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CUBEDIFF: REPURPOSING DIFFUSION-BASED IMAGE

MODELS FOR PANORAMA GENERATION

Anonymous authors
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ABSTRACT

We introduce a novel method for generating 360° panoramas from text prompts
or images. Our approach leverages recent advances in 3D generation by employ-
ing multi-view diffusion models to jointly synthesize the six faces of a cubemap.
Unlike previous methods that rely on processing equirectangular projections or
autoregressive generation, our method treats each face as a standard perspec-
tive image, simplifying the generation process and enabling the use of existing
multi-view diffusion models. We demonstrate that these models can be adapted
to produce high-quality cubemaps without requiring correspondence-aware atten-
tion layers. Our model allows for fine-grained text control, generates high resolu-
tion panorama images and generalizes well beyond its training set, whilst achiev-
ing state-of-the-art results, both qualitatively and quantitatively. Project page:
https://anonymousiclrsubmission.github.io/

unfold stack unstack fold
CubeDiff

Outdoors

Indoors

Figure 1: CubeDiff leverages cubmaps to represent 360° panoramas and denoises all faces together
in a single pass. In contrast to other works, Cubediff does not need to consider distortions, since it
operatkes on common 90° FOV perspective images, maing it possible to directly utilize the internet-
scale image prior of the underlying diffusion model.

1 INTRODUCTION

Recent advances in diffusion-based generative models have seen tremendous progress over the last
two years, enabling a wide range of applications from artistic expression and product design to per-
sonalized content creation. Beyond generating realistic and diverse images based on text-to-image
models (Rombach et al., 2022; Saharia et al., 2022), these models are now capable of more complex
tasks such as 3D asset creation (e.g., (Kalischek et al., 2022; Wang et al., 2024; Mohammad Khalid
et al., 2022; Poole et al., 2022)), estimating scene properties such as depth or semantics (Ke et al.,
2024; Baranchuk et al., 2021), illumination changes (Jin et al., 2024; Zhao et al., 2024; Zeng et al.,
2024), and generation of multi-view consistent images (Gao et al., 2024b; Tang et al., 2023).
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The latter is particularly interesting in virtual reality, gaming and entertainment, where 3D consis-
tency is crucial for fully immersive experiences and thus user satisfaction. However, synthesizing
high-quality, visually coherent panoramas presents unique challenges. First, capturing sufficient
panoramic data is tedious and costly, as specialized cameras and/or additional processing are needed
to remove stitching artifacts. Consequently, models must be trained in a low-data regime making
them prone to overfitting, this limiting their generalization capabilities. Exemplary, a lot of models
are restricted to indoor environments only (Wu et al., 2023; Song et al., 2023). Second, panoramas
must fulfill additional constraints compared to perspective images. Most notably, the image borders
must align to allow a seamless wrap-around. But there are also more intricate, semantic constraints,
e.g., the viewing frustum must cover the entire scene. Hence, when generating a panorama of a bed-
room, it must contain exactly one bed, at least one door, etc. On the other hand, outdoor panoramas
should maintain realistic spatial relationships between elements.

To satisfy those requirements, prior work had to introduce complex additional model components
(Gao et al., 2024a; Tang et al., 2023; Yang et al., 2024), or employ dedicated mechanisms such as
autoregressive outpainting from a perspective view (causing artifacts like content drift and the Janus
effect (Wang et al., 2023), and circular padding to enforce consistent wrap-around (Feng et al., 2023;
Wu et al., 2023).

We introduce a simple yet highly effective solution: we generate panoramas using a fine-tuned multi-
view diffusion model, following recent line of work (Gao et al., 2024b; Tang et al., 2023; Zhang
et al., 2023b). This approach leverages the inherent properties of cubemaps, where a 360° × 180°
panorama is represented by six perspective images on the faces of a cube. This allows us to fully re-
cycle a pretrained text-to-image model, enabling generalization far beyond the limited training data.
Contrary to existing methods, the architectural modifications we require to ensure consistency be-
tween cube faces are minimal: all attention layers are inflated by one additional dimension to enable
crosstalk between the six faces. This simple modification, combined with fine-tuning on panorama
data, achieves state-of-the-art results with significant visual and semantic coherence. Additionally,
the model allows for fine-grained text control by training with face-specific image-text pairs, easily
generated by prompting an LLM to produce per face text descriptions.

Our key insight is that existing, generative image models can be easily extended to generate high-
resolution panoramas, by performing diffusion in cubemap space and adding attention mechanisms
to other faces within the cubemap, see Figure 1. The resulting model

• enables consistent image generation across all cubemap faces and preserves the internet-scale
image prior of the underlying diffusion model to generalize beyond the training panoramas;

• delivers state-of-the-art results on panorama generation, both qualitatively and quantitatively, and
outperforms previous methods in terms of visual fidelity and coherence;

• enables efficient high-resolution synthesis, benefiting from current and future advances in off-
the-shelf image diffusion models;

• allows for novel fine-grained text control, enabling users to guide the generation with detailed
textual descriptions.

2 RELATED WORK

Similar to 3D generative modelling, training data for panorama generation is scarce and much effort
has been spent on how to repurpose standard perspective image priors for panoramas. The preva-
lent approach has been to autoregressively outpaint panoramas, more recently multi-view diffusion
models have attracted interest. We now discuss relevant works and differences to our approach.

2.1 PANORAMA GENERATION.

Most panorama generators operate in equirectangular projection, thus having to deal with it severe
nonlinear distortions (especially near the poles). Previous methods either autoregressively outpaint
the panorama (Gao et al., 2024a; Lu et al., 2024; Wang et al., 2023) or generate the entire equirect-
angular image in one shot (Feng et al., 2023; Wu et al., 2023). They are commonly conditioned on
either a single narrow field-of-view image (Akimoto et al., 2022) or solely on a text prompt (Chen
et al., 2022). The state of the art are diffusion models, which have gradually replaced adversarial
approaches (Akimoto et al., 2022; Somanath & Kurz, 2021). Feng et al. (2023) fine-tune a latent
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diffusion model on a panorama dataset and apply a circular blending strategy in the denoising and
decoding stages to enforce consistent wrap-around. Similarly, Wu et al. (2023) stitches the right
part of the image to the left part in latent space in each denoising step. Such blending improves the
results, but encumbers the inference step. In our method it is not required. Lu et al. (2024) propose
to autoregressively outpaint a panorama with a complex architecture of submodules for panorama-
aware visual guidance, NFoV guidance and panorama-aware geometric guidance. In Wang et al.
(2023), the authors extend the outpainting task to ingest multiple NFoV images of the same scene.
A two-stage network predicts their relative rotations, then a diffusion model with ControlNet (Zhang
et al., 2023a) outpaints the panorama based on the projected inputs. Recently (Voynov et al., 2023)
introduce a diffusion model with control over the rendering geometry, including panoramic outputs.
Gao et al. (2024a) additionally incorporate a state space model to aggregate global information into
cross-attention layers of the diffusion model, building up the panorama by inpainting empty regions.
The present work demonstrates that, with the right representation, high-quality panoramas can be
obtained without inflating the complexity and brittleness of the architecture. Related to panorama
generation is the more modest strategy to alter existing panoramas by injecting a user-defined style,
in either equirectangular or cubemap projection (Yang et al., 2024; Song et al., 2023).

2.2 MULTI-VIEW DIFFUSION

Multi-view diffusion models offer a compelling alternative to equirectangular or autoregressive
panorama generators. Zhang et al. (2023b) introduces a compositional diffusion scheme that enables
the generation of large-scale content, leveraging models trained on smaller constituent parts. That
work is based on factor graphs, and demonstrates how the cubemap can be turned into a factor graph
in order to train a diffusion model conditioned on segmentation maps. The work most closely related
to ours is Tang et al. (2023). It aims to generate cylindrical panoramas (i.e., 360°horizontal field of
view, but restricted vertical view angle). The authors propose a sophisticated correspondence-aware
cross-attention between local neighborhoods of eight perspective feature maps spaced at 45°angles.
Recently, Gao et al. (2024b) and Shi et al. (2023) discovered that expanded attention layers that con-
nect not only features within an image but also across multiple images, are beneficial when handling
multiple object-centric views. Our approach turns this setup inside-out and extends a pretrained
text-to-image (T2I) model in a similar manner for panorama generation. We instead do not require
camera pose or 3D information, due to the fixed viewing geometry of the cubemap.

3 PANORAMA REPRESENTATIONS

Panoramic images aim to capture a complete 360° × 180° view of a scene from a fixed view point.
There exist several different panorama representations in literature, each with its own advantages
and drawbacks. This section briefly discusses the most prominent ones.

Spherical projection maps a 360° view onto a sphere, preserving the geometric relationships
between points in the scene. Points are generally defined using longitude and latitude. While con-
ceptually intuitive, directly utilizing a spherical representation for image processing is challenging
due to difficulties in representing a sphere on a flat image plane, which often leads to distortions and
non-uniform sampling densities in practical implementations.

Equirectangular projection projects the spherical panorama onto a 2D rectangle. To this end,
latitude and longitude coordinates on the sphere are mapped to vertical and horizontal coordinates
on a rectangle. While widely used due to its simplicity, equirectangular projection suffers from
significant distortions, especially near the poles where horizontal stretching becomes extreme. This
distortion affects both visual quality and the performance of algorithms processing equirectangular
panoramas, as most existing T2I models process images with NFoV images.

Cubemaps offer an alternative representation where a 360° view is projected onto the six faces of
a cube. Each face captures a 90° field of view, resulting in six perspective images that can be seam-
lessly stitched together. This representation avoids the polar distortions inherent to equirectangular
projections, providing more uniform sampling, making it highly applicable to existing diffusion
models trained on vast amount of perspective images. However, note that cubemaps introduce dis-
continuities at the edges of the cube faces, which needs to be handled carefully.
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Figure 2: An overview of our training pipeline and panorama model. (a) We project all training
panoramas onto a cubmap and feed the faces to our frozen VAE encoder with synchronized Group-
Norm to obtain the respective latents and enrich them with panorama-specific positional encodings
for explicit spatial awareness. (b) We only train the inflated attention layers to be cross-frame aware.

4 METHOD

We introduce CubeDiff, a novel approach for generating high-quality, consistent panoramas using
the cubemap representation. CubeDiff generates the six perspective views of a cubemap in parallel
and context-aware manner, exploiting the strengths of pretrained T2I diffusion models. Below,
we delve into the architectural choices that enable CubeDiff to achieve high-quality and consistent
panoramas, while retaining strong generalization capabilities inherited from the pretrained model.
Similar to Gao et al. (2024b), CubeDiff comprises a variational autoencoder (VAE) and a latent
diffusion model (LDM), mirroring the structure of conventional T2I diffusion models. However, we
carefully adapt each component for effective multi-view panorama generation.

4.1 MODEL ARCHITECTURE

The latents produced by the VAE are used to fine-tune a pretrained LDM operating on a 128x128x8
latent space, initialized with weights from a model trained on a large-scale image dataset. The pre-
trained LDM consists of an architecture similar to Stable Diffusion (Rombach et al., 2022), which
is build with multiple convolutional, self-attention, and cross-attention layers. To enable cross-view
awareness and maintain global consistency, we inflate all existing 2D attention layers, i.e. both self-
attention and cross-attention for text conditioning. These layers, adapted from (Shi et al., 2023),
extend the attention mechanism across all six cube faces, allowing the model to learn relationships
and dependencies between different viewpoints. Inflating of layers can be easily conducted by ex-
tending the token sequence length from b× (hw)× l to b× (thw)× l, e.g. for self-attention, where
b is the batch size, hw the flattened spatial size and t = 6 the cube length. While this is different
to more sophisticated attention layers (Tang et al., 2023; Huang et al., 2024), it in turn enables us to
retain the original pretrained attention weights, which reduces the risk of overfitting and thus greatly
improves overall performance.

The LDM receives two conditioning signals. We incorporate text embeddings, either one common
prompt or one prompt for each face, and a single conditional view of the scene (w.l.o.g. we assume
the front face of the cube). During training, we concatenate the VAE latents of the conditioning
views to the noisy latents of the target views, providing the LDM with complete context informa-
tion. Furthermore, we incorporate a binary mask channel into the latent representations. This mask
distinguishes between conditioning views (provided as clean latents) and target views (subjected to
noise injection during training). We show an overview of our model architecture in Figure 2.

4.2 SYNCHRONIZED GROUPNORM

Our VAE architecture incorporates synchronized group normalization, a crucial element for achiev-
ing consistent color tones across the generated panorama. Since our VAE processes the six faces of
a cubemap as a batch of six individual images, standard group normalization can lead to subtle color
inconsistencies among different views (c.f . fig. 6a). This occurs as feature statistics are computed
and normalized independently for each image in the batch. Without synchronization, encoding and
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decoding a panorama results in noticeable shifts, particularly evident in the equirectangular pro-
jection. Synchronized group normalization addresses this issue by jointly normalizing feature acti-
vations across both spatial and inter-view dimensions. Consequently, synchronized group normal-
ization contributes significantly to the generation of visually harmonious and coherent panoramas.
Similar effects have been observed in (He et al., 2023). We further discuss this in Section 5.6 and
compare synchronized and unsynchronized results in Figure 6a.

4.3 POSITIONAL ENCODING

To provide the LDM with explicit spatial awareness within the cubemap, we augment the latent
representations with positional encodings derived from the 3D geometry of the cube. For each point
on a cube face, we compute its corresponding UV coordinates on the unit cube, defined by:

u = arctan 2(x, z) , v = arctan 2(y,
√

x2 + z2), (1)

where (x, y, z) are the 3D coordinates of the point on the cube face, projected onto the unit cube.
These UV coordinates are then normalized to [0, 1] and concatenated as two additional channels to
the (noisy) latents. This positional encoding scheme provides the model with information about the
spatial location of each latent patch within its respective cube face, facilitating the generation of
panoramas with consistent geometry and object relationships across views.

4.4 OVERLAPPING PREDICTIONS

To further enhance the geometric and color consistency across cube faces, we introduce overlapping
predictions during both training and generation. Instead of generating each face with a 90° field
of view (FoV), we enlarge the FoV by 2.5° on each side, resulting in an effective FoV of 95° per
face. This means each generated face includes a small overlap with its neighboring ones. This
overlapping generation strategy serves two purposes. During training, it encourages the model to
learn consistent representations across adjacent faces, as the overlapping regions provide additional
context and constraints. During panorama assembly, we discard these overlapping regions and only
retain the central 90° portion of each generated face. This strategy effectively avoids the need for
explicit blending operations at the cube face boundaries, which can sometimes introduce subtle
artifacts. The overlaps can be seen at the boundaries of the cubemaps in Figure 3 (e.g., the duplicated
fireplace in the right and back views) and in the appendix.

4.5 CLASSIFIER-FREE GUIDANCE

We employ classifier-free guidance (CFG) (Ho & Salimans, 2022) on both the text and image con-
ditions during training. Thereby, we randomly drop either the text prompt, the conditional image,
or both. When the text prompt is dropped, it is replaced with null tokens in the cross-attention
layers; when the conditional image is dropped, its corresponding tokens in the self-attention layers
are masked out by setting them to negative infinity, effectively zeroing out their attention weights.
This training procedure enables diverse panorama generation scenarios during inference. Users can
provide both text and image conditions for maximum control and fidelity or drop both or either
condition to explore unconditional generation modes.

5 EXPERIMENTS

This section details our experimental setup, followed by quantitative and qualitative evaluations. We
compare the performance of CubeDiff against the state-of-the-art and ablate our design choices.

5.1 EVALUATION PROTOCOL

5.1.1 TRAINING AND INFERENCE SETUP

We finetune our model using Adam (Kingma & Ba, 2014) and train for 30,000 iterations with batch
size 64. The learning rate is ramped up to 8 × 10−5 in the first 10,000 steps. During training, we
employ classifier-free guidance, dropping conditional signals 10% of the time. We find it important
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to not only drop the text condition in the cross-attention layers but to also zero out the input condition
in the self-attention layers. The diffusion model is finetuned using v-prediction (Salimans & Ho,
2022). We employ DDIM sampling (Song et al., 2020) with 50 steps during inference.

5.1.2 DATASETS

Training. We train on a mixture of indoor and outdoor environments by combining multiple pub-
licly available sources, including Polyhaven (polyhaven.com, accessed 09/2024), Humus (Persson,
accessed 09/2024), Structured3D (Zheng et al., 2020) and Pano360 Kocabas et al. (2021), giving in
total around 48000 panoramas for training. While Humus provides an explicit cubemap represen-
tations, all other datasets come with equirectangular panoramas. We thus first generate cubemaps
from these panoramas using standard perspective projection, ensuring consistent overlap between
adjacent faces. To further enable text-guided panorama generation, we infer textual descriptions for
each panorama in the datasets using the publicly available Gemini model (Gemini Team Google,
2023). We explore two captioning strategies: (1) generating a single caption for the entire panorama
by providing Gemini with all six cube faces as input and (2) generating individual captions for each
face independently, enabling fine-grained text control.

Testing. We evaluate our method on the common Laval Indoor (Gardner et al., 2017) and
Sun360 (Xiao et al., 2018) datasets. Laval Indoor consists of over 2100 high quality panorama
captures of various indoor environments, Sun360 encompasses around 1000 panoramas including
both – indoor and outdoor scenes. Note that we use those datasets only for evaluation, while Diffu-
sion360 also uses Sun360 for training and OmniDreamer even leverages both datasets to train their
models. Nonetheless, we decided to use these datasets for the sake of fairness and due to the lack of
any proper overlapping test datasets.

5.1.3 METRICS

We use various metrics and modalities for evaluation – including perceptual metrics, text alignment,
and a user study.

Perceptual Metrics. We use the very common Fréchet Inception Distance (FID) (Heusel et al.,
2017) metric to measure the similarity between the distribution of real and generated images in
a feature space derived from a pretrained Inception network. Lower FID scores indicate greater
similarity and, thus, higher image realism; We additionally report the CLIP-FID (Kynkäänniemi
et al., 2022) metric, replacing the Inception network with CLIP (Radford et al., 2021) to leverage
its semantic understanding capabilities through a joint image-text embedding space. This metric
captures thus both – visual fidelity and text-image alignment; Finally, we employ the kernel incep-
tion distance (KID)(Bińkowski et al., 2018). Similar to FID, KID uses features from a pre-trained
network, however, it quantifies the difference between real and generated data distributions using
the maximum mean discrepancy rather than the Fréchet distance.

Text Alignment. To measure text alignment we refer to the common CLIP score (Hessel et al.,
2021) . The CLIP score computes the cosine similarity within the shared text-image embedding to
measure the agreement between generated panoramas and their corresponding text prompts. Hence,
a higher CLIP score indicates stronger semantic agreement between image and text.

5.1.4 COMPETITORS

We compare CubeDiff to various state-of-the-art panorama generation methods. As for plain text
to panorama generation, we employ Text2Light (Chen et al., 2022) and PanFusion (Zhang et al.,
2024) to serve as our main competitors. For single image conditioning, we respectively use Om-
niDreamer (Lu et al., 2024) and PanoDiffusion Wu et al. (2023) as representatives for autoregressive
and direct panorama generation based approaches. Finally, we compare against Diffusion360 (Feng
et al., 2023) and MVDiffusion (Tang et al., 2023) for text and image conditioning based meth-
ods. Note that while Diffusion360 directly outputs panorama images, MVDiffusion instead em-
ploys multi-view diffusion models with a custom cross attention mechanism. Overall, the choice
of baselines represents a variety of different generation techniques, covering various different tasks.
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Figure 3: Cubemaps and panoramas generated by CubeDiff with image and text condition. We
depict a diverse set of generated panoramas including indoor, outdoors, bright and dark scenes. In
all settings, CubeDiff produces high quality and realistic panoramas that align with the input image.

Please note that none of the existing methods besides MVDiffusion offers the possibility to condition
specific parts of the panorama on individual text prompts.

5.2 QUALITATIVE EVALUATION

In this section, we provide a qualitative evaluation of our method. We first present several conditional
image generations of our method, before comparing CubeDiff against the state-of-the-art.

5.2.1 CONDITIONAL IMAGE GENERATION.

In Figure 3, we show generated panoramas given text-image pairs as condition. We considered
input conditions that cover a broad range of scenes, such as outdoor and indoor scenes, bright and
dark settings as well as texture rich and uniformly colored areas. Note that we do not show the
text conditions due to limited space, however, we provide them in the appendix. We see that our
approach yields high quality results under these diverse input settings. We especially emphasize the
level of detail and geometric consistency beyond the input image.

5.2.2 QUALITATIVE COMPARISON.

For visual comparison against the state-of-the-art, we show generated panoramas and their respective
perspective projections in Figure 4. To this end, we sample random image and text pairs from the
LAVAL Indoor dataset. We further group the methods according to their input modalities. Compared
to the text-only approach Text2Light, our method is able to produce much more complex panoramas
with better details and visual appeal. As for image-only approaches, we see that CubeDiff is capable
of producing the most realistic panoramas. In particular, while OmniDreamer suffers from blurry
regions, PanoDiffusion is not able to properly transfer the input image appearance across the whole
panorama. Finally, also for text and image conditioning our method again produces the best results,
especially in terms of geometry. For example, while MVDiffusion is indeed capable of generating
high quality images, the method sometimes produces inaccurate geometries as, for example, some
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Figure 4: Qualitative comparison between CubeDiff and baselines on the LAVAL Indoor
Dataset. Besides Text2Light, all panoramas are generated using the center face as input condi-
tion and additional text prompts if applicable. For each sample we show the panorama image as
well as two projected images. Please zoom in to compare the different methods.

walls and hand rails exhibit bending artifacts after perspective projection. Similarly, Diffusion360
occasionally suffers from implausible indoor layouts. To summarize, despite of using different input
modalities, CubeDiff always generates high quality panoramas, surpassing all other state-of-the-art
works in terms of visual appeal and geometric consistency.

5.3 QUANTITATIVE EVALUATION

In this section, we provide the results of our quantitative evaluation on the Laval Indoor and the
SUN360 dataset. We evaluate all methods on perceptual quality and consistency.

In Table 1 we provide quantitative results for visual quality. Our method outperforms all competitors
significantly, regardless of input modalities. For example, we can report a FID score of 9.47 on Laval
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LAVAL Indoor SUN360

FID ↓ KID (×10
2)↓ Clip-FID ↓ FAED ↓ CS ↑ FID↓ KID (×10

2)↓ Clip-FID↓ FAED ↓ CS ↑

Text2Light 28.3 1.45 11.5 136.1 25.18 60.1 4.31 31.3 82.9 23.27

PanFusion 41.7 2.85 19.8 71.7 26.58 30.0 1.42 7.8 44.5 25.28

OmniDreamer 71.0 5.17 23.9 19.2 - 92.3 8.89 51.7 30.4 -

PanoDiffusion 58.6 4.08 26.6 106.8 - 52.9 3.51 28.9 98.0 -

Oursimg 11.7 0.47 4.4 22.0 - 27.4 1.35 11.5 8.9 -

Diffusion360 33.1 2.07 16.9 23.7 26.38 45.4 3.73 18.5 12.6 22.89

Oursimg+txt 9.5 0.32 3.2 18.4 27.02 25.5 1.33 8.1 7.6 25.00

MVDiffusion 25.7 1.11 13.5 - 27.44 50.9 3.71 15.4 32.3 25.54

Oursimg+multitxt 10.0 0.35 4.1 21.2 30.17 24.1 1.33 7.0 5.7 28.14

Table 1: Quantitative Evaluation on the Laval Indoor and SUN360 dataset. We provide a com-
parison to various competitors and different input modalities. The first block of rows are text-only
methods, the second image-only, the third image and single text description and the last block are
image and multi-caption methods. CubeDiff provides the best perceptual quality having the best
scores across all methods. Moreover, we find that the performance of CubeDiff remains similar
among different input modalities.

Indoor, which is a 270% relative improvement compared to the second best performing method
MVDIffusion, reporting a score of 25.7. Compared to works that use only image or text as input
conditioning, the gap even widens with Text2Light and PanoDiffusion respectively reporting a FID
of 28.3 and 58.6. This trend holds across all metrics. Interestingly, CubeDiff performs similarly
across different input modalities, demonstrating its strong generalizibility.

Figure 5: Fine-grained Text Con-
trol. We show an example for fine-
grained-text control of the back face.
Our model is able to change details
following the provided prompt. First,
we add a golden globe above the fire-
place; second, we place a picture
above the fireplace; third, we leave
the space above empty; last, we in-
stead add a bookshelf above it.

However, the provided perceptual metrics can only evaluate
the overall realism of the generated panoramas and are not
capable of capturing consistency towards input. We next
study the alignment to the input text prompt. To this end, we
leverage the CLIP score to measure how well the generated
panoramas align with the text input. As can be seen in the
table our method surpasses the state-of-the-art again by a
significant amount for all datasets and modalities, showing
how precisely our model respects the textual input.

5.4 USER STUDY

We conducted a user study with a two-alternative forced
choice (2AFC) survey to evaluate our panorama generation
method. Each of the 28 participants was shown 30 pairs
of generated panoramas alongside the original conditioning
image and asked to select their preferred option based on
quality, composition, style, and alignment with the condi-
tion image.

Our method outperformed competitors statistically (p <
0.1, binomial test). Specifically, 16.9%, 17.3%, and 19.5%
of participants preferred our single-image, multi-image, and
no-text variants, respectively. The no-text variant nearly
matched the ground truth preference (19.9%), demonstrat-
ing our method’s ability to generate realistic and accu-
rate panoramas. In contrast, OmniDreamer, PanoDiffusion,
MVDiffusion, and Diffusion360 had significantly lower
preference rates of 1.7%, 5.3%, 7.0%, and 12.3%, respec-
tively.

5.5 FINE-GRAINED TEXT CONTROL

Different to all competitors, our method enables complete
fine-grained and per-face text control. For example in Figure 5, we show results for providing
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Figure 7: Ablation on synchronized GN and overlap prediction. (a) Top: Group normalization
over the spatial dimension only. Bottom: Additional normalization over the frame dimension. (b)
Top: Panoramas without overlapping cube faces. Bottom: Panoramas with our standard 2.5° overlap.
Please zoom in to observe the differences.

different text descriptions for the back face. We can always generate visually appealing results,
regardless of the object we place above the fireplace.

5.6 ABLATIONS

Synchronized Group Norm (GN) Synchronized GN ensures consistency across cube faces by
normalizing over both spatial and frame dimensions, as shown in Figure 6a. Without it, models
often exhibit color inconsistencies and artifacts at cube face boundaries. While metrics like FAED
may not capture these subtle issues, synchronized GN significantly improves visual quality.

Overlapping Prediction Overlapping predictions mitigate discontinuities at cube face boundaries
by introducing small overlaps, as illustrated in Figure 6b. This ensures seamless transitions, with
non-overlapping regions cropped for the final panorama. The approach leverages global context
from full attention, eliminating visible seams without additional VAE finetuning.

6 CONCLUSION

This work introduces a novel approach to panorama generation leveraging pretrained text-to-image
diffusion models applied to a cubemap representation. By enabling attention across the cube faces,
our method achieves state-of-the-art results in terms of visual fidelity and coherence, while requiring
minimal architectural changes. This approach not only inherits the strengths of existing diffusion
models, including high-resolution synthesis and generalization capabilities, but also unlocks fine-
grained text control over the generated panorama. This opens up exciting new possibilities for
creative applications and paves the way for future research in controllable panorama generation.
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Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD
GANs. arXiv preprint arXiv:1801.01401, 2018.

Zhaoxi Chen, Guangcong Wang, and Ziwei Liu. Text2Light: Zero-shot text-driven HDR panorama
generation. ACM Transactions on Graphics (TOG), 41(6), 2022.

Mengyang Feng, Jinlin Liu, Miaomiao Cui, and Xuansong Xie. Diffusion360: Seamless 360 degree
panoramic image generation based on diffusion models. arXiv preprint arXiv:2311.13141, 2023.

Penglei Gao, Kai Yao, Tiandi Ye, Steven Wang, Yuan Yao, and Xiaofeng Wang. OPa-Ma: Text
guided Mamba for 360-degree image out-painting. arXiv preprint arXiv:2407.10923, 2024a.

Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
Srinivasan, Jonathan T Barron, and Ben Poole. CAT3D: Create anything in 3d with multi-view
diffusion models. arXiv preprint arXiv:2405.10314, 2024b.
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