to reach near-
optimal performance. These results further motivate the use of smarter sampling strategies, such as Bayesian
Optimization, to construct high-quality training pools with minimal cost.

Table H17: Effect of candidate pool size on meta-Learner selection accuracy

Subset Size of Ms MSE (Avg. Rank) MAE (Avg. Rank)
5% 3.67 3.44

10% 2.67 3.00
25% 1.67 1.78
50% 1.89 2.67
75% 1.89 2.22

100% 1.67 2.00

H.7 PERFORMANCE COMPARISON ACROSS SAMPLING STRATEGIES

Table H18: Comparison of MSE distribution between Optuna and random search across datasets

Dataset Method Mean_mse Std_mse Min_mse Q1_mse Median_mse Q3_mse Max_mse Total Experiment Count

ETTm1 Optuna 11.223 215.871 0.293 0.341 0.405 0.472 4317.839 400
Random 264.510 8964.756 0.286 0.376 0.449 0.544 304538.500 1154

ETTm2 Optuna 0.454 0.762 0.159 0.221 0.279 0.385 9.344 400
Random 0.875 6.595 0.159 0.250 0.354 0.525 198.023 1231

ETTh1 Optuna 0.506 0.157 0.355 0.416 0.450 0.519 1.210 400
Random 0.560 0.199 0.355 0.442 0.496 0.587 2.085 2897

ETTh2 Optuna 0.749 0.992 0.268 0.342 0.400 0.539 9.060 400
Random 11.414 578.115 0.270 0.383 0.454 1.105 32581.227 3176

ECL Optuna 0.189 0.041 0.131 0.158 0.182 0.213 0.414 400
Random 0.217 0.050 0.134 0.180 0.212 0.247 0.862 1603

Traffic Optuna 0.534 0.125 0.387 0.438 0.491 0.612 1.051 400
Random 0.600 0.130 0.379 0.491 0.595 0.686 1.473 1145

Weather Optuna 0.342 1.490 0.144 0.193 0.245 0.312 29.895 400
Random 574.721 18520.072 0.143 0.207 0.263 0.343 597254.813 1040

Exchange Optuna 0.687 1.305 0.081 0.169 0.280 0.681 15.054 400
Random 0.761 1.050 0.079 0.184 0.375 0.963 17.898 5509

ILI Optuna 2.687 1.102 1.506 1.891 2.302 3.080 7.503 400
Random 3.278 1.132 1.495 2.397 2.899 4.046 7.642 10734

To enhance the quality of the randomly sampled component pool and thereby improve final model performance,
we introduced a smarter sampling strategy using Optuna, a Bayesian optimization-based method. The sampling
process began with a cold start of 50 random configurations to provide a diverse baseline for the Bayesian
optimizer and mitigate the risk of early local convergence. Building upon this initial exploration, Optuna guided
the sampling of an additional 50 high-quality candidates.

Table H18 reports the MSE distribution statistics for configurations sampled by Optuna and random search across
various datasets. Optuna produces a result distribution that is markedly better than that of random sampling. We
also note that Optuna can provide interpretability. Table H19 shows the importance of each design dimension
estimated by Optuna’s built-in fANOVA analysis. Sequence Length and Series Normalization contribute the
most to performance variation, suggesting their critical role in architecture design.
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Table H19: Relative importance of design dimensions estimated by Optuna’s fANOVA analysis

Rank Design Dimensions Importance
1 Sequence Length 0.270
2 Series Normalization 0.255
3 Series Embedding 0.134
4 Feature Attention 0.077
5 Series Decomposition 0.053
6 Channel Independent 0.050
7 Series Sampling/Mixing 0.029
8 Epochs 0.025
9 d_model d_ff 0.020

10 Learning Rate 0.020
11 With/Without Timestamps 0.018
12 Network Type 0.017
13 Encoder Layers 0.013
14 Learning Rate Strategy 0.012
15 Loss Function 0.010
16 Series Attention 0.000

I LLM USAGE STATEMENT

We used a large language model (LLM) solely for English-language polishing (grammar, tone, and minor
phrasing) and for minor LaTeX table formatting adjustments. The LLM did not contribute to research ideation,
problem formulation, experimental design, data collection, or citation generation.

J REPRODUCIBILITY STATEMENT

To facilitate the verification and extension of our work, we hereby affirm our commitment to the reproducibility
of all experimental results presented in this paper, particularly those in Section 4.

Upon acceptance of this paper, we will release the following resources under an open-source license:

• Complete Codebase: The full source code for data preprocessing, model training, hyperparameter
configurations, and evaluation metrics.

• Environment Specifications: A detailed list of dependencies (e.g., requirements.txt).

• Processed Datasets: The cleaned and structured datasets used in our experiments, along with scripts
to load them.

Minor variations in results due to stochasticity or hardware differences are expected, but the primary conclusions
and performance rankings are robust and reproducible. The resources will be made publicly available at a
permanent repository, and the link will be included in the final version of the paper.
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