
LSRL: Process-Supervised GRPO on Latent Recurrent States Improves
Mathematical Reasoning

Anonymous ACL submission

Abstract001

Latent-recurrent language models solve tasks002
by iteratively refining hidden states rather than003
emitting chain-of-thought tokens, yet the opac-004
ity of those hidden trajectories hinders credit as-005
signment and limits mathematical reasoning ac-006
curacy. We propose Latent-State Supervised007
Reinforcement Learning (LSRL), a process-008
supervised variant of Guided Reward Policy009
Optimization that delivers a dense reward at ev-010
ery latent step. Specifically, we decode each of011
the recurrent depths of a 3.5-billion-parameter012
Huginn model, score the partial solutions with013
a GPT-4.1-nano grader aligned to final-answer014
correctness, and update the policy with LoRA015
on a single NVIDIA L40S GPU using only 500016
GSM-8K training problems. Relative to the017
depth-8 supervised Huginn baseline, LSRL im-018
proves absolute accuracy by +4.27 points on019
GSM-8K and +2.06 points on MathQA. These020
results show that rewarding latent steps is an021
efficient route to stronger mathematical reason-022
ing in latent-recurrent language models.023

1 Introduction024

Latent-recurrent language models (LR-LMs) re-025

fine an internal state by looping a fixed stack of026

Transformer blocks instead of emitting token-level027

chains of thought. The recent Huginn model (Geip-028

ing et al., 2025) shows that increasing the recurrent029

depth from r=8 to r=32 lifts accuracy on logical-030

reasoning tasks while keeping the parameter count031

unchanged—trading parameters for FLOPs. Yet032

the same 3.5-billion-parameter model scores only033

13.5% on the GSM-8K math benchmark at r=8,034

far below its logical performance, and the deeper035

r=32 variant incurs a four-fold test-time compute036

cost for a still-modest 24.9%.037

Why does depth help so little? We argue that the038

bottleneck is sparse credit assignment: Huginn’s039

supervised finetuning pipelines apply a single040

reward to the final answer, ignoring the quality041

of intermediate latent states. By contrast, process042

supervision—rewarding every step of a token-level 043

derivation—has recently improved mathematical 044

reasoning in chain-of-thought models (Lightman 045

et al., 2024; DeepSeek-AI et al., 2025). To date, 046

however, process rewards have never been applied 047

to latent states: decoding and grading all r hidden 048

snapshots appears prohibitively expensive. 049

Our proposal. We introduce Latent-State Super- 050

vised Reinforcement Learning (LSRL), a critic- 051

free GRPO variant that attaches dense rewards to 052

every latent depth of Huginn. A lightweight GPT- 053

4.1-nano grader scores each partial derivation, and 054

LoRA adapters (Hu et al., 2022) update the policy. 055

Contributions. 056

• Algorithmic. We extend GRPO with per- 057

depth process rewards, creating the first 058

process-supervised RL framework for latent 059

states. 060

• Engineering (I). We introduce a one-pass 061

hidden-state cache that fully decodes ev- 062

ery latent depth, entire sentences and para- 063

graphs, not token snippets, during a single for- 064

ward/backward pass. This removes the naïve 065

r-fold re-execution and cuts training FLOPs 066

by roughly 50 %. 067

• Engineering (II). We apply LoRA adapters to 068

latent-recurrent RL for the first time, shrinking 069

trainable parameters by 99 % and enabling 070

single-GPU finetuning. 071

• Empirical. Using only 500 GSM-8K tasks, 072

LSRL lifts Huginn-r=8 by +4.27 pp on GSM- 073

8K and +2.06 pp on MathQA, approaching 074

the r=32 model while requiring one-quarter 075

of its test-time compute. 076

Road-map. Section 2 reviews latent-recurrent 077

LMs, math-oriented RL, and process supervision. 078

1

Section 3 details LSRL; Sections 4–5 present exper-079

iments and analysis; Section 6 discusses conclusion080

and future works.081

2 Related Work082

Latent recurrence and other compute–accuracy083

trade-offs. Geiping et al. (2025) introduce Hug-084

inn, whose recurrent Core deepens the network085

without adding parameters; pushing the depth to086

r=32 lifts commonsense accuracy but quadruples087

inference FLOPs. Orthogonal strategies reduce088

computation in different ways, including sparse089

Mixture-of-Experts routing (Fedus et al., 2021),090

RL-learned early-exit policies (Dai et al., 2025),091

and, most recently, continuous latent policies (Hao092

et al., 2025). In contrast, our method delivers a093

shaped reward at every latent step, eliminating the094

sparse-gradient bottleneck these approaches leave095

unresolved.096

Reinforcement learning for language models.097

Outcome-only RLHF commonly relies on PPO098

(Ouyang et al., 2022; Schulman et al., 2017), while099

DPO removes the critic through a KL-regularised100

log-ratio objective (Rafailov et al., 2023). More101

recent work tackles reward composition and stabil-102

ity (Li et al., 2024) and makes RLHF parameter-103

efficient via LoRA (Hu et al., 2022), block-wise104

8-bit optimisers (Dettmers et al., 2022), QLoRA105

(Dettmers et al., 2023), PERLHF (Sidahmed et al.,106

2024), self-rewarding losses (Yuan et al., 2024),107

and reward distillation (Zhang et al., 2025b). In-108

stead, we adopt the critic-free GRPO baseline109

(DeepSeek-AI et al., 2025) and couple it with la-110

tent process rewards, while keeping single-GPU111

viability through rank-8 LoRA.112

Process-supervised reinforcement learning.113

Dense, token-visible process rewards have proven114

effective through verifier guidance (Cobbe et al.,115

2021), automatic step-grading (Lightman et al.,116

2024), GRPO curricula (DeepSeek-AI et al., 2025),117

and math-focused systems such as WizardMath118

(Luo et al., 2023), Improve-Math (Luo et al.,119

2025), GRPO-LEAD (Zhang and Zuo, 2025), and120

Efficient-RFT (Shi et al., 2025). Extensions span121

question decomposition (Chen et al., 2024) and122

code generation (Ye et al., 2025). Latent-state123

supervision so far is limited to self-verification124

probes (Zhang et al., 2025a) or unsupervised125

latent policies (Hao et al., 2025). Unlike these126

token-visible or probe-based methods, we attach127

learned process rewards directly to hidden states, 128

avoiding any chain-of-thought decoding. 129

Mathematical-reasoning resources and curric- 130

ula. Our evaluation uses GSM-8K (Cobbe et al., 131

2021), MATH (Lewkowycz et al., 2022), and 132

MathQA (Amini et al., 2019). DeepSeekMath of- 133

fers a strong open math-centric pre-trained model 134

(Shao et al., 2024), and curriculum-based RL for 135

math has been advanced by WizardMath (Luo 136

et al., 2023), GRPO-LEAD (Zhang and Zuo, 2025), 137

Improve-Math (Luo et al., 2025), and Efficient- 138

RFT (Shi et al., 2025). Unlike prior work, Where 139

gains rely on publishing token-level reasoning 140

traces at inference time, our approach reaches simi- 141

lar accuracy without any chain-of-thought decod- 142

ing or storage once the model is trained. 143

Positioning of our work. Latent-State RL 144

(LSRL) uniquely combines (i) dense process re- 145

wards, (ii) hidden-state supervision, (iii) recurrent 146

depth, and (iv) parameter-efficient LoRA/QLoRA 147

training, bridging the credit-assignment gap out- 148

lined above and delivering improved math reason- 149

ing at constant inference cost. 150

3 Methodology 151

3.1 Huginn Recap and Notation 152

Our latent-recurrent language model (LR-LM) fol- 153

lows the PRELUDE–CORE–CODA split of Geiping 154

et al. (2025). During inference the CORE stack Rθ 155

is looped for r iterations while the parameters re- 156

main fixed: 157

sk+1 = Rθ

(
[e; sk]

)
, k = 0, . . . , r − 1. (1) 158

The final hidden state sr is mapped to a token dis- 159

tribution by the shared LM head Wo, 160

pθ(y | x) = softmax(Wo sr). (2) 161

Full-depth decoding. For process supervision, 162

each intermediate latent state sk is autoregres- 163

sively decoded into a textual snapshot ŷk using 164

the model’s Coda and LM head Wo: 165

ŷk = AutoregressiveDecode(sk), k = 1, . . . , r,
(3) 166

exposing r textual snapshots. These are obtained 167

by processing each cached intermediate state sk 168

(see Sec. 3.3.1). 169

2

3.2 Latent-State Supervised RL (LSRL)170

3.2.1 Reward design171

Our reward design evaluates both intermediate rea-172

soning quality and final answer correctness. A173

lightweight GPT 4.1-nano grader (Section 3.2.2,174

Appendix B) returns an internal-quality score (IQS)175

and a math-progress score (PS) for each decoded176

snapshot of the latent state sk. These scores are177

min–max normalized within each GRPO group to178

q̂k and p̂k.179

The step-wise reward for snapshot k is180

Rk = wIQSq̂k + wPSp̂k, (4)181

with wIQS = wPS = 0.5 as recommended by Yuan182

et al. (2024).183

The process reward aggregates step rewards184

through a discounted sum:185

Rproc =
r∑

k=1

γ k−1Rk, (5)186

where we set γ = 0.99 following the stable dis-187

count used in recent multi-objective RLHF studies188

(Li et al., 2024).189

Finally, we combine the discounted process re-190

ward with a binary outcome bonus:191

Rtot = wf ⊮[ŷfinal = y∗] + wpRproc, (6)192

where ⊮[·] equals 1 when the predicted answer ŷfinal193

matches the ground truth y∗ and 0 otherwise. We194

fix (wf , wp) = (0.7, 0.3), an outcome-dominant195

split shown effective for mathematical reasoning196

in Shao et al. (2024) and further supported by the197

fair-reward study of Li et al. (2024).198

3.2.2 Generation workflow and prompt design199

To enable process supervision, each relevant inter-200

mediate latent state sk (for k = 1, . . . , r, where201

r is the maximum depth for supervision) from a202

latent trajectory is decoded into a textual snapshot.203

This decoding is an autoregressive process specific204

to our LR-LM, leveraging its CODA components205

and the shared LM head to generate a segment of206

text reflecting the model’s reasoning at depth k.207

For every problem, the policy model then gen-208

erates G = 8 complete solution trajectories (fi-209

nal answers). A group of eight offers a good210

bias–variance trade-off while keeping GPU mem-211

ory modest, and lies within the 6–8 range adopted212

in earlier GRPO studies (Shao et al., 2024).213

Each of the G trajectories, comprising its r in- 214

termediate textual snapshots and its final complete 215

solution text (ŷfinal), is then evaluated. This eval- 216

uation uses GPT-4.1-nano guided by two distinct 217

system prompts (full templates are provided in Ap- 218

pendix B): 219

1. Process Grader: invoked twice per trajectory 220

(averaging two independent calls to reduce 221

grader variance). Guided by a unified prompt, 222

the grader assesses each of the r intermediate 223

textual snapshots derived from s1, . . . , sr. It 224

assigns scores for: 225

• Internal Quality (IQS): Rates the logi- 226

cal consistency, clarity, and standalone 227

quality of the reasoning in the snapshot. 228

• Mathematical Progress (PS): Checks if 229

the snapshot meaningfully advances to- 230

wards solving the problem (e.g., by re- 231

ducing unknowns, correctly applying an 232

operation, or simplifying the problem 233

state). 234

The IQS and PS scores from the two invoca- 235

tions are averaged for each snapshot sk. 236

2. Final Answer Checker: This grader eval- 237

uates the policy model’s final generated so- 238

lution text, ŷfinal, for correctness against the 239

ground truth y∗, returning ⊮[ŷfinal = y∗]. 240

3.2.3 GRPO objective 241

Given G sampled trajectories, we first compute the 242

group-relative advantage 243

Ai = Ri − R̄, R̄ =
1

G

G∑
j=1

Rj , (7) 244

where R̄ is the mini-batch mean reward. We then 245

minimize the clipped loss used by Group-Relative 246

Policy Optimisation (GRPO): 247

LGRPO = −
∑
i∈B

min
(
ρiAi, clip

(
ρi, 1− ε, 1 + ε

)
Ai

)
248

+ β DKL
(
πθ ∥πref

)
, (8) 249

where ρi = πθ(yi | xi)
/
πθold(yi | xi) is the impor- 250

tance ratio. 251

We adopt ε = 0.2 following the PPO study of 252

Schulman et al. (2017) and the GRPO replication 253

by Shao et al. (2024); this range (0.1− 0.3) is 254

standard for stable clipped objectives. The KL- 255

penalty coefficient β is controlled by the adaptive 256

3

KL scheduler (initial β = 0.1), adjusted each step257

to keep DKL≈0.1. This setting limits policy drift258

yet matches the LoRA capacity used in our runs.259

Equation (8) is algebraically identical to PPO’s260

surrogate loss; GRPO simply replaces the learned261

value head with the group mean R̄, eliminating the262

need for a critic network.263

3.3 Efficiency Techniques264

3.3.1 Efficient Intermediate State Caching for265

Process Supervision266

Our methodology requires evaluating intermediate267

reasoning steps. The Huginn architecture’s recur-268

rent CORE block naturally produces a sequence of269

latent states {sk}rk=1 (Eq. (1)). These r states are270

collected and cached in a single forward unrolling271

of the CORE block. This one-pass generation is272

highly efficient for obtaining the full set of interme-273

diate states, drastically reducing FLOPs compared274

to a naive re-execution that would recompute states275

from s0 for each depth k. We then perform the276

decoding process (detailed in Sec. 3.2.2) on each277

cached state sk using the model’s CODA compo-278

nents and LM head to generate the textual snap-279

shots required by our PSM graders. The primary280

FLOP saving highlighted here pertains to the effi-281

cient collection of the {sk} states themselves.282

3.3.2 Parameter-Efficient Tuning with LoRA283

To fine-tune the Huginn model using our Latent-284

State Supervised RL (LSRL) approach with man-285

ageable computational resources, we employ Low-286

Rank Adaptation (LoRA) (Hu et al., 2022). Fol-287

lowing common practice for effective adapta-288

tion (Sidahmed et al., 2024), we inject rank-8289

LoRA adapters, with a scaling factor α = 16, into290

specific projection matrices within Huginn’s recur-291

rent CORE block. Specifically, adapters are applied292

to the query/key/value and output projections of the293

attention mechanism, as well as the up-projection294

and down-projection layers of the MLP. This strat-295

egy resulting in only 0.17% trainable parameters.296

3.4 Training Loop Overview297

Algorithm below condenses one GRPO update in298

our Latent-State RL (LSRL) pipeline. For the inter-299

ested reader, Appendix A presents detailed pseudo-300

code implementation and Appendix B provides the301

GPT-4.1-nano grading configuration.302

1. Sample roll-outs. For each prompt in the303

mini-batch, nucleus-sample G trajectories.304

2. Generate intermediate textual snap- 305

shots. For each of the G trajectories, from its 306

efficiently cached intermediate latent states 307

{sk} (Sec. 3.3.1), generate a textual snapshot 308

for each relevant depth k via autoregressive 309

decoding (detailed in Sec. 3.2.2). 310

3. Grade snapshots. Send each depth-k string 311

to the GPT-4.1-nano graders (Sec. 3.2.2) and 312

collect scores {IQS(g)
k ,PS(g)

k }. 313

4. Compute rewards and advantages. Fuse 314

snapshot and final scores into a total reward 315

R
(g)
tot for each trajectory (g) via Eqs. (4)–(6), 316

then form group-relative advantages with 317

Eq. (7). 318

5. Optimize. Minimize the GRPO loss (Eq. (8)) 319

using the AdamW optimiser. 320

6. Update parameters. Apply rank-8 LoRA 321

deltas to the 16 CORE projection matrices only 322

(Sec. 3.3.2); all other base model weights stay 323

frozen. 324

4 Experiment Design and Setup 325

4.1 Tasks and Datasets 326

We assess mathematical reasoning on three open 327

benchmarks: 328

• GSM-8K grade-school word problems 329

(Cobbe et al., 2021), 330

• MATH (“Minerva-MATH”) theorem-style 331

proofs (Lewkowycz et al., 2022), 332

• MathQA multi-step arithmetic questions 333

(Amini et al., 2019). 334

For each dataset we use its official test split for 335

evaluation and do not include any test items in 336

training. The reinforcement-learning phase fine- 337

tunes on a random subset of 500 problems from 338

the GSM-8K training split; no synthetic data or 339

curriculum-generated examples are added. 340

4.2 Model Variants 341

We evaluate four systems, summarised in Table 1: 342

• Huginn-SFT-r8: supervised baseline, recur- 343

rent depth r=8. 344

• RL-Outcome: depth-8 model fine-tuned with 345

GRPO using a single final-answer reward. 346

4

Name Params r Trainable %1 Reward
SFT-r8 3.5 B 8 0 –
RL-Outcome 3.5 B 8 0.17 Final
LSRL 3.5 B 8 0.17 Final+PSM
SFT-r32 3.5 B 32 0 –

Table 1: Variants compared in this study.

Parameter Value
Optimizer AdamW
Learning rate 2×10−6 (constant)
Trajectories G 8
Discount γ 0.99
Clip ε 0.2
KL target β 0.1 (adaptive)
LoRA rank / α 8 / 16
Quantisation int8 (QLoRA)

Table 2: Core hyper-parameters.

• LSRL (ours): depth-8 model trained with347

both final and process (PSM) rewards.348

• Huginn-SFT-r32: deeper supervised baseline,349

r=32.350

All variants start from the public Huginn-3.5B351

checkpoint and are updated with rank-8 LoRA352

adapters; thus fewer than 0.2 % of parameters are353

trainable in the RL runs.354

4.3 Training and Evaluation Procedure355

We optimize with AdamW at a constant learning356

rate of 2 × 10−6. To process 32 unique prompts357

before each weight update, gradients are accu-358

mulated over four sequential micro-batches; each359

micro-batch handles trajectories generated from 8360

unique prompts. For every unique prompt, G=8361

distinct trajectories are produced by the policy362

model. In our LSRL model, which incorporates363

process rewards, the intermediate reasoning steps364

within these trajectories are evaluated by a Problem-365

Specific Model (PSM) based on GPT 4.1-nano, and366

the resulting step-wise rewards are discounted by367

γpsm=0.99.368

At test time we decode greedily (T=0) and re-369

port the pass@1 metric across GSM-8K, MATH370

and MathQA benchmarks. All runs fit on a sin-371

gle NVIDIA L40S-class GPU in int8 mode using372

QLoRA (Dettmers et al., 2023).373

5 Results and Discussion 374

5.1 Accuracy and Efficiency 375

Overall gains. Relative to the supervised depth-8 376

baseline (SFT-r8), our latent-state supervised RL 377

model (LSRL) raises accuracy by +4.27 points 378

on GSM-8K, +1.33 points on MATH, and +2.06 379

points on MathQA. These improvements indicate 380

that process-level rewards substantially strengthen 381

Huginn’s mathematical reasoning. 382

The improvement on MATH is modest com- 383

pared with grade-school datasets for several rea- 384

sons. First, the problems are intrinsically harder: 385

proofs often span hundreds of tokens, require sym- 386

bolic manipulation, or invoke high-level tactics 387

such as case splits and geometric constructions that 388

are absent from GSM-8K and MathQA. Second, 389

the RL phase fine-tunes on just 500 GSM-8K items; 390

the heuristics learned there, mainly short arithmetic 391

chains, transfer only partially to Olympiad nota- 392

tion and LaTeX-formatted derivations. Third, our 393

reward model scores local algebraic progress, so 394

higher-order reasoning steps that are essential for 395

MATH remain largely invisible to the shaping sig- 396

nal. 397

One natural remedy is difficulty-aware curricu- 398

lum learning. Adaptive schedulers such as AdaRFT 399

(Shi et al., 2025) sample problems whose esti- 400

mated difficulty sits just beyond the model’s current 401

competence, accelerating PPO-style fine-tuning on 402

mathematical reasoning. GRPO-LEAD (Zhang and 403

Zuo, 2025) shows that re-weighting the advantage 404

term by problem difficulty further sharpens GRPO 405

updates. Interleaving easier GSM items with pro- 406

gressively harder MATH subsets, or replacing the 407

generic grader with a proof-validity scorer, should 408

expose Huginn to richer reasoning traces while pre- 409

serving the dense feedback that proved effective on 410

grade-school tasks. 411

Source of the improvement. Outcome–only RL 412

lifts GSM-8K by only +1.05 pp. The +3.22 pp 413

additional gain realized after adding process su- 414

pervision therefore contributes roughly 75 % of 415

the total lift. Two quantitative diagnostics corrobo- 416

rate that dense stepwise rewards, not merely extra 417

policy-gradient updates, drive this gap. 418

That said, the outcome-only baseline is not com- 419

pletely ineffective. Following the “posterior sharp- 420

ening” explanation in DeepSeek-R1 (DeepSeek-AI 421

1Percentage of total model parameters updated during fine-
tuning (LoRA adapters only).

5

Model r GSM (%) MATH (%) MathQA (%) FLOPs/tok†

SFT-r8 8 13.49 5.61 24.07 1.0×
RL-Outcome 8 14.54 6.32 24.62 1.0×
LSRL (ours) 8 17.76 6.94 26.13 1.0×
SFT-r32 32 24.87 11.24 27.97 4.0×

Table 3: Accuracy and compute.†FLOPs per token grow linearly with recurrent depth; depth–8 is normalised to
1.0×.

et al., 2025), even a binary reward moves proba-422

bility mass away from trajectories that end with423

off-by-one arithmetic slips, yielding the modest424

+1 pp boost we observe. Nonetheless, because the425

reward is observed only after all eight latent itera-426

tions, credit assignment remains long-horizon, and427

improvement quickly saturates.428

Compute–depth trade-off. Having established429

where the accuracy gain comes from, we next in-430

vestigate how much compute it saves. Although431

depth-32 inference still achieves the highest raw432

accuracy, LSRL-r8 recovers approximately 75 %433

of the GSM-8K score while consuming only 25 %434

of the recurrent compute (1.0 × vs. 4.0 × FLOPs).435

Looking forward, repeating the LSRL recipe436

at larger depths (r=16 or 32) appears especially437

promising. A deeper Huginn exposes up to four438

times as many latent snapshots, and each additional439

snapshot supplies an independent reward signal.440

Moreover, the depth-32 supervised baseline already441

achieves the best raw accuracy, suggesting that that442

process-supervised RL at r≥16 could close much443

of the remaining MATH gap while retaining strong444

accuracy-per-FLOP profile demonstrated at r=8.445

5.2 Qualitative Trajectory Analysis446

Figure 1 decodes the latent states sk (k=1. . .8)447

for a representative GSM-8K problem under the448

baseline SFT-r8 and our LSRL. The baseline drifts449

off-topic as early as depth 1, showing hallucinat-450

ing boilerplate phrases and incoherent arithmetic,451

while LSRL produces a correct plank count at depth452

1, refines it consistently, and arrives at the gold an-453

swer ($12 000) by depth 8. This contrast illustrates454

how process supervision rewards guide the policy455

toward higher-quality trajectories long before the456

final step.457

Trajectory selection. Because the reward is ob-458

served at every depth, the policy quickly abandons459

low-reward paths, such as those producing nonsen-460

sical tokens, so probability mass concentrates on461

trajectories whose early states look algebraically462

plausible.463

Human-legible reasoning. The reward model 464

is a GPT-4.1-nano grader trained on human-style 465

Chain-of-Thought data; latent states therefore 466

evolve toward fluent, step-by-step explanations that 467

are easy for humans (and automatic verifiers) to fol- 468

low. 469

Noise suppression. Process supervision sharply 470

reduces “garbled-symbol” segments. A related ob- 471

servation was made by Luo et al. (2025), who 472

show that automated process supervision elimi- 473

nates meaningless or redundant tokens while boost- 474

ing math accuracy; our results mirror this effect 475

inside Huginn’s latent loop. 476

Residual issues analysis. While LSRL removes 477

most garbled tokens, three problems persist: 478

1. Prompt-echo noise at depth 1 (“first 300 sec- 479

onds is not enough . . . ”), showing the model 480

still copies stray prompt fragments before it set- 481

tles on algebra. 482

2. Qualitative fluff at depth 2 (“astronomically 483

large number”), a logically irrelevant phrase. 484

3. Unit/type mix-ups at depth 3: revenue is com- 485

puted on planks rather than tables, yielding an 486

off-by-factor answer ($222 000). 487

These errors persist for two potential reasons. First 488

a granularity mismatch: the reward scores the en- 489

tire paragraph at each depth, so brief fluff can 490

be averaged out. Second, a capacity limit: the 491

lightweight GPT-4.1-nano judge occasionally over- 492

estimates unit-mismatched arithmetic, allowing the 493

policy to “game” the reward early in the trajectory. 494

Further improvement paths. (a) Fine-tune the 495

existing GPT-4.1-nano reward model. Itera- 496

tively re-labeling fresh trajectories and distilling 497

both responses and rewards has been shown to let 498

∼1 B-parameter judges outperform larger teach- 499

ers (Zhang et al., 2025b). Applying the same 500

“reward-distillation” loop every few RL epochs 501

should tighten early depth supervision at negligible 502

compute cost. 503

6

Q: John chops down 30 trees. From each tree, he can make 25 planks. A table takes 15 planks to make and sells for $300. He
paid $3000 for all the labor. How much profit did he make?

Answer: $12,000

Baseline SFT-r8

Depth-1: First, let’s start with some basic concepts
and some basic concepts. ****Please follow the
step-click**** ****Time-time-time******
Depth-2: John chops 15 trees to make $3000 a total
of $300,000. He pays $3000 for each tree, $300 for a
total of $3000. Each tree is $300. How much money
does he make?
Depth-3: John made 30 planks from each tree and
25 planks from the remaining 25 trees. So, he made
30×30 = 150 planks in total. John made 25×15 =
30 planks from the first 25 trees and 25× 15 = 45
planks from the remaining 25 trees. John’s total
profit is 300× 30 = 900× 15 = $3000000.

. . . intermediate depths omitted . . .

Depth-8 (final): To solve this problem, we need to
calculate the total number of planks John has and
then determine the profit he made from the sales of
the planks.
Step 1: Calculate the total number of planks John has.
John has 30 trees and each tree produces 25 planks.
So, the total number of planks John has is: 30 trees *
25 planks / tree = 750 planks
Step 2: Calculate the total number of tables John sold.
John sold tables for $300 per table, and he sold 750
tables. So, the total number of tables John sold is:
750 tables
Step 3: Calculate the profit John made from the sales
of the planks. John paid $3000 for all the labor and
each table takes 15 planks to make. So, the total
number of planks John used for the tables is: 750
tables * 15 planks/table = 11250 planks
Step 4: The profit John made from the sales of the
planks is: Profit = (Profit per table * Number of
tables) * Number of planks used for tables = ($300 *
750) * 11250 = $2.

LSRL (PSM RL)

Depth-1: John chops down 30 trees. From those
trees he makes 750 planks. A table takes 15 planks.
Each plan cuts the tree down to planks, then repeat
iteratively. The answer: first 300 seconds is not
enough to compute the total.
Depth-2: To calculate the profit, John needs to cal-
culate the labor cost ($3,000) and the selling price
of each table. The total cost of the trees is an astro-
nomically large number.
Depth-3: He can make 25 planks. A table takes 15
planks to make and sells for $300. He paid $3000 for
all the labor. How much profit did he make? Huginn
John can make 25 planks from each tree, so he can
make 30 × 25 = 750 planks. He sold each plank
for $300, so revenue is 750× 300 = $225,000. He
paid $3000 for all the labor. John’s profit is $225,000
– $3,000 = $222,000.

. . . intermediate depths omitted . . .

Depth-8 (final): He can make 25 planks. A table
takes 15 planks to make and sells for $300. He paid
$3000 for all the labor. How much profit did he
make? Huginn
1. Calculate the total number of planks John made:
from the 30 trees, he made 30× 25 = 750 planks.
2. Calculate the total number of tables sold: 750÷
15 = 50 tables.
3. Calculate the total revenue from the planks: Each
table sold for 300, so the total revenue from tables is
50× $300 = $15,000.
4. Calculate the profit: To find the profit, subtract the
cost from the revenue: $15,000 - $3,000 = $12,000.

Legend: Hallucinations/Off-topic Calculation Errors Correct Calculations Residual Issues

Figure 1: Decoded latent-state snapshots for baseline SFT-r8 vs. LSRL on a GSM-8K example. Early depths from
LSRL already contain correct computations, whereas the baseline exhibits off-topic drift and calculation errors.

(b) Train a specialised process reward model504

(PRM). Chen et al. (2024) demonstrate that an auto-505

generated, symbol-aware PRM which verifies each506

sub-question yields larger math gains than text-only507

graders. Plugging such a PRM in place of GPT-508

nano would directly penalizee the unit/type errors509

still visible at depths 2–3 and can be combined510

with via a two-stage curriculum: first clean syntax511

with nano, then enforce symbolic correctness with512

PRM.513

5.3 Shallow-Recurrence Ablation514

We reran the entire training recipe with the la-515

tent loop shortened to four iterations and evalu-516

Model GSM MathQA

SFT-r4 8.36 22.93
RL-Outcome-r4 8.01 22.47
LSRL-r4 8.59 23.14

Table 4: Shallow-loop ablation (depth r=4). MATH
is omitted because all variants score ≤ 1%, rendering
the task trivial at this depth.

ated on GSM-8K and MathQA. Table 4 reveals a 517

flat plateau: every variant clusters around 8% on 518

GSM-8K and 23% on MathQA. This stark con- 519

trast with our r=8 findings suggests a minimum 520

threshold of recurrent depth is necessary before 521

process supervision can take effect. At r=4, the 522

7

intermediate latent states likely contain insufficient523

meaningful reasoning steps to provide an effective524

grading signal, resembling attempts to grade un-525

derdeveloped work. These results highlight that re-526

currence depth plays a critical role not only in raw527

model performance but also in enabling effective528

reinforcement learning. The stark contrast between529

ineffective reinforcement at r=4 and substantial530

gains at r=8 suggests a threshold of required com-531

putational depth for LSRL, though further work is532

needed to precisely characterize this boundary.533

6 Conclusion and Future Work534

We introduced Latent-State Supervised Reinforce-535

ment Learning (LSRL), a process-supervised vari-536

ant of GRPO that delivers dense rewards at each537

latent iteration of recurrent language models. Our538

approach addresses a key limitation of latent-539

recurrent models: while they can achieve impres-540

sive reasoning capabilities with fewer parameters,541

their opaque hidden trajectories hinder effective542

credit assignment, especially for mathematical rea-543

soning tasks.544

Our work makes several contributions to latent545

reasoning in language models. First, we developed546

a novel framework for process-supervised RL that547

operates on latent states rather than explicit tokens,548

creating the first process-supervised approach for549

latent recurrence. Second, we introduced techni-550

cal innovations that make this approach practical:551

a one-pass hidden-state cache that fully decodes552

every latent depth in a single forward/backward553

pass, and LoRA adapters for efficient fine-tuning of554

latent-recurrent RL. Finally, using only 500 GSM-555

8K training problems and a single GPU, we demon-556

strated substantial improvements of +4.27 points on557

GSM-8K and +2.06 points on MathQA, approach-558

ing the performance of models with 4× the compute559

requirements.560

Our results demonstrate that latent-recurrent ar-561

chitectures offer a promising alternative path to562

scaling reasoning capabilities in language models.563

While most approaches focus on either increasing564

parameter count or extending inference through565

chain-of-thought tokens, LSRL enables models to566

scale through test-time computation in the latent567

space. This provides several advantages: (1) re-568

duced memory requirements during training and569

inference, and (2) no need for specialized training570

data containing intermediate reasoning steps.571

Future directions. There are several promising 572

directions for extending this work: 573

1. Scaling to larger recurrent depths: Apply- 574

ing LSRL to deeper models (r=16 or r=32) 575

should yield additional gains, as these models 576

expose more latent states for supervision while 577

maintaining the parameter efficiency advantage. 578

2. Specialized reward models: Developing math- 579

ematical process reward models that are symbol- 580

aware and can verify intermediate algebraic 581

steps would address the unit/type confusion is- 582

sues we observed and potentially close more of 583

the gap on the MATH benchmark. 584

3. Curriculum learning: Implementing difficulty- 585

aware curricula like AdaRFT or GRPO-LEAD 586

could accelerate learning and improve transfer 587

to more complex domains by progressively ex- 588

posing the model to harder reasoning problems. 589

4. Cross-domain transfer: Extending LSRL be- 590

yond mathematics to domains such as logical 591

reasoning, coding, and causal inference could 592

reveal whether the process-supervision benefits 593

generalize across different reasoning types. 594

We believe that LSRL represents an important 595

step toward more efficient mathematical reason- 596

ing in language models. By aligning the opti- 597

mization process with the recursive structure of 598

latent-recurrent models, we achieve performance 599

that would typically require significantly more pa- 600

rameters or deeper recurrence depth. This suggests 601

that process-level supervision in the latent space is 602

a promising direction for developing more capable 603

yet efficient reasoning systems. 604

Limitations 605

While LSRL demonstrates promising results in im- 606

proving mathematical reasoning in latent-recurrent 607

language models, our approach has several limita- 608

tions that should be addressed in future work. 609

Training data limitations. Our reinforcement 610

learning phase relies on only 500 GSM-8K training 611

problems, which represents a small fraction of the 612

available mathematical content. This limited train- 613

ing set may restrict the diversity of problem-solving 614

strategies that the model learns. Additionally, we 615

did not implement curriculum learning or gener- 616

ate synthetic training data, which could potentially 617

improve performance on harder problems. Our 618

8

approach also lacks exposure to complex mathe-619

matical domains like multi-step proofs, geometric620

reasoning, or higher-level algebra, which may ex-621

plain the more modest improvements on the MATH622

benchmark compared to grade-school datasets.623

Reward model limitations. The GPT-4.1-nano624

grader we use as a reward model has inherent limi-625

tations in its mathematical understanding. Unlike626

specialized symbolic verifiers, it may struggle to627

detect subtle errors in calculations or logical steps,628

particularly for complex mathematical operations.629

This could lead to reward misalignment where the630

model is reinforced for mathematically incorrect631

but plausible-sounding reasoning.632

There is also potential for reward hacking in633

our approach. The model might learn to optimize634

for superficial features that correlate with higher635

rewards without truly improving its reasoning ca-636

pabilities. For example, it might learn to use partic-637

ular phrasing or formatting that the grader tends to638

score highly, rather than developing deeper mathe-639

matical understanding.640

Quality and consistency issues. As discussed in641

Section 5.2, several quality issues persist in LSRL’s642

outputs:643

1. Prompt-echo phenomena: The model still ex-644

hibits a tendency to copy portions of the input645

prompt at early depths, suggesting incomplete646

decoupling of input processing and reasoning647

initialization.648

2. Superfluous content: The presence of quali-649

tative "fluff" and logically irrelevant phrases at650

intermediate depths indicates that the model has651

not fully learned to focus on mathematically652

relevant reasoning steps.653

3. Semantic confusion: Unit/type mix-ups in nu-654

merical reasoning (e.g., conflating planks with655

tables or misapplying operations to incorrect656

entities) shows remaining weaknesses in the657

model’s conceptual understanding of applied658

mathematics.659

These issues suggest that while process supervi-660

sion improves overall performance, it does not com-661

pletely solve the underlying challenges in mathe-662

matical reasoning.663

Generalization limitation. Our approach shows664

stronger improvements on grade-school arithmetic665

(GSM-8K, MathQA) than on competition-level666

mathematics (MATH). This indicates challenges in 667

generalizing from simpler computational patterns 668

to more advanced mathematical reasoning. The 669

transfer learning path from GSM-8K’s word prob- 670

lems to MATH’s formal notation appears to be lim- 671

ited, suggesting that separate training on symbolic 672

mathematics might be necessary. 673

Additionally, we have only evaluated LSRL on 674

a narrow set of mathematical reasoning tasks. Its 675

effectiveness for other reasoning domains, such as 676

programming, causal reasoning, or planning prob- 677

lems, remains unexplored. This scope limitation 678

makes it difficult to assess whether the improve- 679

ments we observe are specific to arithmetic rea- 680

soning or represent a more general enhancement 681

to latent-recurrent models’ reasoning capabilities 682

across domains. 683

Ethical Considerations 684

Intended use and reliability. LSRL is released 685

for research on improving mathematical reason- 686

ing capability. While LSRL shows improved per- 687

formance on mathematical benchmarks, latent- 688

recurrent language models still make errors even 689

on elementary calculations. Applications of these 690

models to domains requiring mathematical preci- 691

sion should include appropriate verification mech- 692

anisms, especially for safety-critical applications. 693

Our work does not claim to eliminate the need for 694

human oversight in mathematical reasoning tasks, 695

and users of such systems should be aware of these 696

limitations to prevent over-reliance on probabilistic 697

models for deterministic mathematical problems. 698

Resource efficiency. Our approach demonstrates 699

that smaller models (3.5B parameters) with appro- 700

priate supervision can approach the performance of 701

larger or computationally more expensive models 702

on mathematical reasoning tasks. This has positive 703

implications for both environmental impact and ac- 704

cessibility. By focusing on efficient test-time com- 705

pute scaling rather than parameter scaling alone, 706

LSRL potentially reduces the energy consumption 707

associated with training large mathematical rea- 708

soning models. Additionally, the ability to deploy 709

smaller yet capable models could democratize ac- 710

cess to mathematical reasoning capabilities across 711

a wider range of hardware constraints. 712

Data privacy and bias. Our training approach 713

relies on GSM-8K, and all benchmarks used for 714

evaluation are publicly available datasets that con- 715

9

tain no personal or sensitive information. However,716

we acknowledge that these datasets primarily re-717

flect grade school level mathematics curricula and718

are exclusively in English. This limitation could719

affect model performance on problems formulated720

at different difficulty level or in different languages.721

We plan to address this limitation by curating more722

diverse and multilingual mathematical problem sets723

in future research.724

References725

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik726
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-727
jishirzi. 2019. MathQA: Towards interpretable math728
word problem solving with operation-based for-729
malisms. In Proceedings of the 2019 Conference730
of the North American Chapter of the Association for731
Computational Linguistics: Human Language Tech-732
nologies, Volume 1 (Long and Short Papers), pages733
2357–2367, Minneapolis, Minnesota. Association for734
Computational Linguistics.735

Zhaorun Chen, Zhuokai Zhao, Zhihong Zhu, Ruiqi736
Zhang, Xiang Li, Bhiksha Raj, and Huaxiu Yao. 2024.737
AutoPRM: Automating procedural supervision for738
multi-step reasoning via controllable question decom-739
position. In Proceedings of the 2024 Conference of740
the North American Chapter of the Association for741
Computational Linguistics: Human Language Tech-742
nologies (Volume 1: Long Papers), pages 1346–1362,743
Mexico City, Mexico. Association for Computational744
Linguistics.745

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,746
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias747
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro748
Nakano, Christopher Hesse, and John Schulman.749
2021. Training verifiers to solve math word problems.750
arXiv:2110.14168. https://doi.org/10.48550/751
arXiv.2110.14168.752

Muzhi Dai, Chenxu Yang, and Qingyi Si. 2025. S-753
GRPO: Early exit via reinforcement learning in rea-754
soning models. arXiv:2505.07686.755

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,756
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,757
Shirong Ma, Peiyi Wang, and et al. 2025. Deepseek-758
r1: Incentivizing reasoning capability in llms via759
reinforcement learning. arXiv:2501.12948. https:760
//doi.org/10.48550/arXiv.2501.12948.761

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke762
Zettlemoyer. 2022. 8-bit optimizers via block-wise763
quantization. In International Conference on Learn-764
ing Representations.765

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and766
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-767
ing of quantized LLMs. In Thirty-seventh Confer-768
ence on Neural Information Processing Systems.769

William Fedus, Barret Zoph, and Noam Shazeer. 2021. 770
Switch transformers: Scaling to trillion parameter 771
models with simple and efficient sparsity. In Journal 772
of Machine Learning Research. 773

Jonas Geiping, Sean McLeish, Neel Jain, John 774
Kirchenbauer, Siddharth Singh, Brian R. Bartold- 775
son, Bhavya Kailkhura, Abhinav Bhatele, and Tom 776
Goldstein. 2025. Scaling up test-time compute 777
with latent reasoning: A recurrent depth approach. 778
arXiv:2502.05171. https://doi.org/10.48550/ 779
arXiv.2502.05171. 780

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, 781
Zhiting Hu, Jason Weston, and Yuandong Tian. 2025. 782
Training large language models to reason in a con- 783
tinuous latent space. arXiv:2503.01234. https: 784
//openreview.net/forum?id=tG4SgayTtk. 785

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 786
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 787
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 788
large language models. In International Conference 789
on Learning Representations (ICLR). 790

Aitor Lewkowycz, Anders Johan Andreassen, 791
David Dohan, Ethan Dyer, Henryk Michalewski, 792
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem 793
Anil, Imanol Schlag, Theo Gutman-Solo, and 794
1 others. 2022. Solving quantitative reasoning 795
problems with language models. In Advances in 796
Neural Information Processing Systems. 797

Jiahui Li, Hanlin Zhang, Fengda Zhang, Tai-Wei Chang, 798
Kun Kuang, Long Chen, and Jun Zhou. 2024. Opti- 799
mizing language models with fair and stable reward 800
composition in reinforcement learning. In Proceed- 801
ings of the 2024 Conference on Empirical Methods in 802
Natural Language Processing, pages 10122–10140. 803
Association for Computational Linguistics. 804

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri- 805
son Edwards, Bowen Baker, Teddy Lee, Jan Leike, 806
John Schulman, Ilya Sutskever, and Karl Cobbe. 807
2024. Let’s verify step by step. In The Twelfth In- 808
ternational Conference on Learning Representations 809
(ICLR). 810

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 811
guang Lou, Chongyang Tao, and 1 others. 2023. Wiz- 812
ardmath: Empowering mathematical reasoning for 813
large language models via reinforced evol-instruct. 814
arXiv:2308.09583. https://doi.org/10.48550/ 815
arXiv.2308.09583. 816

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat 817
Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei 818
Shu, Lei Meng, Jiao Sun, and Abhinav Rastogi. 819
2025. Improve mathematical reasoning in lan- 820
guage models with automated process supervision. 821
arXiv:2406.06592. 822

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 823
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 824
Sandhini Agarwal, Katarina Slama, Alex Gray, and 825
1 others. 2022. Training language models to follow 826

10

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/2024.naacl-long.73
https://doi.org/10.18653/v1/2024.naacl-long.73
https://doi.org/10.18653/v1/2024.naacl-long.73
https://doi.org/10.18653/v1/2024.naacl-long.73
https://doi.org/10.18653/v1/2024.naacl-long.73
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2505.07686
https://doi.org/10.48550/arXiv.2505.07686
https://doi.org/10.48550/arXiv.2505.07686
https://doi.org/10.48550/arXiv.2505.07686
https://doi.org/10.48550/arXiv.2505.07686
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://doi.org/10.48550/arXiv.2502.05171
https://doi.org/10.48550/arXiv.2502.05171
https://doi.org/10.48550/arXiv.2502.05171
https://openreview.net/forum?id=tG4SgayTtk
https://openreview.net/forum?id=tG4SgayTtk
https://openreview.net/forum?id=tG4SgayTtk
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://doi.org/10.18653/v1/2024.emnlp-main.565
https://doi.org/10.18653/v1/2024.emnlp-main.565
https://doi.org/10.18653/v1/2024.emnlp-main.565
https://doi.org/10.18653/v1/2024.emnlp-main.565
https://doi.org/10.18653/v1/2024.emnlp-main.565
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/arXiv.2308.09583
https://doi.org/10.48550/arXiv.2308.09583
https://doi.org/10.48550/arXiv.2308.09583
https://openreview.net/forum?id=KwPUQOQIKt
https://openreview.net/forum?id=KwPUQOQIKt
https://openreview.net/forum?id=KwPUQOQIKt
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON

instructions with human feedback. In Advances in827
Neural Information Processing Systems.828

Robert Rafailov, Andrew Wilson, and Stefano Ermon.829
2023. Direct preference optimization: Your language830
model is secretly a reward model. In International831
Conference on Learning Representations.832

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec833
Radford, and Oleg Klimov. 2017. Proximal policy834
optimization algorithms. arXiv:1707.06347.835

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,836
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan837
Zhang, K. Li Y. Y. Wu, and Daya Guo. 2024.838
Deepseekmath: Pushing the limits of mathematical839
reasoning in open language models. arXiv preprint,840
arXiv:2402.03300.841

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and842
Jieyu Zhao. 2025. Efficient reinforcement finetun-843
ing via adaptive curriculum learning. arXiv preprint844
arXiv:2504.05520.845

Hakim Sidahmed, Samrat Phatale, Alex Hutcheson,846
Zhuonan Lin, Zhang Chen, Zac Yu, Jarvis Jin, Simral847
Chaudhary, Roman Komarytsia, Christiane Ahlheim,848
Yonghao Zhu, Bowen Li, Saravanan Ganesh, Bill849
Byrne, Jessica Hoffmann, Hassan Mansoor, Wei Li,850
Abhinav Rastogi, and Lucas Dixon. 2024. Parameter-851
efficient reinforcement learning from human feed-852
back. arXiv:2403.10704.853

Yufan Ye, Ting Zhang, Wenbin Jiang, and Hua Huang.854
2025. Process-supervised reinforcement learning for855
code generation. arXiv:2502.01715.856

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,857
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-858
son E. Weston. 2024. Self-rewarding language mod-859
els. In Forty-first International Conference on Ma-860
chine Learning.861

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit862
Panda, Jinyang Li, and He He. 2025a. Reasoning863
models know when they’re right: Probing hidden864
states for self-verification. arXiv:2504.05419.865

Jixiao Zhang and Chunsheng Zuo. 2025. Grpo-lead: A866
difficulty-aware reinforcement learning approach for867
concise mathematical reasoning in language models.868
arXiv preprint arXiv:2504.09696.869

Yudi Zhang, Lu Wang, Meng Fang, Yali Du, Chenghua870
Huang, Jun Wang, Qingwei Lin, Mykola Pech-871
enizkiy, Dongmei Zhang, Saravan Rajmohan, and872
Qi Zhang. 2025b. Distill not only data but also re-873
wards: Can smaller language models surpass larger874
ones? arXiv:2502.19557. https://doi.org/10.875
48550/arXiv.2502.19557.876

A Pseudocode: PSM-Guided GRPO877

Training of Huginn878

Implementation notes.879

Algorithm 1: GRPO with process-
supervised (PSM) rewards at every latent
step. The one-pass hidden-state cache
avoids re-executing the recurrent core
during DecodeSnapshot.

Input: Mini-batch of prompts {x(i)}Bi=1 and gold
answers {y(i)}Bi=1

Output: Updated Huginn parameters θ ← θ′

1 Hyper-params: recurrent depth r=8; # trajectories
per prompt G; reward weights λfinal, λIQS, λPS;
discount γ.

2 1. Policy rollout
3 for i← 1 to B do // vectorised across B×G

trajectories
4 for g ← 1 to G do
5

{
s
(i,g)
1:r

}
← HuginnForward

(
x(i), θ

)
6 ŷ(i,g) ← DecodeFinal

(
s
(i,g)
r

)
7 for k ← 1 to r do
8 t̂

(i,g)
k ← DecodeSnapshot

(
s
(i,g)
k

)
// cached for reward

9 end
10 end
11 end
12 2. External grading (batched API calls to GPT-4.1

nano)
13 foreach trajectory (i, g) do
14

{
qIQS
k , qPS

k

}r

k=1
← GradeSeq

(
{t̂(i,g)k }rk=1

)
15 qfinal ← GradeAnswer

(
ŷ(i,g), y(i)

)
16 R(i,g) ← λfinal q

final + λIQS
∑r

k=1 γ
k−1qIQS

k +

λPS
∑r

k=1 γ
k−1qPS

k

17 end
18 3. GRPO update (critic-free PPO)

19 ∇θJ ≈
1

BG

∑
i,g

[
πθ(ŷ

(i,g) |x(i))− πθold(ŷ
(i,g) |

x(i))
]
clip

(
R(i,g) − R̄, −ϵ, +ϵ

)
// standard

GRPO ratio clip
20 θ ← θ − η∇θJ // AdamW

• Hidden-state cache: we store the sequence s1:r 880

during the forward pass and reuse it for all snap- 881

shot decodings, avoiding r additional core exe- 882

cutions. 883

• LoRA updates: only the recurrent CORE pro- 884

jection matrices receive rank-8 LoRA adapters; 885

Prelude/Coda blocks remain frozen. 886

• Parallel grading: calls to GPT-4.1 nano for 887

IQS/PS and final correctness are issued asyn- 888

chronously to maximise throughput. 889

B GPT-4.1 Nano PSM-Grader 890

Configuration 891

To generate dense, machine-parseable rewards we 892

invoke two gpt-4.1-nano instances: 893

• Graders A/B – called twice per trajectory and 894

11

https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=O3Yh9zFLip
https://openreview.net/forum?id=O3Yh9zFLip
https://openreview.net/forum?id=O3Yh9zFLip
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2402.03300
https://arxiv.org/abs/2504.05520
https://arxiv.org/abs/2504.05520
https://arxiv.org/abs/2504.05520
https://doi.org/10.48550/arXiv.2403.10704
https://doi.org/10.48550/arXiv.2403.10704
https://doi.org/10.48550/arXiv.2403.10704
https://doi.org/10.48550/arXiv.2403.10704
https://doi.org/10.48550/arXiv.2403.10704
https://doi.org/10.48550/arXiv.2502.01715
https://doi.org/10.48550/arXiv.2502.01715
https://doi.org/10.48550/arXiv.2502.01715
https://openreview.net/forum?id=0NphYCmgua
https://openreview.net/forum?id=0NphYCmgua
https://openreview.net/forum?id=0NphYCmgua
https://doi.org/10.48550/arXiv.2504.05419
https://doi.org/10.48550/arXiv.2504.05419
https://doi.org/10.48550/arXiv.2504.05419
https://doi.org/10.48550/arXiv.2504.05419
https://doi.org/10.48550/arXiv.2504.05419
https://arxiv.org/abs/2504.09696
https://arxiv.org/abs/2504.09696
https://arxiv.org/abs/2504.09696
https://arxiv.org/abs/2504.09696
https://arxiv.org/abs/2504.09696
https://doi.org/10.48550/arXiv.2502.19557
https://doi.org/10.48550/arXiv.2502.19557
https://doi.org/10.48550/arXiv.2502.19557

Parameter Graders A/B Grader C

Model ID gpt-4.1-nano
Temperature 0.0 0.0
Top-p 1.0 1.0
Max tokens 3000 200
Response format {type: “json_object”}

Table 5: API settings used for all PSM grading calls.

averaged, they assess Intrinsic Quality and895

Progress of every intermediate snapshot.896

• Grader C – checks the numerical correctness897

of the final answer.898

B.1 Generation hyper-parameters899

B.2 System prompt — Process-quality900

Graders (A/B)901

902
You are a meticulous and objective AI assistant specializing903

in evaluating mathematical reasoning. You will be given904
a math problem, its ground truth numerical final answer,905
and a series of up to `max_depth_generated` solutions (906

Output_1 to Output_`max_depth_generated`) generated by a907
student AI at increasing "reasoning depths".908

909
Your task is to evaluate EACH of the outputs individually and910

relative to the previous one. For each Output_k (where k911
is from 1 to `max_depth_generated`), assign scores on a912
0.0 to 2.0 scale as described below:913

914
1. **Extract Final Numerical Answer (EFA_k):** From Output_k,915

extract the final numerical answer. If no clear916
numerical answer is present, state "None".917

2. **Assess Correctness (AC_k):** Compare EFA_k with the918
Ground Truth Final Answer. State if it's "Correct" or "919
Incorrect".920

921
3. **Intrinsic Quality Score (IQS_k):** Assign a score from922

0.0 to 2.0 based on the standalone quality of Output_k.923
* **0.0 to 0.3:** Severely flawed.924
* **0.4 to 0.7:** Significantly flawed.925
* **0.8 to 1.2:** Mixed quality / Neutral.926
* **1.3 to 1.6:** Fair quality.927
* **1.7 to 1.9:** Good quality.928
* **2.0:** Excellent quality.929

930
4. **Progress Score (PS_k):** Assign a score from 0.0 to 2.0931

based on the change from Output_{k-1} to Output_k. (932
IQS_k below refers to the new 0.0-2.0 scale).933

* **For Output_1 (k=1):**934
* If AC_1 is "Correct": PS_1 = (0.5 + ((IQS_1 - 1.0) /935

2.0)) + 1.0936
* If AC_1 is "Incorrect": PS_1 = IQS_1937

* **For Output_k (k > 1):**938
* If AC_k is "Correct" AND AC_{k-1} was "Incorrect": PS_k939

= [1.7 to 2.0].940
* If AC_k is "Correct" AND AC_{k-1} was "Correct": PS_k =941

[1.1 to 1.3].942
* If AC_k is "Incorrect" AND AC_{k-1} was "Correct": PS_k943

= [0.0 to 0.3].944
* If AC_k is "Incorrect" AND AC_{k-1} was "Incorrect":945

PS_k = [0.7 to 1.2].946
947

You MUST output your evaluation as a JSON list, with one948
object per depth. Each object must contain: "depth_index949
", "extracted_final_answer", "answer_correctness", "IQS",950
and "PS". Do not include any other text outside the951

JSON list. If the response is a JSON object containing a952
key like "evaluations" which holds the list, please953

ensure the final output is just the list itself.954955

B.3 System prompt — Final-answer Grader C956

957
You are an objective AI assistant. You will be given a math 958

problem, its ground truth numerical final answer, and a 959
single proposed final solution text. Your task is to 960
extract the final numerical answer from the proposed 961
solution and determine if it matches the ground truth. 962
Output a JSON object containing only the key " 963
final_correctness_score" with a value of 1.0 if the 964
extracted answer matches the ground truth, and 0.0 965
otherwise (including if no answer can be reliably 966
extracted or if the solution is nonsensical). 967968

Usage. During training we call Graders A and 969

B in parallel for every latent depth, average the 970

returned IQS/PS values, then invoke Grader C on 971

the depth-r snapshot to produce the binary correct- 972

ness reward described in Section 3.2.2 of the main 973

paper. 974

12

	Introduction
	Related Work
	Methodology
	Huginn Recap and Notation
	Latent-State Supervised RL (LSRL)
	Reward design
	Generation workflow and prompt design
	GRPO objective

	Efficiency Techniques
	Efficient Intermediate State Caching for Process Supervision
	Parameter-Efficient Tuning with LoRA

	Training Loop Overview

	Experiment Design and Setup
	Tasks and Datasets
	Model Variants
	Training and Evaluation Procedure

	Results and Discussion
	Accuracy and Efficiency
	Qualitative Trajectory Analysis
	Shallow-Recurrence Ablation

	Conclusion and Future Work
	Pseudocode: PSM-Guided GRPO Training of Huginn
	GPT-4.1 Nano PSM-Grader Configuration
	Generation hyper-parameters
	System prompt — Process-quality Graders (A/B)
	System prompt — Final-answer Grader C

