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ABSTRACT

Recently, deep learning has driven significant advancements in multivariate time
series forecasting (MTSF) tasks. Prevailing paradigm in MTSF research involves
proposing models as pre-defined, holistic architectures. Such an approach limits
adaptability across diverse data scenarios, and obscures the individual contributions
of their core components. To address this, we propose TSGym, a novel framework
for automated MTSF model design. The framework begins with decoupling
existing deep MTSF methods into fine-grained components, which enables a large-
scale, component-level evaluation that offers crucial insights, and creates a vast
space for the automated construction of potentially superior models. Leveraging
this space through strategic sampling, a core meta-learner is trained to learn
the mapping between component configurations and performance across multiple
traininig datasets. This enables it to perform zero-shot selection of a top-performing
model for any new, unseen time series data. Extensive experiments indicate that the
model automatically constructed by our proposed TSGym significantly outperforms
existing state-of-the-art MTSF methods and AutoML solutions, and exhibit high
potential for transferability across diverse datasets.

1 INTRODUCTION

Multivariate time series refer to time series data involving multiple interdependent variables, which
are widely present in various fields such as finance (Sezer et al., 2020)), energy (Alvarez et al.l 2010
Deb et al. [2017), traffic (Cirstea et al.,[2022; [Yin and Shang| [2016), and health (Bui et al.l 2018}
Kaushik et al.| |2020). Among the numerous research topics, multivariate time series forecasting
(MTSF) attracts substantial attention from the research community due to its significant practical
applications. Traditional approaches to MTSF are largely based on statistical methods (Abraham
and Ledolter, 2009} |Zhang} 2003)) and machine learning techniques (Hartanto et al., 2023 |Masini
et al., 2023)). In recent years, deep learning (DL) has become the most active area of research for
MTSEF, driven by its ability to handle complex patterns and large-scale datasets effectively (Wang
et al.| [2024b)).

Early academic efforts of deep MTSF methods like RNN-type methods (Yamak et al.| [2019)) are
reported to struggle with capturing long-term temporal dependencies due to their inherent limi-
tations of gradient vanishing or exploding problem (Zhou et al.l 2021; 2022b). More recently,
Transformer (Vaswani et al.,|2017)) shows significant potential, largely due to the effectiveness of
its attention mechanisms in modeling temporal correlation (Vaswani et al., 2017; Wen et al., [2022)).
Consequently, attention mechanism has continuously been studied in MTSF, with a focus on adapting
them to time series data, for instance, by exploiting sparsity inductive bias (Li et al.} [2019; [Zhou
et al.,[2021)), transforming time and frequency domains (Zhou et al., 2022b)), and fusing multi-scale
series (Liu et al.,2022b). While simpler MLP-based structures emerged (Zeng et al.2023a) offering
alternatives to the established Transformer architecture in MTSF, notable modeling strategies like
series-patching and channel-independent (Nie et al.||2023), significantly enhanced the performance
of Transformer-based methods, thereby sustaining research interest in them. Building upon these
developments, large time-series models including large language models (LLMs) (Jin et al., [2024bj
Zhou et al., 2023} Jin et al.,[2023b) and time series foundation models (TSFMs) (Jin et al., 2023c}
Liu et al. |2024b) have recently been introduced, achieving promising results and fostering new
research directions for MTSFE. Alongside these advancements in model architectures, active research
within the deep MTSF community also focuses on other critical topics, such as variable (channels)
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dependency modeling (Nie et al.| 2023} [Liu et al.l 2024a}; /Zhang and Yan, 2023), series normalization
methods (Liu et al.| [2022c}; [Fan et al., 2023), and trend-seasonal decomposition (Zeng et al.| 2023a;
Liu et al., [2023)).

As the field of MTSF continues to diversify, existing studies typically address critical concerns about
methodological effectiveness, either by conducting large-scale benchmarks (Wang et al., 2024b; |Shao
et al.| 2024} |Qiu et al. [2024) or performing model selection via AutoML (Abdallah et al., 2022}
Fischer and Saadallah| 2024). However, we identify three main challenges with these prevailing
approaches: First, the granularity of existing studies is insufficient. Current benchmarking works
evaluate or select models as a whole, which hinders a deeper understanding of the mechanisms that
drive model performance. In AutoML, this lack of granularity prevents breakthroughs beyond the
limits of existing models. Second, the scope of existing studies is limited. Current benchmarking and
automated selection efforts are often confined to restricted model architectures or hyperparameters,
without covering a broad range of data processing methods or feature modeling techniques. Third,
the range of existing studies is narrow. Existing studies tend to cover only a subset of network
architectures and often lack discussions on more diverse models, such as LLMs and TSFM:s.

/ Meta-Learner Construction \

MLP Transformer RNN Component Embedding Meta-features
(Learnab\e/csligor\ta\ = (Tempora,Spectral, tatistical, Fractal)
LM TSFM ) e L L e}
. Input
5 Model Pool EEEEE 3 EEEEE
SleEILHe inati Meta-Learner
Network Optimization NN - conbinations MLIDD () o CLLL] | datasets
Epochs, Learning Rate, Loss Function, etc. I
f v
Network Architecture Components embeddings embeddings
Temporal Dependency, Variate Correlation v
i Model Combination Space 2 N P4 s %
Series Encoding = (A ] e ( )
Temporal Tokenization, 5 byloss (, ) ) :
Timestamp Embedding, Positional Encoding g A
T v ;
Series Preprocessing Selected Model Combinations g X large Scale Experiments
Normalization, Decomposition, Multi-Scale Analysis C =4 Y o
2 v _Dabaseh
A Selected Model Combinati
v vy [ o | Extract features from train part in

» 5 = rain dataset(s]
inputifimeseries Meta-Learner Meta-Train Dataset(s) (Known)

Meta-Learner Inference and Automated MTSF modeling
Meta-Test Dataset(s) (New Coming)

- o
features  © | (tssindets)
Fit from Scratch \[/Predi“ Output g

MTSF-Model H APV &=

Meta-Learner
(ML/DL)

‘Probahility ’Pmbability

| ErrorMetric | Error Metric

fndenisamplne R smart sembling Ry pRP———"
¥

Adding more similar datasets

| g B il Loes Functn NEEN| can improve performance

S

Figure 1: Framework of the proposed TSGym. (a) Deep MTSF models are decoupled into fine-
grained components organized whithin four stages, creating a space of M combinations; from which
m (m < M) are sampled for evaluation. (b) Sampling can be either random or smart (e.g., Optuna-
guided), with the latter yielding a higher proportion of low-error combinations. (c) A meta-learner is
trained on component embeddings and dataset meta-features, supervised by a performance matrix
derived from large-scale experiments on the m combinations across n datasets. The trained learner
then performs zero-shot selection on a new, unseen dataset to identify an optimal structure, which
is subsequently trained from scratch. (d) Adding meta-train datasets closer to the target dataset(s)
improves transferability, as detailed in AppxJH.3]

To bridge these gaps, we propose TSGym—a framework designed for the Large-scale Evaluation,
Component-level Analysis, and Automated Model Construction in deep MTSF tasks. Rather
than viewing models as a whole, TSGym systematically decouples popular deep MTSF methods
by organizing them into distinct design dimensions involved in the time-series modeling pipeline
(see Fig. [[]and Table[T). TSGym conducts fine-grained, isolated evaluations of core components
through extensive experiments, thereby identifying key design dimensions/choices and valuable
insights from the vast MTSF methods. Moreover, the large-scale experimental analysis in TSGym
enable a systematic examination of prevailing claims within the MTSF community, addressing key
questions such as the comparison between Transformer and MLP architectures and the adaptability
of channel-independent approaches. Moreover, TSGym proposes the first component-level model
construction in MTSF tasks, which effectively overcomes limitations in the previous automation
methods by enabling more flexible and customized model designs tailored to data characteristics.
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Extensive experimental results indicate that the proposed TSGym generally outperforms existing
SOTA methods. We summarize the key contributions of TSGym as follows:

Component-level Evaluation of MTSF Methods. We propose TSGym, the first large-scale bench-
mark that systematically decouples deep MTSF methods. By evaluating 16 design dimensions across
10 benchmark datasets, TSGym elucidates contested issues in the current community and offers key
insights to inform future development for MTSF.

Automated MTSF Model Construction. Leveraging meta-learning, TSGym develops models that
outperform current SOTA methods, offering the MTSF community an effective, automated, and
data-adaptive solution for model design. The framework is also proven to be robust, maintaining
strong performance across various sampling strategies and meta-learner architectures, and flexible,
systematically incorporating novel research findings like LLMs and TSFMs into its component space.

Discussion on Emerging Large Time-series Models. TSGym broadens current MTSF scope by
applying systematic evaluation and automated combination not only to well-established models like
MLP and Transformer, but also to novel large time-series models like LLMs and TSFMs.

2 RELATED WORK
2.1 DEEP LEARNING-BASED MTSF

MTSEF evolves from traditional statistical methods like ARIMA and Gaussian processes to modern
deep learning approaches. Recurrent Neural Networks (RNNs) introduce memory mechanisms for
sequential data but struggle with long-term dependencies. Temporal Convolutional Networks (TCNs)
improve this by capturing multi-scale patterns, though their fixed window sizes limit global context.
Transformers, using self-attention, enable long-range forecasting but introduce high computational
complexity, leading to efficient variants like sparse attention (Wu et al., 2021 and patch-based
models (Nie et al.| 2023)). Multilayer Perceptrons (MLPs) regain attention as simple yet effective
models (Zeng et al.,[2023b)), with numerous variants offering competitive performance (Chen et al.,
2023 Y1 et al.| [2023} Das et al.,[2023} [Liu et al.| [2023)). Leveraging NLP foundation models, LLM
adaptation approaches use frozen backbones and prompt engineering (Jin et al., [2024a; |Zhou et al.
2023) or fine-tuning (Chang et al. [2023) to transfer pretrained knowledge. Simultaneously, pure
TSFMs trained on large datasets achieve zero-shot generalization (Liu et al.,|2024bj |Goswami et al.,
2024), though constrained by Transformers’ complexity. Our TSGym framework modularizes six
core backbones—RNNs, CNNs, Transformers, MLPs, LLMs, and TSFMs—offering flexible, hybrid
integration based on temporal dependencies and resource needs.

In recent advancements in MTSF, we summarize the design paradigm through a unified pipeline
(Fig. [Th), consisting of four stages: Series Preprocessing—Series Encoding—Network Architec-
ture—Network Optimization. Additionally, several specialized modules are proposed to enhance
predictive accuracy by addressing non-stationarity, multi-scale dependencies, and inter-variable
interactions. We categorize these developments into 6 specialized modules:

(1) Normalization methods like RevIN (Kim et al., 2021)) adjust non-stationary data, improving
robustness against distribution shifts. (2) Decompeosition methods, such as Autoformer (Wu et al.|
2021)’s trend-seasonality separation, isolate non-stationary components, making the data more pre-
dictable by separating trends from seasonality. (3) Multi-scale analysis extracts temporal patterns
across granularities, as in TimeMixer (Wang et al.,|2024a)), capturing both high-frequency fluctuations
and low-frequency trends through hierarchical resolution modeling. (4) Temporal tokenization
techniques like PatchTST(Nie et al., 2023)’s subseries-level embedding represent time series hierar-
chically, improving the capture of complex temporal semantics. (5) Temporal dependency modeling
through architectures like Transformers leverages self-attention to capture long-range dependencies,
effectively modeling both short- and long-term relationships. (6) Variate correlation learning, ex-
emplified by DUET (Q1u et al.| | 2025b)), models inter-variable dependencies using frequency-domain
metric learning, improving predictions by capturing interactions across variables.

To provide a more detailed categorization and comprehensive technical specifications, please refer to
Appx. [B] Due to the extensive focus and continuous evolution of these modules in MTSF research,
TSGym strives to decouple and modularize these key modules, exploring their real contributions and
enabling more flexible model structure selection and configuration.

3
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2.2 AUTOML FOR TIME SERIES FORECASTING

Current automated approaches for DL-based MTSF can be categorized into ensemble-based (Shchur
et al.; 2023a) and meta-learning-based (Abdallah et al., {2022} Fischer and Saadallahl 2024) methods.
The former fits and integrates various models from a predefined pool with ensemble techniques, which
inevitably incurs substantial computational cost. The latter leverages meta-features to characterize
datasets and selects optimal models for the given datasets. However, both approaches operate at the
model level and struggle to surpass the performance ceiling of existing methods. AutoCTS++ (Wu
et al.,|2024) achieves automated selection by searching over model architectures and hyperparameters,
but its search space is limited in scope. In contrast, TSGym is the first framework to support automated
selection over a wide range of fine-grained components for MTSF, extending beyond narrow model
structures, hyperparameters, and data processing strategies.

A closely related work is ADGym (Jiang et al.,2023)), which is designed for tabular anomaly detection
with model decomposition. Differently, TSGym deals with multivariate time series data, which
presents more complex data processing design choices, such as series sampling, series normalization,
and series decomposition. Second, TSGym considers finer-grained model structures, such as various
attention variants in Transformers, and broader network types, including LLMs and TSFMs. Third,
TSGym explores the value of Optuna (Akiba et al.,[2019)), a Bayesian-optimization-driven intelligent
search framework, which attains a superior design space at markedly lower cost and thus enhances
the efficacy of TSGym. It is worth mentioning that the success of TSGym validates the universality of
the model decomposition framework, marking an innovation and progression distinct from ADGym.
Further details on the differences between two works can be found in Appx/[H

3 TSGYM: AUTOMATIC MODEL DESIGN FRAMEWORK FOR DEEP MTSF

3.1 PROBLEM DEFINITION FOR MTSF
In this paper, we focus on the common MTSF settings for time series data containing C' variates.

Given historical data y = {z¢, ..., :c‘b}le, where L is the look-back sequence length an(Ll x! is the
i-th variate, the forecasting task is to predict T-step future sequence ¥ = {&!,..., zL} t;LT 1, To

avoid error accumulation (7" > 1), we directly predict all future steps, following (Zhou et al., [2021)).

3.2 DECOUPLING DESIGN CHOICES FROM EXISTING DEEP MTSF MODELS

Under the proposed framework, the primary undertaking involves a systematic disentangling of
advanced MTSF methods. By first disentangling existing models, it provides the foundation for a
flexible assembly architecture and thereby facilitates a granular analysis to identify the components
most responsible for performance gains.

Following the taxonomy of the previous study (Wen et al., 2022; Zeng et al.,[2023b)), we decouple
existing SOTA methods according to the standard process of MTSF modeling, while significantly
expanding the diversity of the modeling pipeline. Based on the flow direction from the input to
the output sequence, the Pipeline includes: Series Preprocessing—Series Encoding— Network
Architecture—Network Optimization, as is demonstrated in Fig. [T[a). Moreover, we structure each
pipeline step according to distinct Design Dimensions, where a DL-based time-series forecasting
model can be instantiated by specified Design Choices, as is shown in Table |1} and we provide a
detailed visualization of this step-by-step workflow in Fig. 2| for clarity.

Through the proposed design dimensions and choices, TSGym provides detailed description of
time-series modeling pipeline, disentangling key elements within mainstream time-series forecasting
methods and facilitating component-level comparison/automated construction. For example, TSGym
includes multi-scale mixing module proposed in TimeMixer (Wang et al,2024a), Inverted Encoding
method proposed in iTransformer (Liu et al. |2024a), Channel-independent strategy and Series-
Patching encoding used in PatchTST (Nie et al., [2023)), various attention mechanism discussed in
(Wen et al.| |2022), and also LLM and TSFM network type choices that are often integrated without
fully considering their interactions with other design dimensions.

3.3 AUTOMATED MTSF MODEL CONSTRUCTION VIA TSGYM

Overview. Differing from traditional methods that focus on selecting an off-the-shelf model, TSGym
aims to customize models given the downstream MTSF tasks and data descriptions. Given a
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Pipeline Design Dimensions Design Choices
|Series Series Normalizal'i('m w/o Norm, Stat, RevIN, DishTS
Preprocessing Series Decomposition w/o Decomp, MA, MoEMA, DFT
> | Series Sampling/Mixing w/ Mixing, w/o Mixing
Channel Independent Channel Indepen, Channel Depen
| Series Sequence Length 48,96, 192,512
Encoding Series Tokenization Series Patching, Inverted Encoding,
Positional Encoding
Timestamp Embedding w/ Embedding, w/o Embedding
Network Backbone MLP, GRU, Transformer, LLM, TSFM
Series Attention w/o Attn, SelfA, AutoCorr, SparseA,
JNetwork FrequencyA, DestationaryA
Architecture Feature Attention w/o Attn, SelfA, SparseA, Frequency A
Hidden Layer Dimensions | 64,256
FCN Layer Dimensions 256, 1024
Encoder Layers 2,3
Training Epochs 10, 20, 50
INetwork Loss Function MSE, MAE, HUBER
Optimization | Learning Rate le-3, le-4

Learning Rate Strategy

wi/o Ir Adjust, w/ Ir Adjust

False- \‘
Positional Encoding
ansformers)

1
Output Head

Output

Table 1: TSGym’s comprehensive design choices for  Figure 2: Workflow of TSGym designed model.
deep MTSE. "A" represents Attention mechanism.

pre-defined conflict-free model set M = {Mjy, ..., M,,}, each model M; is instantiated by the
design choice combinations illustrated in Table[[] TSGym learns the mapping function from these
automatically combined models to their associated forecasting performance on the training datasets,
and generalize to the test dataset(s) to select the best model based on predicted results.

Meta-learning for automated MTSF model construction. Formally speaking, TSGym propose k
design dimensions DD = {D Dy, ..., DDy} for comprehensively describing each step of aforemen-
tioned pipeline in deep learning time-series modeling. Each design dimension D D; represents a set
containing elements of different design choices DC. By taking the Cartesian product of the sets DD
corresponding to different design dimensions, we obtain the pool of all valid model combinations
M = DDy Xx DDy x --- x DDy, = {(DCl,DC’Q,,DC’k) | DC; € DD;,i = 1,2,...,]6}.
Considering the potentially large number of combinations and the computational cost, we randomly
sampled M to M, where M; = (DC; = RevIN,DCy = DFT, ..., DCy = Typel) € My, for
example, which means M instantiates RevIN method to normalize input series, then decompose it to
the seasonal and trend term. Subsequently, following the Series Encoding and Network Architecture
constructing pipeline (as illustrated in Table [T), finally the Typel, i.e., a step decay learning rate
strategy is employed to adjust the learning rate for updating the model parameters.

Suppose we have n training datasets Dy, = {D1, - . ., D, } and the number of sampled model com-
binations (i.e., the size of the set M) is m, TSGym conducts extensive experiments on 7 historical
training datasets to evaluate and further collect the forecasting performance of m model combinations.
TSGym then acquire the MSE performance matrix P € R"*™, where P; ; corresponds to the j-th
auto-constructed MTSF model’s performance on the i-th training dataset. Since the difficulty of
prediction tasks varies across training datasets, leading to significant differences in the numerical
range of performance metrics. Directly using these metrics (e.g., MSE) as training targets of a meta-
predictor may result in overfitting on more difficult dataset(s). Therefore, we convert the performance
metrics of M, into their corresponding normalized ranking, where R; ; = rank(P; ;)/m € [0, 1]
and smaller values indicate better performance on the corresponding dataset.

Distinguished from previous model selection approaches (Abdallah et al., [2022; |2025), TSGym
decouples more recently MTSF methods (including MLP-Mixer-type, Transformer-based, LLM
and TSFM models), and supports fine-grained model construction at the component level, rather
than being constrained to a fixed, limited set of existing models, which enables significantly greater
flexibility and effectiveness. Specifically, TSGym follows the idea of meta-learning to construct a
meta-predictor that learns the mapping function f(-) from training dataset D; and model combination
M;, to the performance rankings R; j, as is shown in Eq. |1} where the meta-features E"“* capture
multiple aspects such as statistical, temporal, spectral, and fractal features to fully describe the
complex data characteristics of time series datasets. Learnable continuous embeddings E;O"”’ are
used to represent different model combinations and are updated through the gradient backpropagation
of the meta-predictor. This process enables efficient zero-shot inference at test time: for any new
dataset, the meta-predictor can identify a top-performing model configuration using only the meta-
features extracted from the training data, eliminating the need for any costly experimental trials.

f(Di, Mj) = Rij, f - B EP™ = Ri; , ie{l,....,n}, je{l,....m} (1)

—_
meta features component embed.
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We used a simple two-layer MLP as the meta-predictor and trained it through a regression problem,
thereby transferring the learned mapping to new test datasets. For a newcoming dataset (i.e., test
dataset Xs), we acquire the predicted relative ranking of different components using the trained f(-),
and select top-1 (k) to construct MTSF model(s). Note this procedure is zero-shot without needing
any neural network training on X5 but only extracting meta-features and pipeline embeddings. We
show the effectiveness of the meta-predictor in §4.3]

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. Following most prior works (Wu et al., 202152023} Jin et al.,|2024a), we adopt 9 datasets
as experimental data for MTSF tasks, ETT (4 subsets), Traffic, Electricity, Weather, Exchange, ILI.
And we utilize the M4 dataset for short-term forecasting tasks. The forecast horizon L for long-term
forecasting is {96, 192, 336, 720}, while for the ILI dataset, it is {24, 36,48,60}. For short-term
forecasting, the forecast horizons are {6, 8,13, 14, 18, 48}. More details can be seen in Appx. @

Baseline. We compare TSGym against a comprehensive set of baselines, including MTSF and
AutoML methods, to demonstrate the superior performance of the pipelines automatically constructed
by TSGym. Due to space limitations, the baseline methods presented in this section include the
latestapproach DUET (Qiu et al.l 2025b), TimeMixer (Wang et al) 2024a), MICN (Wang et al.|
2023), SegRNN (Lin et al., [2023)), TimesNet (Wu et al., 2023)), PatchTST (Nie et al.,|2023)), Cross-
former (Zhang and Yan| [2023)), and Autoformer (Wu et al.;,[2021)). We present experiments based on
the complete baseline in the Appx. [H]

Evaluation Metrics. We follow the experimental setup of most prior works, using Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics for long-term forecasting tasks,
and using Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error
(MASE), and Overall Weighted Average (OWA) as metrics for short-term forecasting tasks. The
mathematical formulas for these evaluation metrics are provided in the Appx. D}

Meta-predictor in TSGym. The meta-predictor is instantiated as a two-layer MLP and trained for
100 epochs with early stopping. The training process utilizes the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 0.001 and batch size of 512. See details in Appx. [G]

4.2 LARGE-SCALE COMPONENTS-LEVEL ANALYSIS WITH TSGYM

In this work, we perform large evaluations on the decoupled pipelines according to the standard
procedure of MTSF methods. Such analysis is often overlooked in previous studies, and we investigate
each design dimension of decoupled pipelines by fixing its corresponding design choice (e.g., Self
Attention), and randomly sampling other dimensional design choices to construct MTSF pipelines.

In the following sections, we formulate 4 most contentious claims in the MTSF reaserch community
and clarify them with our framework. All our conclusions are drawn from 18 experimental settings,
spanning nine distinct datasets and two evaluation metrics. These results are presented in Table
[HTT] [H12] and [H13] Leveraging our open-source framework and the accompanying large-scale
experimental results, researchers can explore additional findings of interest beyond those reported in
our paper.

Claim: Transformers are less robust than MLPs. Shao et al.|(2024)

Yes. Using the inter-quartile range (IQR) as the robustness metric, Transformers perform worse than
MLPs in 13 out of 18 settings, with an average IQR of 0.391—significantly higher than the 0.275
average IQR of MLPs.

Claim: Transformers exhibit a higher upper bound than MLPs. [Shao et al.[(2024)

No. Taking the best performance of each MLP and Transformer variant across all pipelines as their
respective upper-bound estimate, we observe average upper-bound metrics of 0.406 and 0.408 over
the 18 settings, with MLPs attaining the higher bound in 11 of them. This indicates that Transformers
do not demonstrate a superior model capacity upper bound.

Claim: Novel attention mechanisms outperform vanilla self-attention.
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Table 2: Long-term forecasting task. The past sequence length is set as 36 for ILI and 96 for the
others. All the results are averaged from 4 different prediction lengths, that is {24, 36,48, 60} for ILI
and {96, 192, 336, 720} for the others. See Table in Appendix for the full results.

Models TSGym DUET TimeMixer MICN TimesNet PatchTST DLinear Crossformer Autoformer SegRNN

’ (Ours) [QluctalJ20256]  (Wangetal J202%a]  (Wangetal|p023] [WuetalJ2023] (Nicetal}2023] (Zengetal023b] ([Zhangand Yan2023] (CinetalJ2023]  (Waetal J2021
Metric MSE MAE | MSE  MAE | MSE MAE | MSE  MAE | MSE MAE | MSE MAE | MSE  MAE | MSE MAE | MSE MAE | MSE MAE
ETTml | 0.362 0.380 | 0.407 0.409 | 0.384  0.399 | 0.402 0.429 | 0.432 0.430 | 0.390 0.404 | 0.404  0.407 | 0.501 0.501 | 0.532 0.496 | 0.388 0.404

ETTm2 | 0.266 0.322 | 0.296 0.338 | 0.277  0.325 | 0.342  0.391 | 0.296 0.334 | 0.288 0.334 | 0.349  0.399 | 1.487 0.789 | 0.330 0.368 | 0.273 0.322
ETThl 0.427 0.439 | 0.433 0.437 | 0.448 0438 | 0.589 0.537 | 0.474 0.464 | 0.454 0.449 | 0.465 0.461 | 0.544 0.520 | 0.492 0.485 | 0.422 0.429
ETTh2 0.367 0.403 | 0.380 0.403 | 0.383  0.406 | 0.585 0.530 | 0.415 0.424 | 0.385 0.409 | 0.566  0.520 | 1.552 0.908 | 0.446 0.460 | 0.374 0.405

ECL 0.164 0.261 | 0.179 0.262 | 0.185  0.273 | 0.186 0.297 | 0.219 0.314 | 0.209 0.298 | 0.225 0.319 | 0.193 0.289 | 0.234 0.340 | 0.216 0.302
Traffic 0.433 0.301 | 0.797 0.427 | 0496  0.313 | 0.544 0.320 | 0.645 0.348 | 0.497 0.321 | 0.673  0.419 | 1.458 0.782 | 0.637 0.397 | 0.807 0.411
Weather | 0.240 0.276 | 0.252 0.277 | 0.244  0.274 | 0.264 0.316 | 0.261 0.287 | 0.256 0.279 | 0.265 0.317 | 0.253 0.312 | 0.339 0.379 | 0.251 0.298
Exchange | 0.3750.415 | 0.322 0.384 | 0359 0402 | 0.346 0.422 | 0.405 0.437 | 0.381 0.412 | 0.346  0.414 | 0.904 0.695 | 0.506 0.500 | 0.408 0.423

ILI 2463 1.043 | 2.640 1.018 | 4502  1.557 | 2.938 1.178 | 2.140 0.907 | 2.160 0.901 | 4367 1.540 | 4.311 1.396 | 3.156 1.207 | 4.305 1.397

1% Count | 11 2 1 0 1 1 0 0 0 2

Table 3: Short-term forecasting task on M4. The results are averaged from several datasets under
different sample intervals. See Table in Appendix for the full results.
Models | TSGym (ours) | TimeMixer | MICN | TimesNet | PatchTST | DLinear | Crossformer | Autoformer | SegRNN

OWA 0.856 0.884 0.984 0.907 0.965 0.922 8.856 1.273 1.007
sMAPE 11.781 11.985 13.025 12.199 12.848 12,511 >30 16.392 13.509
MASE 1.551 1.615 1.839 1.662 1.738 1.693 >10 2317 1.823

Yes. Among the configurations equipped with attention modules, the vanilla self-attention mechanism
ranks first in only one of the 18 experimental settings. Although Auto-Correlation exhibits similarly
poor performance, the majority of novel attention mechanisms consistently outperform the vanilla
self-attention.

Claim: Novel sequence encodings outperform the classic series encoding. Chen et al.| (2025)

Yes. Across the 18 experimental settings, classic positional encoding never achieves the best perfor-
mance, recording a mean median error of 0.605. Inverted encoding and series patching achieve 0.558
and 0.549, respectively, with the latter ranking first in 15 settings.

4.3 EFFECTIVENESS OF AUTOMATED MODEL CONSTRUCTION VIA TSGYM

Extensive experimental results discussed above indicate that in deep time series modeling, most
design choices are determined by data characteristics, meaning one-size-fits-all approaches are seldom
effective. This, in turn, emphasizes the necessity of automated model construction.

In this subsection, we compare the MTSF pipeline selected by TSGym with existing SOTA methods.
Through large-scale experiments, we found that TSGym outperforms existing SOTA models in both
long- and short-term MTSF tasks. Regarding algorithm efficiency, our experiments demonstrate that
even when limited to a search pool of lightweight model structures, such as MLP and RNNs, TSGym
can still achieve competitive results. We analyze the effectiveness of the pipelines automatically
constructed by TSGym through five key questions as follows. Additional details, such as the results
based on more metrics and more complex meta-features, can be found in the Appx[H|

Question 1: Is the model constructed by meta-predictor better than existing SOTA methods?

Comprehensive forecasting results in Tables [2] and [3| highlight the best performances in red and
second-best in blue. Compared to state-of-the-art forecasters, TSGym outperforms others across
multiple datasets, achieving the lowest MSE and MAE 11 times, demonstrating strong generalization
ability over medium and long forecasting horizons. While models like DUET, TimeMixer, and
SegRNN show competitive results on certain datasets, TSGym generally outperforms them, especially
in short-term forecasting tasks. As for short-term forecasting tasks, both TSGym and TimeMixer
demonstrate competitive performance, with TSGym outperforming on most evaluation metrics.

Question 2: Is TSGym with lightweight architecture better than existing SOTA methods?

In the previous section, we compared TSGym using the full component pool with SOTA and
found that TSGym outperforms SOTA on several datasets. In this ablation experiment Table [d] we
specifically compare the ~-Transformer configuration of TSGym with DUET. Remarkably, even
after removing Transformer-related components from the TSGym component pool and retaining only
the more computationally efficient MLP- and RNN-based models, TSGym still outperforms DUET
on the majority of datasets. This demonstrates the robustness and efficiency of TSGym’s architecture
and highlights the strong predictive power of the simplified MLP-based design.
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Question 3: Does the training strategies bring Table 4: Ablation study evaluates the removal of
significant improvement for TSGym? Transformer-based components and different train-

Following Table [l] we find that the +A11PL ing strategies, and the final row shows how often
configuration, which trains on datasets with TSGym variants outperform DUET.
varying prediction lengths and transfers this

. . .. Models TSGym | -Transformer |  +AIIPL | DUET
knowledge to a test set with a smgle predlctlpn Meric  MSE MAE | MSE MAE | MSE MAE | MSE MAE
length, further improves generalization, with ETTml | 0362 0380 [ 0.370 0394 [ 0.359 0379 | 0.407 0.409

ETTm2 | 0266 0322 | 0269 0322 | 0271 0328 | 0296 0.338

the best performance observed on the ETTm1 ETThl | 0427 0439 | 0.408 0.423 | 0430 0437 | 0433 0437
it ; ETTh2 | 0367 0403 | 0.357 0392 | 0368 0399 | 0380 0.403

dataset. Additionally, removing the Transformer e I ol It ol B ol I
component (-Transformer) leads to perfor— Traffic 0433 0301 | 0456 0313 | 0.446 0.298 | 0.797 0.427

. . . Weather 0.240 0276 | 0.238 0.271 | 0.236  0.276 | 0.252 0.277
mance gains on certain datasets, suggesting Exchange | 0.375 0415 | 0407 0429 | 0421 0433 | 0322 0.384
. . . ILI 2.463 1.043 | 2.654 1.111 | 2490 1.055 | 2.640 1.018
that a simplified MLP- or RNN-bas§d architec-  ————— s i i
ture can be more effective in specific scenar-
ios. These results highlight the flexibility of
TSGym’s design and the potential benefits of customizing the component pool to suit dataset charac-

teristics.

Question 4: Does large time-series models bring significant improvement for TSGym?

Table [5] evaluates the impact of incorporating Taple 5: Ablation study of TSGym incorporating
LLM and TSFM into the base TSGym frame- [ ] M and TSFM in four datasets.

work. The introduction of LLM consistently

improve forecasting accuracy compared to the Models TSGym | +LLM | +TSFM
baseline TSGym conﬁguration and the additiqn Meric  MSE MAE | MSE MAE | MSE MAE
of TSFM offers some improvements for certain ETTRI | 0439 0433 | 0431 0441 | 0476 0463
datasets. HOWCVCI', the 1mprovements are not ETTh2 0356 0396 | 0.362 0.395 | 0.399 0418
uniform across all datasets, suggesting that fur-  Exchange | 0.382 0.418 | 0.388 0419 | 0.684 0.482
ther refinement is needed to optimize their im- LI 3092 1199 | 2830 1128 | 2656 1.105
pact on MTSF.

Question 5: Does smarter sampling strategy bring improvement for TSGym?

As shown in Table[6] incorporating Optuna, a Bayesian optimization-based sampling method, im-
proves or maintains meta-learner performance on nearly all datasets. Fig[3]illustrates that while
random sampling produces a broad distribution dominated by mediocre configurations, Optuna shifts
sampling toward low-error regions, increasing the share of high-quality components. By replacing
a part of the random pool with these Optuna-sampled configurations while keeping the total pool
size fixed, we enhance average quality without losing diversity, leading to the observed performance
gains. Further details regarding the Optuna sampling setup are provided in Appx. [H.3]

ETThy

Table 6: TSGym—Transformer performance com- .

parison across random and Optuna sampling strate- Figure 3: Distribution of Ipodel perfor—
gies. mance selected by two sampling strategies.

Sampling
Strategies

Metric MSE MAE ‘ MSE MAE

ETTml1 0370 0394 | 0.354  0.379
ETTm2 0269 0.322 | 0.258  0.313
ETThl 0.408 0.423 | 0431 0441
ETTh2 0357 0392 | 0.355  0.389
ECL 0.172  0.269 | 0.170  0.265
Traffic 0456 0313 | 0427 0.295
Weather 0.238  0.271 | 0.240 0.280
Exchange 0.407 0.429 | 0.402 0.427
ILI 2.654 1.111 | 2.488 1.053

Random +Optuna

4.4 COMPARATIVE EXPERIMENTS WITH AUTOML METHODS

Establishing a meaningful benchmark requires selecting comparable frameworks. While many
general-purpose AutoML libraries exist (e.g., TPOT (Olson et al., 2016), H20-3 (H20.ai, [2022),
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Microsoft NNI (Microsoftl, [2021), Auto-Keras (Jin et al., 2023a), Auto-Sklearn (Feurer et al., [2022)),
NASLib (Ruchte et al., [2020)), most are not designed for time-series forecasting. Adapting them
for MTSF would be burdensome and potentially leading to an unfair evaluation. Consequently,
we benchmarked the two prominent AutoML libraries that explicitly support MTSF on both short-
term and long-term forecasting tasks: AutoGluon-TimeSeries (Shchur et al., 2023b) and AutoTS
(Catlin} 2020). The dataset partitioning scheme was identical to that used for TSGym. To manage
computational demands, AutoGluon was configured with the "high_quality" preset and AutoTS with
its "superfast” setting, while all other hyperparameters were maintained at their default values.

For short-term forecasting (Table [7), TSGym
demonstrates clear superiority, achieving the Table 7: Short-term forecasting comparison with
best scores across all three metrics: Overall AutoML methods.

Weighted Average (OWA), Symmetric Mean Ab-
solute Percentage Error (SMAPE), and Mean
Absolute Scaled Error (MASE). This indicates

Model TSGym (ours)  AutoGluon  AutoTS

a robust and consistently better performance in ~ OWA 0.856 0.950 2.002
short-horizon predictions compared to the estab- Sl\iAPE 11.781 13.178 18.977
lished AutoML baselines. MASE 1.551 L775 4981

In the more challenging long-term forecasting  Taple 8: Long-term forecasting comparison with
tasks (Table @,'TSGym continues to show a  AytoML methods.
strong competitive advantage. It secures the

lowest (best) Mean Squared Error (MSE) and 5 | TSGym (ours)
Mean Absolute Error (MAE) on the majority of ~ Dataset
datasets, including ETTm1, ETTm?2, ETThI, T 362 0350 [ 045 0408 | 0od D50

. m . B . . . .

ETTh2, ECL, and Weather. It is worth not-  prry | 0266 0322 | 0273 0337 | 0392 0,389
ing that AutoGluon achieves better performance  ETTh1 0427 0.439 | 0503 0473 | 0981 061
on the Exchange dataset and a lower MAE on  ETTh2 0.367 0.403 | 0419 043 | 0.589 0.488
the ILI dataset, while AutoTS shows a compet- ECL 0.164  0.261 | 0265 0.328 | 0327 0355
itive MAE on the Traffic dataset. Nevertheless Traffic 0.433 0301 | 0.555 0.325 | 0.739 0.311
1uve on the - Nev “88,  Weather | 0.240 0276 | 0.236 0.27 | 0.519 0.372
TSGym’s dominant performance across a wide  Exchange | 0.375 0415 | 033  0.393 | 0.588 0.494
range of datasets underscores its effectiveness ILI 2463 1.043 | 2.271  0.979 | 2.533  1.049

and robustness for long-horizon prediction.

AutoGluon | AutoTS
| MSE MAE | MSE MAE | MSE MAE

As the results indicate, TSGym consistently and

significantly outperforms both AutoGluon and AutoTS on the vast majority of datasets, in both
short-term and long-term forecasting tasks. The superiority of TSGym for multivariate time series
forecasting lies in its distinct methodology, which automates model construction through fine-grained
component decomposition and meta-learning.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

To advance beyond holistic evaluations in multivariate time-series forecasting (MTSF), this paper
introduced TSGym, a novel framework centered on fine-grained component analysis and the au-
tomated construction of specialized forecasting models. By systematically decomposing MTSF
pipelines into design dimensions and choices informed by recent studies, TSGym uncovers crucial
insights into component-level forecasting performance and leverages meta-learning method for the
automated construction of customized models. Extensive experimental results indicate that the
MTSF models constructed by the proposed TSGym significantly outperform current MTSF SOTA
solutions—demonstrating the advantage of adaptively customizing models according to distinct data
characteristics. Our results show that TSGym is highly effective, even without exhaustively covering
all SOTA components, and TSGym is made publicly available to benefit the MTSF community.

Future efforts will focus on expanding TSGym’s range of forecasting techniques with emerging
techniques and refining its meta-learning capabilities by incorporating multi-objective optimization to
balance predictive performance against computational costs, especially for large time-series models,
while also broadening its applicability across diverse time series analysis tasks.
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APPENDIX

For further details, we provide more information in the Appendix, including the evaluated 10 datasets (§A),
key modules (§B), compared baselines (§C), metrics mathematical formula (§D), system configuration (§E),
ADGym comparison analysis (§F), the details of proposed TSGym (§G), and additional experimental results

(§H).

A DATASET LIST

We conduct extensive evaluations on nine standard long-term forecasting benchmarks - four ETT variants
(ETThl, ETTh2, ETTm1, ETTm2), Electricity (abbreviated as ECL), Traffic, Weather, Exchange, and ILI,
complemented by the M4 dataset for short-term forecasting tasks, with complete dataset specifications provided
in Table[AT]

Table Al: Data description of the 12 datasets included in TSGym.

Task Dataset Domain Frequency  Lengths Dim  Description
ETTh1 Electricity 1 hour 14,400 7  Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7  Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTml Electricity 15 mins 57,600 7  Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7  Power transformer 2, comprising seven indicators such as oil temperature and useful load
ECL Electricity 1 hour 26,304 321  Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
LTF  Traffic Traffic 1 hour 17,544 862  Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
Weather Environment 10 mins 52,696 21 Recorded every for the whole year 2020, which contains 21 meteorological indicators
Exchange Economic 1 day 7,588 8  ExchangeRate collects the daily exchange rates of eight countries
ILI Health 1 week 966 7  Recorded indicators of patients data from Centers for Disease Control and Prevention
Covid-19 Health 1 day 1,392 948  Provide opportunities for researchers to investigate the dynamics of COVID-19
FRED-MD  Economic 1 month 728 107  Time series showing a set of macroeconomic indicators from the Federal Reserve Bank
. Yearly
l?iilf::cgel’aphw. Quarterly
STF M4 Industry, Monthly 19-9933 100000 M4 competition dala‘sel containing 100,000 unaligned time series with varying
. Weakly lengths and time periods
Macro, Micro B
Daily
and Other
Hourly

B KEY MODULES

Modern deep learning for MTSF utilizes several specialized modules to tackle non-stationarity, multi-scale
dependencies, and inter-variable interactions. In this section, we analyze the design and efficacy of prevalent
specialized modules adopted in state-of-the-art models (Fig. [Th).

Normalization modules address temporal distribution shifts through adaptive statistical alignment. While
z-score normalization employs fixed moments, modern techniques enhance adaptability: RevIN (Kim et al.,
2021) introduces learnable affine transforms with reversible normalization/denormalization; Dish-TS (Fan et al.}
2023) decouples inter-/intra-series distribution coefficients; Non-Stationary Transformer (Liu et al., [2022d)
integrates statistical moments into attention via de-stationary mechanisms. These methods balance stationarized
modeling with inherent non-stationary dynamics.

Decomposition methods, standard in time series analysis, break down series into components like trend
and seasonality to improve predictability and handle distribution shifts. (1) Time-domain decomposition
utilizes moving average operations to isolate slowly-varying trends from high-frequency fluctuations that
represent seasonality (e.g., DLinear (Zeng et al., | 2023b), Autoformer, FEDformer). (2) Frequency-domain
decomposition partitions series via Discrete Fourier Transform (DFT), assigning low-frequency spectra to trends
and high-frequency bands to seasonality, which is applied in the Koopa (Liu et al.| 2023) model.

Multi-Scale modeling addresses the inherent temporal hierarchy in time series data, where patterns manifest
differently across various granularities (e.g., minute-level fluctuations vs. daily trends). Pyraformer (Liu
et al., [2022b) integrates multi-convolution kernels via pyramidal attention to establish hierarchical temporal
dependencies. FEDformer (Zhou et al., |2022b) employs mixed experts to combine trend components from
multiple pooling kernels with varying receptive fields, where larger kernels capture macro patterns while smaller
ones preserve local details. TimeMixer (Wang et al.| [2024a) extends this paradigm through bidirectional mixing
operations - upward propagation refines fine-scale seasonal features while downward aggregation consolidates
coarse-scale trends. FiLM (Zhou et al.l [2022a) dynamically adjusts temporal resolutions through learnable
lookback windows, enabling adaptive focus on relevant historical contexts across scales. Crossformer (Zhang
and Yan| |2023)) implements flexible patchsize configurations, where multi-granular patches independently model
short-term fluctuations and long-term cycles through dimension-aware processing.

Temporal Tokenization strategies, originating from Transformers (Wang et al., 2024b; |Liu et al., 2024a) and
now extended to RNNs (Lin et al.|[2023)), vary by temporal representation granularity: (1) Point-wise methods
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(e.g., Informer (Zhou et al., 2021), Pyraformer (Liu et al.|[2022b)) process individual timestamps as tokens. They
offer temporal precision but face quadratic complexity, requiring attention sparsification that may hinder long-
range dependency capture. (2) Patch-wise strategies (e.g., PatchTST (Nie et al.,2023)) aggregate local temporal
segments into patches. Pathformer (Chen et al.|[2024) similarly employs patch-based processing via adaptive
multi-scale pathways. (3) Series-wise approaches (e.g., iTransformer (Liu et al.| |2024a)) construct global variate
representations, enabling cross-variate modeling but risking temporal misalignment. TimeXer (Wang et al.,
2024c)) uses hybrid tokenization: patch-level for endogenous variables and series-level for exogenous, bridged
by a learnable global token.

Temporal Dependency Modeling captures dynamic inter-step dependencies through diverse architectural
mechanisms, balancing local interactions and global patterns. Recurrent state transitions (e.g., LSTM) model
sequential memory via gated memory cells; temporal convolutions (e.g., TCN (Bai et al.,2018)) construct multi-
scale receptive fields using dilated kernels; attention mechanisms (e.g., Transformers) enable direct pairwise
interactions across arbitrary time steps. Efficiency-driven innovations include sparse attention (Informer (Zhou
et al.,[2021)), periodicity-based aggregation (Autoformer (Wu et al.| [2021)), and state-space hybrids (Mamba
(Gu and Dao| [2024)), achieving tractable long-range dependency modeling while preserving temporal fidelity.

Variate Correlation, fundamental to modeling critical correlations in multivariate time series forecasting
(MTSF), operates through two primary paradigms (Qiu et al.|[2025b): (1) Channel-Independent (CI) Strategy:
Processes channels independently with shared parameters (e.g., PatchTST (Nie et al.;[2023))), ensuring robustness
and efficiency but ignoring multivariate dependencies, limiting use with strong inter-channel interactions (Qiu
et al.,[2025a). (2) Channel-Dependent (CD) Strategy: Integrates channel information via methods like channel-
wise self-attention (iTransformer (Liu et al.}2024a)) or MLP-based mixing (TSMixer (Chen et al.;[2023)). This
allows explicit dependency modeling but risks overfitting and struggles with noise in high dimensions.

C COMPARED BASELINES

We systematically compare state-of-the-art forecasting models using the 6 architectural modules introduced in
Section [B] Table[C2]presents the configuration of each baseline in terms of these modules. The "Notes" column
provides concise annotations of each model’s key methodological features, allowing for quick identification of
the technical differentiators among the baselines.

D METRICS MATHEMATICAL FORMULA

The metrics used in this paper can be calculated as follows(Wu et al.| |2023):

1 H H
MSE = - (Xz Xi)?, MAE = — 2:1
H H E
SMAPE — 200 g~ X = X Xi| MAPE = @ZM,
Xl + X H = X
" -
1 1X; — X, 1 { SMAPE MASE
MASE = — ., OWA=_-
; — f:m-&-l |XJ — Xj7m| 2 | SMAPEnuive2 MASEnaive2

where m is the periodicity of the data. X, X € R7*C are the ground truth and prediction results of the future

with H time points and C' dimensions. X; means the ¢-th future time point.

E SYSTEM CONFIGURATION

We conducted all experiments in the same experimental environment, which includes four NVIDIA A100 GPUs
with 80GB and eight 40GB of memory. We saved overall experimental time by running experiments in parallel.

F COMPARED WITH ADGYM

Compared with ADGym (Jiang et al.| [2023)), TSGym exhibits the following differences and advantages:

(1) Broader model structure design choices. ADGym includes only MLP, autoencoder (AE), ResNet, and
Transformer architectures, while TSGym provides an in-depth decoupling of different attention mechanisms
within Transformers and incorporates two pre-trained large models: LLMs and TSFEM. (2) More diverse data
processing design choices. ADGym focuses solely on data augmentation and two normalization methods,
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Table C2: Component Configurations of 27 Baseline Models

. . Variate
Backbone Method Nm?“all' Deq.:o.m- Multi- .Tolfen- Temporal Corre- Notes
zation  position Scale izations Dependency N
lation
SegRNN(Lin et al. 2023 SubLast Patch-wise GRU et Redu;es iterations via patch-wise processing and parallel
multi-step forecasting.
RNN Selective State Efficient model selectively propagating information with-
Mamba(Gu and Dao} 2024 Stat Point-wise Space Model CD out attention or MLP blocks.
SCINet(Liu et al.|[2022a Stat TRUE  Point-wise Convld cp Recursively downsamples, convolves, and interacts with
data to capture complex temporal dynamics.
CNN  MICN(Wang et al.|[2023 MA TRUE  Point-wise Convld cp Combines local features and global correlations using
multi-scale convolutions with linear complexity.
TimesNet(Wu et al.|2023 Stat TRUE Point-wise ~ Conv2d cp Transforms 1D time series inio 2D tensors to capture
multi-periodicity and temporal variations.
FLM(Zhou et al.|2022a RevIN TRUE  Point-wise Ircggndrc e Preserves hls.loncal‘ mff) and reduces noise with Legen-
Projection Unit dre and Fourier projections.
LightTS(Zhang et al.|2022 Patch-wise MLP cp Lightweight MLP model for multivariate forecasting,
using continuous and interval sampling for efficiency.
DLinear(Zeng et al.|2023b MA Point-wise MLP ccp Decomposes series into trend and seasonal components,
then applies linear layers for improved forecasting.
KoopalLiu et al.}2023 Stat DET Polnl—w{%c. MLP D Uses lﬁoopman [hcfary to qucl non-stationary dynamics,
MLP Patch-wise handling time-variant and time-invariant components.
TSMixer(Chen et al.|2023 Point-wise MLP D Simple MLP modlcl efficiently c?plurcs both time and
feature dependencies for forecasting.
FreTS(Yi et al 12023 Point-wise l-rcq.ucncyf creD Uscslfrcqucncy—domam MLPs to capture global depen-
domain MLP dencies and focus on key frequency components.
TiDE(Das et al.| 2023 Stat Point-wise MLP ¢ Fast MLP-based model for long-term forecasting, han-
dling covariates and non-linear dependencies.
TimeMixer(Wang et al.|2024a RevIN MA TRUE  Point-wise MLP cycp Fully MLP-based model, disentangles and mixes multi-
scale temporal patterns.
Reformer(Kitaev et al.|2020 Point-wise LSHSf:lff D Mcn}oly:cfﬁcncnl Tltal?sformcr with locality-sensitive
Attention hashing for faster training on long sequences.
Informer(Zhou et al 021 Point-wise PmbSp§u‘scf D Efﬁclcn‘[ Transformer with ProbSparse-Attention ax?d a
Attention generative decoder for faster long-sequence forecasting.
High-performance, interpretable multi-horizon forecast-
TFT(Lim et al.}[2021 Stat Point-wise ~ Self-Attention ~ CD  ing model combining recurrent layers for local process-
ing and attention layers for long-term dependencies.
Autoformer(Wu et al.|2021 MA Point-wise Auto—_ D Uses Aulo—Cor_relvauon and decomposition for accurate
Correlation long-term predictions.
PyraFormer(Liu et al. [2022b TRUE  Point-wise Pyramld— D C{thures‘lempqral dependencies at multiple resolutions
Attention with constant signal path length.
NSTransformer(Liu et al|2022d Stat Point-wise De—slall(_)nary D Res.lores non-stationary information .lhmugh de-
Attention stationary attention for improved forecasting.
Exponential- . .
ETSformer(Woo et al. 2022 DFT Point-wise  Smoothing-  CD  Lntegrates exponential smoothing and frequency atten-
Transformer ‘Attention tion for accuracy, efficiency, and interpretability.
FEDformer(Zhou et al. }{2022b! MA TRUE Point-wise AutoCorrelation €D Combines seasonal-trend decomposition with frequency-
enhanced Transformer for efficient forecasting.
Crossformer(Zhang and Yanl[2023 TRUE  Patch-wise TwoSt:_xge— D Cgptures both tempor_al and cross-variable dependencies
Attention with two-stage attention.
PatchTST(Nie et al. |[2023 Stat Patch-wise  FullAttention ~ CI ~ Scgments time series into patches and uses channel-
independent embeddings.
iTransformer(Liu et al.[2024a Stat Series-wise  FullAttention CD R_efiehne; token embeddlng o treal time points as series-
wise tokens for better multivariate modeling.
TimeXer(Wang et al.}2024c Stat Series-wise  FullAttention ~ CD Enhénc_es forecas_lmg by Incorporating exogenous vari-
ables via patch-wise and variate-wise attention.
PAttn(Tan et al. 2024 Stat Paich-wise  FullAttention €1 Similar to PaichTST, uses attention-based paiching for
efficient forecasting without large language models.
Enhances multivariate forecasting by using Mixture of
DUET(Qiu et al. }2025b RevIN MA Point-wise ~ FullAttention CI/CD Experts (MOE) for temporal clustering and a frequency-

domain similarity mask matrix for channel clustering.

Table F3: Compared with ADGym, TSGym covers a broader and more in-depth design space, as
well as a more structured and extensive automated selection experiment.

ADGym

TSGym

Design Dimensions 13

Design Space Size

Model Architectures
Max of Data Samples 3000
Baseline Methods 7

195,9552
MLP,AE,ResNet,FTTransformer

16

796,2624
MLP,RNN, Transformers, LLM, TSFM

57,600

27

whereas TSGym encompasses series sampling, series normalization, series decomposition, as well as various
series encoding options. (3) More complex meta-features. The meta-features in ADGym include statistical
metrics for tabular datasets, while TSGym considers multiple sequence characteristics across different channels
in multivariate time series, such as distribution drift, sequence autocorrelation, and more. (4) More standardized
automated selection experiments. Due to time constraints, ADGym limits the sample size to fewer than 3000
samples, whereas TSGym imposes no such restriction, providing a larger-scale experimental design that leads to

more solid experimental conclusions.
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In summary, compared with ADGym, TSGym makes significant progress and development in both compo-
nents benchmarking and automated selection. More details can be seen in table [F3]

G META-FEATURES AND META-PREDICTORS

Details and the selected list of meta-features. The meta-features in this paper are extracted via TSFEL
(Barandas et al'} 2020) spanning temporal, statistical, spectral, and fractal domains. In Section[d.2] we present the
results of the meta-predictor trained on meta-features derived from these static characteristics. Furthermore, in
Fig. [GI] we visualize the dimension-reduced meta-features across different datasets. The following categorizes
these features with their analytical purposes (see Tables[G4HG7| for implementation details):

Temporal features (Table[G4): Characterize sequential dynamics through trend detection, entropy analysis,
and change-point statistics, preserving sensitivity to temporal ordering.

Statistical features (Table [G3): Capture distribution properties via central tendency (mean/median), disper-
sion (variance/IQR), and shape descriptors (skewness/kurtosis), invariant to observation order.

Spectral features (Table[G6): Decompose signals into frequency components using Fourier/wavelet trans-
forms, identifying dominant periodicities and hidden oscillations.

Fractal features (Table[G7): Quantify multiscale complexity through fractal dimensions and Hurst exponents,
reflecting self-similarity patterns across temporal resolutions.

Table G4: Temporal Meta-feature Specifications

Feature

Description

Functionality

Absolute Energy
Area Under the Curve
Autocorrelation

Average Power
Centroid

Signal Distance
Negative Turning
Neighbourhood Peaks
Peak-to-Peak Distance
Positive Turning

Root Mean Square
Slope

Sum of Absolute Differ-

ences

Zero-Crossing Rate

Computes the absolute energy of the signal.

Computes the area under the curve of the signal
computed with the trapezoid rule.

Calculates the first 1/e crossing of the autocorre-
lation function (ACF).

Computes the average power of the signal.
Computes the centroid along the time axis.

Computes signal traveled distance.

Computes number of negative turning points of
the signal.

Computes the number of peaks from a defined
neighbourhood of the signal.

Computes the peak to peak distance.

Computes number of positive turning points of
the signal.
Computes root mean square of the signal.

Computes the slope of the signal.
Computes sum of absolute differences of the

signal.
Computes Zero-crossing rate of the signal.

Measures the total energy of the signal, often used to understand signal power
and activity levels.

Provides a measure of the overall signal amplitude or ""energy"" over time.

Measures the correlation of the signal with its own past values, useful for identi-
fying repeating patterns.

Averages the squared values of the signal, capturing its power over time.

Indicates the ""center"" or ""balance point
insight into its distribution.

of the signal in time, providing

Measures the total path length covered by the signal over time, capturing the
extent of signal fluctuations.

Counts the number of times the signal changes direction from positive to negative.

Identifies the number of peak points within a specified window, useful for pattern
detection.

Measures the time interval between successive peaks, indicating the period of
oscillations.

Counts the number of times the signal changes direction from negative to positive.

Calculates the square root of the average squared values of the signal, often used
as a measure of signal strength.

Measures the rate of change in the signal’s amplitude over time, indicating trends
or shifts.

Measures the total variation in the signal by summing the absolute differences
between consecutive values.

Counts how many times the signal crosses the zero axis, indicating its frequency
and periodicity.

Details of the trained meta-predictors. For each design choice, we first use the LabelEncoder class from
scikit-learn to convert it into a numerical class index. This index is then fed into an nn. Embedding layer within
our model to obtain a dense vector representation. These learned embeddings, along with other meta-features,
subsequently form the input to the meta-predictor. The meta-predictor is optimized using Pearson loss to learn
the relative performance ranks of different design choices, thereby emphasizing the linear correlation between
predicted and actual rankings.

Moreover, we experimented with different training strategies to guide the meta-predictor in selecting the top-1
design pipelines. We report the results of TSGym with different training strategies in TableEl

(1) +Resample: Constraining the number of combinations from different datasets to be equal when training the
meta-predictor.

(2) +AlIPL: Training on datasets with varying prediction lengths and transfers this knowledge to a test set with a
single prediction length.
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Table G5: Statistical Meta-feature Specifications

Feature

Description

Functionality

Maximum Value
Mean Value

Median
Minimum Value

Standard Deviation
Variance

Empirical Cumulative
Distribution Function
ECDF Percentile
ECDF Percentile Count
ECDF Slope
Histogram Mode
Interquartile Range
Kurtosis

Mean Absolute Devia-
tion

Mean Absolute Differ-
ence

Mean Difference
Median Absolute Devia-
tion

Median Absolute Differ-
ence

Median Difference

Skewness

Computes the maximum value of the signal.
Computes mean value of the signal.

Computes the median of the signal.
Computes the minimum value of the signal.

Computes standard deviation (std) of the signal.
Computes variance of the signal.

Computes the values of ECDF along the time
axis.

Computes the percentile value of the ECDF.

Computes the cumulative sum of samples that
are less than the percentile.

Computes the slope of the ECDF between two
percentiles.

Compute the mode of a histogram using a given
number of bins.

Computes interquartile range of the signal.
Computes kurtosis of the signal.
Computes mean absolute deviation of the signal.

Computes mean absolute differences of the sig-
nal.

Computes mean of differences of the signal.

Computes median absolute deviation of the sig-
nal.

Computes median absolute differences of the
signal.

Computes median of differences of the signal.

Computes skewness of the signal.

Identifies the highest amplitude or peak value in the signal, useful for determining
extreme values.

Calculates the average value of the signal, providing insight into its central
tendency.

Finds the middle value of the signal when sorted, offering robustness to outliers.
Identifies the lowest amplitude or trough value in the signal, useful for detecting
minima.

Measures the variation or spread of the signal values, indicating how much the
signal deviates from the mean.

Quantifies the spread of signal values, related to the square of the standard
deviation.

Provides a cumulative distribution function, representing the probability distribu-
tion of the signal values.

Extracts specific percentiles from the cumulative distribution, useful for under-
standing the signal’s quantiles.

Measures the number of samples falling below a given percentile, providing
distribution insights.

Measures the steepness or rate of change in the cumulative distribution, indicating
distribution sharpness.

Finds the most frequent value in the signal’s histogram, representing the peak of
the signal’s distribution.

Measures the range between the 25th and 75th percentiles, indicating the spread
of the central 50% of the signal values.

" i

Measures the ""tailedness
outliers or extreme values.

of the signal distribution, indicating the presence of

Measures the average deviation of the signal values from the mean, providing an
indication of signal variability.

Calculates the average of absolute differences between successive signal values,
reflecting the signal’s smoothness.

Computes the average of the first-order differences, used to measure overall
signal change.

Measures the spread of the signal values around the median, offering a robust
measure of variability.

Similar to mean absolute difference but based on the median, used to assess
signal smoothness.

Calculates the median of first-order differences, providing insights into signal
trend stability.

Measures the asymmetry of the signal’s distribution, indicating whether it is
skewed towards higher or lower values.
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Table G6: Spectral Meta-feature Specifications

Feature

Description

Functionality

Entropy

Fundamental Frequency
Human Range Energy
Linear Prediction Cep-
stral Coefficients
Maximum Frequency
Maximum Power Spec-
trum

Median Frequency
Mel-Frequency Cepstral
Coefficients

Multiscale Entropy
Power Bandwidth
Spectral Centroid
Spectral Decrease
Spectral Distance
Spectral Entropy
Spectral Kurtosis
Spectral Positive Turn-
ing

Spectral Roll-Off
Spectral Roll-On
Spectral Skewness
Spectral Slope

Spectral Spread

Spectral Variation

Spectrogram Mean Co-
efficients

Wavelet Absolute Mean
Wavelet Energy
Wavelet Entropy
Wavelet Standard Devi-

ation
Wavelet Variance

Computes the entropy of the signal using Shan-
non Entropy.

Computes the fundamental frequency of the sig-
nal.

Computes the human range energy ratio.

Computes the linear prediction cepstral coeffi-
cients.

Computes maximum frequency of the signal.

Computes maximum power spectrum density of
the signal.

Computes median frequency of the signal.
Computes the MEL cepstral coefficients.

Computes the Multiscale entropy (MSE) of the
signal, that performs entropy analysis over mul-
tiple scales.

Computes power spectrum density bandwidth of
the signal.

Barycenter of the spectrum.

Represents the amount of decreasing of the spec-
tra amplitude.

Computes the signal spectral distance.

Computes the spectral entropy of the signal
based on Fourier transform.

Measures the flatness of a distribution around its
mean value.

Computes number of positive turning points of
the fft magnitude signal.

Computes the spectral roll-off of the signal.
Computes the spectral roll-on of the signal.

Measures the asymmetry of a distribution around
its mean value.

Computes the spectral slope.

Measures the spread of the spectrum around its
mean value.

Computes the amount of variation of the spec-
trum along time.

Calculates the average power spectral density
(PSD) for each frequency throughout the entire
signal.

Computes CWT absolute mean value of each
wavelet scale.

Computes CWT energy of each wavelet scale.
Computes CWT entropy of the signal.

Computes CWT std value of each wavelet scale.

Computes CWT variance value of each wavelet
scale.

Quantifies the uncertainty or randomness in the signal, offering insights into its
complexity.

Identifies the primary frequency at which the signal oscillates, crucial for detect-
ing periodic behaviors.

Measures the energy in the human audible range, useful for identifying signals
relevant to human hearing.

Extracts features related to the signal’s frequency components, commonly used
in speech and audio processing.

Identifies the highest frequency component of the signal, providing insight into
its frequency range.

Measures the peak value in the power spectral density, identifying dominant
frequencies in the signal.

Identifies the frequency that divides the signal’s power spectrum into two equal
halves.

Used to extract features representing the spectral characteristics of the signal,
primarily used in speech analysis.

Quantifies the signal’s complexity at different scales, useful for detecting non-
linear temporal behaviors.

Measures the width of the frequency band where the majority of the signal’s
power is concentrated.

Identifies the ""center’
audio analysis.

of the signal’s frequency spectrum, used in sound and

Measures how rapidly the spectral amplitude decreases across frequency, useful
for identifying spectral roll-off.

Quantifies the difference between the signal’s spectrum and a reference, helpful
in pattern recognition.

Measures the randomness or complexity in the frequency domain of the signal.

Quantifies the tail heaviness of the signal’s frequency distribution, identifying
outliers or abnormal distributions.

Counts the points where the signal’s Fourier transform changes direction from
negative to positive.
Measures the frequency below which a specified percentage of the total spectral
energy is contained.

Similar to roll-off but identifies the frequency above which a specified amount
of energy is concentrated.

Measures the skew in the signal’s frequency distribution, highlighting the pres-
ence of spectral biases.

Quantifies the slope of the power spectral density, often used to distinguish
between harmonic and non-harmonic signals.

Measures the dispersion or spread of the signal’s spectral energy.
Quantifies how much the frequency content of the signal changes over time.

Averages the power spectral density across all time intervals, capturing the
signal’s overall spectral energy distribution.

Measures the average wavelet transform magnitude across scales, useful for
detecting changes in signal frequency.

Quantifies the energy at each wavelet scale, reflecting the signal’s energy distri-
bution across frequencies.

Measures the complexity or unpredictability of the signal at different wavelet
scales.

Measures the variation or spread of the wavelet transform across different scales.

Quantifies the dispersion of the signal at different wavelet scales.

Table G7: Fractal Meta-feature Specifications

Feature

Description

Functionality

Detrended Fluctuation
Analysis

Higuchi Fractal Dimen-
sion

Hurst Exponent

Lempel-Ziv Complexity

Maximum Fractal
Length
Petrosian Fractal Di-

mension

Computes the Detrended Fluctuation Analysis
(DFA) of the signal.

Computes the fractal dimension of a signal using
Higuchi’s method (HFD).

Computes the Hurst exponent of the signal
through the Rescaled range (R/S) analysis.
Computes the Lempel-Ziv’s (LZ) complexity
index, normalized by the signal’s length.
Computes the Maximum Fractal Length (MFL)
of the signal.

Computes the Petrosian Fractal Dimension of a
signal.

Measures long-range correlations and self-similarity in the signal, used for
identifying fractal behavior.

Measures the complexity of the signal’s pattern by calculating its fractal dimen-
sion.

Measures the long-term memory or persistence in the signal, useful for identify-
ing trends and randomness.

Quantifies the randomness or predictability of the signal based on its compress-
ibility.

Measures the fractal dimension at the smallest scale of the signal, reflecting its
intricate pattern complexity.

Measures the signal’s fractal dimension based on its variation across different
scales.
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Table HS: Full results for the long-term forecasting task. All the results are averaged from 4 different
prediction lengths, that is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others.

Model TSGym DUET TimeM; MICN TimesNet atch TST DLinear Crossformer Autoformer SegRNN Mamba iTransformer TimeXer
odels (Ours) [Qiuetal 130335 [Wang et al. [2034a) [Wang et al J2023] [Wa ctal 2033 [Nicetal J2033] [Zeng et al 120335] [ZRang and Yan§2023] [Wu et al 12037 1J3033]  [Guand Daof2024]  [Ciweral 20243]  [Wang et al. J2024¢]
Metric  MSE MAE | MSE MAE | MSE MAE | MSE MAE| MSE MAE | MSE MAE | MS MAE SE MAE | MSE MAE S MAE | MSE MAE | MSE MAE| MSE MAE
ETTml 1032 00[0807  0Amloast 0390402 029042 0030 008|008 0407 0501 05010552 09603 0404|0301 0dee 04 oAisoase 0w
Ertma [0266 032039 0xmlam  0ms|os  owilome  omslodm  ossloss 0|1 om0k o|oan  omslowss  odolose  oapfosw 03
ETTH (017 040[04%  04[0as  oum|osw 05041 0dsioasi  0aio|odss  0d6l|0su O0f0asr  oas|oan  Gdmlosi  osalow  ouloms 04
ETTi (0367 0403030 040303 odelosss 0300415 044035 0dool0sss 0320|139 0508|0446 0400374 Od0s|odes  Oam|om  odoslosrs o
ECL |0.164 0.261)0.179 0.2620.185 0.2730.186 0.297]0.219 0.314]0.209 0.298)0.225 0.319]0.193 0.2890.234 0.340|0.216 0.302]0.209 0.312]0.190 0.277]0.191 0.286
Traffic |0.433 0.301)0.797 0.4270.496 0.313]0.544 0.320)0.645 0.348| 0.497 0.3210.673 0.419] 1.458 0.7820.637 0.397|0.807 0.411]0.679 0.380)| 0.474 0.318)0.509 0.333
‘Weather |0.240 0.276|0.252 0.277]0.244 0.2740.264 0.316]0.261 0.287]0.256 0.279]0.265 0.317]0.253 0.312]0.339 0.379(0.251 0.298]0.291 0.315|0.259 0.280]0.243 0273
Exchange 0375 0415(0322 0.384 0359 0.402 0.346 0.422(0.405 0.437[0.381 0.412[0.346 0.414[0.904 0.695 0.506 0.5000.408 0.423[0.714 0.562(0.369 0.410[0.410 0.424
256 Ton|deo  Vois|4s  Tsolsuw Lo oowr|od  osi|sssr  Vsiolesn Iolsise  bwlisos  Tarsme D3| oon|zen  tom
1% Count 8 2 0 0 0 1 0 0 0 2 0 0 1
Models. PAtn 00Dd. SMixer FreTS, Pyraformer Nonstationary_ ETSformer FEDformer SCINet LightTS Informer Transformer Reformer
B © [Tanetal.£2024] [Liu et al. £2023] \Chen et al. §2023 (Yietal. £2023]  [Liu et al. £2022b] (Liu et al. £2022c] [Woo et al. £2022 (Zhou et al. §2022b}  |Liu et al. £2022a} §Zhang et al.§2022] |Zhou et al. £2021} (Vaswani et al. 22017} [Kitaev et al. £2020
Metric  MSE MAE | MSE MAE | MSE MAE | MSE MAE| MSE MAE | MSE MAE | MSE MAE| MSE MAE | MSE MAE | MSE MAE | MSE MAE| MSE MAE| MSE MAE
ETTml1 |0.384 0.399(0.367 0.396 |0.527 0.512]0.409 0.417]0.695 0.5930.509 0.467|0.636 0.592|0.438 0.4500.409 0.412]0.438 0.4450.969 0.736|0.836 0.6780.998 0.723
Ertma (031 03|03 037|1o%0  o70[oss  owm|ises  oweloa  oss|ies  osr|osor O3S0 033[04>  Osa|isr  owm|iase  osi|isss o
ETTh1 |0.468 0.454)|0.472 0.471(0.615 0.579|0.476 0.464)|0.814 0.692]0.610 0.5430.750 0.6510.448 0.4610.520 0.488 | 0.530 0.505|1.057 0.798)0.930 0.768)|0.973 0.739
ETTi (036 0413(0%% 043|206 12m[oss 0314|376 157052 0303052 0salodny 0M6los  odo|oen  om|iss  d7s|oew  lalaw  1ow
ECL |0.205 0.286)0.219 0.31910.229 0.33710.209 0.296)0.295 0.387)0.194 0.296)0.275 0.370)0.225 0.336|0.220 0.32310.243 0.34410.369 0.44410.273 0.367|0.324 0.404
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Exchange| 0365 040710010 0316|047 0346[0a 0433|118 0ssslos  owo[ozel  0dls|os > Oxsfose  om3|lsis  osr|ive  ooni|len  lom
2.359 0.975] 2.064 09125.617 1.680|3.447 1.279[4.691 1.442|2.592 1.012]4.046 1.419(3.088 1.214]6.505 1.853]7.078 1.975]5.035 1.539(4.682 1.448[4.211 1.350
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Figure G1: Distributions of meta-features after PCA dimensionality reduction, comparing datasets
for long-term and short-term time series forecasting tasks.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 COMPREHENSIVE RESULTS OF TSGYM AGAINST STATE-OF-THE-ART METHODS

Due to space limitations in the main text, here we provide complete experimental comparisons for both long-
term and short-term forecasting tasks. Table[H8]details the full long-term forecasting performance across all
prediction horizons, while Table [H9] presents the comprehensive short-term forecasting results. Following
standard benchmarking conventions, we highlight top-performing methods in red and second-best results with
underlined formatting. These extensive evaluations consistently validate TSGym’s competitive performance
across diverse temporal prediction scenarios.

H.2 ADDITIONAL RESULTS OF LARGE EVALUATIONS ON DESIGN CHOICES

To systematically evaluate our architectural decisions, we conduct detailed ablation studies focusing on 17
component-level analyses, presented separately in Tables [HTOHHT3] for clarity and due to space constraints.
These comparative experiments assess the performance impact of different design choices for each component
across nine datasets in the long-term forecasting task. Bolded values indicate the best-performing configuration
for each dataset, while the summary row highlights the most frequently superior design choices, with red-bolded
entries denoting the dominant configurations. This fine-grained analysis offers empirical insights to guide
component selection in time-series forecasting systems.
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Table H10: Long-term Forecasting Performance of Different Design Choices — Part I (6 Components).
MSE distribution for each dataset under different configurations of the 6 components, characterized
by the best (minimum) value, median, and interquartile range (IQR). Bolded entries indicate the
best-performing result for the respective dataset and metric in each component.

Series

Timestamp Embedding Series Normalization Series Decomposition Channel Independent Series Tokenization
dataset  stat  wio Embedding w/ Embedding | w/o Mixing w/ Mixing | DishTS w/o Norm RevIN Stat | DFT MA MoEMA w/o Decomp | Channel Depen Channel Indepen | Inverted - Series - Series
Encoding Encoding _Patching
Best 0.348 0343 0.348 0350 | 0360 0354 0348 0351[0.350 0352 0348 0351 0352 0.348 0354 0349 0348
ETTml |Median| 0416 0.459 0427 0459 | 0511 0577 0403 0.404[0.459 0.405 0.445 0.466 0472 0.389 0400 0487 0390
IQR 0.147 0.181 0.158 0.198 | 0211 0250 0099 0.107[0.166 0.139 0.178 0.183 0.198 0.114 0029 0208 011
Best 0.251 0.248 0.248 0255 | 0261 0275 0248 0251(0253 0248 0255 0252 0252 0.248 0252 0255 0248
ETTm2 |Median 353 0.345 0.327 0394 | 0.689 0999 0294 0299]0336 0384 0370 0320 0377 0.307 0300 0404 0306
IQR 0.537 0.374 0903 | 0707 1252 0033 0.035]0.366 0742 0.628 0.426 0823 0.130 0095 0922 0160
Best 0.406 0.403 0404 | 0433 0419 0402 0.401[0.407 0405 0.405 0.409 0412 0.401 0412 0412 0401
ETTh1 |Median| 0490 0.488 0.480 0519 | 0547 0633 0464 0.462(0492 0489 0.491 0.487 0510 0.461 0474 052 0456
QR 0.129 0.130 0.088 0219 | 0207 0381  0.049 0.048]0.152 0111 0.15¢ 0117 0206 0.041 0054 0243 0.037
Best 0322 0329 0332 0322 | 0374 0378 0321 0331[0335 0322 0332 0333 0322 0337 0346 0321 0341
ETTh2 |Median|  0.447 0492 0.451 0493 | 1049 1594 0388 0390(0.433 0452 0500 0503 0527 0.398 0452 0487 0391
IQR 0.775 0.859 0.600 1574 | 1222 2615 0.043 0043|0576 0.941 0995 0.735 1369 0218 039 1671 0252
Best 0.159 0.157 0.157 0059 | 0159 0160 0.159 0.157(0.158 0.163 0.161 0.157 0157 0.163 0157 0158
ECL |Median| 0208 0.204 0.204 0208 | 0218 0227 091 0.191[0205 0208 0206 0203 0206 0202 0195 0212
IQR 0.057 0.056 0.058 0054 | 0052 0058 0035 0052]0.064 0053 0054 0056 0.056 0.055 0050 0061
Best 0.394 0.39 0.398 0394 | 0411 0441 0398 0.394[0.398 0400 0394 0400 0394 0.409 0399 0394
traffic |Median| 0558 0,600 0.580 0579 | 0545 0658 0550 0.506[0.609 0571 0563 0567 0570 0.626 0531 0602
IQR 0.191 0.198 0.208 0179 | 0161  0.122 0209 0.196]0.179 0.190 0202  0.198 0.195 0.19 0191 0188
Best 0222 0.220 0.220 0222 | 0223 0225 0220 0224[0225 0223 0220 0221 0220 0220 0220 0220
weather |Median| 0258 0272 0.258 0272 | 0263 0292 0256 0259(0262 0271 0260 0261 0272 0.246 0248 0280
IQR 0.040 0.085 0.047 0070 | 0066 0213 0034 0037]0.048 0049 0049 0053 0.064 0.037 0033 0079
Best 0239 0.209 0.208 0242 [ 0209 0247 0349 0336[0.240 0237 0244 0209 0209 0237 0239 0212
Exchange | Median 0.488 0491 0.455 0552 | 0635 0937 0426 0422[0471 049 0484 0518 0.563 0.390 0412 0581
IQR 0.461 0.457 0.414 0545 | 079 0902 0167 0.168]0.427 0481 0416 0516 059 0.131 0250 0612
Best 1584 1.546 1562 1576 | 1755 2137 1584 1555|1649 1599 1581 1573 1545 1734 1583 1548
ili |Median| 2837 2875 2.884 2814 | 2802 4373 2505 2501|2892 2803 2892 2853 2.804 3.048 2870 2.860
IQR 1.613 1.690 1.639 1677 | 1205 0967 0739 0786|1637 1604 1702 1.661 1.666 1.649 1752 1668
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Table H11: Long-term Forecasting Performance of Different Design Choices— Part II (4 Components)
and Part II (7 Components). Same structure and evaluation metrics (MSE) as Table @

(a) Part IT — 4 Components (Backbone, Attention, etc.)

Network Backbone | Attention | Feature-Attention | Sequence Length

datwset  stat GRU MLP T35 | puocore statiomary FTOIIY o engion el Sparse | Frequeney o yponon St Sparse | 190 4y 513 o

h 7 former | AUIOLOTT S an Attention Attention Attention | Attention Attention Attention
Best |0.352 0.347  0.351 0.359 0.382 0.354 0.347 0.359 0.354 0.354 0.348 0.355 0360 ]0.351 0.473 0.347 0.379
ETTm1 |Median|0.462 0.409 0449 0.499 0455 0.409 0439 0486 0441 0446 0411 0458 0459 [0.385 0545 0.392 0.424
IQR [0.160 0.172  0.151 0242 0.087 0.106 0.168 0189 0.143 0.179 0.154 0177 0201 |0.101 0.093 0.109 0.091
Best [0.260 0.248 0256 0258 0289 0265 0.248 0260 0267 0258 0.248 0253 0254 [0.261 0293 0.248 0273
ETTm2 |Median |0.352 0.323 0416 0.663 0.320 0.335 0.336 0.437 0.766 0.426 0.323 0.383 0372 0.329 0.385 0.335 0.378
IQR [0.432 0.330 0.854 0.900 0.033 0.911 0.370 0.711 1.086 0.866 0.254 0.824 0.800 |0.733 0.410 0.813 0.632
Best |0.408 0.402 0406 0418 0471 0413 0.401 0432 0406 0417 0.401 0415 0412 [0.420 0443 0.401 0433
ETThl |Median|0.495 0480  0.502 0510 0526 0475 0487 0527 0504 0.496 0479 0502 0508 |0.483 0501 0.481 0.486
IQR [0.125 0.107  0.167 0.190 0.060 0070 0.116 0207 0214 0.163 0.080 0156 0242 |0.104 0.142 0.149 0.136
Best |0.325 0.324  0.344 0.356 0.383 0.350 0.321 0.360 0.355 0.338 0.324 0.325 0337 ]0.349 0.382 0.321 0.359
ETTh2 |Median|0.538 0433 0453 0462 0.410 0546 0462 0589 0504 0558 0.430 0436 0623|0458 0520 0.423 0.500
IQR |0.685 0.743 1453 2021 0.030 0754 0.707 1345 1393 1530 0333 0967 1499|1177 0.847 0.845 0.645
Best [0.163 0.163  0.157 0.163 0.165 0.160 0.162 0158 0157 0.158 0.158 0159 0.58 [0.162 0.181 0.157 0.169
ECL |Median|0.213 0.204  0.201 0205 0.181 0207 0.209 0199 0.195 0.194 0213 0199 0209 [0.183 0.242 0.182 0.209
IQR |0.055 0.059  0.054 0.054 0.048 0.055 0.059 0.048 0.052 0.052 0.060 0.050 0.054 ]0.026 0.044 0.046 0.040
Best |0.409 0408  0.394 0407 0417 0401 0407 0394 039 0407 0399 0394 0402 [0.409 0515 0.394 0.446
traffic | Median [0.592 0.608  0.558 0576 0475 0583 0599 059 0523 0540 0655 0510 0538 |0.479 0.686 0.453 0.578
IQR |0.181 0210  0.195 0208 0.102 0.181 0.195 0199 0.190 0.149 0.140 0190 0162 |0.140 0.128 0.177 0.143
Best |0.222 0.220  0.221 0.227 0.210 0.229 0.220 0.226 0.221 0.227 0.220 0.221 0223 ]0.225 0.253 0.220 0.237
weather |Median|0.261 0.267  0.266 0279 0233 0.264 0.264 0274 0250 0273 0.254 0267 0273 [0.248 0286 0.241 0.257
IQR |0.046 0.049  0.054 0.065 0.018 0.047 0.048 0043 0.060 0.049 0.047 0050 0089 |0.040 0.030 0.057 0.028
Best [0.210 0237 0256 0269 0.406 0278 0.208 0263 0282 0246 0237 0215 0246 [0.256 0.209 0.291 0.238
Exchange | Median | 0.540 0.430  0.574 0.602 0.615 0.545 0.478 0.560 0.590 0.542 0.439 0.558 0.562  0.493 0.398 0.841 0.427
1Q] 0.465 0.404 0517 0.499 0.164 0.600 0.451 0.492 0.492 0.620 0.300 0.547 0.484 ]0.344 0.192 0.799 0.258
Best |1.608 1561  1.551 1597 1665 1.672 1.561 1.637 1.642 1.603 1618 1.629 1552|1869 1.715 2.269 1.546
ili|Median|2.946 2.855  2.761 2731 2451 2.949 2889 2791 2728 2.648 3.058 2788 2760 |2.641 2703 3.797 2.472
IQR |1.767 1515  1.661 1623 0.656 1652 1651 1746 1.642 1.551 1.698 1,595 1722|1221 1569 1.643 1.664

(b) Part III — 7 Components (d_model, d_ff, etc.)
. . . . Encoder . . . Learning
I I

Hidden Layer ‘FCN Layer ‘ layers ‘ Training Epochs ‘ Loss Function ‘Learnmg Rate Rate Strategy
dataset stat 256 64 | 1024 256 | 2 3 | 10 20 50 |[HUBER MAE MSE [0.0001 0.001 | null type
Best |0.349 0.348 0.349 0.348 0.348 0.348|0.351 0.351 0.347| 0.348 0.351 0.350| 0.347 0.351 |0.348 0.348
ETTml |Median |0.461 0.425 0.461 0.425 0.424 0.452]0.444 0.443 0.434| 0417 0.463 0.442| 0.427 0.447 |0.433 0.444
IQR |0.165 0.161 0.165 0.161 0.158 0.160|0.173 0.154 0.159| 0.149 0.172 0.166| 0.156 0.175 |0.148 0.173
Best |0.248 0.252 0.248 0.252 0.248 0.252]0.253 0.248 0.253| 0.255 0.248 0.253| 0.254 0.248 | 0.248 0.253
ETTm2 |Median|0.357 0.342 0.357 0.342 0.352 0.346 |0.342 0.367 0.340| 0.323 0.317 0.370| 0.332 0.365 |0.361 0.342
IQR |0.698 0.405 0.698 0.405 0.636 0.467|0.444 0.613 0.556| 0.392 0.331 0.665| 0.461 0.670 | 0.500 0.599
Best |0.401 0.406 0.401 0.406 0.406 0.401|0.401 0.404 0.406| 0.405 0.401 0.417| 0.401 0.407 |0.401 0.402
ETThl |Median |0.491 0.487 0.491 0.487 0.486 0.493/0.493 0.485 0.489| 0.491 0.485 0.498| 0.479 0.501 |0.486 0.494
IQR |0.127 0.128 0.127 0.128 0.119 0.137]0.131 0.120 0.126| 0.152 0.118 0.104| 0.109 0.143 |0.110 0.150
Best |0.325 0.323 0.325 0.323 0.325 0.323|0.330 0.335 0.321| 0.326 0.326 0.336| 0.326 0.322 |0.323 0.325
ETTh2 |Median |0.468 0.462 0.468 0.462 0.448 0.491(0.507 0.455 0.457| 0.455 0.461 0.471| 0.466 0.462 |0.459 0.472
IQR |0.859 0.778 0.859 0.778 0.760 0.871]0.945 0.733 0.750| 0.630 0.906 0.901| 0.811 0.827 |0.836 0.825
Best |0.157 0.160 0.157 0.160 0.158 0.157|0.159 0.159 0.157| 0.158 0.159 0.157| 0.157 0.158 |0.157 0.158
ECL |Median |0.204 0.207 0.204 0.207 0.210 0.202{0.205 0.205 0.207| 0.205 0.200 0.206| 0.215 0.199 |0.198 0.213
IQR |0.057 0.056 0.057 0.056 0.057 0.054|0.057 0.056 0.057| 0.052 0.046 0.057| 0.061 0.050 |0.049 0.059
Best |0.394 0.400 0.394 0.400 0.400 0.394|0.401 0.401 0.394| 0.418 0.423 0.394| 0.405 0.394 |0.398 0.394
traffic | Median | 0.553 0.603 0.553 0.603 0.569 0.589(0.592 0.587 0.567| 0.619 0.611 0.570| 0.596 0.564 |0.549 0.607
IQR |0.195 0.202 0.195 0.202 0.194 0.194|0.207 0.193 0.191| 0.143 0.194 0.195| 0.216 0.187 |0.184 0.208
Best |0.220 0.220 0.220 0.220 0.220 0.220]0.224 0.220 0.220| 0.222 0.224 0.220| 0.222 0.220 |0.221 0.220
weather | Median | 0.268 0.260 0.268 0.260 0.265 0.265|0.264 0.260 0.267| 0.266 0.254 0.266| 0.264 0.264 | 0.262 0.268
IQR |0.051 0.049 0.051 0.049 0.052 0.049 |0.047 0.046 0.057| 0.051 0.049 0.050| 0.047 0.051 |0.047 0.051
Best |0.237 0.209 0.237 0.209 0.210 0.236|0.238 0.209 0.246| 0.239 0.210 0.241| 0.209 0.237 |0.243 0.209
Exchange | Median | 0.517 0.461 0.517 0.461 0.490 0.489|0.486 0.481 0.507| 0.483 0.475 0.509| 0.438 0.545 |0.496 0.486
IQR |0.513 0.410 0.513 0.410 0.484 0.441|0.459 0.439 0.467| 0.482 0.438 0.468| 0.370 0.549 |0.488 0.443
Best |1.546 1.630 1.546 1.630 1.561 1.553|1.586 1.553 1.613| 1.582 1.590 1.585| 1.662 1.545 |1.587 1.563
ili Median | 2.741 2.987 2.741 2.987 2.858 2.861|2.895 2.816 2.866| 2.924 2.896 2.801| 3.214 2.631 |2.690 3.206
IQR |1.575 1.735 1.575 1.735 1.633 1.669|1.700 1.619 1.632| 1.641 1.649 1.653| 1.775 1.399 |1.421 1.836

24



Under review as a conference paper at ICLR 2026

Table H12: Long-term Forecasting Performance of Different Design Choices — Part I (6 Components).
MAE distribution for each dataset under different configurations of the 6 components, characterized
by the best (minimum) value, median, and interquartile range (IQR). Bolded entries indicate the
best-performing result for the respective dataset and metric in each component.

. . Series o oo : L - o
Timestamp Embedding ‘ Sampling/Mixing ‘ Series Normalization ‘ Series Decomposition ‘ Channel Independent ‘ Series Tokenization
dataset  stat  w/o Embedding w/ Embedding | w/o Mixing w/ Mixing | DishTS w/o Norm RevIN Stat |[DFT MA MoEMA w/o Decomp | Channel Depen Channel Indepen lf“""‘Fd Series - Series
incoding Encoding Patching

Best 0.369 0.37 0.368 0.376 0.377 0.374 0.369 0.371[0.372 0373 0.371 0.371 0.373 0.37 0.373 0.371

ETTml |Median 0.422 0.447 0.429 0.445 0.487 0.538 0.413 0413|0445 0416 0438 0.448 0.452 0.402 0.412 0.454

IQR 0.079 0.105 0.08 0.127 0.129 0.17 0.049 0.053]0.101 0.067 0.103 0.121 0.127 0.056 0.064 0.138

Best 0.308 0.306 0.306 0.312 0.319 0.329 0.306 0.308]0.308 0.306 0.312 0.307 0.307 0.306 0.307 0.312

ETTm2 |Median 0.385 0.382 0.368 0.403 0.531 0.687 0.336  0.339|0.371 0.399 0.393 0.359 0.396 0.353 0.342 0.406
IQR 0.248 0.268 0.19 0.377 0.242 0.51 0.026 0.027|0.184 0.314 0297 0.226 0.36 0.096 0.131 0.4

Best 0.417 0.421 0.418 0.42 0.439 0431 0419 0.418| 042 042 0.42 0.421 0.425 0.417 0.425 0.421

ETThl | Median 0.474 0.474 0.466 0.492 0.515 0.575 0.45 045 0472 0474 0475 0.473 0.487 0.452 0.461 0.494

IQR 0.082 0.093 0.062 0.148 0.139 0.249 0.036 0.037{0.105 0.081  0.096 0.081 0.144 0.034 0.045 0.166

Best 0.377 0.382 0.382 0.378 0.405 0.409 0.377 0.381]0.381 0.378 0.383 0.384 0.379 0.381 0.387 0.378

ETTh2 |Median 0.452 0.474 0.45 0473 0.687 0.973 041 041 (0437 0452 0477 0475 0.487 0.417 0.446 0.47

IQR 0.333 0.367 0.281 0.604 0.405 0.951 0.025 0.027]0.263 0.4 0.425 0.329 0.552 0.119 0.198 0.667

Best 0.254 0.252 0.252 0.257 0.253 0.258 0256 0.252]0.252 0.258 0.258 0.255 0.252 0.259 0.252 0.255

ECL | Median 0.303 0.301 0.3 0.306 0.317 0.323 0.286 0.287(0.299 0.306  0.303 03 0.305 0.291 0.288 0.312

IQR 0.051 0.048 0.049 0.049 0.044 0.057 0.03  0.042|0.053 0.047 005 0.048 0.052 0.038 0.04 0.056

Best 0.278 0.273 0.273 0.277 0.278 0.289 0.281 0273|028 0.28 0279 0.273 0.273 0.281 0.273 0277

traffic | Median 0.35 0.36 0.358 0.351 0.357 0.381 0349 0.337|0.361 0.356 0.352 0.349 0.353 0.371 0.341 0.362

IQR 0.068 0.071 0.077 0.058 0.055 0.081 0.071 0.067]0.071 0.073  0.069 0.067 0.068 0.075 0.082 0.064

Best 0.253 0.256 0.253 0.254 0.259 0.264 0.253 0.256]0.262 0.253  0.258 0.254 0.257 0.253 0.257 0.257

weather | Median 0.293 0.298 0.294 0.298 0319 0.34 0.282 0.283]0.295 0.297  0.292 0.296 0.302 0.284 0.283 0.307

IQR 0.041 0.075 0.046 0.07 0.062 0.162 0.021 0.024{0.053 0.051  0.046 0.051 0.066 0.025 0.027 0.079

Best 0.35 0.33 0.33 0.351 0.331 0.356 0.396 0.391]0.353 0.349 0351 0.331 0.331 0.348 0.353 0.333

Exchange | Median 0.47 0.471 0.455 0.501 0.533 0.734 0.435 0.433|0.462 0.474  0.466 0.481 0.5 0.424 0.434 0.512

IQR 0.215 0.211 0.193 0.24 0.272 0.42 0.069 0.067|0.198 0.223  0.207 0.226 0.258 0.078 0.127 0.264

Best 0.804 0.76 0.782 0.761 0.832 0.974 0.763 0.787]0.807 0.807  0.78 0.771 0.76 0.82 0.786 0.761

ili Median 1.142 1.157 1.151 1.149 1.116 1.443 1.059 1.057| 1.16 114  1.156 1151 1.14 1.187 1.156 1.151

IQR 0.369 0.387 0.374 0.389 0.336 0.212 0.211 0.229{0.372 0.375 0.385 0.378 0.376 0.391 0.399 0.379
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Table H13: Long-term Forecasting Performance of Different Design Choices— Part II (4 Components)
and Part IT (7 Components). Same structure and evaluation metrics (MAE) as Table@

(a) Part IT — 4 Components (Backbone, Attention, etc.)

Network Backbone | Attention | Feature-Attention | Sequence Length
datwset  stat GRU MLP T35 | puocore statiomary FTOIIY o engion el Sparse | Frequeney o yponon St Sparse | 190 4y 513 o
h 7 former | AUIOLOTT S an Attention Attention Attention | Attention Attention Attention
Best |0.375 0.37 0.37 0.377 0.406 0.37 0.37 0.386 0.379 0.381 0.368 0.379 0382 ]0.371 0.427 0.37 0.382
ETTm1 |Median|0.448 0.419 0439 0463 0437 0.416 0435 0455 0431 0443 042 0449 0451 [0.406 0473 0.413 0426
IQR 0091 0.09  0.087 0.171 0.03 0.059 0.092 0.131 0.079 0.119 0.072 0112 0.128 |0.073 0.076 0.083 0.065
Best |0.312 0306 031 0315 0335 0312 0306 0319 0315 0313 0306 0308 0309 [0.309 0329 0.306 0.316
ETTm2 | Median |0.384 0.364 0.42 0.505 0.355 0.361 0.373 0.442 0.512 0.42 0.362 0.396 0394 0.366 0.408 0.373 0.401
IQR [0.213 0.167 0365 0.408 0.018 0.313 0.188 0.332 0.428 0.396 0.14 0.358 0.341 0.287 0.229 0.25 0.293
Best |0.422 0418 0421 0427 0456 0425 0.418 0433 0422 0427 0.417 0429 0429 [0423 043 0417 0425
ETThl |Median|0.478 0.464 0483 0.488 0493 0.462 0472 0503 0484 0478 0.466 0.481 0487 | 0.469 0478 0.478 0.469
IQR | 0.08 0.081 0.117 0.138 0.028 0.049 0082 0128 0146 0.118 0.06 0.11 0.168 | 0.074 0.104 0.093 0.099
Best |0.378 0.38 0.389 0.395 0.407 0.393 0.377 0.396 0.395 0.385 0.38 0.38 0.387 ]0.386 0.396 0.378 0.388
ETTh2 |Median|0.491 0.44 0456 046 0.422 051 0457 052 0477 051 0.438 0442 0537|0459 0484 0.443 0472
IQR 0316 0313  0.552 0.017 0327 0318 0563 0543 0615 0.164 0425 0609 |0.456 0356 0.362 0.286
Best [0.263 0257 0252 0259 0263 0258 0257 0253 0252 0255 0252 0258 0253 [0.258 0275 0.252 0.264
ECL Median [ 0.309 0.299  0.298 0.302 0.276 0.306 0.305 0.296 0.289 0.292 0.308 0.298 0307 |0.282 0.325 0.286 0.301
IQR | 0.05 0.048 0.048 0.05 0.034 0.044 0.049 0.046 0.049 0.048 0.049 0.047 0.051 0.032 0.038 0.049 0.043
Best |0.281 0284 0273 0.284 0291 0273 0281 0279 0278 0.273 0276 0278 0285 [0.273 0321 0278 0.28
traffic |Median | 036 0.369 0.344 035 0333 0351 0364 035 0.331 0345 0378 0338 0342|0332 0399 0.322 0358
IQR | 0.06 0.081  0.068 0.066 0.051 0.062 0071 0075 0.069 0.049 0.061 0069 0069 [0.047 0.066 0.048 0.051
Best |0.253 0.257  0.259 0.263 0.254 0.266 0.253 0.263 0.261 0.265 0.253 0.257 0.258 ]0.254 0.281 0.253 0.266
weather |Median|0.293 0295  0.302 0313 0.267 03 0.294 0305 0295 0297 0.291 0303 0304 [0.287 0.308 0.285 0.291
IQR |0.043 0051  0.055 0.065 0.017 0.043 0.047 0.05 0.06 0.06 0.035 0049 0085 |0.038 0.056 0.052 0.039
Best [0.331 0348 0366 0377 0429 0372 0.33 0369 0377 0352 0343 0336 0356 [0.367 0.33 0.383 0348
Exchange | Median | 0.494 0.443  0.508 0527 0511 0514 0.465 0503 0516 0494 0.449 0493 0497 [0.474 0.424 0.622 0443
IQR [0.222 0.177 0255 0.241 0.076 0.284 0.205 0.237 0.24 0.265 0.158 0.243 0222 |0.161 0.101 0.306 0.135
Best |0.805 0.774  0.769 0816 0.812 0.832 0.774 079 0795 0.807 0818 0816 0.76 0876 0.811 1.009 0.76
i |Median|1.174 1147 1133 113 1.029 1.179 1157 1135 L1114 1112 1.184 1.141 114 |1.086 1.079 1.388 1.058
IQR 0394 0358  0.381 0381 0.2 0383 0379 0381 0384 0353 0396 036 0388 |0.269 0401 034 0368
(b) Part III — 7 Components (d_model, d_ff, etc.)
. . . . Encoder . . . Learning
I I

Hidden Layer ‘FCN Layer ‘ layers ‘ Training Epochs ‘ Loss Function ‘Learnmg Rate Rate Strategy

dataset stat 256 64 | 1024 256 | 2 3 | 10 20 50 |[HUBER MAE MSE [0.0001 0.001 | null type
Best [0.372 0.368 0.372 0.368 0.368 0.372| 0.37 0.375 0.369| 0.371 0.368 0.379| 0.371 0.369 |0.371 0.369

ETTm1 |Median |0.443 0.428 0.443 0.428 0.427 0.444(0.437 0.437 0.433| 0418 0441 044 | 043 0441 {0431 0441
IQR 0.1 0.084 0.1 0.084 0.088 0.094|0.097 0.081 0.099| 0.074 0.115 0.092| 0.086 0.098 |0.085 0.097

Best |0.306 0.307 0.306 0.307 0.306 0.308|0.308 0.306 0.308| 0.312 0.306 0.316] 0.31 0.306 |0.306 0.31

ETTm2 |Median |0.385 0.374 0.385 0.374 0.38 0.38 {0.372 0391 0.38 | 0.363 0.354 0.395| 0.372 0.389 |0.385 0.376
IQR |0.307 0.218 0.307 0.218 0.286 0.241| 0.24 0.294 026 | 0.187 0.17 0.307| 0.246 0.284 |0.249 0.288

Best |0.417 0.42 0.417 0.42 0.419 0.418|0.418 0.419 0.422| 0422 0.417 0.429| 0.418 0.419 |0.418 0418

ETThl |Median|0.475 0.472 0.475 0472 0.472 0.476|0.477 0.472 0.473| 0.475 0.468 0.484| 0.466 0.48 | 047 0477
IQR |0.091 0.081 0.091 0.081 0.079 0.098 |0.095 0.081 0.086| 0.106 0.077 0.071| 0.074 0.102 |0.076 0.101

Best |0.381 0.378 0.381 0.378 0.377 0.38 |0.384 0.381 0.378| 0.38 0.377 0.389| 0.382 0.377 | 0.38 0.377

ETTh2 |Median |0.459 0.457 0.459 0.457 045 0472|0481 0.454 0.453| 045 0451 0462| 046 0.456 |0.454 0.464
IQR |0.367 0.343 0.367 0.343 0.342 0.371]0.392 0.333 0.323| 0.288 0.376 0.388| 0.358 0.361 |0.362 0.353

Best |0.252 0.255 0.252 0.255 0.252 0.253]0.253 0.254 0.252| 0.252 0.253 0.255| 0.252 0.253 |0.252 0.253

ECL |Median| 0.3 0.304 0.3 0.304 0.306 0.298(0.303 0.301 0.302| 0.298 0.293 0.303| 0.311 0.294 |0.294 0.31
IQR |0.049 0.05 0.049 0.05 0.051 0.046| 0.05 0.048 0.05 | 0.043 0.038 0.05 | 0.051 0.043 |0.046 0.052

Best |0.273 0.28 0.273 0.28 0.273 0.276|0.281 0.282 0.273| 0.278 0.273 0.278| 0.273 0.277 |0.273 0.278

traffic | Median | 0.343 0.365 0.343 0.365 0.356 0.355/0.361 0.354 0.353| 0.358 0.344 0.355| 0.366 0.347 |0.346 0.366
IQR |0.068 0.073 0.068 0.073 0.072 0.068 |0.077 0.067 0.066| 0.053 0.069 0.071] 0.093 0.058 | 0.062 0.088

Best |0.254 0.253 0.254 0.253 0.253 0.254|0.253 0.258 0.254| 0.259 0.253 0.261| 0.254 0.253 |0.256 0.253

weather | Median | 0.297 0.294 0.297 0.294 0.297 0.294|0.296 0.293 0.297| 0.292 0.28 0.298| 0.295 0.297 |0.294 0.297
IQR |0.053 0.049 0.053 0.049 0.057 0.044|0.053 0.05 0.052| 0.037 0.034 0.054| 0.049 0.055 | 0.049 0.053

Best |0.348 0.331 0.348 0.331 0.331 0.347|0.347 0.33 0.356| 0.349 0.331 0.35] 0.331 0.349 | 0.35 0.33

Exchange | Median | 0.48 0.46 0.48 0.46 0.471 0.471]0.469 0.466 0.478| 0.469 0.46 0.482| 0.451 0.489 |0.474 0.469
IQR |0.223 0.198 0.223 0.198 022 0.206| 0.22 0.197 0.219| 0209 0.183 0.235| 0.187 0.229 | 0.22 0.204

Best | 0.76 0.805 0.76 0.805 0.782 0.761|0.807 0.76 0.795| 0.791 0.763 0.828| 0.808 0.76 |0.798 0.76

ili Median | 1.126 1.181 1.126 1.181 1.15 1.151|1.158 1.135 1.156| 1.163 1.15 1.145| 1.241 1.084 |1.099 1.237
IQR |0.359 0.397 0.359 0.397 0.376 0.382]0.385 0.376 0.374| 0.373 0.377 0.385| 0.392 0.345 | 0.33 0415
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H.2.1 DESIGN CHOICES EVALUATION RESULTS FOR LONG-TERM FORECASTING USING MSE
AS THE METRIC

Spider Chart Analysis. Fig.[H2]presents the large compoents-level experiments results by employing multi-
dimensional spider charts, where each vertex corresponds to a benchmark dataset. Closer proximity to the
outer edge of a vertex indicates better performance of the associated design choice on that particular dataset.
These visual representations offer an intuitive understanding of how different architectural decisions influence
model effectiveness across diverse forecasting domains. Notably, configurations for components including
Series Sampling/Mixing (Fig. [H2d), Hidden Layer Dimensions (Fig. [HZj), FCN Layer Dimensions (Fig. [HZK),
Learning Rate (Fig. , and Learning Rate Strategy (Fig. |H20) demonstrate similar spatial patterns in
the radar charts. Specifically, ECL, ILI, and Traffic datasets exhibit consistent parameter preferences across
these components, suggesting intrinsic alignment between their temporal patterns and specific architectural
configurations.

In addition, Fig. [H3] provides a evaluation of large-scale time series models, revealing that conventional
architectures still maintain a competitive advantage over LLM-based models, especially in domain-specific
forecasting tasks where structural inductive biases play a crucial role.

Box Plots Analysis. The impact of various design choices for each architectural component is further illustrated
through box plots in Fig. |H_Z| and Fig. @ These visualizations complement the spider charts by providing a
statistical perspective on performance variability and robustness across multiple benchmark datasets. Together,
the two forms of analysis offer a comprehensive view of how different configurations affect forecasting accuracy.
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Figure H2: Overall performance across additional design dimensions in long-term forecasting. The
results (MSE) are based on the top 25th percentile across all forecasting horizons.
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Figure H3: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MSE) are based on the top 25th percentile across all forecasting
horizons.
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Figure H4: Overall performance across all design dimensions in long-term forecasting. The results
(MSE) are averaged across all forecasting horizons. Due to the significantly different value range and
variability of the ILI dataset compared to other datasets, its box plot is plotted using the right-hand
y-axis, while all other datasets share the left-hand y-axis.
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Figure HS: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MSE) are averaged across all forecasting horizons. Due to the
significantly different value range and variability of the ILI dataset compared to other datasets, its

box plot is plotted using the right-hand y-axis, while all other datasets share the left-hand y-axis.

H.2.2 DESIGN CHOICES EVALUATION RESULTS FOR LONG-TERM FORECASTING USING
MAE AS THE METRIC

For the MAE-based performance evaluation, we analyze the effects of different design choices using both spider
charts and box plots (Fig. [H6| and Fig.[H7). These visualizations complement the MSE-based analysis and
confirm the generalizability of our findings across error metrics. In particular, normalization methods such as
RevIN and Stationary consistently achieve the lowest MAE values, underscoring their effectiveness in mitigating
non-stationarity. Similarly, decomposition strategies exhibit selective benefits: MA-based methods improve
predictions on datasets like ETTh1 and ETTm2, while raw-series modeling remains more effective on ECL and
Traffic, where decomposition tends to degrade performance.

Beyond preprocessing, MAE evaluations further validate the consistency of our architectural insights. Channel-
independent designs retain strong performance across most datasets, except on Traffic and ILI, where localized
dependencies dominate. Tokenization methods show stable ranking across both metrics, with patch-wise encod-
ing consistently outperforming point-wise approaches. Notably, complex architectures such as Transformers
provide only marginal gains over MLPs in certain cases (e.g., Traffic), suggesting that their benefits may not
justify the added complexity. Overall, the alignment between MAE and MSE results reinforces the robustness of
our design principles, demonstrating that the observed patterns are not metric-specific but instead reflect core
relationships between architecture and forecasting performance.
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(MAE) are based on the top 25th percentile across all forecasting horizons.
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Figure H7: Overall performance across all design dimensions when using LLMs or TSFMs in
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Figure H9: Overall performance across all design dimensions when using LLMs or TSFMs in
long-term forecasting. The results (MAE) are averaged across all forecasting horizons.
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(MASE) are based on the top 25th percentile across all forecasting horizons.

H.3 COMPLETE EVALUATION RESULTS OF SHORT-TERM FORECASTING USING MASE, OWA

AND SMAPE AS THE METRIC

For short-term forecasting, we comprehensively evaluate different design dimensions using both spider charts
and box plots. The spider charts—shown in Figure [HI0} Figure[HTT] and Figure [HI2}—visualize performance
across datasets, with each vertex representing a benchmark dataset. Closer proximity to a vertex indicates

stronger performance of a particular design choice in that dataset.
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Figure H11: Overall performance across all design dimensions in short-term forecasting. The results
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(OWA) are based on the top 25th percentile across all forecasting horizons.

Complementary box plots are provided in Figure [HT3] Figure [HT4] and Figure [HI3] offering a statistical

perspective on the distribution and robustness of performance across evaluation metrics.

Overall, the relative performance trends observed under MASE, OWA, and sMAPE metrics are consistent with
those found in long-term forecasting tasks, reinforcing the generalizability and stability of our architectural

choices.
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Figure H12: Overall performance across all design dimensions in short-term forecasting. The results
(SMAPE) are based on the top 25th percentile across all forecasting horizons.

H.4 EXPLAINING DESIGN DRIVERS VIA META-FEATURE IMPORTANCE ANALYSIS

To directly investigate the impact of individual meta-features, we conducted an additional analysis using an
interpretable XGBoost-based meta-learner. Although this machine learning—based variant slightly underperforms
compared to the original deep learning—based meta-learner (average MAE 0.447 vs. 0.426), due to its limited
capacity in modeling rich, high-dimensional interactions among features, it remains competitive and provides a
clear advantage in interpretability.



Under review as a conference paper at ICLR 2026

30

= DTS - oFT = vithout Mixing
120 Without Nofm ma With Mixing
- revin 25 | mm MoEMA 2
100 | Stat = vithout Decomp,
20
$ e H s
3 315 3
§ o 3 H
g g g

E%Hi_.z.- ,lLJi ’ s M L 5 Lé; ez = ‘&

o . [
(a) Series Normalization (b) Series Decomposition (c) Series Sampling/Mixing
20 || Chpanet ndepén il =t co || mm p

15

mase Value
mase Value
mase Value

10

| PR Iy R N

= _—e =&z - THT @== 558 | ala
° & » S & il & ’ & & & & & & & » & & & S
& o & o« 0\@«\“ & & & & & ofz & & & & & of{& &
(d) Channel Independent (e) Series Embedding (f) Network Backbone

120 DestationaryAttn. 20 6 20 256
= FrequencyAtin

100 W Without Attn
- eifattn 15 s

g0 EEE SparseAtin

z:ﬂ ;J.i ’ ;é; 1| é;é ’ ;IL; é;é

mase Value
mase Value

o = - =
o 0
S & N & » & & SO S e & E
o < & o« & & o o & o & & & S & & & &
(g) Series Attention (h) Hidden Layer Dimensions (1) FCN Layer Dimensions
-2 o . 0.0001 30 W Without Ir Adjust.
M=K o Yot s
w15 o 20 020
E H g

: {-éé L - W 2 B =z Wwdl

—— == _—— = . ==
° & S Q}\A & & 2 & & f{ @\{ Q@ 1‘\{ S & @L\A \\\\4 &S é\{
R S R T A L A
(j) Encoder layers (k) Learning Rate (1) Learning Rate Strategy

Figure H13: Overall performance across all design dimensions in short-term forecasting. The results
are based on MASE.

Table H14: Top 5 Most Important Meta-Features per Dataset Estimated via XGBoost

Dataset ‘ Top 5 Meta-Features (Importance)
ETTm1 mean_Negativeturningpoints (0.08) series norm (0.06) mean_Centroid (0.05) mean_MFCC_0 (0.05)  min_Positiveturningpoints (0.05)
ETTm2 | mean_Negativeturningpoints (0.10) series norm (0.05) mean_MFCC (0.05) mean_Centroid (0.05) q25_Kurtosis (0.04)
ETThl mean_MFCC_10 (0.08) series norm (0.06) mean_Spectralroll-on (0.05) mean_Spectraldistance (0.04) mean_MFCC (0.04)
ETTh2 mean_MFCC_0 (0.07) series norm (0.05) mean_Medianfrequency (0.05) mean_Centroid (0.04) min_Meanabsolutediff (0.04)
ECL mean_MFCC (0.08) std_MFCC (0.08) series norm (0.07) mean_Centroid (0.06) mean_Maxpowerspectrum (0.04)
Traffic q25_Kurtosis (0.08) series norm (0.07) mean_Centroid (0.06)  mean_Maxpowerspectrum (0.05) mean_MFCC (0.05)
Weather mean_MFCC (0.14) mean_Negativeturningpoints (0.11) series norm (0.06)  min_Negativeturningpoints (0.05) mean_Centroid (0.04)
Exchange std_MFCC (0.11) mean_Negativeturningpoints (0.10) mean_MFCC (0.07) series norm (0.06) mean_Medianfrequency (0.03)
ILI mean_MFCC (0.09) mean_Maximumfrequency (0.06) channel independent (0.05) series norm (0.05) mean_LPCC (0.05)

This analysis allows us to quantify the relative importance of meta-features and structural design dimensions in
determining model performance. As summarized in Table[HT4] certain temporal and spectral features—such as
MFCC descriptors and Negative Turning Points—consistently appear among the most influential across datasets.
In addition, architectural design choices like series normalization emerge as universally important factors, further
validating the findings of our component-level ablation study.

H.5 META-FEATURE SIMILARITY ENABLES TARGETED KNOWLEDGE TRANSFER

In Fig.[GI] we visualize the dimension-reduced meta-features across different datasets using PCA. The visual-
ization confirms that datasets tend to cluster based on inherent properties, such as domain (e.g., ETT family)
and temporal frequency (e.g., M4-Hourly vs. M4-Yearly). This indicates that meta-feature similarity reflects
structural characteristics of datasets, and suggests the potential for targeted knowledge transfer between similar
datasets.
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Figure H14: Overall performance across all design dimensions in short-term forecasting. The results

are based on OWA.

Table H15: Ablation study of TSGym incorporating LLM and TSFM in 4 datasets. The average
results of all prediction lengths are listed here.

Models ~ TSGym(Ours) | TSGym (LGB) | TSGym (XGB)
Metric MSE MAE ‘ MSE MAE ‘ MSE MAE
ETTml1 0.362 0.38 | 0.352 0.374 | 0.362 0.387
ETTm2 | 0.266 0.322 | 0.258 0.315 | 0.256 0.311
ETThl 0.427 0.439 | 0.464 0.457 | 0434 0.428
ETTh2 0.367 0.403 | 0.351 0.394 0.37 0.396
ECL 0.164 0.261 | 0.173 0.268 | 0.177 0.268
Traffic 0.433 0.301 | 0.421 0.282 | 0.422 0.29
Weather | 0.240 0.276 | 0.247 0.268 | 0.235 0.266
Exchange | 0.375 0.415 | 0.423 0.433 | 0415 0.436
ILI 2.463 1.043 | 2.575 1.091 | 3.620 1.314

To further explore this, we conducted a case study focusing on the ILI dataset—a relatively difficult and data-
scarce task. We enriched the meta-learner’s training pool by adding two datasets (COVID-19 and FRED-MD) that
are more similar to ILI in the meta-feature space. As shown in Table[HT6] TSGym’s performance on ILI improves
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Figure H15: Overall performance across all design dimensions in short-term forecasting. The results
are based on SMAPE.

Table H16: Performance Comparison Before and After Adding Similar Datasets (COVID-19 and
FRED-MD) to the Meta-Learner Training Pool

TSGym +COVID-19, FRED-MD
Metric MSE MAE | MSE MAE
ETTml 0.362  0.380 | 0.358 0.381
ETTm2 0.266 0.322 | 0.259 0.315
ETThl 0.427 0.439 | 0.424 0.442
ETTh2 0.367 0.403 | 0.357 0.396
ECL 0.164 0.261 | 0.164 0.259
Traffic 0.433 0.301 | 0.421 0.284
Weather | 0.240 0.276 | 0.238 0.269
Exchange | 0.375 0.415 | 0.438 0.438
ILI 2463 1.043 | 2.020 0.881

significantly, while performance on other datasets remains stable or even improves slightly. This highlights the
potential of incorporating similar datasets to enhance performance on low-resource or underperforming tasks.
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H.6 META-LEARNER PERFORMANCE SCALING WITH CANDIDATE POOL SIZE

To investigate how the size of the candidate model pool M affects meta-learner performance, we conducted a
scaling analysis across all datasets. We trained the meta-learner on progressively larger subsets of M, (ranging
from 5% to 100%), and measured the average rank of the model selected by TSGym.

As shown in Table [HT7] the performance improves significantly as the pool size increases up to 25%, after
which the gains plateau. Remarkably, even with just 10% of the full pool, TSGym already outperforms strong
baselines such as DUET (which achieves average ranks of 4.11 for MSE and 3.67 for MAE). This highlights
the high sample efficiency of TSGym and suggests that a moderately sized pool is sufficient to reach near-
optimal performance. These results further motivate the use of smarter sampling strategies, such as Bayesian
Optimization, to construct high-quality training pools with minimal cost.

Table H17: Effect of candidate pool size on meta-Learner selection accuracy

Subset Size of M/, | MSE (Avg. Rank) | MAE (Avg. Rank)

5% 3.67 3.44
10% 2.67 3.00
25% 1.67 1.78
50% 1.89 2.67
75% 1.89 2.22
100% 1.67 2.00

H.7 PERFORMANCE COMPARISON ACROSS SAMPLING STRATEGIES

Table H18: Comparison of MSE distribution between Optuna and random search across datasets

Dataset | Method | Mean_mse | Std_mse | Min_mse | Ql_mse | Median_mse | Q3_mse | Max_mse | Total Experiment Count

|

ETTmg | Optuna | 11223 215.871 0.293 0.341 0.405 0472 | 4317.839 400
™' | Random | 264.510 | 8964.756 | 0.286 0.376 0.449 0.544 | 304538.500 1154
ETTm | Optuna 0.454 0.762 0.159 0.221 0.279 0.385 9.344 400
Random |  0.875 6.595 0.159 0.250 0.354 0.525 198.023 1231

Ermny | Optuna 0.506 0.157 0.355 0.416 0.450 0.519 1.210 400
Random |  0.560 0.199 0.355 0.442 0.496 0.587 2.085 2897

ETTho | Optuna 0.749 0.992 0.268 0.342 0.400 0.539 9.060 400
Random | 11.414 578.115 0.270 0.383 0.454 1.105 | 32581.227 3176

gcL | Optuna 0.189 0.041 0.131 0.158 0.182 0.213 0.414 400
Random | 0217 0.050 0.134 0.180 0212 0.247 0.862 1603

Traff Optuna 0.534 0.125 0.387 0.438 0.491 0.612 1.051 400
fatie 1 Random 0.600 0.130 0.379 0.491 0.595 0.686 1473 1145
Weather | OPtuna 0.342 1.490 0.144 0.193 0.245 0.312 29.895 400
Random | 574721 | 18520072 | 0.143 0.207 0.263 0343 | 597254.813 1040

Exchange | OPtuna 0.687 1.305 0.081 0.169 0.280 0.681 15.054 400
2 | Random |  0.761 1.050 0.079 0.184 0.375 0.963 17.898 5509

L Optuna 2.687 1.102 1.506 1.891 2.302 3.080 7.503 400
Random | 3.278 1.132 1.495 2.397 2.899 4.046 7.642 10734

To enhance the quality of the randomly sampled component pool and thereby improve final model performance,
we introduced a smarter sampling strategy using Optuna, a Bayesian optimization-based method. The sampling
process began with a cold start of 50 random configurations to provide a diverse baseline for the Bayesian
optimizer and mitigate the risk of early local convergence. Building upon this initial exploration, Optuna guided
the sampling of an additional 50 high-quality candidates.

Table[HT8|reports the MSE distribution statistics for configurations sampled by Optuna and random search across
various datasets. Optuna produces a result distribution that is markedly better than that of random sampling. We
also note that Optuna can provide interpretability. Table[HT9]shows the importance of each design dimension
estimated by Optuna’s built-in fANOVA analysis. Sequence Length and Series Normalization contribute the
most to performance variation, suggesting their critical role in architecture design.
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Table H19: Relative importance of design dimensions estimated by Optuna’s fANOVA analysis

Rank |  Design Dimensions | Importance
1 Sequence Length 0.270
2 Series Normalization 0.255
3 Series Embedding 0.134
4 Feature Attention 0.077
5 Series Decomposition 0.053
6 Channel Independent 0.050
7 Series Sampling/Mixing 0.029
8 Epochs 0.025
9 d_model d_ff 0.020
10 Learning Rate 0.020
11 With/Without Timestamps 0.018
12 Network Type 0.017
13 Encoder Layers 0.013
14 Learning Rate Strategy 0.012
15 Loss Function 0.010
16 Series Attention 0.000

I LLM USAGE STATEMENT

We used a large language model (LLM) solely for English-language polishing (grammar, tone, and minor
phrasing) and for minor LaTeX table formatting adjustments. The LLM did not contribute to research ideation,
problem formulation, experimental design, data collection, or citation generation.

J REPRODUCIBILITY STATEMENT

To facilitate the verification and extension of our work, we hereby affirm our commitment to the reproducibility
of all experimental results presented in this paper, particularly those in Section[d]

Upon acceptance of this paper, we will release the following resources under an open-source license:

« Complete Codebase: The full source code for data preprocessing, model training, hyperparameter
configurations, and evaluation metrics.

* Environment Specifications: A detailed list of dependencies (e.g., requirements.txt).

¢ Processed Datasets: The cleaned and structured datasets used in our experiments, along with scripts
to load them.

Minor variations in results due to stochasticity or hardware differences are expected, but the primary conclusions

and performance rankings are robust and reproducible. The resources will be made publicly available at a
permanent repository, and the link will be included in the final version of the paper.
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