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ABSTRACT

As Large Language Models (LLMs) significantly enhance the capabilities of AI
systems, the increasing volume of query processing requests presents challenges
for cost-effective inference, particularly due to repetitive queries that lead to un-
necessary resource consumption and increased costs. Caching strategies are em-
ployed to store a small set of previous queries, enabling direct retrieval of repet-
itive queries without reprocessing by the LLMs. However, existing caching al-
gorithms often assume uniform query lengths, simplifying cache selection to a
top-K problem, which is inadequate for real-world scenarios with heterogeneous
lengths. To address this issue, we propose a bandit learning algorithm for proac-
tive query caching in LLMs, specifically considering variable-sized queries. We
cast the optimal cache query cache problem as a knapsack problem. Since the
repetitive pattern and processing cost are unknown and has uncertainty, we cast
the learning-to-cache problem as a bandit learning problem. Compared to conven-
tional bandit learning frameworks, a new technical challenge is that the reward of
an arm would not be observed if it is pulled. To tackle this, we propose an Lower
confidence bound (LCB)-type algorithm, which we prove has a Õ(

√
T ) order of

regret and show that our regret does not deteriorate compared to previous results
when incorporating a variable size setting. Furthermore, we demonstrate that our
online cache policy effectively reduces the additional computational overhead typ-
ically associated with calculating the optimal cache.

1 INTRODUCTION

Large Language Models (LLMs) have gained increasing popularity across various fields (Zhang
et al., 2024; Wu et al., 2023b;a). However, as the capabilities of LLMs have increased, the challenge
of resource consumption during LLM deployment has become increasingly significant and cannot
be ignored. This leads to higher inference costs and longer latency compared to traditional models.
As a result, when a large number of queries must be processed simultaneously, LLMs often prove to
be inefficient or unsuitable for such tasks (Chen et al., 2023).

In the real-world marketplace of LLMs, it is inevitable for online large model systems to handle
some repetitive tasks (Chen et al., 2023). For the same task, the large model needs to be called
repeatedly multiple times to obtain the same result, which will inevitably lead to a waste of resources.
As the scale of LLMs grows larger, the cost of repeated queries becomes increasingly significant.
Developing methods to reduce these redundant costs and resource waste would be highly beneficial
for the efficient deployment of large models, significantly lowering the overall operational costs
associated with them.

In the field of computer memory access (Belady, 1966), caching is an effective method for opti-
mizing data access speed and reducing the overhead of resource redundancy by establishing a fast
retrieval mechanism within the system. When applied to large model systems, caching allows re-
peated queries to directly retrieve results from the cache without requiring complex computations
from the LLMs, as the results of these repeated queries are assumed to remain largely unchanged.

Recent research (Stogiannidis et al., 2023; Zhu et al., 2024) involve a cache to store and reuses LLM
API’s response when similar queries are repeatedly asked. These works have successfully integrated
caching strategies into the deployment of large models, but to cope with more complex real-world
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online environments, there is still much room for improvement in the field of cache combined with
LLMs. Incorporating cache into LLMs presents several challenges: 1) how to determine which
query to cache appropriately, 2) managing incomplete information when updating the cache in large-
scale, dynamic user environments. For the first challenge, in order to reduce overhead, we need to
cache those queries that may be popular and incur high costs. However, the cost associated with
each query may be unknown and variable; it may vary depending on different users or changes
in the computation process. From a statistical perspective, the cost of processing each query is
a random variable that depends on the query itself and fluctuates due to variations in the auto-
regressive generation process, as well as the length and quality of the generated responses (Zhu
et al., 2024). For the second challenge, since the cost of each query may depend on the preferences
of different users or other unpredictable factors, and the popularity of queries shifts over time, it is
impossible to know all relevant information for each query in advance. This requires a strategy that
dynamically collects specific statistics for each query through feedback in an online environment to
update the cache.

To deal with the selection of queries, Zhu et al. (2024) takes into account both the expected cost
and popularity of queries as criteria for cache selection. This natural approach has proven effective
in experiments and is relatively easy to implement. However, Zhu et al. (2024)’s online algorithm
performs well only when each query has the same and fixed size in the cache, meaning the number
of queries that can be stored in the cache remains constant. In the case where different queries
have variable size, although they make a simple discussion in appendix, there still exists room for
improvement. In variable size case, in addition to considering the cost and popularity of a query, the
length of the query must also be taken into account. At this point, the number of queries that the
cache can store will no longer be constant.

In this paper, we consider the aforementioned issue from the perspective of bandit with knapsack
constraint. We propose an online algorithm Online Stream Cache Bandits, an extension variant of
Zhu et al. (2024) to solve the problem. Our main contributions are as follows:

Algorithmic Framework. The proposed Online Stream Cache Bandits algorithm contains four key
components. 1) Selecting cache with knapsack constraints: We consider the issue of variable size as
a 0-1 knapsack problem. Here, the cost and popularity of a query represent the value, while the size
of the query corresponds to its weight. Thus, selecting an optimal cache is equivalent to solving for
the optimal knapsack configuration. 2) Lower confidence bound bandits: Different from traditional
bandit literature using UCB-type algorithms, we use lower confidence bound for estimation. This
choice is driven by the fact that, in our environment, the selected arm is not always observed in each
round due to cahce hit, which incurs zero cost (Zhu et al., 2024). On the other hand, this lower
confidence bound acts like a pessimistic strategy, helping to avoid our cache policy trapping into
sub-optimal solution. 3) Double scheduling strategy: The introduction of the knapsack problem into
our policy incurs additional computational overhead. If the knapsack problem is trivially computed
in each round, this additional computational overhead will grow linearly. To mitigate this, we use a
double scheduling strategy, where we only invoke the knapsack problem solver to update the whole
cache at rounds that are integer powers of 2, reducing the additional cost to logarithmic order. 4)
Recommended cache: Using the trivial method mentioned above, extra memory space is required
to store all historical information and result of each query so that it can be selected in a timely
manner when updating the cache. However, this extra memory space is often impractical in real-
world scenarios. To address this, we introduce a recommended cache that temporarily stores the
optimal cache selecting identified by the knapsack problem and “waits” for the relevant query. This
approach eliminates the need for additional memory space, and we show that this modification does
not affect the regret bound.

Theoretical Analysis. The involving of the knapsack problem presents several challenges in our
theoretical analysis, such as we can not determine how many queries are currently stored in the cache
or to find the regular of value of the queries stored in the current cache. Despite these challenges, we
demonstrate that our Online Stream Cache Bandits algorithm achieves a Õ(

√
T ) regret bound with

a O(log T ) additional computational cost. This result aligns with the findings of Zhu et al. (2024)’s
work, which is the most relevant work to ours, and the order of T in our regret bound aligns with
their established lower bound of Õ(

√
T ). Furthermore, we show that the work of Zhu et al. (2024)

can be seen as an special case of ours when all queries are set to the same length.
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Experiments Evaluation. Zhu et al. (2024) proposed a heuristic method that replaces one query
with the smallest expected cost per-size, defined as P (q)C∗(q)/S(q), each round to solve variable
size case. However, their method requires a restrictive condition: the length of the query with the
result must be much smaller than the length of the cache, i.e. S(q) << M . Our analysis shows that
their method will fail without this condition. Using Zhu et al. (2024) as our baseline, we conduct
experiments on both synthetic and real data. Our results show that the Online Stream Cache Bandits
algorithm consistently achieves superior performance in terms of regret across both simulation and
real-world datasets.

2 RELATED WORK

In the field of LLM, cache technology can address the issue of repeated inquiries, thereby reduc-
ing the cost of the LLM marketplace (Chen et al., 2023). Recently, caching strategies tailored for
LLMs have emerged (Xu et al., 2023; Zhang et al., 2023), focusing on content reuse during the
inference phase. These strategies aimed to optimize the internal data flow within LLMs, minimizing
delays and lowering resource consumption. Bang (2023) is recognized in the industry for its sim-
plicity and flexibility, providing various options for integration with different LLMChat services.
However, it does not offer advanced cache performance enhancements. In contrast, Li et al. (2024)
focuses on semantic-oriented enhancement, they improve cache efficiency by leveraging the seman-
tic understanding of queries. Zhu et al. (2024) propose a Caching in Online Learning algorithm to
avoid resource wasting. In their further discussion, they mention that generalizing their work to a
variable-size cache, in which distinct queries have heterogeneous lengths. However, they did not
conduct detailed research or provide a rigorous analysis. Inspired by Zhu et al. (2024), we general-
ize their problem with a variable size constraint. Furthermore, we consider involving the knapsack
problem to solve this variable size issue and propose the algorithms with theory guarantees.

Cache is a key technology that enhances system performance by reducing the overhead of redundant
computations. Traditional cache replacement algorithms delve into the most effective strategies
for caching queries that vary in frequency, cost, and required cache space. To address the issue
of varying frequencies, Lee et al. (2001) propsed a standard approach which use a Least Frequently
Used (LFU) or Least Recently Used (LRU) cache eviction strategy, and these work have been proven
to be optimal for both adversarial and stochastic queries (Bura et al., 2022). When varying costs
and varying frequencies exist simultaneously, Jin & Bestavros (2000), Arlitt et al. (2000) propose
and study the Greedy Dual-Size with Frequency (GDSF) replacement algorithm, which takes both
frequency and cost into consideration. Our problem setting may provide inspiration for solving
cache problems that involve uncertainty.

The Knapsack Problem (Kellerer et al., 2004) is a classic problem in computer science and opti-
mization theory. In the algorithms we propose, the knapsack problem will determine how to select
the cache efficiently. We can regard our problem as a 0-1 knapsack problem and use dynamic pro-
gramming (Bertsekas, 2005), a classical method to address the knapsack problem, as our Oracle
to update our policy. The online knapsack problem (Zhou et al., 2008) is an online variant of the
knapsack problem, which requires making decisions on the spot without knowing all the inputs.
The challenge of the online knapsack problem lies in making optimal or near-optimal decisions un-
der incomplete information, which often requires designing effective algorithms to approximate the
optimal solution.

The multi-armed bandit problem is a reinforcement learning problem that has broad applications
in finance (Shen et al., 2015), medicine (Liu et al., 2018), chemistry (Wang et al., 2024) and rec-
ommendation systems (Zhou et al., 2017). In the classic stochastic formulation, a casino player is
faced with a set of slot machines, each with a fixed but different reward distribution that is initially
unknown. With a limited budget, the player’s goal is to maximize the total payout by identifying
and playing the slot machines that offer better returns. To this end, the player effectively allocates
limited resources to balance exploration of the machines that have been played less and exploita-
tion of the current best options. In our work, we can see each query as an arm, and its cost is an
unknown distribution. Under this setting, the UCB-type method can deal with the uncertainty of
each query. Compared to Bandits with Knapsacks (BwK), which is a problem that combines bandit
and knapsack constraints, our problem setting is different. The BwK problem (Badanidiyuru et al.,
2018; Liu et al., 2024) assumes that there are K resources consumed over time, each with distinct
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budgets B1, ..., BK . Every resource i ∈ [K] is associated with a consumption, The goal of policy
is to maximizes the accumulated reward subject to the budget constraints that each consumption of
resource i is less than Bi. In our work, we utilize the knapsack problem to address heterogeneous
size queries, treating the cache as a knapsack constraint: the lengths of distinct queries represent
the weights, while the costs and frequencies represent the values. We impose a fixed budget con-
straint in each round, this setting is similar to Yu et al. (2016). Compare to their work, our approach
incorporates missing feedback, which involves greater challenges and more complex analysis.

3 SIZE-AWARE CACHING BANDIT SETTING

In this section, we formulate the size-aware caching bandit problem in LLM inference serving with
heterogeneous queries.

Query and request cost. We consider a finite set of queries Q = {q1, ..., qN} containing N distinct
queries, each query q ∈ Q is associated with a size L(q) ∈ R+. When query q is input to the LLM
system, the LLM processes it and returns a corresponding result r(q) with size A(q) ∈ R+. We use
S(q) = L(q) + A(q) to denote the total-query size of q. Every time the LLM processes q, it will
incur a random cost C(q) with unknown mean C∗(q):

C(q) = C∗(q) + ϵq

where ϵq is a sub-Gaussian noise that captures the uncertainties in the cost, with E[ϵq] = 0. Remark
that this setup is reasonable as most noise in real-world applications follows a sub-Gaussian distri-
bution. Consistent with Zhu et al. (2024), the cost in a LLM can be FLOPS, latency of the model,
the price for API calls, user satisfaction of the results, or a combination of all these factors.

Size-aware cache. To save the cost of repeatedly processing the queries, we maintain a cache M
for the LLM system, storing a small subset of queries with their corresponding results. The size of
cache has a maximum size M , the total size of the stored queries must satisfy

∑
q∈M S(q) ≤ M .

Let J be the set of all possible caches that satisfy the size constraint

J = {M|
∑
q∈M

S(q) ≤ M}

Because the cache maintains the query and its result, when a query hits the cache, it will output the
result of matched query directly with zero cost. Previous works such as Zhu et al. (2024) assume that
the size of queries is homogeneous means that S(q) = 1 for all queries, reducing the the problem to a
top-K selection problem. We instead consider a heterogeneous setting, where queries have different
sizes S(q), introducing additional challenges. This heterogeneity is a key difference between our
model and previous works such as Zhu et al. (2024).

Online learning size-aware caching bandit. We consider a total number of T ∈ N+ learning
rounds. In each round, a query arrives, which is sampled from Q according to a fixed unknown
population distribution P ∈ ∆(Q). Let qt ∈ Q represent the query sampled from Q in round t.
We use P (q) ∈ (0, 1] to denote the probability that the query q be selected in each round, such that∑

q∈Q P (q) = 1.

In round t, the agent first selects current cache Mt, which satisfies the size constraint, based on the
history information from previous rounds. After qt is sampled from P, the agent will first check the
current cache Mt and If the query qt is found in the cache, i.e., qt ∈ Mt, we say the query hits the
cache. In this case, the result of qt is directly returned without further processing by the LLM. The
cost of processing this query is 0 and will save a potential cost C(qt), which is unobserved to the
agent. If query qt does not hit the cache, the system processes the query, incurring a cost C(qt), and
returns the result.

The objective is to choose the optimal cache without knowing the cost and popularity of each query.
To achieve this goal, one can use a bandit-type policy to deal with the uncertainty, treating each
query as an arm in a multi arm bandit model. However, our setting differs from traditional bandit
problems because feedback (i.e., the cost) is not observed in every round. Specifically, when a
query hits the cache, no cost feedback is received. Only when a query misses the cache does the
agent observe a random cost as feedback. This ”reverse-bandit” scenario, where feedback is only
available when an arm is not selected, complicates the application of traditional bandit algorithms.
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Learning objective. Our goal is to minimize the total cost with time horizon T . From another per-
spective, the cost we saved by cache hitting can be regarded as additional reward we have obtained.
Following Zhu et al. (2024), we can define the reward of a query q with a given cache M as

f(M, q) = C(q)I{q ∈ M}
And the regret can be defined as

Reg(T ) = E

[
T∑

t=1

f(M∗, qt)− f(Mt, qt)

]
= E

[
T∑

t=1

C(qt) (I{qt ∈ M∗} − I{qt ∈ Mt})

]
(1)

where I is the indicator function and M∗ is the optimal cache.

To minimize the total cost, we need to find the optimal cache M∗ which maximizes the saved cost.
By taking expectation over all query, the expected reward function can be defined as:

F (M,C∗,P ) = E [f(M, q)] (2)
= E [C(q)I{q ∈ M}] (3)

=
∑
q∈M

C∗(q)P (q) (4)

where C∗ = {C∗(q)}q∈Q is the set of unknown costs for all queries, and P = {P (q)}q∈Q repre-
sents the probability of each query being sampled.

We see this expectation of reward function as the reward of a cache M.The optimal cache can
therefore be formally written as M∗ = argmaxM∈JF (M,C∗,P ) and the regret of the policy can
be expressed as:

Reg(T ) = E

[
T∑

t=1

F (M∗,C∗,P )− F (Mt,C
∗,P )

]
(5)

We model this as a 0-1 knapsack problem where C∗(q)P (q) is the value of q and S(q) is its weight.
The cache is treated as a knapsack with capacity of M , and the optimal cache selection corresponds
to solving for the optimal knapsack. In order to adapt the knapsack problem to our model, we need
the following assumption:
Assumption 1. The cost can be bounded by c1 ≤ C∗(q) ≤ c2,∀q ∈ Q, where c1, c2 ∈ R+ and
c2 > c1
Assumption 2. The popularity can be bounded by 0 < P (q) < 1/2,∀q ∈ Q.

Offline size-aware cache provisioning. As mentioned above, finding the optimal cache can be
viewed as solving a 0-1 knapsack problem. Therefore, a solver for the knapsack problem will be of
significant help in selecting the optimal set of queries to cache. To do this, we introduce an Oracle
for solving the knapsack problem, which takes the weight and size of each query as inputs and
returns the optimal knapsack configuration. Specifically, We use Oracle(Q,w, l,M) −→ Qw∗

l,M
to yield the optimal knapsack of knapsack problem with volume constraint of M , where Q is the
input query set, w = {w(q)}q∈ Q, l = {L(q)}q∈ Q denote the weight vector and value vector of
each query in Q respectively. The Oracle solver (e.g., Dynamic Programming) returns the optimal
knapsack based on the length and the product of estimated costs and selection probabilities for all
queries.

Comparison with previous work. Unlike Zhu et al. (2024), where the cache size refers to the
number of queries stored, in our setting, it refers to the number of tokens the cache can store. Here,
M represents the total token capacity of the cache. The values L(q) and A(q) correspond to the
token counts for the query q and its result, respectively, which together represent the cache size
required for q ∈ Q. When a query q is input, it is tokenized with a length L(q), representing the
number of tokens the query contains. The LLM processes this query and produces a result with
length A(q). Therefore, the total size required in the cache for query q is S(q) = L(q) + A(q). In
our setting, the cache constraint at each round t must satisfy:

∑
q∈Mt

S(q) ≤ M in each round t.

We also note that in the online model, we discard the results of queries that are not stored in the
cache, but we maintain estimation information such as the query’s length and cost. If a previously
dropped query reappears, the result must be recomputed by the LLM. This setup reflects real-world
conditions where the number of queries is large and there is insufficient storage to keep all query
results in the cache.
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4 ALGORITHM

In this section, we propose our batch and stream version algorithm to address the cache selecting
with variable size query. Because the algorithm has not seen any queries at the beginning, it needs to
record the indices of queries to maintain the estimation for each query in cache selection. We use a
set Qt in our algorithm to represent this record, a query q ∈ Qt means that the estimation and index
information of this query have been recorded by algorithm.

4.1 BASIC BATCH CACHE BANDITS

Batch setting. We begin our algorithm with a batch setting, which means that the algorithm can
record all the queries along with their results and can obtain any query with its result at any time. In
this case, a straightforward policy for our model is that we can naturally use the Oracle at the end of
each round, and the agent selects the cache according to the results provided by the Oracle. We first
propose a batch version of our policy (Algorithm.1), this version does not consider the storage costs
of all queries and their results, and it assumes that the results of the required queries can be obtained
at any time. In this algorithm, the cache will be reselected in each round. At the end of each round,
the Oracle will provide the optimal solution based on the current estimation of all queries; then the
policy will select queries according to the output of the Oracle and add them to the cache. Under
Algorithm.1, the current cache will ultimately converge to the optimal cache when the estimations
converge to the true values. On the other hand, if the estimations of all queries become precise
enough, the current cache will be updated to the optimal cache immediately.

Lower confidence bound. Similar to Zhu et al. (2024), we also use a lower confidence bound in
the estimation of the average cost of each query; this differs from traditional UCB-based methods.
The reason we use the lower bound is that the pessimistic policy in cost will prevent the algorithm
from getting trapped in a sub-optimal solution. In our setup, the optimal cache always selects the
query set with the largest value sum, which is the sum of C∗(q)P (q) in our model. If we use an
upper confidence bound for estimation, once the Oracle outputs a sub-optimal solution for cache
selection, it will maintain the estimation of queries included in this sub-optimal cache as greater
than that of other queries with high probability. This prevents the algorithm from correcting the
solution selected by the Oracle, leading to a trap in the sub-optimal cache. This is akin to adding
a penalty to the estimation of queries that remain in the cache for a long time, making them more
likely to be replaced, similar to an enforcement of exploration.

Replacement strategy. In Zhu et al. (2024), they proposed a method that replacing one query with
the smallest expected cost per-size P (q)C∗(q)/S(q) each round. This method is natural and does
not incur any additional cost. However, in certain situations related to the knapsack problem, due
to the size constraint, the current cache may need to replace multiple queries at once to update to
the optimal solution. If we use the LFU policy and allow only one query to be replaced at a time, it
may prevent the algorithm from updating to the optimal cache. Unlike Zhu et al. (2024), the Oracle
we use here allows the policy to update more than one query each round, which can prevent the
algorithm from getting trapped in a sub-optimal solution.

Practical limitations. Although Algorithm 1 can effectively select the optimal solution, it has sig-
nificant limitations. Algorithm 1 requires a record of all queries, and their results must be obtainable
at any time to ensure it can use the appropriate queries to update the cache promptly. Thus, we
need a large amount of additional storage space to keep all the information about queries and their
results; however, this is not feasible in an online setting. In fact, this additional storage requirement
is unreasonable in real-world scenarios. On one hand, if we could store all the results of queries, the
cache would become unnecessary. On the other hand, Algorithm 1 needs to call the Oracle in each
round, which incurs a significant additional computational cost as the number of rounds increases,
especially in solving the NP-hard problems like the knapsack problem, such a high computational
cost is unsustainable.

4.2 ONLINE STREAM CACHE BANDITS

To address the issue of additional storage and computational cost, we propose an online version of
our policy (Algorithm 2).
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Algorithm 1 Basic Batch Cache Bandits
Require:

Q0 = ∅. T
(p)
0 (q) = 0, q ∈ Q. T

(c)
0 (q) = 0, q ∈ Q. P̂0(q) = 0, q ∈ Qt. C̃0(q) = 0, q ∈ Q.

Ĉ0(q) = 0, q ∈ Q. A(q) = 0, q ∈ Q. Current cache cache0 = ϕ. The size of cache is M .
Ensure:

1: for round t = 1, ..., T do
2: A user arrive and select qt sampled from Q with the length of query is L(qt)
3: if qt /∈ Qt−1 then
4: Qt = Qt−1 ∪ {qt}
5: Recording the output result of qt when qt is input into the LLM in the following.
6: else
7: Qt = Qt−1

8: end if
9: T

(p)
t (qt) = T

(p)
t−1(qt) + 1

10: T
(p)
t (q) = T

(p)
t−1(q), ∀q ̸= qt

11: P̂t(q) = T
(p)
t (q)/t, ∀q ∈ Qt

12: if qt ∈ Mt−1 then
13: Output the result from cache
14: Ĉt(q) = Ĉt−1(q), C̃t(q) = C̃t−1(q), T

(c)
t (q) = T

(c)
t−1(q),∀q ∈ Qt

15: else
16: Agent input qt into LLM and receive the result of query with length A(qt), then observe

the cost ct(qt).
17: C̃t(qt) = C̃t−1(qt) + ct(qt), T

(c)
t (qt) = T

(c)
t−1(qt) + 1

18: Ĉt(q) = Ĉt−1(q), C̃t(q) = C̃t−1(q), T
(c)
t (q) = T

(c)
t−1(q),∀q ̸= qt

19: Ĉt(q) = max{c1, C̃t(q)

T
(c)
t (q)

− (c2 − c1)

√
2 log (6TN/δ)

T
(c)
t (q)

}, ∀q ∈ Qt

20: end if
21: wt = {Ĉt(q) · P̂t(q)}q∈Qt

, lt = {L(q) +A(q)}q∈Qt

22: Oracle(Qt,wt, lt,M) → Mt

23: Putting those queries with result which belong to Mt into cache from record.
24: end for

Stream-Based Cache Updates. In the online model, the algorithm operates in a stream-based
manner, meaning it does not store all previous queries and their results. Instead, it maintains only the
sequence numbers and estimated values of the queries. Whenever the cache is updated, any queries
and their corresponding results that are removed from the cache are permanently cleared. As a result,
the algorithm can only access the queries currently in the cache and any newly arriving queries. It
may not be able to update the cache immediately based on the output of the oracle because the
required queries may have already been cleared due to replacement, necessitating the re-acquisition
of their results when they arrive next. This resembles a data stream, where the algorithm can only
see the content of newly arrived queries and cannot access the content of all queries in each round.
To solve this issue, we involve a recommended cache denoted by M̂ to temporarily store the results
output by our Oracle at the current time.

When Algorithm 2 call the Oracle, our policy will not update cache immediately, instead it will first
get a recommended cache M̂t, and clear out the current cache. In the following rounds, if a query
that belongs to the recommended cache arrives, it will miss the current cache and be input into the
LLM to get its result. Then, this query will be put into the current cache; otherwise, no update is
made to the cache, regardless of whether the current query hits. This process will repeat until the
next recommended cache update occurs. Under this replacement method, we do not need to store
all results of each queries, which satisfy the online model and be more reasonable.

Reducing computation. To reduce the additional computational cost, we establish a special pro-
tocol which only call the Oracle in the round that is the power of 2, this protocol can reduce the
computational cost of calling Oracle from O(T ) to O(log T ).
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Although the number of cache misses seems to increase due to the lack of timely updates in the
online mode and the reduction of Oracle calls to minimize computational overhead, we can show
that the deterioration of the overall algorithm is not significant. Unlike traditional bandit algorithms,
the update for the estimation of a query cost occurs only when the query does not hit the cache.
Therefore, if the number of misses increases in the previous round, the estimation of the query will
become more precise afterward, leading the knapsack returned by the oracle to gradually approach
the optimal knapsack. In other words, the more misses there are, the more precise the query estima-
tion will be. In the same time, the times of clear operation will be bound by O(log T ), which further
bound the number of missing.

Algorithm 2 balances the computational cost and the convergence speed. In the batch version,
the current cache updates immediately to the optimal cache when the oracle provides the optimal
knapsack. However, it needs to call the oracle in each round to ensure the algorithm knows the
optimal solution in a timely manner, which leads to an additional computational cost of O(T ). In
the online version, we do not need to call the Oracle in each round, and we can demonstrate that the
regret is still bounded by Õ(

√
T ).

4.3 REGRET ANALYSIS

For the knapsack problem, let ℓ(M,Q) = maxM∈J |M| represent the maximum number of queries
that the optimal knapsack can contain with capacity M , where Q is the query set with associated
values and weights. Then, in our setting, ℓ(M,Q) gives the maximum number of query that the
cache can store. We have the following regret guarantee for our algorithms:

Theorem 1. For the Basic Batch Cache Bandits algorithm ( Algorithm 1), assuming sufficient mem-
ory space to store results of all queries,and setting δ = 1/T , the regret is upper bounded by

Reg(T ) ≤ O

(
ℓ(M,Q)

p∗

√
T log

3
2 (TN)

)
(6)

where p∗ = minq∈ Q P (q) is the minimum popularity frequency among all queries. The computa-
tional cost is Com ·T , where Com is the cost of running the Oracle. Specifically, Com = O(MN)
if a dynamic programming algorithm is used.

Theorem 2. For Online Stream Cache Bandits algorithm ( Algorithm 2), without additional memory
space, we set δ = 1/T , then with O(log T ) additional computational cost, the regret can be bounded
by

Reg(T ) ≤ (c2 + log T )T0 +
128ℓ(M,Q)c2

p∗
log

3
2 (6TN)

√
T log T (7)

≤ O

(
ℓ(M,Q)

p∗

√
T log2 NT

)
(8)

where p∗ = minq∈ Q P (q) is the minimum popularity frequency of all queries and T0 =

max
(

32
p∗ log TN + 4

p∗ ,
⌈
2ln(3TM)

p∗

⌉)
. On the other hand, for any caching policy {Mt}Tt=1, there

exist some cases of P (q), C∗(q) such that for some universal constant C ′

Reg(T ) ≥ C ′
√
T (9)

This proof is deferred to Appendix. Based on the theorems presented above, we demonstrate that
Online Stream Cache Bandits achieves the same order of regret, Õ(

√
T ), as Basic Batch Cache

Bandits, but with a lower computational cost. In the work of Zhu et al. (2024), a lower bound of
Õ(

√
T ) is established. Our work extends their findings; consequently, the lower bound in our setting

is naturally larger than theirs, making the proof of our lower bound evident. The regret established
above conforms to Õ(

√
T ), indicating that our work provides an optimal solution in relation to T .

Theorem 2 in Zhu et al. (2024) can be viewed as a special case in our setting, where each query has
the same length. If we assume popularity follows a uniform distribution, the order of our regret over
the time horizon T will be O(MN

√
T ), which aligns with the bound presented in Zhu et al. (2024).

8
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Algorithm 2 Online Stream Cache Bandits
Require:

Q0 = ϕ. T (p)
0 (q) = 0, q ∈ Q. T (c)

0 (q) = 0, q ∈ Q. P̂0(q) = 0, q ∈ Qt (
∑

q∈ Q P (q) = 1).

C̃0(q) = 0, q ∈ Q. Ĉ0(q) = 0, q ∈ Q. A(q) = 0, q ∈ Q. cache0 = ϕ. ˆcache0 = ϕ. Calling
flag i = 0. The size of cache is M .

Ensure:
1: for round t = 1, ..., T do
2: A user arrive and select qt sampled from Q with the length of query is L(qt)
3: if qt /∈ Qt−1 then
4: Qt = Qt−1 ∪ {qt}
5: else
6: Qt = Qt−1

7: end if
8: T

(p)
t (qt) = T

(p)
t−1(qt) + 1

9: T
(p)
t (q) = T

(p)
t−1(q), ∀q ̸= qt

10: P̂t(q) = T
(p)
t (q)/t, ∀q ∈ Qt

11: if qt ∈ Mt−1 then
12: Output the result from cache
13: Ĉt(q) = Ĉt−1(q), C̃t(q) = C̃t−1(q), T

(c)
t (q) = T

(c)
t−1(q), ∀q ∈ Qt

14: else
15: Agent input qt into LLM and receive the result of query with length A(qt), then observe

the cost c1 ≤ Ct(qt) ≤ c2.
16: C̃t(qt) = C̃t−1(qt) + ct(qt), T

(c)
t (qt) = T

(c)
t−1(qt) + 1

17: Ĉt(q) = Ĉt−1(q), C̃t(q) = C̃t−1(q), T
(c)
t (q) = T

(c)
t−1(q), ∀q ̸= qt

18: Ĉt(q) = max{c1, C̃t(q)

T
(c)
t (q)

− (c2 − c1)

√
2 log (6TN/δ)

T
(c)
t (q)

}, ∀q ∈ Qt

19: end if
20: if qt ∈ M̂t−1 and qt /∈ Mt−1 then
21: Put qt and its process result which is from LLMs into cache.
22: Mt = {qt} ∪Mt−1

23: end if
24: if t = 2i then
25: wt = {Ĉt(q) · P̂t(q)}q∈Qt , lt = {L(q) +A(q)}q∈Qt

26: Oracle(Qt,wt, lt,M) → M̂t

27: Clearing out the current cache Mt

28: (Mt = Mt−1 ∩ M̂t)
29: i = i+ 1
30: else
31: M̂t = M̂t−1

32: end if
33: end for

5 EXPERIMENT

5.1 SIMULATION DATASET

We conduct synthetic online experiments to evaluate our algorithm. In Fig.1, we compare perfor-
mance of our algorithms and the baseline using cumulative regret in online learning with a simulated
dataset. We use the method described in the appendix of Zhu et al. (2024) as a baseline, as it is the
only algorithm we could find that is applicable to this issue. We consider 20 distinct queries and set
the cache size to be 20. For the ground-truth, we model the popularity distribution as power distri-
bution with α = 0.5 and the expected of cost for each query is sample from a uniform distribution
support on [0.1, 1]. We repeat the simulation 10 times and plot the mean and standard deviation in
the figure. The cost for each query in each round is sampled from a truncated normal distribution

9
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with a mean equal to the expected value generated above. We employ a dynamic programming
algorithm as our Oracle.

As shown in Fig.1, both Basic Batch Cache Bandits and Online Stream Cache Bandits outperform
baseline. This improvement can be attributed to the fact that the method in Zhu et al. (2024) provides
an approximate solution to the knapsack problem (Zhou et al., 2008), which poses a risk of falling
into sub-optimal solutions. In contrast, our algorithm circumvents this issue by utilizing the Oracle
for the knapsack problem. We observe that Online Stream Cache Bandits performs worse than Basic
Batch Cache Bandits. This discrepancy is due to the fact that Basic Batch Cache Bandits can be up-
dated more promptly, allowing it to converge faster. Although Basic Batch Cache Bandits exhibits
lower regret, as mentioned in Section 4, it requires substantial additional memory and computa-
tional resources, which may be unrealistic in real-world scenarios. Conversely, the Online Stream
Cache Bandits algorithm achieves similar regret to Basic Batch Cache Bandits while avoiding these
significant additional costs.

Figure 1: Synthetic dataset with 18000 rounds

5.2 REAL DATASET

In line with Zhu et al. (2024), we evaluate our algorithms using the OpenAssistant (Köpf et al., 2023)
dataset for the chat assistant task. For this task, we employ the FastChat-T5-3B (Zheng et al., 2023)
model to implement our online algorithm, utilizing inference latency as the cost metric. We run our
algorithm with 100 distinct queries in the online setting over a total of 40,000 and 140,000 rounds,
respectively, across three trials, with a cache length set to 100. Since our work focuses on cache
selection, the quality of the responses is not a primary concern. As shown in Tab.1, our method
reduced the cost by 12.4% and 12.8% at 40,000 and 140,000 rounds, respectively, compared to the
baseline. After a sufficient number of online learning steps, the Oracle accurately learns the costs
and frequencies of each query within this finite query pool, enabling Online Stream Cache Bandits
to outperform the baseline algorithm.

Table 1: Cumulative cost on real dataset
algorithm cost(40000) cost(140000)

Baseline 6501.6 22602.6
Online Stream Cache Bandits 5692.5 19708.3

6 CONCLUSION

In this work, we explore a more generalized model applicable to the cache of Large Language
Models (LLMs). We address the issue of variable-size caching and propose a streaming online al-
gorithm to minimize additional overhead, demonstrating that our method performs better compared
to previous work. Additionally, we provide a theoretical guarantee of Õ(

√
T ) for our algorithm.

By considering the knapsack problem to tackle the heterogeneous sizes of queries in real-world
applications, we believe that this extension of cache will have a broader range of applications.

10
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