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ABSTRACT

Conversational recommender systems (CRS) have emerged as a key enhance-
ment to traditional recommendation systems, offering interactive and explain-
able recommendations through natural dialogue. Recent advancements in pre-
trained language models (PLMs) have significantly improved the conversational
capabilities of CRS, enabling more fluent and context-aware interactions. How-
ever, PLMs still face challenges, including hallucinations—where the gener-
ated content can be factually inaccurate—and difficulties in providing precise,
entity-specific recommendations. To address these challenges, we propose the
PCRS-TKA framework, which integrates PLMs with knowledge graphs (KGs)
through prompt-based learning. By incorporating tree-structured knowledge from
KGs, our framework grounds the PLM in factual information, thereby enhanc-
ing the accuracy and reliability of the recommendations. Additionally, we de-
sign a user preference extraction module to improve the personalization of rec-
ommendations and introduce an alignment module to ensure semantic consis-
tency between dialogue text and KG data. Extensive experiments demonstrate
that PCRS-TKA outperforms existing methods in both recommendation accu-
racy and conversational fluency. The code is anonymously open-sourced at
https://anonymous.4open.science/r/PCRS-TKA-9496.

1 INTRODUCTION

Recommendation systems are pivotal in intelligent assistants, helping users discover relevant items
more efficiently. However, traditional recommendation systems typically focus on item suggestions
without interactive dialogues with users (Chen et al., 2017; He et al., 2020). To address this limita-
tion, conversational recommender systems (CRS) have gained significant attention in recent years,
which enhance not only the flexibility of the recommendations but also their explainability by al-
lowing more natural and intuitive user interactions (Christakopoulou et al., 2016; Tran et al., 2020).
The recent advancements in pretrained language models (PLMs) have significantly expanded the
capabilities of CRS with their powerful language understanding and generation abilities (Zhang &
Wang, 2023; Wu et al., 2021). However, PLMs face their own set of challenges in recommenda-
tion tasks, particularly hallucination, where the models may generate factually incorrect informa-
tion (Hal; Zhang et al., 2023). To counter this, knowledge graphs (KGs) can be used as auxiliary
tools, grounding PLMs in factual external knowledge (Wang et al., 2022b; Tong et al., 2024), thus
enhancing both the accuracy and reliability of CRS.

In the literature, conventional CRS primarily relied on structured conversations centered around
item attributes such as genre or price (Gao et al., 2021a). Later, KG-based CRS (Wang et al., 2019;
Petroni et al., 2019; Bouraoui et al., 2020) incorporated external knowledge resources and developed
specialized alignment strategies to ensure semantic consistency. For instance, KBRD (Chen et al.,
2019) combined KGs with relational graph convolutional networks (RGCNs) (Schlichtkrull et al.,
2017) to enhance interaction between recommendation and dialogue modules. KGSF (Zhou et al.,
2020a) extended this by incorporating word-level KGs and using mutual information maximization
(MIM) to align word and entity representations. RevCore (Lu et al., 2021) enriched dialogues by
incorporating unstructured review data for more diverse responses, while C2CRS (Zhou et al., 2023)
employed multi-granularity contrastive learning to align multimodal data and improve semantic con-
sistency. Despite these advancements, natural language capabilities remained limited. More recent
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works, such as BARCOR (Wang et al., 2022a) and UniCRS (Wang et al., 2022b), have adopted pre-
trained language models (PLMs) and prompt learning (Chen et al., 2022) to generate higher-quality
conversational responses. These PLM-based models also integrate KGs to address hallucination
issues and improve domain-specific knowledge.

However, several key challenges remain in integrating PLMs and KGs for conversational recom-
mendation. First, existing methods often rely on graph convolutional networks (GCNs), such as
RGCN, to extract relational information from KGs. While effective, these approaches do not fully
exploit the reasoning capabilities of PLMs over graph relationships, thereby limiting the potential
of CRS for more sophisticated knowledge integration. Second, dialogue text in current methods is
often treated merely as textual input data, neglecting valuable latent user collaborative preference
information embedded in conversations. This oversight can result in suboptimal personalized rec-
ommendations that fail to align with users’ true preferences. Third, CRS typically involve multiple
data types, such as textual dialogue data and structured knowledge from graphs, which reside in dis-
tinct semantic spaces (Li et al., 2021). Without proper semantic alignment, the integration of these
heterogeneous data sources may introduce noise, ultimately degrading recommendation quality.

In response to these challenges, we propose a novel framework, PCRS-TKA (Prompt-based Con-
versational Recommender System with Tree-structured Knowledge Augmentation), that effectively
integrates KG and dialogue data through prompt-based learning using a PLM. Specifically, our ap-
proach first extracts a knowledge tree from the KG based on historically interacted items, leveraging
the PLMs’s logical reasoning abilities to capture entity relationships. Additionally, we design a user
preference extraction module that captures user collaborative preferences through dialogue interac-
tion, guiding more personalized recommendations. Then, our framework introduces an alignment
module that harmonizes data from different semantic spaces, minimizing noise and improving rec-
ommendation accuracy. Finally, through extensive experiments on public datasets, we demonstrate
that PCRS-TKA outperforms existing methods on both the recommendation and conversation tasks.

2 RELATED WORK

The related work can be categorized into two main areas: Conversational Recommendation Sys-
tems and Combining PLMs and KGs for Recommendation.

2.1 CONVERSATIONAL RECOMMENDATION SYSTEMS

Early CRS methods (Chen et al., 2019; 2017) focused on structured conversations that gathered user
preferences through item attributes like genre or price, relying on predefined templates and algo-
rithms such as multi-armed bandits or reinforcement learning. However, these approaches lacked
flexibility and natural language generation capabilities. To improve this, KG-based CRS methods
were developed. KBRD (Chen et al., 2019) introduced KGs and RGCNs to better connect recom-
mendation and dialogue tasks by modeling complex relations between items and users. KGSF (Zhou
et al., 2020a) extended this by incorporating word-level KGs and using MIM to align word and
entity representations, resulting in more coherent responses. RevCore (Lu et al., 2021) enriched
dialogue generation by leveraging unstructured review data, adding diversity to system responses,
while C2CRS (Zhou et al., 2023) used multi-granularity contrastive learning to align multimodal
data (e.g., text, images, KG). Despite these advancements, KG-based methods often treated recom-
mendation and dialogue modules separately, limiting their ability to fully utilize dialogue content.
With the rise of PLMs, prompt learning has been introduced to improve conversational capabili-
ties. For example, BARCOR (Wang et al., 2022a) employs BART (Lewis et al., 2020) to generate
higher-quality responses, while UniCRS (Wang et al., 2022b) uses prompt learning to integrate rec-
ommendation and dialogue generation. These PLM-based systems also incorporate KGs to mitigate
hallucination issues and improve domain-specific knowledge, providing better alignment between
dialogue and recommendations.

2.2 COMBINING PLMS AND KGS FOR RECOMMENDATION

Recommendation tasks often require systems to have prior knowledge of the domain of the recom-
mended entities, a capability that PLMs typically lack. KGs can compensate for this deficiency by
providing structured, domain-specific knowledge. To integrate KGs, many approaches (Li et al.,
2021; Gao et al., 2021a) align the semantic space of PLMs with the KG to obtain more accurate user
feature representations. This is commonly achieved by modifying the Transformer architecture with
cross-attention mechanisms, enabling the model to process both dialogue text and KG information
simultaneously. For instance, works like KGSF (Zhou et al., 2020a) use mutual information maxi-
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Figure 1: The network architecture of the PCRS-TKA framework.

mization to align the representations of PLMs and KGs, while C2CRS (Zhou et al., 2023) employs
contrastive learning to align these spaces at both the sentence and word levels. These methods have
shown promising results. However, in prompt learning methods, the structure of pre-trained LLMs
remains fixed, as their parameters are optimized on large text corpora. Therefore, methods like
UniCRS(Wang et al., 2022b) incorporate KG information by concatenating implicit vectors from
graph neural networks (GNNs) into the input prompts. While this approach helps integrate KG data,
it does not fully leverage the reasoning capabilities of the PLM in understanding the relationships
within the KG.

Different from the above works, we aim to fully leverage both the reasoning capabilities of PLMs and
the structured knowledge within KGs. We integrate KG information into the prompt-based learning
process with a novel knowledge tree-enhanced module combined with a user preference extraction
module, which helps the system provide more accurate and context-aware recommendations.

3 METHODOLOGY

In this section, we will first introduce our task formulation and the overview of the proposed PCRS-
TKA framework. Then we will provide the technical details of our proposed framework.

3.1 TASK FORMULATION

The goal of CRS is to recommend relevant items while engaging in a natural, ongoing conversation
with the user. During each turn of the conversation, the system analyzes the dialogue history, infers
the user’s preferences, and generates a response that includes recommended items within the natural
language utterance. If the recommended items do not meet the user’s needs, the system continues
the conversation in subsequent turns, refining the recommendations based on the user’s feedback
and evolving preferences.

Formally, let u denotes a user from user set U , i denotes an item from item set I, and w denotes a
word from vocabulary V . A multi-turn conversation C consists of a set of utterances, denoted by
C = {st}nt=1, in which st denotes the sentence in the t-th turn and composed of words from the
vocabulary V , denoted as st = {wj}mj=1. For a given n-turn conversation C, the task of CRS is to
generate a response utterance sn+1 and select a set of recommended items In+1 from the item set I,
where In+1 can be empty. We denote the externeal KG as G . It stores a semantic fact with a triple
< e1, r, e2 >, where e1, e2 from the entity set E and r from the relation set R, here we assume all
the candidate items can be find in E , i.e.I ⊂ E .

3.2 OVERVIEW OF THE APPROACH

As shown in Figure 1, we propose the PCRS-TKA framework for CRS, which integrates PLMs
and KGs through knowledge-enhanced prompt learning. For a given dialogue text C, we previously
extract the KG entities that appear in C, and denote as E. Then the framework consists of four main
components: (1) Feature Encoder Module: We employ RoBERTa (Liu et al., 2019) and RGCN
(Schlichtkrull et al., 2017) to encode dialogue text C and the KG G. The dialogue embeddings C
and entity embeddings E (extracted from G) are fused to form the first part of the prompt, denoted
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as Pfeature. E is used for recommendation, while C is used for dialogue generation. (2) Knowl-
edge Tree Enhanced Module: We transform the KG triples related to entities E into a knowledge
tree, which is then converted into a long text T . RoBERTa encodes this text, and the resulting em-
beddings T are aligned with E to form the second part of the prompt, Ptree. (3) User Preference
Extraction Module: This module infers user preferences through an auxiliary recommendation
task, generating a preference matrix U. Fused with E, this forms the third part of the prompt, Puser.
(4) Soft-Prompt Module: A learnable soft prompt Psoft is appended to the end of the prompt for
additional task-specific guidance. Since the PLM remains fixed during prompt learning, our focus is
on constructing a knowledge-enhanced prompt template to integrate different information. Finally,
all components of the prompt (Pfeature, Ptree, Puser, Psoft) are concatenated with the dialogue text C
and fed into DialoGPT for conversation and recommendation tasks.

3.3 FEATURE ENCODER MODULE

For natural language understanding, we adopt RoBERTa (Liu et al., 2019), a bidirectional pre-trained
language model, to encode the dialogue text C and generate word embedding matrix C, where
C ∈ RnW×dW , nW is the number of words in the dialogue text and dW the hidden size of RoBERTa.
RoBERTa excels at capturing the contextual meaning of words, making it suitable for understanding
user intents from conversation.

Furthermore, since pre-trained language models lack domain-specific knowledge, we incorporate a
KG G to provide external knowledge about entities mentioned in the conversation. KGs contain rich
relational information. To encode this information, we use RGCN, which learns the representations
of entities in KGs. By aggregating information from neighboring nodes, we obtain the embedding
matrix of all entities in G, and denote it as G , where G ∈ RnG×dE , nG is the number of entities
in G, i.e.the size of the entity set E , nE is the hidden size of RGCN. The entity embeddings corre-
sponding to E (i.e., entities mentioned in C) are retrieved from matrix G and denoted as E, , where
E ∈ RnE×dE , nE is the number of entities in E.

Dialogue text typically captures user preferences and intents, while entity embeddings from the
R-GCN provide external knowledge about entities. However, there is a significant semantic gap
between the two modalities. To bridge this gap, we apply a cross-interaction mechanism (Wang
et al., 2022b), which aligns the semantic spaces of the word and entity embeddings:

C = CWC , E = EWE , A = CWE⊤, C̃ = C+EA, Ẽ = E+CA⊤, (1)

where WC ∈ RdC×d, WE ∈ RdE×d, W ∈ Rd×d are learnable weight matrix. Through this bilinear
transformation, the model captures the correlations between dialogue text and entities, producing
refined representations C̃ ∈ RnC×d and Ẽ ∈ RnE×d that share information from both modalities.

3.4 KNOWLEDGE TREE ENHANCED MODULE

To fully leverage the information from the KG G, we propose to integrate KG entities into the orig-
inal dialogue context by constructing a tree-structured knowledge tree. This structure, as illustrated
in Figure 2, enhances the dialogue by embedding relevant background knowledge, taking advantage
of PLM’s ability to process and analyze complex semantic structures.

Specifically, given the dialogue C and the mentioned entities E, we begin by selecting these entities
as seed nodes and extract their n-hop triples from the KG G. These triples are then reorganized
into t n-layer trees. To unify these t trees, we introduce a common parent node, constructing a
comprehensive knowledge tree Gtree corresponding to the entities in E. To preserve the relational
structure of Gtree, we represent the edges between consecutive layers of nodes as virtual nodes.
By performing a depth-first traversal of the entire tree, we generate an ordered list of nodes in the
form of “#Moana (2016)”, where “Moana (2016)” is the text of the node, and “#” represents the
node’s depth in the tree (e.g., depth 1). This depth marker ensures that the tree structure can be
fully preserved and easily reconstructed from the text list. Finally, we concat the node text in the
pairs in order to get the equivalent text of the knowledge tree, and input them to the RoBerta to
get the embedding matrix T for the knowledge tree, where T ∈ RnT×dW , nT is the length of the
knowledge tree text.

3.5 USER PREFERENCE EXTRACTION MODULE

In multi-turn dialogues, the user’s preferences for candidate items in the last turn significantly in-
fluence the recommendations in the current turn. Hence, we design a novel module to capture user
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Figure 2: The example of constructing a knowledge tree.

preferences from the multi-turn dialogue C, and use this information to guide the training of the
PLM with collaborative signals.

Given the fused entity embeddings Ẽ from RGCN and the fused word embeddings C̃ from
RoBERTa, we concatenate them and apply a self-attention mechanism to capture relationships be-
tween all elements in the sequence. The self-attention operation helps compute a weighted sum of
the embeddings, resulting in the user’s preference embedding U, where U ∈ Rd:

X = concat(C̃, Ẽ), (2)

U =

n∑
i=1

n∑
j=1

softmax

(
XiWQ · (XjWK)⊤√

d

)
XjWV , (3)

where WQ ∈ Rd×d,WK ∈ Rd×d,WV ∈ Rd×d are learnable weight matrices.

Next, we introduce an auxiliary task to enhance the module’s ability to capture collaborative user
preference information. Given the learned user preference embedding U and item embeddings
I ∈ RnI×dE (I consists of the embeddings of the candidate items in I within the graph entity
embeddings G), we compute the rating score for each item i in the candidate item set I as follows:

I = IWE , R = softmax(U⊤I), (4)

where WE is a learnalble weight matrix to transform the dommension of I from d E to d to con-
sistent with U, R ∈ [0, 1]1×nI is the predicted rating score of user over candidate items. Simi-
larly, given N conversations and Y ∈ {0, 1}N×M represents the ground truth rating score, we can
compute the predicted rating score R ∈ {0, 1}N×nI in all conversations and give the following
cross-entropy loss(Mao et al., 2023):

Luser = −
N∑

j=1

nI∑
i=1

[
Y i
j · logRi

j + (1− Y i
j ) · log(1−Ri

j)
]
. (5)

3.6 MULTIMODAL INFORMATION INTEGRATION

Our framework utilizes multimodal information from both conversations and KG. Effectively pro-
cessing and integrating these modalities is essential to fully exploit the available information.

As introduced in Section 3.3, when aligning entity embeddings E and conversation embeddings
C, some degree of information loss is inevitable. For instance, in dialogue tasks, conversational
information is more critical, while in recommendation tasks, KG information plays a larger role.
Therefore, we previously introduced a cross-interaction module to obtain two embeddings Ẽ and C̃,
which are used for subsequent tasks.

In contrast, both entity embeddings E and knowledge tree embeddings T are derived from the KG
and represent the same underlying information. Aligning these embeddings helps bring closer the
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representations of the same entity in the semantic space. Specifically, for the entities E mentioned
in the conversation, we perform a self-attention (Vaswani et al., 2023) and weighted summation
operation separately on E = [e1; e2; ...enE

] and T = [t1; t2; ...tnT
], obtaining two views of E:

eE =

nE∑
i=1

nE∑
j=1

softmax

(
eiW

′
Q · (ejW ′

K)
⊤

√
d

)
ejW

′
V , (6)

tE =

nT∑
i=1

nT∑
j=1

softmax

(
tiW

′′
Q · (tjW ′′

K)
⊤

√
d

)
tjW

′′
V , (7)

The resulting representations eE ∈ R1×d and tE ∈ R1×d should be aligned in the semantic
space. To achieve this, we apply contrastive learning(Ma & Collins, 2018) to minimize the semantic
distance between positive pairs while maximizing the distance between negative pairs. Specifi-
cally, for eEi

, tEi
, eEj

, tEj
extracted from two entitiy sequences Ei and Ej , two pairs (eEi

, tEj
)

and (tEi , eEj ) are treated as positive pairs Ei equals to Ej and negative pairs otherwise. Let
Mi,j = 1, if Ei == Ej , otherwiseMi,j = 0. For a mini-batch with b conversations, which means
there are b entity sequences [E1, E2...Eb], the contrastive learning loss is formulated as:

Lalign =

b∑
i=1

b∑
j=1

− log
exp(eEi · tEj/τ)∑b

k=1(exp(tEi · eEk/τ) + exp(eEi · tEk/τ)) ·Mi,k

·Mi,j , (8)

where τ is a temperature hyperparameter.

3.7 PROMPT LEARNING MODULE

The model parameters are divided into four groups: the base PLM, feature encoder module, user
preference extraction module, and task-specific soft tokens, denoted as Θplm, Θfeature, Θuser, and
Θsoft, respectively. We adopt DialoGPT (Zhang et al., 2019), a Transformer-based autoregressive
model pre-trained on large-scale dialogue data from Reddit, as the base PLM. DialoGPT generates
contextual representations from input tokens and is well-suited for recommendation systems (Wang
et al., 2022b). Importantly, the parameters of Θplm are kept fixed during training, while we optimize
the other parameters.

For the conversation task, we use C̃ as the first part of the prompt, denoted as Pfeature(C), and for
the recommendation task, we use Ẽ, denoted as Pfeature(E). Next, knowledge tree embeddings T are
generated via the knowledge tree module, forming the second part of the prompt, Ptree. The user’s
preference embedding Ũ is extracted and used as the third part of the prompt, Puser. Lastly, we
initialize soft-prompt tokens for conversation and recommendation tasks, denoted as Psoft(C) and
Psoft(E), respectively. The complete input to the PLM for both tasks is constructed by concatenating
the prompt components with the dialogue text C:

C̃gen = concat(Pfeature(C), Ptree, Puser, Psoft(C), C), (9)

C̃rec = concat(Pfeature(E), Ptree, Puser, Psoft(E), C). (10)

The training for both conversation and recommendation tasks consists of two stages. For the recom-
mendation task, in the first stage, we pre-train the parameters of Θfeature and Θuser based on the
self-supervised response generation task. In the second stage, we randomly initialize the parameters
of soft tokens Θsoft(E), and learn the Θfeature, Θuser, and Θsoft(E) simultaneously.

For the recommendation task, we use the following loss functions:

O = Pooling(f(C̃rec|Θplm; Θfeature; Θuser; Θsoft(E); )), (11)

R̂ = Softmax(O · I), (12)

Lrec = −
N∑

j=1

M∑
i=1

[Y i
j log R̂i

j + (1− Y i
j ) log(1− R̂i

j)], (13)

Lall = Lrec + αLuser + βLalign, (14)

where f(X|Θ) denote the output of DialoGPT parameterized by θplm taking a token sequence X as
input, the pooling operation can be chosen from averaging, max pooling, or selecting the embedding
of the first token, α and β are hyperparameters.
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For the conversation task, we follow a similar two-stage process while using Pfeature(C) and Θsoft(C)

to replace Pfeature(E) and Θsoft(E). Also we use the text generation loss of DialoGPT to replace Lrec

in both of the two-stage training processes.

4 EXPERIMENTS

In this section, we first introduce the datasets and experimental settings. Next, we present the over-
all evaluation of our framework, comparing it against several state-of-the-art baselines on both
the recommendation and conversation tasks. Finally, we provide detailed analyses through ab-
lation studies and sensitivity experiments for key hyperparameters. The source code and data
have been uploaded to an anonymous repository: https://anonymous.4open.science/
r/PCRS-TKA-9496.

4.1 EXPERIMENTAL SETUP

Dataset. We conducted multiple experiments on the REDIAL (Li et al., 2019) and INSPIRED (Hay-
ati et al., 2020) datasets. The REDIAL dataset is a conversational dataset for movie recommen-
dations, containing 10,006 dialogues with 182,150 utterances about recommendations for 6,281
movies. INSPIRED is a dataset containing 1001 dialogues with 35,811 utterances about recommen-
dations for 1472 movies. Both datasets are constructed by Amazon Mechanical Turk (AMT). In the
experiment, we split the datasets into training, validation, and test sets in an 8:1:1 ratio. For each
dialogue, we incrementally added one round of utterances starting from the first round to create new
data, thereby expanding the dataset.

Knowledge Graph. DBpedia (Auer et al., 2007) is a large-scale, multilingual KG extracted from
the structured content of Wikipedia. It represents real-world entities and their relationships, such as
people, places, and organizations, along with their attributes, containing 5,040,986 high-frequency
entities with their corresponding 927 relations and 24,267,796 triplets. For the entire DBpedia graph
is too huge, we collected all the entities appearing in the dataset corpus via the Tagme tool. Start-
ing from these entities as seeds, we extracted their one-hop triples on the DBpedia graph, and the
subgraph obtained is used as the external KG in our experiment.

Evaluation Metrics. We conducted two types of evaluations: recommendation evaluation and dia-
logue evaluation. For the recommendation task, we used recall@k (k=10, 50), NDCG@k (k=10,
50), and MRR@k (k=10, 50) as metrics. For the conversation task, we employed both auto-
matic and manual evaluations. For automatic evaluation, we used word-level distinct-n (n=1,
2, 3, 4) to measure response diversity. Additionally, we randomly selected 100 conversations
and their corresponding model-generated responses, and invited ten annotators to manually score
the responses. The manual evaluation assessed three aspects: Fluency, Informativeness, and
Question-Answer Consistency, with scores ranging from 0 to 5. The details of the manual eval-
uation, along with the original survey data, have been uploaded to an anonymous repository:
https://anonymous.4open.science/r/PCRS-TKA-9496.

Benchmark Models. We selected several state-of-the-art recommendation models as baselines,
including: ReDial (Li et al., 2019): This model was introduced with the Redial dataset. It inte-
grates an autoencoder-based recommendation module and an HRED-based conversation module.
KBRD (Chen et al., 2019): This model utilizes DBpedia to enhance the semantic representation of
entities, combining a self-attention-based recommendation module with a Transformer-based con-
versation module. KGSF (Zhou et al., 2020a): It integrates ConceptNet (Speer et al., 2018) and
DBpedia to enhance word and entity representations, and uses mutual information maximization
to align the semantic spaces of both KGs. TG-ReDial (Zhou et al., 2020b): This model intro-
duces a topic prediction task, employing SASRec (Kang & McAuley, 2018) for recommendation, a
BERT (Devlin et al., 2019) encoder for topic prediction, and GPT-2 (Gao et al., 2021b) for response
generation. UniCRS (Wang et al., 2022b): This model uses prompt learning to guide a pretrained
large language model for both recommendation and conversation tasks, enhancing the semantic rep-
resentation of entities with DBpedia.

Implementation Details. We chose the DialoGPT-small model as the base PLM for prompt learning
and used the RoBERTa-base model as the encoder for text, freezing all parameters of these two
modules during the entire training process. We have used grid search to choose the hyperparameters.
After searching, we used AdamW with epsilon set to 0.01, learning rate set to 5e-4 for first-stage
pre-training, and 1e-4 for second-stage training for both recommendation and conversation tasks.
The batch size was set to 64 for the recommendation task and 8 for the conversation task. The soft
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Table 1: Results on recommendation task. Numbers marked with * indicate that the improvement is
statistically significant compared with the best baseline.

Model recall@10 recall@50 ndcg@10 ndcg@50 mrr@10 mrr@50
Datasets INSPIRED
REDIAL 0.106 0.223 0.049 0.075 0.031 0.037
KBRD 0.151 0.278 0.102 0.128 0.086 0.091
KGSF 0.178 0.294 0.109 0.133 0.088 0.093
TG-ReDial 0.173 0.331 0.110 0.144 0.091 0.098
UNICRS 0.262 0.406 0.159 0.193 0.131 0.138
PCRS-TKA 0.273* 0.445* 0.184* 0.220* 0.156* 0.162*
Improvement (%) 4.20% 9.61% 15.72% 13.99% 19.08% 17.39%
Datasets Redial
REDIAL 0.050 0.186 0.024 0.053 0.015 0.021
KBRD 0.189 0.372 0.101 0.141 0.074 0.082
KGSF 0.177 0.369 0.094 0.137 0.069 0.078
TG-ReDial 0.179 0.353 0.101 0.140 0.078 0.086
UNICRS 0.213 0.414 0.119 0.163 0.090 0.100
PCRS-TKA 0.220* 0.432* 0.128* 0.169* 0.093* 0.103*
Improvement (%) 3.29% 4.35% 7.56% 3.68% 3.33% 3.00%

Table 2: Evaluation results on the conversation task. Numbers marked with * indicate that the
improvement is statistically significant compared with the best baseline.

INSPIRED ReDial
Models distinct-1 distinct-2 distinct-3 distinct-4 distinct-1 distinct-2 distinct-3 distinct-4
ReDial 0.036 0.313 1.237 2.562 0.010 0.070 0.279 0.643
KBRD 0.067 0.567 2.017 3.621 0.011 0.094 0.488 1.004
KGSF 0.077 0.657 2.822 5.992 0.011 0.110 0.656 1.729
TG-ReDial 0.087 0.778 2.825 5.511 0.232 1.016 1.487 1.642
UniCRS 1.404 3.949 6.004 7.082 0.307 0.899 1.267 1.390
PCRS-TKA 2.209* 6.851* 9.676* 10.465* 0.383* 1.144* 1.646* 1.825*
Improvement (%) 57.32% 73.53% 61.19% 47.72% 24.76% 27.25% 29.96% 31.29%

prompt token length was set to 10 for the recommendation task and 20 for the conversation task
according to parameter tuning results. For all baseline methods, we also use the grid search for
tuning hyperparameters. More details can be found in the Appendix.

4.2 EVALUATION ON RECOMMENDATION TASK

As shown in Table 1, our model consistently outperforms all baseline models across both the IN-
SPIRED and ReDial datasets in the recommendation task. Specifically, our model achieves signifi-
cant improvements over the best-performing baseline, UniCRS, with improvements of up to 19.08%
on INSPIRED and 7.56% on ReDial in terms of key metrics like recall@10 and ndcg@10. It is
noticed that on the INSPIRED dataset, our model achieves higher gains compared to the ReDial
dataset. This may be because INSPIRED contains more dialogue than ReDial. Thus PCRS-TKA
can learn complex user preferences aligned with textual information, resulting in larger performance
gains. When comparing baseline models, we observe that methods utilizing external KGs (KBRD,
KGSF) generally perform better than the basic ReDial model. KGSF, which integrates two external
KGs (DBpedia and ConceptNet), shows better performance than KBRD, which uses only DBpedia.
However, their improvement is limited compared to UniCRS, which leverages pretrained language
models and prompt learning techniques. Our model further uses a tree-structured KG to enhance se-
mantic alignment and incorporate user preference extraction mechanisms from multi-turn dialogues,
so that we can better handle the complexities of the conversation context, leading to its superior per-
formance over all baselines.

4.3 EVALUATION ON CONVERSATION TASK

Table 2 presents the evaluation results on the conversation task, where our model, PCRS-TKA, out-
performs all baselines across both datasets on the distinct-n metrics. Specifically, our model achieves
improvements of up to 73.53% in distinct-2 on the INSPIRED dataset and 31.29% in distinct-4 on
the ReDial dataset compared to the best baseline, UniCRS. These results indicate that PCRS-TKA
generates more diverse responses, which is crucial for maintaining engaging and natural conversa-
tions. However, it is important to note that distinct-n metrics, while useful for measuring lexical
diversity, do not fully capture the complexities of dialogue quality in conversational recommender
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Table 3: Human evaluation results on the conversation task. Numbers marked with * indicate that
the improvement is statistically significant compared with the best baseline.

Models Fluency Informativeness Question-Answer Consistency
ReDial 3.17 2.11 2.04
KGSF 3.08 1.98 1.96
UniCRS 3.92 3.36 3.28
PCRS-TKA 4.38* 3.94* 3.77*
Improvement (%) 11.73% 17.26% 14.94%

recall@10 recall@50 ndcg@10 ndcg@50 mrr@10 mrr@50
0.0

0.1

0.2

0.3
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(a) INSPIRED
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0.4 PCRS-TKA
-user
-tree
-align

(b) ReDial
Figure 3: Ablation study on both two datasets about the recommendation task. User and tree refer
to two kinds of prompts. Align refers to the information alignment module in contrastive loss.

systems. Table 3 shows the results of the human evaluation, where PCRS-TKA significantly out-
performs all baselines in terms of fluency, informativeness, and question-answer consistency. Our
model achieves 11.73% improvement in fluency, 17.26% in informativeness, and 14.94% in Q&A
consistency over UniCRS, the strongest baseline. The superior performance of PCRS-TKA is driven
by two main factors. First, our model integrates structured knowledge from the KG into the prompt,
enriching the dialogue with contextually relevant information, thereby improving fluency and infor-
mativeness. Second, our model extracts and leverages user preferences across multi-turn conversa-
tions, ensuring responses align with the user’s evolving needs, leading to better Q&A consistency.
In comparison, UniCRS outperforms KGSF and ReDial due to its use of PLMs, which excel in text
generation and comprehension. KGSF benefits from external KGs but cannot fully capture conver-
sational dynamics and user preferences as PCRS-TKA does.

4.4 ABLATION STUDY

Recommendation Task. We performed ablation experiments to evaluate the contribution of each
component in our approach across both datasets. Specifically, we excluded the knowledge tree-
enhanced prompts, user preference prompts, and the information alignment module, separately dur-
ing both the pre-training and training phases. As shown in Figure 3, removing any component leads
to performance degradation, confirming that all components are crucial for improving the recom-
mendation task. Notably, removing the alignment mechanism caused the most significant drop,
highlighting its critical role. This is likely because entity embeddings E play a central role in the
recommendation task, and the alignment module helps entities capture and integrate information
more effectively, resulting in better representations for recommendations.

Conversation Task. We conducted similar ablation experiments for the conversation task, remov-
ing the knowledge tree-enhanced prompts, user preference prompts, and the information alignment
module one by one in both the pretraining and training stages. Figure 4 shows that removing any
component results in a performance drop, indicating that all components contribute positively to the
conversation task. The most significant decline occurred when removing the tree structure, demon-
strating its importance in the conversation task. This is because the tree structure provides rich
entity-related information from the KG, which is effectively utilized by large language models to
enhance conversational quality.

4.5 HYPERPARAMETER SENSITIVITY ANALYSES

Analyses on the degree and depth of knowledge tree. To study the influence of the size of the
knowledge tree on the system, we conduct parameter-tuning experiments on both two datasets. We
investigated the influence of the layer count (i.e., depth) and degree of knowledge trees extracted
from the KG G on the model’s recommendation performance. As depicted in the figure5, both two-
layer and one-layer trees yield similar best recommendation results. However, one-layer trees exhibit
more stable performance. As the degree of the tree changes, the model’s recommendation ability
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Figure 4: Ablation study on both two datasets about the conversation task. User and tree refer to
two kinds of prompts. Align refers to the align loss in contrastive loss.
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Figure 5: Model performance comparison with varying degrees and depth of the Knowledge tree
in the conversation task. The x-axis represents the degree of the knowledge tree, and the legend
indicates the depth of the tree.

remains relatively stable without major fluctuations. On the other hand, two-layer trees show a sharp
decline in performance as the degree increases. This could be due to the more critical information
contained in one-layer trees, and the model’s limited capacity to process tree text length. Since the
tree text is generated through depth-first traversal, increasing the tree depth may cause the text to
focus only on a few deep relationships, leading to the loss of important entity information. Hence,
it is advisable to personalize the tree’s layer count and degree based on the structure of the KG and
the frequency of entities appearing in dialogues.

Analyses on the loss balancing. As mentioned in 3.7, the loss function of the recommendation task
contains two hyperparameters α and β, Alpha and beta are used to control the proportion of Luser

and Lalign in the loss function, i.e., the guiding degree for the model. We present the experimental
results with varing α and β in Figure 6 in the Appendix. We can observe that the optimal perfor-
mance of alpha is around 0.02, while beta performs best at around 0.002. As the values increase, the
recommendation ability of both will start to decrease. Compared to the influence of the user prefer-
ence extraction module on entity embeddings, which is mainly through the fusion operation, Lalign

has a greater impact on entity embeddings during training via alignment operations. If Lalign occu-
pies too high a proportion during training, it may disrupt the information learned by entity through
RGCN. On the other hand, a smaller proportion of Lalign will gradually guide the integration of
entity embeddings and tree embeddings.

5 CONCLUSION

In this paper, we presented PCRS-TKA, a novel framework that integrates pretrained language mod-
els with KGs for conversational recommender systems. Our approach enhances the recommendation
process through tree-structured knowledge augmentation and user preference extraction from multi-
turn dialogues, improving both recommendation accuracy and conversational fluency. Addition-
ally, the alignment module ensures effective integration of heterogeneous data from dialogues and
KGs, minimizing semantic inconsistencies and noise. Finally, extensive comparative experiments
on benchmark datasets clearly demonstrated the effectiveness of the proposed model compared to
state-of-the-art baselines in terms of both recommendation quality and dialogue generation.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

Except for UniCRS, the baseline models are implemented using the CRSLab tool (Zhou et al., 2021).
CRSLab is an open-source toolkit for building CRS, providing ready-made code where users only
need to modify configuration files to run the systems in the tool. Furthermore, CRSLab has already
set default values for model-specific parameters, such as the token hidden size of transformer mod-
ule and the hidden size of RGCN module in KGSF, based on the code from the baseline repository
papers, and has validated the correct selections of parameters on the TG-Redial dataset. So users
only need to adjust some common parameters according to the dataset, including hidden size, num-
ber of training epochs, batch size, and optimizer configurations. For these parameters, we opted for
a grid search approach, choosing training epochs from [5, 10, 20, 50], batch size from [8, 16, 32, 64,
128], and learning rates from [1e-4, 5e-4, 1e-3, 5e-3]. Both the recommendation and task modules
use an early stopping strategy with the endurance epoch set to 3. After numerous experiments, we
identified the best-performing parameter settings and uploaded the configuration file to the codebase.
For the UniCRS task, we used the code and parameter configuration provided by the repository of
UniCRS ar https://github.com/rucaibox/unicrs. We examined the evaluation met-
rics in all mentioned codebases and confirmed that the implementations of all evaluation metrics are
identical. We eventually achieved results similar to those reported in the corresponding paper,

A.2 HYPERPARAMETER SENSITIVITY ANALYSES

As mentioned in Section 4.5, we provide the figures for the hyperparameter sensitivity analyses on
α and β.
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Figure 6: Model performance comparison with varing alpha and beta.
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