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ABSTRACT

Electrocardiography (ECG) is a cost-effective and widely accessible tool for eval-
uating cardiac health. While numerous machine learning methods have been de-
veloped to assist cardiologists in diagnosis, many suffer from lacking explain-
ability, making it difficult to understand why a particular disease is classified.
To address this limitation, we introduce X-ECG, an explainable ECG foundation
model. To train this model, we first curate wave-level anomalies annotations on
public datasets, using a rule-based algorithm that finds abnormal waves, intervals
or segments in ECG signal according to established clinical knowledge. To help
models learn where to focus, we propose an attention-guided training approach
that enables the model to highlight relevant regions. To the best of our knowledge,
X-ECG is the first ECG foundation model with built-in explainability. Our exper-
iments show that using our dataset to guide the model not only adds explainability
but also improves performance in arrhythmia classification and report generation
tasks.

1 INTRODUCTION

/ : Report \

Your ECG shows a sinus rhythm, which is a

normal heart rhythm, but it also indicates a left
:: > :: > :: > bundle branch block (LBBB). This means there

X-ECG LLM is a delay or blockage in the electrical impulses
traveling through the left side of your heart. This

condition can be associated with underlying
heart disease or structural heart changes.
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Figure 1: X-ECG is capable of identifying abnormal regions that contribute to its output, thereby
enhancing model interpretability. This is achieved by guiding its attention scores during training to
focus on these critical regions.

The electrocardiogram (ECG) is a monitoring tool that provides a window into the heart’s electrical
activity and offers valuable insights into cardiac health. To interpret an ECG sample, cardiologists
typically follow a predefined process, examining specific regions and assessing abnormalities. A
full and detailed interpretation can take up to five minutes, depending on the cardiologist’s level of
experience [Bortolotti et al.[(2025).

To accelerate and support this process, numerous machine learning methods have been devel-
oped. Many groups have proposed classification models with excellent performance across dif-
ferent benchmarks |Strodthoff et al.| (2020); |[Kiranyaz et al.| (2016);|Wang et al.|(2021); [Herman et al.
(2024), while others have focused on building foundation models that can be adapted to a wide range
of downstream tasks |Song et al.| (2025)); McKeen et al.|(2025); [Wang et al.| (2025); Jin et al.| (2025));
Nguyen et al|(2025)). Notably, McKeen et al.| (2025) and Nguyen et al.| (2025) extend this progress
by addressing challenges in interpreting corrupted ECG signals.
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However, to fully aid doctors in performing a diagnosis, instead of just returning the final disease
class, it is desirable for the model to highlight the regions that contribute to such decision making,
as it helps the doctors to understand the decision. While anomaly detection and localization models
like Bui et al.| (2024); Jiang et al.|(2023bj; 2024) can do exactly that by highlighting irregular beats,
they do not provide diagnosis from those anomalies.

Existing ECG datasets, most notably MIMIC-IV-ECG and PTB-XL, typically have the waveform
and metadata containing the disease class(es) associated with each waveform. These datasets how-
ever do not have locations of the anomalies on the waveforms. Models are typically trained following
a black-box training approach on these massive dataset with the waveform as input and class label
as outputs, leading to models with lack of explainability. Therefore, fine-grained annotations of
anomalies associated with each disease class is crucial for building explainable ECG systems.

In this study, we curate an algorithm that segments anomalous waves, segments, and intervals that are
associated with each cardiac disease, based on an established clinical knowledge database. Specifi-
cally, we design a two-stage procedure which first finds the abnormal waves, intervals and segments
for each lead in the ECG signal, and then to further finetune the annotations, we employ the Criteria
Feature Retrieval (CFR) proposed in [Nguyen et al.| (2025) to only highlight the abnormal compo-
nents contribute to the final report. We apply this algorithm on MIMIC-IV-ECG and PTB-XL, cre-
ating fine-grained, wave-level anomaly annotations, which we will refer to as MIMIC-IV-ECG+X
and PTB-XL+X respectively. We then propose a training framework guided by such heatmaps from
those dataset to build X-ECG, an ECG foundation model with explainability. To showcase its utility,
we augment X-ECG with a classification module for cardiac diagnosis and an LLM for automated
report generation. By utilizing this dataset in guiding the attention mechanism of the ECG encoder,
the model not only have a boost in arrhythmia classification and report generation performance, but
also can show the location of anomalies contribute to the final decision.

The main contributions of the paper is summarized as below:

* We construct MIMIC-IV-ECG+X and PTB-XL+X, a dataset for training and benchmark-
ing the model ability to segment abnormal locations respectively.

* To help the model in efficiently learning the correct attention location, we employ a
Attention-guided mechanism that utilizes that heatmap from X-ECG and model attention
weights.

* We demonstrate that the guided model have a boost performance in various tasks, such as
arrhythmia classification, report generation and anomaly localization.

2 RELATED WORK

2.1 FOUNDATION MODELS FOR ECG

In recent years, foundation models have emerged as a transformative paradigm across various do-
mains, including ECG analysis. These models are typically pretrained on large-scale datasets and
subsequently adapted to a wide range of downstream tasks through transfer learning or fine-tuning.
To build such models, researchers often adopt pretraining frameworks like multimodal alignment or
self-supervised learninig.

METS [Li et al.| (2023) and MERL |Liu et al.| (2024) employ the dual-alignment strategy to align
ECG signals with their corresponding text reports, enabling the learning of high-quality ECG rep-
resentations. Building upon METS, MERL introduces an inter-alignment module within the signal
modality to further refine these representations. By leveraging these techniques and training on
large-scale datasets, both METS and MERL demonstrate the capability for zero-shot cardiac clas-
sification—allowing the identification of previously unseen diseases without the need for additional
labeled data.

Similarly, ESI|Yu et al,|(2024)), ECG-Chat|Zhao et al.|(2025) and TolerantECG Nguyen et al.| (2025)
also adopt a multimodal alignment pretraining framework. Due to the presence of samples with
highly similar text reports, training noise can arise and hinder representation learning. To mitigate
this issue, ESI incorporates a retrieval-augmented generation pipeline, TolerantECG applies a more
straightforward feature retrieval method, and ECG-Chat leverages signal interval durations to en-
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hance report diversity. By aligning ECG signals with semantically enriched reports, both models
demonstrate improved performance on downstream tasks such as arrhythmia diagnosis and ECG-
report retrieval.

In contrast to the aforementioned methods, ST-MEM [Na et al.|(2024) adopts a self-supervised learn-
ing strategy focused on reconstructing masked ECG patches. By training the model to recover the
full 12-lead ECG signal, ST-MEM effectively learns joint spatio-temporal representations. This ap-
proach not only yields strong performance in arrhythmia classification, but also demonstrates adapt-
ability to varying lead configurations—highlighting the spatial awareness embedded in its learned
representations.

ECG-FM |McKeen et al.| (2025) is built upon a transformer-based design. The training process
incorporates domain-specific augmentations tailored to ECG data, along with a dual-objective strat-
egy combining contrastive learning and signal masking. This setup allows the model to capture
rich contextual representations, enhancing its ability to generalize across multiple tasks—including
identifying specific cardiac conditions from ECG readings, detecting reduced left ventricular ejec-
tion fraction, and recognizing abnormal levels of cardiac troponin (cTn).

2.2 EXPLAINABLE Al

Explainable Al has become a vital area of research, aiming to enhance the transparency and inter-
pretability of complex machine learning models, particularly deep learning systems. This need is
especially pronounced in the medical domain, where trust in model outputs is often limited due to
the lack of clear explanations behind predictions.

Among the most widely adopted techniques for visualizing model decision-making is Grad-CAM
Selvaraju et al.| (2019), which produces heatmaps that highlight influential input features—such as
image regions—that contribute to a model’s output. Grad-CAM and its variants have been partic-
ularly impactful in computer vision, offering intuitive visual explanations for convolutional neural
networks.

For Transformer-based architectures, a complementary technique is attention calibration [Lu et al.
(2021));/Zhou et al.| (2024])). This method introduces an auxiliary loss function during training, guided
by predefined attention heatmap labels. By shaping the model’s attention distribution, it helps de-
termine the appropriate level of focus each token should receive, thereby improving interpretability
and aligning attention with human-understandable patterns.

3 DATA CURATION

To support both the generation of MIMIC-IV-ECG+X and PTB-XL+X with clinical expertise and
the evaluation of final outputs, we collaborated with medical students and doctors.

Despite unprecedented advancement in Al for healthcare domain, physicians are cautious about
adopting healtcare Al models that lack explainability because opaque predictions undermine trust
and accountability in clinical decision-making. Without clear reasoning, clinicians cannot assess
whether outputs are based on sound medical evidence or spurious patterns, raising concerns about
patient safety and liability. Additionally, these Al models are usually trained using as a blackbox
with a pre-defined dataset. Since data is required for efficient models, to make them interpretable, we
generate MIMIC-IV-ECG+X and PTB-XL+X that equip with abnormal heatmap region for each
ECG signal. This dataset requires two-stage rule-based procedure: Abnormal seeking and Criteria
seeking

3.1 ABNORMAL SEEKING

We first identify the locations that represent irregular features. Specifically, we gather all the con-
ditions of abnormal representations across the Life in the Fastlane ECG library [lit| (2008). From
those features, we can find which waves, intervals or segments that need to pay high attention to
and highlight them. To enable this algorithm, the input ECG signal must first be segmented into
three fundamental components: the P wave, QRS complex, and T wave. We achieve this by train-
ing a UNet3+ model Huang et al.| (2020) on the LuDB dataset [Kalyakulina et al.| (2020), following
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Table 1: Abnormal conditions for each component in ECG signal
Components | Abnormal conditions
P wave

* Missing

Amplitude > 0.25mV in limb leads
Amplitude > 0.15mV in precordial leads
Duration > 120ms

Inverted in lead I, 11, III

Upright in lead aVR

RS complex
Q P e Duration > 120ms

* Have odd shape (RSR’, QR, rS)

T wave . o
* Amplitude > 0.5mV in limb leads

e Amplitude > 1mV in precordial leads
» Upright in all leads except aVR and V1

PR interval )
e Duration > 200ms

e Duration < 120ms

QT interval .
e Corrected duration > 440ms

¢ Corrected duration < 350ms

ST segment ) o )
e Elevate: > 0.1mV isoelectric line (> 0.05mV in lead V2 and V3)

* Depression: < 0.5mV isoelectric line

the methodology outlined by Joung et al.| (2024). Once segmented, we compute key interval fea-
tures—namely PR intervals, QT intervals, and ST segments—for each heartbeat. Abnormal regions
are then identified based on the criteria specified in Table [ For QT interval analysis, we apply
Bazett’s correction to account for heart rate variability prior to detecting abnormalities:

QiT;
VRi—1R;

where @;T; is the QT duration in the i-th rhythm, and R; 1 R; is the duration from R peak in the
(i — 1)-th thythm to R peak in the i-th rhythm.

correct
QiTi =

3.2 CRITERIA SEEKING

After identifying the initial abnormal locations, we refine them using the CFR module Nguyen
et al.| (2025), as illustrated in Figure 2] This module provides diagnostic criteria that specify which
ECG components contribute to each diagnosis, enabling the removal of redundant or noise-induced
false positives. For each diagnosis in the dataset, we retrieve its associated criteria and use the
specified abnormal components to extract the relevant segments identified earlier. In cases where
certain components were missed during the initial segmentation, we still highlight them if they are
referenced in the diagnostic criteria. For further details on the generated heatmap dataset, please
refer to Appendix [A]

4 MODEL ARCHITECTURE

To showcase the advantages of our synthesized X-ECG dataset in arrhythmia classification, anomaly
localization, and report generation, we train a foundational model named X-ECG, as illustrated in
Figure E} The model is built upon the CoCa framework |Yu et al.|(2022), which has demonstrated
strong performance on ECG datasets [Yu et al.| (2024);|Zhao et al.|(2025). To enrich the model with
spatial and temporal context, we incorporate the Spatial-Temporal embedding proposed by Jin et al.
(2025), which encodes lead-specific and time-frame information for each token. Our experiments
reveal that this embedding not only enhances classification accuracy but also significantly improves
the model’s ability to localize abnormal regions within the ECG signal.
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Figure 2: The Criteria Feature Retrieval (CFR) module. It returns diagnostic criteria for each input
diagnosis by comparing its embedding with those stored in a pre-constructed vector database.

4.1 ECG SIGNAL AND TEXT REPORT ALIGNMENT

Attention Captioning

f Multimodal

l l l l l | 1 Text Decoder
— > <« CLS-token

[ ECG Encoder
A

ECG —.— Report CFR

Figure 3: Overview of the X-ECG architecture. It comprises an ECG encoder and a text encoder
that process the input ECG waveforms and their corresponding comprehensive augmented reports,
respectively. Contrastive learning is performed using the CLS tokens from both encoders to align
cross-modal representations. A multimodal text decoder is further employed to reconstruct the input
report, conditioned on the ECG token embeddings. To guide focus regions, attention scores between
the CLS token and other ECG tokens are optimized using an attention-specific loss function.

[ Text Encoder ]

Following the previous ECG language pretraining approach |Li et al.[(2023); [Liu et al.| (2024); [Yu
et al.|(2024); Nguyen et al.| (2023), as shown in Figure 3] we first employ two pretraining objectives
for comprehensive learning, including contrastive loss for robust representation learning and cap-
tioning loss for semantic alignment. Both encoders aim to project the inputting ECG and text into
a unified embedding space. Consequently, the ECG encoder and the Multimodal Text Decoder are
jointly optimized by contrasting the paired text against others in the sampled batch, while the Text
Encoder is frozen with pretrained weights.

Optimizing the contrastive loss enables alignment between ECG features E and corresponding text
reports T. This process is illustrated across a batch B of training samples:

B B
1 E'T,; T E;
Lcontrustive - < E log BeXp( 2 T/T) + E log ;Xp( T T/T) >
2 i=1 Zj:l exp(Ei Tj/T) -1 > =1 eXp(Ti Ej/r)

ecg-to-text text-to-ecg

Optimizing the captioning loss encourages the ECG features to accurately predict the tokenized text
t using an auto-regressive mechanism, conditioned on the ECG tokens e generated by the ECG
encoder and the Multimodal Text Decoder parameters 6:
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4.2 SPATIAL-TEMPORAL EMBEDDING

In addition to the Transformer’s positional embedding PE = {E, Es, ..., En }, we incorporate the
Spatial-Temporal (ST) embedding proposed by Jin et al.|(2025) to enhance the model’s ability to cap-
ture lead-specific and temporal information for each ECG token, as illustrated in Figure[d] For spatial
embedding, given the input is a 12-lead ECG signal, we define a set SE = {E;, Eyy,...,V6},
assigning a unique embedding to each corresponding lead. For temporal embedding, we use
TE = {E,,E:,,...,E; .}, where P denotes the number of patches obtained after splitting the
original 10-second signal.

Temporal ...
Embedding Ey,
+ + +
Spatial .
Embedding Eys
+ + + +
Positional
Embedding o o . o o o bl
+ +

o
ECG token I i : I ¢ o0 j :‘:

+ E
5 S

-+

BB B

Figure 4: Prior to being processed by the ECG encoder, each ECG token is enriched with Spatial and
Temporal embeddings in addition to standard Positional embeddings. This augmentation provides
the model with explicit information about the lead identity and time frame associated with each
token, enhancing its ability to capture spatial-temporal patterns in the ECG signal.

4.3 ATTENTION-GUIDING FOR EXPLAINABLE MODEL

To enable the model to learn which regions to attend to, we leverage the Transformer architec-
ture Vaswani et al.| (2023) and its inherent attention mechanism. Specifically, we introduce an
Attention-Guiding procedure that incorporates an auxiliary loss function targeting the attention
scores. To preserve the model’s ability to initially consider all components, the input is processed in
the standard manner. However, during training, the attention scores from the final Transformer layer
are regularized using a Kullback—Leibler (KL) divergence loss, formulated as follows:

B N
1 DPin
Lattention = 5 § E Din CLS’
B 4 a
i=1n=1

i,n
where a$’L¥ denotes the attention score between the CLS token and the n-th token of the i-th sample,
while pin represents the constructed target attention heatmap for token n of sample <. The variables
B, N refer to the batch size and the total number of ECG tokens, respectively. Since the target
heatmap highlights anomalous regions, this mechanism guides the model to focus on diagnostically
relevant areas, thereby improving its decision-making capability. For samples exhibiting normal
heart conditions, where no abnormal heatmap can be constructed, the attention 10ss Lgttention 1S set
to zero. The overall training loss is defined as:

Etotal = aﬁcontrasti'ue + 6£captioning + 7£attantion

where «, § and o are hyperparameter weights corresponding to the contrastive, captioning, and
attention-guiding loss terms, respectively.
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5 EXPERIMENT

5.1 DATASET

To ensure a fair comparison with baseline models, we pretrain our model using the MIMIC-IV-ECG
dataset |(Gow et al.| (2023), which comprises over 800,000 12-lead ECG recordings of 10-second
duration from approximately 160,000 unique patients. During preprocessing, any “NaN” or “Inf”
values in the ECG signals are replaced with zero. For attention-guided supervision, we incorporate
the synthesized MIMIC—-IV-ECG+X as an auxiliary training heatmap for X-ECG.

For evaluation, we employ the PTB-XL dataset [Strodthoff et al.| (2020), a clinical 12-lead ECG
dataset containing 21,837 recordings from 18,885 patients. This dataset is used for both arrhythmia
classification and the generation of PTB-XL+X. We benchmark the classification task across four
data variants: Diagnostic, Rhythm, Form, and All. For the report generation task, we adopt the LLM
pretraining, fine-tuning, and benchmarking protocols established by ECG-Chat|Zhao et al.|(2025)).

5.2 CONFIGURATION

During the pretraining phase, we utilize a 1D 12-layer Vision Transformer with a patch size of 50
as the ECG encoder. The text encoder is initialized with the pretrained MedCPT model [Jin et al.
(2023) and remains frozen throughout this process. To ensure that the CLS token attends to all input
tokens, we first flatten the 12-lead ECG signal before feeding it into the encoder.

The model is trained with a learning rate of 1le — 4 over 20 epochs, with the first 10,000 steps
designated for warm-up. Training is conducted using a batch size of 64 across 4x NVIDIA A100
GPUs, each with 80 GB of memory. For the loss weights, we adopt « = 1 and 8 = 2, following the
configuration in Zhao et al.| (2025). The attention-guiding weight ~y is set to 0.5 to prevent it from
exerting excessive influence during the training of X-ECG.

5.3 METRICS

Arrhythmia Classification. We adopt the FMax score [Strodthoft et al.| (2020), Area Under the
Precision-Recall Curve (AUPRC), and Area Under the Receiver Operating Characteristic Curve
(AUROC) as evaluation metrics for this classification task. To ensure balanced assessment across all
diagnostic categories, we report the macro-averaged versions of these metrics, which compute the
mean performance across all classes regardless of class imbalance.

Anomaly localization. To evaluate whether the attention scores of X-ECG accurately highlight rel-
evant regions within each data sample, we frame this as a binary segmentation task. For assessment,
we employ instance-averaging metrics including AUPRC and AUROC.

Report generation. We evaluate the output of the LLM conditioned on ECG representations using
BLEU-2, BLEU-4, ROUGE-L, and METEOR to assess lexical similarity between the generated and
reference reports—both at the word level and across contiguous word sequences. Additionally, we
employ BERT-score to assess semantic similarity, capturing how closely the generated report aligns
with the meaning of the reference report.

6 RESULTS AND ANALYSIS

6.1 ARRHYTHMIA CLASSIFICATION

Upon completing the pretraining phase of X-ECG, we attach a linear classification head to the ar-
chitecture. This layer utilizes the CLS token embedding as input. To demonstrate the quality of
the learned representations, we freeze the ECG encoder and train only the linear head. For base-
line comparisons, we utilize the official pretrained weights and apply the same procedure. Table 2]
presents the classification results across multiple PTB-XL tasks [Strodthoff et al.[(2020).

Overall, X-ECG significantly outperforms all baseline methods across the four classification
tasks—Diagnostic, Rhythm, Form, and All—on every evaluation metric. This highlights the model’s
strong ability to capture clinically relevant features from ECG input signals, resulting in more ac-
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Table 2: Linear probing classification result evaluated on PTB-XL dataset. Bold indicates the best
result, and underline indicates the second-best result

Task \ Methods \ Explainability \ FMax \ AUPRC \ AUROC
ST-MEM Na et al.| (2024) X 27.24 21.55 86.20
MERLRegnet [Liu et al.| (2024 X 25.88 19.46 82.92

Diagnostic MERLy;r [L1u et al.| (2024) X 29.99 24.64 86.43
ECG-FM McKeen et al.| (2025)) X 30.42 24.58 88.07

X-ECG (Ours) v 41.34 34.72 92.01

ST-MEM Na et al.| (2024) X 56.64 49.18 95.32

MERLRegnet [L1u et al.| (2024 X 40.87 3543 85.61

Rhythm MERLy;r [L1u et al.| (2024]) X 27.98 21.43 74.44
ECG-FM McKeen et al.[(2025]) X 52.97 46.11 85.37

X—-ECG (Ours) v 60.72 55.46 95.88

ST-MEM Na et al.| (2024) X 33.21 27.10 81.57

MERLRgegnet ILiu et al.| (2024 X 23.47 17.61 68.79

Form MERLy;r [L1u et al.| (2024 X 27.98 21.43 74.44
ECG-FM McKeen et al.[(2025]) X 27.83 20.57 78.74
X-ECG (Ours) v 38.85 31.87 86.24
ST-MEM Na et al.| (2024) X 30.79 24.89 87.16
MERLRgegnet ILiu et al.| (2024) X 26.01 19.61 81.01

Al MERLy;r [L1u et al.| (2024 X 29.58 24.02 83.87
ECG-FM McKeen et al.[(2025]) X 31.07 24.26 85.20
X-ECG (Ours) e 41.68 34.76 91.50

Table 3: Anomaly Localization result evaluated on PTB—-XL+X. Bold indicates the best result, and
underline indicates the second-best result

Methods | AUPRC | AUROC

ECGAD Jiang et al.| (2023a) 33.59 65.56
ECG-Chat|Zhao et al.|(2025) 18.37 50.57
X-ECG (Ours) 43.78 80.05

curate diagnostic predictions. Notably, X-ECG is the only approach that explicitly incorporates
explainability, a crucial attribute for real-world clinical deployment. These results validate the effec-
tiveness of the proposed model architecture and training strategy, particularly in leveraging attention
mechanisms and pretrained ECG representations.

6.2 ANOMALY LOCALIZATION

For the evaluation of our model attention score, to see what components contribute to the final
decision output, we perform inference on the PTB-XL test set and benchmark it as a binary segmen-
tation task, as shown in Table E} To obtain the ground truth label for comparison, we use the same
two-stage mechanism as before to generate the desired abnormal criteria heatmap in PTB—XL+X.

The attention scores produced by ECG-Chat exhibit limited reliability, as indicated by an AUROC
value close to 50%, suggesting that its focus regions are nearly random. In contrast, our model,
X-ECG, achieves the highest scores in both AUPRC and AUROC—even without exposure to any
sample signals from the PTB-XL dataset—demonstrating strong generalization and robust represen-
tation learning. Interestingly, although ECGAD is specifically designed for anomaly localization,
it only achieves the second-best performance on both metrics. As shown in Table 2| and Table [3]
X—-ECG is capable of performing both arrhythmia classification and anomaly localization, whereas
ECGAD is limited to identifying abnormal regions without the ability to classify the underlying
diagnosis.
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Table 4: Report generation evaluation using the English-translated PTB-XL report as label

Methods | BLEU-2 | BLEU-4 | ROUGE-L | METEOR | BERT-score
ECG-Chat[Zhao etal](2025) | 21.18 | 11.96 33.83 32.97 89.00
X~ECG (Ours) 2146 | 12.28 34.19 33.07 89.08

6.3 REPORT GENERATION

We extend the LLaVA framework |Liu et al.|(2023)), which was originally proposed as an end-to-end
trained large multimodal model aligning a vision encoder with an LLM for joint visual-language
understanding, to the ECG domain by connecting a pretrained ECG encoder with an LLM for au-
tomated report generation. To enable cross-modal alignment, a learnable projection layer is used to
transform ECG embeddings into the text embedding space of the LLM. During this stage, both the
ECG encoder and the LLM are kept frozen to preserve their pretrained knowledge, while the pro-
jection layer is optimized to establish an effective mapping between modalities. Once the projection
layer is trained, we proceed with continual fine-tuning of the entire pipeline. In this stage, the ECG
encoder remains unchanged, while the feed-forward layers of the LLM are updated using the LoRA
framework Hu et al.|(2021)), and the projection layer is updated concurrently.

Table [ shows a comparison of report generation quality between our model and the baseline [Zhao
et al.| (2025)), measured against the ground truth report. Our model consistently outperforms the
baseline across all metrics, including BLEU-2, BLEU-4, ROUGE-L, METEOR, and BERT-score.
These improvements reflect enhanced lexical precision, structural coherence, and semantic fidelity
in the generated reports.

7 CONCLUSION

This paper presents X-ECG, the first explainable ECG foundation model along with two abnormal
heatmap locations dataset MIMIC-IV-ECG+X and PTB-XL+X. With careful design of the archi-
tecture and loss function, X—ECG not only outperform all baselines that don’t have explainability in
both arrhythmia classification and report generation task across various metrics. The explainability
of our model is represented by a heatmap that provides detailed, wave-level segmentation of anoma-
lies in the ECG waveforms. Our generated heatmaps are consistent with manual inspection by a
licensed cardiac specialist. The contribution of our paper also includes the release of wave-level
annotations of anomalies in ECG waveforms on the largest published ECG database, facilitating
further development of explainability paradigm in ECG research.

LIMITATION

The data curation process for MIMIC-IV-ECG+X and PTB-XL+X relies on external clinical knowl-
edge to identify abnormal conditions. However, this approach may overlook certain cases due to
dependencies on patient-specific factors such as gender and age. As illustrated in Figure [6] nearly
half of the heatmaps in the test set are only partially correct, indicating limitations in the current an-
notation strategy. To improve the accuracy and reliability of abnormal region identification, a more
comprehensive algorithm could be adopted for enhanced heatmap generation. Additionally, the
attention-guiding mechanism currently utilizes KL divergence as its loss function. However, alter-
native formulations such as cross-entropy could be employed to enforce stricter alignment between
predicted attention distributions and ground truth.
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A DEMONSTRATION OF PTB—XL+X

Figure [5] showcases representative examples of the generated heatmaps alongside their correspond-
ing original text reports from PTB-XL+X.

J‘Lﬂu/v‘ﬂ.r«ﬁ -»ﬂowM N«ﬂk,wﬂ./vi' - ﬂwﬂv ﬂrqb »JLM‘J\.JJL | ML\‘JJ‘JMJJ&.AL .,J“Ml xﬂ‘t’
25581 1PAR WA 188 1585 VR SR RS IA A 8t [P a S PRaN R o PR S e RAR Te
N PRI AN 20 RSBty R PSR R, DRV RE FNET 2 SERaRk je sy sne e e as gt
e 1 1 sl e - seaae -
119} B Sy AP = A4 A g i i 4 A= I
ML SMEY SN SR R YT A AR A e T
S 8 T M i i 11 | ) I | | 1 1 |
T A R A L L LA e S AL Sl e LN DN A v o
o e S g e
Ty AP [BE) ) aan) o gme AR S S 1 | A 2
: | ; I | R ARl R o
(B g8 (NS I e ey Y TR0 1[S00 NS 0 8 (S 1E
i : > : e e e ‘ﬁvp A \ i
P B W o el e 1811188 SSE SRy SR e oA ST SN ASH e 1 S
A, O A D ;O R D A O O Dide b Ll Ll o LD D Lo
5GHE81 RSE ARER 1RAE RS, ISR, AR HARY AAK SN, N1, 11181 AR BN A8 PR VA B 0A EAERTR BBy B/
ah ymmfs Ommymy il 25mmfs A0mm/my. |
Complete Left bundle branch block, Sinus rhythm Anterosgptal myocardial infraction,
Left atrival overload/enlargement
Moo L - J L;VUU BEERT TEEFHEEEE
ANSEaN N} s g nmEa e SA e e s e o ﬂq =y PSRN e e
B—H o0 H.0 0 0 B0 0 [0 o e ehm = e R NS
N o e e 5 43 i ] . 5 e fi-
= el = T = = T =] < 5 T 1 t t \ t T
D ge s g oo pernd i O g e =SS ya e L
B 0.0 800 B30 0 0 IR/ SERE e
AN oVNw A DN 20 R A BT ARRw AR IR W0 flpr S ARG
B e 1 B e e e e = P o A A A A
oo g g g gl g B SRR A A6 i R S
[ RS IE ] (S 1] S b | SIS R - EaSHSEIEE) mnEEEREaE! e
“35" - i e 2 | e B g | G s £ s o ] i 1% e I
R 1T MR |BISA/ ARAITT WASR i ISMATN MINRIE WAl T MR W DMRA | == N WA iebin e s g
Hod e i - Lt R e == = [
e oy e Timmin
First degree AV block, Sinus rhythm Left anterior fascicular block, Sinus rhythm

Figure 5: Example outputs from the two-stage rule-based procedure applied to the PTB-XL dataset.
Blue boxes highlight the label regions of detected anomalies identified by our algorithm.

To statistically evaluate the quality of our dataset, we submitted 100 samples to cardiologists for ex-
pert review. The assessment focused on verifying the accuracy of the abnormal heatmap annotations.
The results of this evaluation are presented in Figure [6]
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Figure 6: Evaluation results of abnormal heatmaps from 100 samples in PTB-XL+X, reviewed by a
clinical expert
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B DETAILS OF LARGE LANGUAGE MODELS USAGE

The use of Large Language Models (LLMs) in this work is limited solely to grammar correction and
stylistic refinement. All core aspects—including the formulation of main contributions, experimen-
tal design, and data analysis—were conducted independently without LLM involvement.
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