

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A NOVEL ARCHITECTURE FOR INTEGRATING SHAPE CONSTRAINTS IN NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

This research proposes COMONet (Convex-Concave and Monotonicity-Constrained Neural Networks), a novel neural network architecture designed to embed inductive biases as shape constraints—specifically, monotonicity, convexity, concavity, and their combinations—into neural network training. Unlike previous models addressing only a subset of constraints, COMONet can comprehensively integrate and enforce eight distinct shape constraints: monotonic increasing, monotonic decreasing, convex, concave, convex increasing, convex decreasing, concave increasing, and concave decreasing. This integration is achieved through a unique partially connected structure, wherein inputs are grouped and selectively connected to specialized neural units employing either exponentiated or normal weights, combined with appropriate activation functions. Depending on the shape constraint required by each input, COMONet dynamically utilizes its full architecture or a partial configuration, providing significant flexibility. We further provide theoretical guarantees ensuring the strict enforcement of these constraints, while demonstrating that COMONet achieves performance comparable to existing benchmark methods. Moreover, our numerical experiments confirm that COMONet remains robust even under noisy conditions. Together, these results underscore COMONet’s potential to advance constrained neural network training as a practical and theoretically grounded approach.

1 INTRODUCTION

Neural networks often struggle to align with domain knowledge when trained solely through error minimization, particularly when relying exclusively on observed data (Feeders, 2000; Dugas et al., 2009; Murdock et al., 2020). Domain knowledge refers to widely recognized or pre-established information specific to a given field (Yu et al., 2010; Muralidhar et al., 2018), and incorporating it into neural networks can enhance their reliability and interpretability. One effective approach to achieving this is through shape constraints, which encode well-defined relationships between input and output features (Groeneboom & Jongbloed, 2014; Johnson & Jiang, 2018). Ensuring that neural networks satisfy these constraints is particularly important in critical domains such as finance (Einav et al., 2013; Nelson et al., 2017), healthcare (Shahid et al., 2019), and law (Shahid et al., 2019), where accurate and reliable predictions are essential for informed decision-making and system optimization. As a result, there is growing interest in developing methods that integrate domain knowledge into neural network training, ensuring that learned models not only fit the data but also comply with real-world constraints and established principles. Among various possible constraints, monotonicity and convexity (or concavity) are two fundamental shape constraints that serve as inductive biases and are widely applied in several different domains (Amos et al., 2017; Kim & Lee, 2024). Monotonicity refers to a property where the output consistently non-decreases or non-increases¹ as the input increases. Meanwhile, convexity (or concavity) describes a function where, for any two points, the output does not exceed (does not fall below) the straight line connecting them, indicating an increasing (decreasing) rate of change. Fig. 1(a) illustrates various types of shape constraints related to monotonic increase (decrease) and convexity (or concavity) that can be incorporated into a model. It is important to note that monotonicity does not necessarily imply convexity or concavity, and convex or concave functions

¹For readability, we refer to non-decreasing as increasing and non-increasing as decreasing throughout the rest of the paper.

Figure 1: (a) Types of shape constraints. (b) Capability comparison with benchmark methods (* Indicates structural guarantees that may not hold in practice)

can be monotonically increasing, decreasing, or non-monotonic. Additionally, multiple distinct shape constraints can be independently and simultaneously imposed within a model.

Recent studies have shown growing interest in monotonic neural networks (Liu et al., 2020; Sivaraman et al., 2020; Runje & Shankaranarayana, 2023; Kim & Lee, 2024) and convex neural networks (Amos et al., 2017; Gupta et al., 2018), motivating various efforts to embed such properties into neural architectures. While substantial progress has been made in enforcing either monotonicity or convexity (or concavity) individually, research that jointly guarantees both types of constraints within a single model remains limited. Although several prior works attempt to incorporate multiple constraints, they often fail to cover all cases illustrated in Fig. 1(a) or to provide strict architectural guarantees. **Mixed shape constraints**—convexity, concavity, and monotonicity applied to different subsets of variables—naturally arise in engineered systems such as HVAC control (Zhang et al., 2017), concrete strength (Yeh, 2006), network resource allocation (Kelly et al., 1998), portfolio optimization (Markowitz, 2008), asset pricing (Gu et al., 2020; Fama & French, 2015; Breuer & Windisch, 2019) and physical dynamics (Goldstein et al., 1950; Spong et al., 2006; Armstrong-Hélouvy et al., 1994). These constraints are essential for safety, stability, and physical validity, and violations often lead to infeasible or unsafe behavior. In domains where strict adherence to shape constraints is critical, even small violations of monotonicity or convexity can result in unreliable predictions, reduced interpretability, and the loss of theoretical guarantees (Kim & Lee, 2024; Liu et al., 2020) or **impact fairness considerations** (Wang & Gupta, 2020). Fig. 1(b) compares existing methods, including ours, and highlights that most approaches cannot integrate all required shape behaviors when monotonicity and convexity (or concavity) must coexist.

To address these challenges, we propose COMONet (Convex-Concave and Monotonicity Constrained Neural Network), a novel yet simple neural network architecture designed to incorporate various shape constraints related to monotonicity and convexity within a single model. **COMONet employs a partially connected structure, where input features are grouped and selectively connected to various types of specially designed units.** Each unit utilizes either exponentiated or standard weights in combination with carefully chosen activation functions. This architecture enables the model to effectively learn diverse shape constraints while strictly enforcing all imposed constraints, thereby overcoming the limitations of existing approaches. Furthermore, depending on the types and composition of shape constraints that the entire set of input features must satisfy, COMONet can flexibly utilize either its full structure or only a partial configuration. This flexibility allows the model to enforce monotonicity, convexity (or concavity), or their combination as needed, ensuring strict compliance with the specified constraints.

2 RELATED WORK

Monotonic neural networks: Research on monotonic neural networks can be broadly categorized into two groups, regularization-based approaches and architecture-based approaches. The first group enforces monotonicity using various regularization techniques. For example, Certified MNN (Liu et al., 2020) applies penalties to partial derivatives, while COMET (Sivaraman et al., 2020) augments the dataset with so-called counter-examples for instances that violate monotonicity. These approaches have limitations, as they may not fully enforce monotonicity without strong regularization and often rely on external solvers such as MILP (Gurobi Optimization, LLC, 2023) and SMT (Barrett & Tinelli, 2018). The second group consists of hand-designed neural network architectures that inherently

108 guarantee monotonicity. Methods such as HLL (Yanagisawa et al., 2022), LMN (Nolte et al., 2022),
 109 Constrained MNN (Runje & Shankaranarayana, 2023), and SMNN (Kim & Lee, 2024) belong to
 110 this category. While some of these approaches are theoretically proven to ensure monotonicity,
 111 their restricted structures can lead to reduced predictive performance. As shown in Fig. 1(b), monotonic
 112 neural networks cannot naturally incorporate convexity or concavity, as they are explicitly designed
 113 to enforce monotonicity alone.

114 **Convex neural networks:** Convexity is a valuable property in model training, as it facilitates
 115 optimization, design, and control (Chen et al., 2018; Yang & Bequette, 2021). Due to these advantages,
 116 research on convex neural networks has gained significant interest. One of the earliest studies in this
 117 field introduced ICNN (Amos et al., 2017), which later inspired various extensions and modifications.
 118 For example, one extension leverages the difference between convex and concave components to
 119 approximate more complex functions (Sankaranarayanan & Rengaswamy, 2022). GON (Zhao et al.,
 120 2022) applied ICNN to optimization tasks, while FCNN (Pfrommer et al., 2024) was developed to
 121 enhance robustness against adversarial attacks. Additionally, a faster learning method for ICNN was
 122 proposed by introducing a novel initialization strategy (Hoedt & Klambauer, 2024). Expanding the
 123 concept of convexity, recent studies have explored monotonic-convexity, which refers to functions
 124 that are both monotonically increasing (decreasing) and convex (concave). **An extension of convexity**
 125 **has also led to structures that combine monotonicity with convexity (or concavity), with SCNN**
 126 **(Gupta et al., 2018) being a representative example.** However, SCNN can handle only convex or
 127 concave shapes and cannot model functions that are monotonic yet neither convex nor concave, such
 128 as $x + \sin(x)$. Moreover, it is unable to capture joint convex-concave interactions, where convex and
 129 concave variables coexist within the same function.

130 **Shape constrained neural networks:** Among existing approaches, PenDer (Gupta et al., 2021)
 131 and Shape-Constrained Lattice models (SCL) (Gupta et al., 2018) most closely support the full set of
 132 constraints in Fig. 1(a), but both have structural limitations. PenDer uses regularization, encouraging
 133 but not guaranteeing constraint satisfaction; violations must be detected post hoc rather than prevented.
 134 SCL enforces convexity, concavity, and monotonicity through a discretized lattice parameterization.
 135 Although the lattice structure can theoretically satisfy these constraints, its resolution induces a
 136 trade-off between computational cost and approximation fidelity. To ease this burden, recent work
 137 trains multiple low-dimensional lattices over randomly selected feature subsets and combines them
 138 via an ensemble (Milani Fard et al., 2016; Gupta et al., 2016). Training further requires projected
 139 gradient updates over a large number of linear inequality constraints, which grows rapidly with the
 140 lattice resolution. SCL implementations therefore rely on stochastic constraint sampling (Cotter
 141 et al., 2016), projecting only a small subset at each iteration. Constraint satisfaction may not be
 142 guaranteed at every training step, and temporary violations can occur before convergence. Moreover,
 143 lattice interpolation supports per-feature constraints but cannot model joint convex or joint concave
 144 curvature, which is essential in many optimization or curvature-sensitive tasks (Gupta et al., 2018).
 145 These limitations motivate a unified, end-to-end differentiable framework that guarantees all shape
 146 constraints without approximate projections or post-hoc verification.

3 SHAPE CONSTRAINTS

147 We consider a continuous, differentiable multivariate function $f: [0, 1]^d \rightarrow \mathbb{R}$. We **consider** three
 148 classes of local shape constraints—*partial (joint) convexity*, *partial (joint) concavity* and *partial*
 149 *monotonicity*—that apply to subsets of the input coordinates. Let $[d] = \{1, \dots, d\}$ and we denote
 150 vectors in \mathbb{R}^d by bold lowercase letters (e.g., \mathbf{x}, \mathbf{t}) and index-sets by calligraphic uppercase letters
 151 (e.g., $\mathcal{CV}, \mathcal{MC}$). To impose distinct shape constraints on different input dimensions, we partition the
 152 coordinates of $\mathbf{x} \in \mathbb{R}^d$ into six disjoint groups:

$$153 \quad \mathbf{x} = (\mathbf{x}_{cv}, \mathbf{x}_{mv}, \mathbf{x}_{cc}, \mathbf{x}_{mc}, \mathbf{x}_{mn}, \mathbf{x}_u) \in \mathbb{R}^{|\mathcal{CV}|} \times \mathbb{R}^{|\mathcal{MV}|} \times \mathbb{R}^{|\mathcal{CC}|} \times \mathbb{R}^{|\mathcal{MC}|} \times \mathbb{R}^{|\mathcal{MN}|} \times \mathbb{R}^{|\mathcal{U}|},$$

154 where, $\mathcal{CV} \cup \mathcal{MV} \cup \mathcal{CC} \cup \mathcal{MC} \cup \mathcal{MN} \cup \mathcal{U} = [d]$. Each index-set enforces a particular constraint on
 155 $f: \mathcal{CV}$ (convex only), \mathcal{MV} (monotonic + convex), \mathcal{CC} (concave only), \mathcal{MC} (monotonic + concave),
 156 \mathcal{MN} (monotonic only), and \mathcal{U} (unconstrained). Further, $\mathcal{V} = \mathcal{CV} \cup \mathcal{MV}$, $\mathcal{C} = \mathcal{CC} \cup \mathcal{MC}$, $\mathcal{M} =$
 157 $\mathcal{MN} \cup \mathcal{MV} \cup \mathcal{MC}$. represents the set contains each, all convex, concave and monotonic features.

158 **Partial convexity and partial joint convexity:** Partition $\mathbf{x} = (\mathbf{x}_v, \mathbf{x}_{\neg v}) \in \mathbb{R}^d$ with $\mathbf{x}_v \in \mathbb{R}^{|\mathcal{V}|}$ and
 159 $\mathbf{x}_{\neg v} \in \mathbb{R}^{d-|\mathcal{V}|}$. For each coordinate $i \in \mathcal{V}$, write $\mathbf{x} = (x_i, \mathbf{x}_{\neg i})$, where $\mathbf{x}_{\neg i}$ denotes all coordinates
 160 except x_i . We say that f is *partially convex* in coordinate x_i iff, for any fixed $\mathbf{x}_{\neg i}$, any $x_i, x'_i \in \mathbb{R}$,
 161 and any $\lambda \in [0, 1]$, $f(\lambda x_i + (1 - \lambda)x'_i, \mathbf{x}_{\neg i}) \leq \lambda f(x_i, \mathbf{x}_{\neg i}) + (1 - \lambda) f(x'_i, \mathbf{x}_{\neg i})$. Further, we

Figure 2: Structure of COMONet that has 3 hidden layers.

say f is *partially joint convex* on \mathbf{x}_v iff, for any fixed $\mathbf{x}_{\neg v}$ and all $\mathbf{x}_v, \mathbf{x}'_v \in \mathbb{R}^{|\mathcal{V}|}$ and $\lambda \in [0, 1]$, $f(\lambda \mathbf{x}_v + (1 - \lambda) \mathbf{x}'_v, \mathbf{x}_{\neg v}) \leq \lambda f(\mathbf{x}_v, \mathbf{x}_{\neg v}) + (1 - \lambda) f(\mathbf{x}'_v, \mathbf{x}_{\neg v})$.

Partial concavity and partial joint concavity. Partition $\mathbf{x} = (\mathbf{x}_c, \mathbf{x}_{\neg c}) \in \mathbb{R}^d$ with $\mathbf{x}_c \in \mathbb{R}^{|\mathcal{C}|}$ and $\mathbf{x}_{\neg c} \in \mathbb{R}^{d-|\mathcal{C}|}$. For each coordinate $i \in \mathcal{C}$, write $\mathbf{x} = (x_i, \mathbf{x}_{\neg i})$, where $\mathbf{x}_{\neg i}$ denotes all coordinates except x_i . We say that f is *partially concave* in coordinate x_i iff, for any fixed $\mathbf{x}_{\neg i}$, any $x_i, x'_i \in \mathbb{R}$, and any $\lambda \in [0, 1]$, $f(\lambda x_i + (1 - \lambda) x'_i, \mathbf{x}_{\neg i}) \geq \lambda f(x_i, \mathbf{x}_{\neg i}) + (1 - \lambda) f(x'_i, \mathbf{x}_{\neg i})$. Further, we say f is *partially joint concave* on \mathbf{x}_c iff, for any fixed $\mathbf{x}_{\neg c}$, any $\mathbf{x}_c, \mathbf{x}'_c \in \mathbb{R}^{|\mathcal{C}|}$, and any $\lambda \in [0, 1]$, $f(\lambda \mathbf{x}_c + (1 - \lambda) \mathbf{x}'_c, \mathbf{x}_{\neg c}) \geq \lambda f(\mathbf{x}_c, \mathbf{x}_{\neg c}) + (1 - \lambda) f(\mathbf{x}'_c, \mathbf{x}_{\neg c})$.

Partial monotonicity: Partition $\mathbf{x} = (\mathbf{x}_m, \mathbf{x}_{\neg m}) \in \mathbb{R}^d$ with $\mathbf{x}_m \in \mathbb{R}^{|\mathcal{M}|}$, $\mathbf{x}_{\neg m} \in \mathbb{R}^{d-|\mathcal{M}|}$. We say f is *partially monotonic increasing* on \mathbf{x}_m iff, $\frac{\partial f}{\partial x_i} \geq 0, \forall i \in |\mathcal{M}|$. And, we say f is *partially monotonic decreasing* on \mathbf{x}_m iff, $\frac{\partial f}{\partial x_i} \leq 0, \forall i \in |\mathcal{M}|$. (For monotonicity, enforcing monotonicity on each variable individually guarantees joint monotonicity.)

By combining the definitions of partial monotonicity (increasing or decreasing) with partial convexity (or concavity), we can specify all eight shape-constraint types depicted in Fig. 1(a).

4 PROPOSED METHOD

Fundamental units of COMONet: A key aspect of our approach is employing five distinct unit types to effectively integrate and enforce diverse shape constraints. These units incorporate either exponentiated or conventional weights, using ReLU or capped ReLU- n (Liew et al., 2016) as activation functions. For any real scalar z , we define $\text{ReLU} = (z)_+ = \max(0, z)$ and $\text{ReLU-}n = (z)_+^n = \min\{n, \max(0, z)\}$. The equations below define the five units, each of which takes the vector \mathbf{t} as input:

$$\text{convex unit} := h_{\text{conv}}(\mathbf{t}) = (\exp(\mathbf{W})^\top \mathbf{t} + \mathbf{b})_+ \quad (1)$$

$$\text{concave unit} := h_{\text{conc}}(\mathbf{t}) = -(-(\exp(\mathbf{W})^\top \mathbf{t} + \mathbf{b}))_+ \quad (2)$$

$$\text{monotonic unit} := h_{\text{mono}}(\mathbf{t}) = (\exp(\mathbf{W})^\top \mathbf{t} + \mathbf{b})_+^n \quad (3)$$

$$\text{relu unit} := h_{\text{relu}}(\mathbf{t}) = (\mathbf{W}^\top \mathbf{t} + \mathbf{b})_+ \quad (4)$$

$$\text{ref-relu unit} := h_{\text{ref-relu}}(\mathbf{t}) = -(-(\mathbf{W}^\top \mathbf{t} + \mathbf{b}))_+ \quad (5)$$

h_{conv} , h_{conc} and h_{mono} utilize exponentiated weights (Zhang & Zhang, 1999; Agarwal et al., 2021; Dinh et al., 2016) to constraint reparametrized weight to be positive. h_{mono} employs $(z)_+^n$ which contains both convex and concave hinge components. Further, h_{conc} and $h_{\text{ref-relu}}$ employ point-symmetric variants of ReLU, $-(-z)_+$ and ReLU- n , $-(-z)_+^n$. We adopt ReLU and ReLU- n by default, using ReLU as our baseline for its computational efficiency, resilience to vanishing gradients, and piecewise linear sparsity that accelerates convergence and boosts generalization (Nair & Hinton, 2010; Glorot et al., 2011). As shown in Appendix G.1, any activation functions meeting the required

characteristics can be used instead. Each fundamental unit defined above satisfies the following properties, as formalized in the lemmas below:

Lemma 4.1. Let $h_{\text{conv}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{conv}}(\mathbf{t})]_j = (\exp(\mathbf{w}_j)^\top \mathbf{t} + b_j)_+$. Then, $\forall j \in [k]$, f_j is **jointly** convex in \mathbf{t} and f_j is coordinatewise increasing, i.e. $\frac{\partial f_j}{\partial t_i} \geq 0, \forall i \in [d]$.

Lemma 4.2. Let $h_{\text{relu}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{relu}}(\mathbf{t})]_j = (\mathbf{w}_j^\top \mathbf{t} + b_j)_+$. Then, $\forall j \in [k]$, f_j is **jointly** convex in \mathbf{t} .

Lemma 4.3. Let $h_{\text{conc}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{conc}}(\mathbf{t})]_j = -(-\exp(\mathbf{w}_j)^\top \mathbf{t} - b_j)_+$. Then, $\forall j \in [k]$, f_j is **jointly** concave in \mathbf{t} and coordinatewise increasing, i.e. $\frac{\partial f_j}{\partial t_i} \geq 0, \forall i \in [d]$.

Lemma 4.4. Let $h_{\text{ref-relu}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{ref-relu}}(\mathbf{t})]_j = -(-\mathbf{w}_j^\top \mathbf{t} - b_j)_+$. Then, $\forall j \in [k]$, f_j is **jointly** concave in \mathbf{t} .

Lemma 4.5. Let $h_{\text{mono}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{mono}}(\mathbf{t})]_j = (\exp(\mathbf{w}_j)^\top \mathbf{t} + b_j)_+^n$. Then, $\forall j \in [k]$, f_j is coordinatewise increasing in \mathbf{t} , i.e. $\frac{\partial f_j}{\partial t_i} \geq 0, \forall i \in [d]$.

Detailed proofs for lemma 4.3-4.5 are provided at Appendix A.

Network structure: The proposed architecture, illustrated in Fig. 2, **adopts a selectively connected design that routes information through designated subsets of connections**. This structure is conceptually similar to the architectures proposed in (Amos et al., 2017) and (Kim & Lee, 2024), which also utilize partially connected designs. Such a design ensures that the specific properties of individual input variable groups are preserved, while simultaneously allowing the model to effectively capture the interactions among all input variables. Let $h^{(i)}$ be the i -th hidden layer. Then the overall formulation of COMONet, which employs the five distinct types of units with depth l defined above, is presented below:

When $i = 1$,

$$h^{(1)} = [h_{\text{relu},cv}^{(1)}(\mathbf{x}_{cv}), h_{\text{conv}}^{(1)}(\mathbf{x}_{mv}), h_{\text{ref-relu}}^{(1)}(\mathbf{x}_{cc}), h_{\text{conc}}^{(1)}(\mathbf{x}_{mc}), h_{\text{mono}}^{(1)}(\mathbf{x}_{mn}), h_{\text{relu},u}^{(1)}(\mathbf{x}_u)]. \quad (6)$$

When $i = 2$,

$$h_{\text{conv}}^{(2)} = h_{\text{conv}}([h_{\text{relu},cv}^{(1)}(\mathbf{x}_{cv}), h_{\text{conv}}^{(1)}(\mathbf{x}_{mv}), h_{\text{mono}}^{(1)}(\mathbf{x}_{mn}), h_{\text{relu},u}^{(1)}(\mathbf{x}_u)]) \quad (7)$$

$$h_{\text{conc}}^{(2)} = h_{\text{conc}}([h_{\text{ref-relu}}^{(1)}(\mathbf{x}_{cc}), h_{\text{conc}}^{(1)}(\mathbf{x}_{mc}), h_{\text{mono}}^{(1)}(\mathbf{x}_{mn}), h_{\text{relu},u}^{(1)}(\mathbf{x}_u)]) \quad (8)$$

$$h_{\text{mono}}^{(2)} = h_{\text{mono}}([h_{\text{mono}}^{(1)}(\mathbf{x}_{mn}), h_{\text{relu},u}^{(1)}(\mathbf{x}_u)]) \quad (9)$$

$$h_{\text{relu}}^{(2)} = h_{\text{relu}}([h_{\text{relu},u}^{(1)}(\mathbf{x}_u)]) \quad (10)$$

$$h^{(2)} = [h_{\text{conv}}^{(2)}, h_{\text{conc}}^{(2)}, h_{\text{mono}}^{(2)}, h_{\text{relu}}^{(2)}] \quad (11)$$

When $i \geq 3$,

$$h_{\text{conv}}^{(i)} = h_{\text{conv}}([h_{\text{conv}}^{(i-1)}, h_{\text{mono}}^{(i-1)}, h_{\text{relu}}^{(i-1)}]) \quad (12)$$

$$h_{\text{conc}}^{(i)} = h_{\text{conc}}([h_{\text{conc}}^{(i-1)}, h_{\text{mono}}^{(i-1)}, h_{\text{relu}}^{(i-1)}]) \quad (13)$$

$$h_{\text{mono}}^{(i)} = h_{\text{mono}}([h_{\text{mono}}^{(i-1)}, h_{\text{relu}}^{(i-1)}]) \quad (14)$$

$$h_{\text{relu}}^{(i)} = h_{\text{relu}}([h_{\text{relu}}^{(i-1)}]) \quad (15)$$

$$h^{(i)} = [h_{\text{conv}}^{(i)}, h_{\text{conc}}^{(i)}, h_{\text{mono}}^{(i)}, h_{\text{relu}}^{(i)}] \quad (16)$$

Let $h^{(l)}$ the output vector of l th hidden layer, and $f(\mathbf{x})$ be the output node in a fully connected output layer, then,

$$f(\mathbf{x}) = \exp(\mathbf{W})^\top h^{(l)} + \mathbf{b} \quad (17)$$

Figure 3: **Configuration examples:** (a) Configuration of COMONet when the input consists only of \mathbf{x}_{cv} and \mathbf{x}_u , (b) Configuration of COMONet when the input consists only of \mathbf{x}_{mn} and \mathbf{x}_u .

Where, $\exp(\mathbf{W})$ and \mathbf{b} are the exponentiated weight matrix and bias vector between l th hidden layer and output layer. Although we present the formulation with a single output node, it naturally extends to multiple output nodes without issue. The above formulation enables COMONet to train a neural network that enforces the specified constraints on each variable. Monotonically decreasing features in $\mathcal{MV}, \mathcal{MC}, \mathcal{MN}$ are multiplied by -1 before training—transforming them into increasing inputs—and their original sign is restored at inference, enabling seamless integration with other shape constraints.

Shape-constraint guarantee of COMONet: Following the definitions in Section 3, we now demonstrate that COMONet satisfies the convexity, concavity, and monotonicity properties. The proofs of these theorems proceed by invoking the lemma 4.3-4.5 that characterize each unit’s properties.

Theorem 4.6 (Convexity of COMONet). *Let $f(\mathbf{x})$ be the proposed COMONet, which has l hidden layers. Partition the input $\mathbf{x} \in \mathbb{R}^d$ as $\mathbf{x} = (\mathbf{x}_v, \mathbf{x}_{\neg v})$, $\mathbf{x}_v = \{x_i \mid i \in \mathcal{V}\}$, $\mathcal{V} \subseteq [d]$. Then $f(\mathbf{x})$ is partially **jointly convex** with respect to \mathbf{x}_v .*

Theorem 4.7 (Concavity of COMONet). *Let $f(\mathbf{x})$ be the proposed COMONet, which has l hidden layers. Partition the input $\mathbf{x} \in \mathbb{R}^d$ as $\mathbf{x} = (\mathbf{x}_c, \mathbf{x}_{\neg c})$, $\mathbf{x}_c = \{x_i \mid i \in \mathcal{C}\}$, $\mathcal{C} \subseteq [d]$. Then $f(\mathbf{x})$ is partially **jointly concave** with respect to \mathbf{x}_c .*

Theorem 4.8 (Monotonicity of COMONet). *Let $f(\mathbf{x})$ be the proposed COMONet, which has l hidden layers. Partition the input $\mathbf{x} \in \mathbb{R}^d$ as $\mathbf{x} = (\mathbf{x}_m, \mathbf{x}_{\neg m})$, $\mathbf{x}_m = \{x_i \mid i \in \mathcal{M}\}$, $\mathcal{M} \subseteq [d]$. Then $f(\mathbf{x})$ is partially monotonic increasing with respect to \mathbf{x}_m . In particular, for each x_i with $i \in \mathcal{M}$, f is monotonic (increasing) in x_i .*

Detailed proofs for Theorem 4.6-4.8 are provided at Appendix A. Flow diagrams for each variable group appear in Appendix A. As illustrated in Appendix B, the unconstrained features \mathbf{x}_u are processed by multiple standard ReLU layers—without any shape constraints—allowing them to fully exploit their expressive capacity as they propagate through the network. Moreover, at each hidden layer, \mathbf{x}_u ’s activations are routed into the convex, concave, and monotonic units, enabling it to interact with all other variable groups. Finally, Appendix G.2 demonstrates the overall effectiveness of the proposed network structure.

High flexibility and modularity: Proposed model demonstrates high modularity and flexibility, enabling it to be easily tailored to accommodate various relationships and properties of input variables. This adaptability stems from the structural characteristics of the proposed method, which employs a partially connected structure. For instance, when the only constraint is convexity—i.e. we partition the input as $\mathbf{x} = (\mathbf{x}_{cv}, \mathbf{x}_u) \in \mathbb{R}^{|\mathcal{CV}|} \times \mathbb{R}^{|\mathcal{U}|}$. In this case, the resulting configuration—shown in Fig. 3 (a)—closely resembles the PICNN (Amos et al., 2017) architecture. Similarly, when the only constraint is monotonicity—i.e. we partition the input as $\mathbf{x} = (\mathbf{x}_{mn}, \mathbf{x}_u) \in \mathbb{R}^{|\mathcal{MN}|} \times \mathbb{R}^{|\mathcal{U}|}$, the resulting configuration—shown in Fig. 3(b)—aligns with the SMNN (Kim & Lee, 2024) architecture.

324 **Interaction layer:** To enhance the expressive power of COMONet while strictly preserving variable-
 325 wise convexity and concavity constraints, we introduce an optional interaction layer.
 326

327 $\mathcal{I}_{\text{cross}}(\mathbf{x}) = \sum_{i \in \mathcal{CC}} \sum_{j \in \mathcal{CV}} \alpha_{i,j} x_i x_j,$ (18)
 328

330 $\mathcal{I}_{\text{intra}}(\mathbf{x}) = \sum_{i \in \mathcal{CV}, j \in \mathcal{CV}, i \neq j} \beta_{i,j} x_i x_j + \sum_{i \in \mathcal{CC}, j \in \mathcal{CC}, i \neq j} \beta_{i,j} x_i x_j.$ (19)
 331

332 First, cross-group interactions in equation 18 enable communication between \mathcal{CV} and \mathcal{CC} , which
 333 are otherwise processed independently in COMONet. Introducing such interactions is essential for
 334 enhancing the representational capacity of the model. Second, Intra-group interactions in equation 19
 335 enable interactions within \mathcal{CV} and \mathcal{CC} . Although COMONet inherently imposes strong global
 336 curvature constraints such as joint convexity or joint concavity, some tasks benefit from coordinate-
 337 wise curvature constraints (*ceteris paribus*), and intra-group interactions provide a mechanism for
 338 this relaxation. A key mathematical requirement for any interaction function \mathcal{I} is that it must not
 339 modify the curvature assigned to each variable; Accordingly, its second-order partial derivatives with
 340 respect to each involved variable must identically vanish, ensuring that no sign change in curvature
 341 can occur under any input.

342 **Theorem 4.9.** *Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be twice differentiable and satisfy: for all $x_2 \in \mathbb{R}$, the mapping
 343 $x_1 \mapsto f(x_1, x_2)$ is convex, and for all $x_1 \in \mathbb{R}$, the mapping $x_2 \mapsto f(x_1, x_2)$ is concave. Then, if we
 344 decompose*

345
$$f(x_1, x_2) = g(x_1) + h(x_2) + \phi(x_1, x_2),$$

 346

347 where g depends only on x_1 and h depends only on x_2 , then the pure interaction term ϕ , which
 348 preserves the convex-concave assignments for any admissible choices of g and h , must be

349
$$\phi(x_1, x_2) = \alpha x_1 x_2, \quad \alpha \in \mathbb{R}.$$

 350

353 **Theorem 4.10.** *Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be twice differentiable and jointly convex (or jointly concave) in
 354 (x_1, x_2) , and assume that x_1 and x_2 belong to the same curvature group of COMONet (both \mathcal{CV} or
 355 both \mathcal{CC}). Consider adding the bilinear term*

356
$$\phi(x_1, x_2) = \beta x_1 x_2, \quad \beta \in \mathbb{R},$$

 357

358 and redefine the mapping by
 359

360
$$f(x_1, x_2) := f(x_1, x_2) + \phi(x_1, x_2).$$

 361

362 Then this addition preserves the assigned per-variable constraints while allowing the joint convexity
 363 (or concavity) in (x_1, x_2) to be relaxed.

364 Theorem 4.10 further establishes that such bilinear interactions preserve the constraints of each
 365 variable while allowing controlled relaxation from joint curvature to separate curvature (*ceteris*
 366 *paribus*). The proofs of Theorem 4.9 and Theorem 4.10 are provided in Appendix A, and further
 367 implementation details of the interaction layer appear in Appendix C.

370

5 NUMERICAL EXPERIMENTS

371

5.1 EXPERIMENTS ON SYNTHETIC DATASETS

373 We first evaluated the effectiveness of our proposed method through experiments on synthetic datasets,
 374 aiming to demonstrate that COMONet can satisfy various shape constraints. Since our method is
 375 theoretically proven to guarantee these constraints and has been shown to be adaptable to different
 376 types of inputs, testing all possible combinations of shape constraints introduced in Section 1 would
 377 be unnecessary. Instead, we conducted experiments on two synthetic datasets where different types
 of inputs were appropriately mixed and presented the results.

Figure 4: (a) Hyperbolic Paraboloid function (b) Contour plots of the fitted models by COMONet (Left) and MLP (Right) with respect to x_1 and x_2 when $\lambda = 0.05$

Convexity and Concavity: The well-known hyperbolic paraboloid shown in equation 20 and Fig. 4(a) was chosen because it exhibits both convexity and concavity. In equation 20, x_1 is a convex input, while x_2 is a concave input of y . To the best of our knowledge, with the exception of the Pender method, previous related studies have not addressed cases in which both convexity and concavity must be satisfied simultaneously. To demonstrate that COMONet accurately fits the function even in noisy environments, we introduced Gaussian noise ϵ and varied the noise level parameter λ .

$$y = (x_1 - 0.5)^2 - (x_2 - 0.5)^2 + \lambda\epsilon, \quad \epsilon \sim N(0, 1), x_i \in [0, 1], i = 1, 2, \quad \lambda \in \{0, 0.05, 0.1, 0.2\}. \quad (20)$$

Since the inputs are exclusively convex and concave, we utilized the COMONet structure shown in Appendix E.5. for this experiment. Specifically, the ReLU layer and the convex layer were applied to x_1 , while the reflected ReLU layer and the concave layer were used for x_2 . For comparison, a traditional MLP was employed as the baseline method. At each noise level, we generated 1,000 instances and split them into training (80%) and test (20%) sets.

The test mean squared errors (MSEs) are presented in Table 1. As shown in Table 1, MLP outperformed COMONet in the absence of noise. However, as the noise level increased, COMONet demonstrated better performance, with a smaller increase in MSE compared to MLP. This demonstrates that COMONet provides a robust fit to the function. More importantly, consider Fig. 4(b), which displays the contour plots of the fitted models from both methods. Even with a small amount of noise, MLP failed to preserve convexity and concavity, whereas our method consistently maintained these constraints. Although we omitted further visualizations, our method continues to satisfy them as noise levels increase.

Monotonicity and Convexity: We extended our experiment to a case with more shape constraints. Specifically, we designed a 4-dimensional example, with the function defined in equation 21.

$$y = \frac{2\pi x_1 + \sin(2\pi x_1)}{2\pi} + (x_2 - 0.5)^2 + e^{x_3} + \cos(2\pi x_4) + \lambda\epsilon, \quad \epsilon \sim N(0, 1). \quad (21)$$

$$x_i \in [0, 1], i = 1, 2, 3, 4, \quad \lambda \in \{0, 1, 2, 5, 10, 20\}.$$

As shown in equation 21, a distinct shape constraint was assigned to each input feature: x_1 is a monotonically increasing feature, x_2 is convex, x_3 is monotonic-convex, and x_4 is unconstrained in the noiseless setting. Similar to the previous experiment, we introduced Gaussian noise and controlled the noise level by adjusting the λ value. At each noise level, we generated 3,000 instances and split them into training (80%) and test (20%) sets. For comparison, two baseline methods were used in this experiment. In addition to the traditional MLP, we included a model referred to as ‘‘Same Structure’’ (shown in Appendix F.1) which shares the same architecture as COMONet but replaces all units with ReLU layers, meaning no shape constraints were enforced. To ensure a fair comparison, all models were constructed with an identical number of nodes per unit. The performance results in terms of MSE are presented in Fig. 5(a). The results indicate that MLP achieved the lowest training MSE

Figure 5: (a) MSEs from the experiments at different λ values. (left) Training MSEs, (middle) Test MSEs, (right) Denoised Test MSEs. (b) Contour plots in the x_1 - x_2 plane for $\lambda = 0$ (top) and $\lambda = 1$ (bottom), comparing outputs of COMONet, same structure, and MLP.

across all λ values, followed by the Same Structure model, while COMONet exhibited the highest training error. In contrast, for test MSE, COMONet consistently outperformed the other models, while MLP exhibited the highest error. This indicates that MLP overfits the noise during training, whereas our method does not. Notably, in the denoised test MSE—which evaluates performance in predicting the noise-free ground truth—COMONet maintained robust predictions even as λ increased. These results quantitatively confirm that the shape constraints enforced by COMONet not only mitigate the impact of noise but also significantly improve the model’s generalization performance.

Fig. 5(b) shows the contour plots of the fitted models for all three approaches. In the absence of noise, all models produced reasonable fits. However, even with a small noise level ($\lambda = 1$), the MLP and Same Structure models completely failed to satisfy the constraints, whereas COMONet successfully preserved monotonicity with respect to x_1 and convexity with respect to x_2 . This figure confirms that our method effectively maintains the imposed shape constraints.

Trustworthy test using LIME: Fig. 6 demonstrates that the proposed method prevents incorrect interpretations. It shows the LIME (Ribeiro et al., 2016) values for x_1 and x_3 at the different noise levels. Notice that x_1 is a monotonically increasing feature and x_3 is monotonic-convex, meaning their LIME values should always be positive for a correct interpretation. As shown in the figure, the LIME values for both x_1 and x_3 computed from the COMONet models are consistently positive, with low variance, which aligns with the expected interpretation. By contrast, LIME values from the MLP models fluctuate in sign and exhibit high variance. These results validate that embedding shape constraints yields more reliable interpretations.

5.2 EXPERIMENTS ON REAL-WORLD DATASETS

We now present the general performance level of our proposed method on real-world datasets through a comparative study with benchmark techniques. The study consists of two parts, comparison with monotonic neural networks and comparison with methods incorporating both monotonicity and convexity. For the first part, five datasets were used. The Auto MPG (UCI Machine Learning Repository, 1983–2021) and Blog Feedback (Spiliopoulou et al., 2014) datasets were used for regression tasks, while the Heart Disease (UCI Machine Learning Repository, 1988–2021), COMPAS (Angwin et al., 2016), and Loan Defaulter (Wendy Kan / Kaggle, 2024) datasets were used for classification tasks. The benchmark methods in this comparison include the most recent monotonic neural networks approaches reviewed in Section 2. For the second part, the Car Sales (hsinha53 / Kaggle, 2023), Puzzle Sales (dbahri / Kaggle, 2024a), and Wine Quality (dbahri / Kaggle, 2024b) datasets were used, all of which were designed for regression tasks. The benchmark methods selected for comparison were SCNN and PenDer, as they incorporate both convexity and monotonic-convexity constraints. For regression tasks, we reported metrics including mean squared error (MSEs) and root mean squared error (RMSE), while for classification tasks, we reported accuracy. Further details

Figure 6: LIME values for x_1 (Left) and x_3 (Right), with data sampled at x_2 and x_4 fixed at their mean values in the test dataset. The values are shown for COMONet (red) and MLP (blue) across different λ values.

486 Table 2: Results on real-world datasets for comparison with monotonic neural networks
487

Method	Auto MPG	Heart Disease	COMPAS	Blog Feedback	Loan Defaulter
	Test MSE ↓	Test Acc ↑	Test Acc ↑	Test RMSE ↓	Test Acc ↑
DLN You et al. (2017)	13.34 ± 2.42	0.86 ± 0.02	67.9 ± 0.3	0.161 ± 0.001	65.1 ± 0.2
Min-Max Net Daniels & Velikova (2010)	10.14 ± 1.54	0.75 ± 0.04	67.8 ± 0.1	0.163 ± 0.001	64.9 ± 0.1
Non-Neg-DNN	—	—	67.3 ± 0.9	0.168 ± 0.001	65.1 ± 0.1
COMET Sivaraman et al. (2020)	8.81 ± 1.81	0.86 ± 0.03	—	—	—
Certified MNN Liu et al. (2020)	—	—	$68.8 \pm 0.9\dagger$	0.158 ± 0.001	65.2 ± 0.1
LMN Nolte et al. (2022)	$7.58 \pm 1.20\dagger$	0.90 ± 0.02	$69.3 \pm 0.1\dagger$	0.160 ± 0.001	65.4 ± 0.0
Constrained MNN Runje & Shankaranarayana (2023)	8.37 ± 0.08	$0.89 \pm 0.00\dagger$	$69.2 \pm 0.2\dagger$	0.156 ± 0.001	$65.3 \pm 0.1\dagger$
SMNN Kim & Lee (2024)	$7.44 \pm 1.20\dagger$	$0.88 \pm 0.04\dagger$	$69.3 \pm 0.9\dagger$	0.150 ± 0.001	65.0 ± 0.1
COMONet (Ours)	7.38 ± 1.32	$0.87 \pm 0.04\dagger$	69.5 ± 1.0	0.153 ± 0.001	64.9 ± 0.1

494 Table 3: Results on real-world datasets for comparison with SCNN and PenDer
495

Method	Car Sales (Test MSE ↓)		Puzzle Sales (Test MSE ↓)		Wine Quality (Test MSE ↓)	
	(conv)	(conv, decr)	(conc)	(conc, incr)	(conc)	(conc, incr)
SCNN Gupta et al. (2018)	11093 ± 487	10880 ± 291	$9460 \pm 256\dagger$	9258 ± 319	6.32 ± 0.19	6.43 ± 0.18
PenDer Gupta et al. (2021)	$10411 \pm 107\dagger$	$10415 \pm 104\dagger$	$9428 \pm 113\dagger$	$9519 \pm 92\dagger$	5.19 ± 0.11	$5.27 \pm 0.20\dagger$
COMONet (Ours)	10391 ± 140	10410 ± 128	9409 ± 41	$9263 \pm 86\dagger$	$5.53 \pm 0.46\dagger$	5.26 ± 0.06

501 on the experiments and additional information about the datasets can be found in Appendix E. All
502 experiments in this section were conducted over multiple iterations, with the mean and standard
503 deviation reported. The best performance for each dataset is highlighted in bold, and dagger symbol
504 (\dagger) indicates statistical tie with the best-performing method. We consider two methods to be in a
505 statistical tie when their mean test MSE \pm one standard deviation intervals overlap.

506 **Comparison with monotonic neural networks:** The results shown in Table 2 represent the means
507 and standard deviations obtained from cross-validation. As shown in Table 2, our method generally
508 performed well, achieving the best performance on some datasets and remaining comparable to
509 other methods on the rest. Specifically, it achieved the best results for the Auto-MPG and COMPAS
510 datasets. For the Heart Disease dataset, it was statistically tied with the best-performing method. On
511 the Blog Feedback dataset, it ranked second. Although its ranking for the Loan Defaulter dataset was
512 lower, its accuracy remained within a reasonable range compared to other methods.

513 **Comparison with SCNN and PenDer:** Our experimental evaluation compares COMONet against
514 SCNN and PenDer on three real-world datasets—Car Sales, Puzzle Sales, and Wine Quality—under
515 two constraint settings per dataset: convex (concave) only, and convex (concave) monotonic. For each
516 dataset, we used the provided train/test split and averaged the test MSE over five independent runs
517 using the optimal hyperparameter settings found. Table 3 shows performance of the proposed method
518 and the comparison methods on these three datasets. **COMONet achieves the best Test MSE in four of**
519 **the six settings Car Sales (conv), (conv, decr), Puzzle Sales (conc) and Wine Quality (conc, incr), and**
520 **when accounting for statistical ties matches or outperforms all baselines across all six settings.** While
521 PenDer matches or outperforms across all datasets and settings, its shape-conformance metrics \mathcal{M}_k
522 and \mathcal{C}_k sometimes fall below 1, indicating that it fails to fully satisfy the prescribed constraints. Here,
523 \mathcal{M}_k and \mathcal{C}_k denote the proportions of samples satisfying monotonicity and convexity constraints
524 respectively (Gupta et al., 2021). For example, the convexity score on the Puzzle Sales dataset and
525 both the monotonicity and convexity scores on the Wine Quality dataset are 0.98 or 0.99—values
526 close to one but nevertheless indicative of incomplete constraint satisfaction. Table 8 in Appendix F.2
527 shows the detailed numerical results for PenDer’s performance and its constraint conformance. These
528 results demonstrate that COMONet not only delivers comparable or superior predictive performance
529 but also guarantees full adherence to the enforced shape constraints.

6 CONCLUSION

530 In this work, we introduced COMONet, a gradient-descent-trained neural architecture that embeds
531 domain knowledge as inductive biases—enforcing convexity, concavity, monotonicity, and their
532 combinations—while permitting selective application of these shape constraints per variable. Empirical
533 results on synthetic and real-world datasets demonstrate that COMONet not only matches or exceeds
534 the predictive performance of existing baselines but also guarantees strict adherence to the specified
535 constraints. However, COMONet requires a priori knowledge of each variable’s shape constraints,
536 meaning incomplete or erroneous domain information may impair its effectiveness. **In addition, while**
537 **COMONet focuses on global variable-wise shape constraints, extending the framework toward**
538 **conditional or interaction-dependent shape behaviors represents a technically challenging yet promising**
539 **direction.** Looking ahead, we will seek theoretical guarantees that COMONet serves as a universal
540 approximator for arbitrary functions under prescribed shape constraints and will explore its use as a
541 modular component in time-series and image-based tasks.

540 7 REPRODUCIBILITY STATEMENT
541

542 To ensure reproducibility of our work, we provide the full implementation of our experiments
 543 as supplementary material, enabling others to directly verify and replicate our results. Detailed
 544 descriptions of the experimental settings and procedures are included in Appendix E, covering
 545 datasets, preprocessing step, model configurations, and training protocols. In addition, all theoretical
 546 proofs supporting our methods are presented in Appendix A for completeness and clarity. Together,
 547 these resources are intended to facilitate transparent and reproducible validation of our findings.
 548

549 REFERENCES
550

551 Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
 552 and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
 553 *Advances in Neural Information Processing Systems*, 34:4699–4711, 2021.

554 Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In *International conference
 555 on machine learning*, pp. 146–155. PMLR, 2017.

556 Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There’s software used
 557 across the country to predict future criminals. And it’s biased against blacks. ProPublica, 23 May,
 558 2016.

559 Brian Armstrong-Hélouvry, Pierre Dupont, and Carlos Canudas De Wit. A survey of models, analysis
 560 tools and compensation methods for the control of machines with friction. *Automatica*, 30(7):
 561 1083–1138, 1994.

562 Clark Barrett and Cesare Tinelli. *Satisfiability modulo theories*. Springer, 2018.

563 Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

564 Matthias Breuer and David Windisch. Investment Dynamics and Earnings-Return Properties: A
 565 Structural Approach. *Journal of Accounting Research*, 57(3):639–674, 2019.

566 Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal Control Via Neural Networks: A Convex
 567 Approach. In *International Conference on Learning Representations*, 2018.

568 Andrew Cotter, Maya Gupta, and Jan Pfeifer. A light touch for heavily constrained SGD. In
 569 *Conference on Learning Theory*, pp. 729–771. PMLR, 2016.

570 Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks. *IEEE
 571 Transactions on Neural Networks*, 21(6):906–917, 2010.

572 dbahri / Kaggle. Puzzles Data. <https://www.kaggle.com/datasets/dbahri/puzzles>,
 573 2024a. accessed: 2025-05-05.

574 dbahri / Kaggle. Wine Ratings Data. <https://www.kaggle.com/datasets/dbahri/wine-ratings>, 2024b. accessed: 2025-05-05.

575 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv
 576 preprint arXiv:1605.08803*, 2016.

577 Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating
 578 Functional Knowledge in Neural Networks. *Journal of Machine Learning Research*, 10(6), 2009.

579 Liran Einav, Mark Jenkins, and Jonathan Levin. The impact of credit scoring on consumer lending.
 580 *The RAND Journal of Economics*, 44(2):249–274, 2013.

581 Eugene F Fama and Kenneth R French. A five-factor asset pricing model. *Journal of financial
 582 economics*, 116(1):1–22, 2015.

583 Ad J Feelders. Prior knowledge in economic applications of data mining. In *European Conference
 584 on Principles of Data Mining and Knowledge Discovery*, pp. 395–400. Springer, 2000.

594 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
 595 *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp.
 596 315–323. JMLR Workshop and Conference Proceedings, 2011.

597

598 Herbert Goldstein, Charles P Poole, and John Safko. *Classical mechanics*, volume 2. Addison-wesley
 599 Reading, MA, 1950.

600 Piet Groeneboom and Geurt Jongbloed. *Nonparametric estimation under shape constraints*. Cam-
 601 bridge University Press, 2014.

602

603 Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical asset pricing via machine learning. *The Review
 604 of Financial Studies*, 33(5):2223–2273, 2020.

605

606 Akhil Gupta, Lavanya Marla, Ruoyu Sun, Naman Shukla, and Arinbjörn Kolbeinsson. Pender:
 607 Incorporating shape constraints via penalized derivatives. In *Proceedings of the AAAI Conference
 608 on Artificial Intelligence*, volume 35, pp. 11536–11544, 2021.

609

610 Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander Mangylov,
 611 Wojciech Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated interpolated look-up
 612 tables. *Journal of Machine Learning Research*, 17(109):1–47, 2016.

613

614 Maya Gupta, Dara Bahri, Andrew Cotter, and Kevin Canini. Diminishing returns shape constraints
 615 for interpretability and regularization. *Advances in neural information processing systems*, 31,
 616 2018.

617

618 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL <https://www.gurobi.com>.

619

620 Pieter-Jan Hoedt and Günter Klambauer. Principled weight initialisation for input-convex neural
 621 networks. *Advances in Neural Information Processing Systems*, 36, 2024.

622

623 hsinha53 / Kaggle. Car Sales Data. <https://www.kaggle.com/datasets/hsinha53/car-sales/data>, 2023. accessed: 2025-05-05.

624

625 Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covariate
 626 shift. *arXiv preprint arXiv:1502.03167*, 2015.

627

628 Andrew L Johnson and Daniel R Jiang. Shape constraints in economics and operations research.
 629 *Statistical Science*, 33(4):527–546, 2018.

630

631 Frank P Kelly, Aman K Maulloo, and David Kim Hong Tan. Rate control for communication
 632 networks: shadow prices, proportional fairness and stability. *Journal of the Operational Research
 633 society*, 49(3):237–252, 1998.

634

635 Hyunho Kim and Jong-Seok Lee. Scalable Monotonic Neural Networks. In *The Twelfth International
 636 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=DjIsNDEOYX>.

637

638 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 639 arXiv:1412.6980*, 2014.

640

641 Shan Sung Liew, Mohamed Khalil-Hani, and Rabia Bakhteri. Bounded activation functions for
 642 enhanced training stability of deep neural networks on visual pattern recognition problems. *Neuro-
 643 computing*, 216:718–734, 2016.

644

645 Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks. *Advances
 646 in Neural Information Processing Systems*, 33:15427–15438, 2020.

647

648 Harry M Markowitz. *Portfolio selection: efficient diversification of investments*. Yale university press,
 649 2008.

650

651 Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and flexible
 652 monotonic functions with ensembles of lattices. *Advances in neural information processing
 653 systems*, 29, 2016.

648 Nikhil Muralidhar, Mohammad Raihanul Islam, Manish Marwah, Anuj Karpatne, and Naren Ra-
 649 makrishnan. Incorporating prior domain knowledge into deep neural networks. In *2018 IEEE*
 650 *international conference on big data (big data)*, pp. 36–45. IEEE, 2018.

651

652 Ryan J Murdock, Steven K Kauwe, Anthony Yu-Tung Wang, and Taylor D Sparks. Is domain
 653 knowledge necessary for machine learning materials properties? *Integrating Materials and*
 654 *Manufacturing Innovation*, 9:221–227, 2020.

655 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 656 *Proceedings of the 27th international conference on machine learning (ICML-10)*, pp. 807–814,
 657 2010.

658 David MQ Nelson, Adriano CM Pereira, and Renato A De Oliveira. Stock market’s price movement
 659 prediction with LSTM neural networks. In *2017 International joint conference on neural networks*
 660 (*IJCNN*), pp. 1419–1426. Ieee, 2017.

661

662 Niklas Nolte, Ouail Kitouni, and Mike Williams. Expressive Monotonic Neural Networks. In *The*
 663 *Eleventh International Conference on Learning Representations*, 2022.

664 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 665 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 666 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 667 2019.

668

669 Samuel Pfrommer, Brendon Anderson, Julien Piet, and Somayeh Sojoudi. Asymmetric certified
 670 robustness via feature-convex neural networks. *Advances in Neural Information Processing*
 671 *Systems*, 36, 2024.

672 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " Why should i trust you?" Explaining the
 673 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
 674 *on knowledge discovery and data mining*, pp. 1135–1144, 2016.

675

676 R Tyrrell Rockafellar. *Convex analysis*, volume 28. Princeton university press, 1997.

677 Davor Runje and Sharath M Shankaranarayana. Constrained monotonic neural networks. In *Internation-
 678 al Conference on Machine Learning*, pp. 29338–29353. PMLR, 2023.

679

680 Parameswaran Sankaranarayanan and Raghunathan Rengaswamy. CDiNN–Convex difference neural
 681 networks. *Neurocomputing*, 495:153–168, 2022.

682 Nida Shahid, Tim Rappon, and Whitney Berta. Applications of artificial neural networks in health
 683 care organizational decision-making: A scoping review. *PloS one*, 14(2):e0212356, 2019.

684

685 Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck. Counterexample-
 686 guided learning of monotonic neural networks. *Advances in Neural Information Processing*
 687 *Systems*, 33:11936–11948, 2020.

688

689 Myra Spiliopoulou, Lars Schmidt-Thieme, and Ruth Janning. *Data analysis, machine learning and*
 690 *knowledge discovery*. Springer, 2014.

691

692 Mark W Spong, Seth Hutchinson, Mathukumalli Vidyasagar, et al. *Robot modeling and control*,
 693 volume 3. Wiley New York, 2006.

694

695 UCI Machine Learning Repository. Auto MPG Data Set. <https://archive.ics.uci.edu/ml/datasets/auto+mpg>, 1983–2021. accessed: 2025-05-05.

696

697 UCI Machine Learning Repository. Heart Disease Data Set. <https://archive.ics.uci.edu/ml/datasets/Heart+Disease>, 1988–2021. accessed: 2025-05-05.

698

699 Serena Wang and Maya Gupta. Deontological ethics by monotonicity shape constraints. In *Internation-
 700 al conference on artificial intelligence and statistics*, pp. 2043–2054. PMLR, 2020.

701 Wendy Kan / Kaggle. Lending Club Loan Data. <https://www.kaggle.com/wendykan/lending-club-loan-data>, 2024. accessed: 2025-05-05.

702 Hiroki Yanagisawa, Kohei Miyaguchi, and Takayuki Katsuki. Hierarchical Lattice Layer for Partially
703 Monotone Neural Networks. In *Advances in Neural Information Processing Systems*, 2022.
704

705 Shu Yang and B Wayne Bequette. Optimization-based control using input convex neural networks.
706 *Computers & Chemical Engineering*, 144:107143, 2021.
707

708 I-Cheng Yeh. Generalization of strength versus water–cementitious ratio relationship to age. *Cement*
709 and *Concrete Research*, 36(10):1865–1873, 2006.
710

711 Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya Gupta. Deep lattice networks and
712 partial monotonic functions. *Advances in neural information processing systems*, 30, 2017.
713

714 Ting Yu, Simeon Simoff, and Tony Jan. VQSVM: a case study for incorporating prior domain
715 knowledge into inductive machine learning. *Neurocomputing*, 73(13-15):2614–2623, 2010.
716

717 Hong Zhang and Zhen Zhang. Feedforward networks with monotone constraints. In *IJCNN'99.*
718 *International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339)*, volume 3,
719 pp. 1820–1823. IEEE, 1999.
720

721 Xuan Zhang, Wenbo Shi, Bin Yan, Ali Malkawi, and Na Li. Decentralized and distributed temperature
722 control via HVAC systems in energy efficient buildings. *arXiv preprint arXiv:1702.03308*, 2017.
723

724 Sen Zhao, Erez Louidor, and Maya Gupta. Global optimization networks. In *International Conference*
725 *on Machine Learning*, pp. 26927–26957. PMLR, 2022.
726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A PROOFS**
 757

758 **Lemma 4.1** Let $h_{\text{conv}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{conv}}(\mathbf{t})]_j =$
 759 $(\exp(\mathbf{w}_j)^\top \mathbf{t} + b_j)_+$. Then, $\forall j \in [k]$, f_j is **jointly** convex in \mathbf{t} and f_j is coordinatewise increasing,
 760 i.e. $\frac{\partial f_j}{\partial t_i} \geq 0, \forall i \in [d]$.
 761

763 *Proof.* Write the vector-valued map as $f_j(\mathbf{t}) = \sigma(g(\mathbf{t}))$ with
 764

$$765 \quad g(\mathbf{t}) = \exp(\mathbf{w}_j)^\top \mathbf{t} + b_j \in \mathbb{R}^k, \quad \sigma(\mathbf{z}) = (\mathbf{z})_+ = \max(0, \mathbf{z}) \quad (\text{applied element-wise}).$$

766 Where $\exp(\mathbf{w}_j)^\top$ and b_j indicates j th column vector of weight matrix $\exp(\mathbf{W})$ and j th elements
 767 of bias vector \mathbf{b} . g is an affine map, hence **jointly** convex in \mathbf{t} (Boyd & Vandenberghe, 2004;
 768 Rockafellar, 1997). And $\exp(\mathbf{W})$ has strictly positive weights, so
 769

$$770 \quad \nabla g_j(\mathbf{t}) = \exp(\mathbf{w}_j) \geq 0. \quad (\text{element-wise})$$

771 And $\sigma : \mathbb{R}^k \rightarrow \mathbb{R}^k$ is convex and increasing coordinatewise (since $\sigma'(z) \in \{0, 1\} \geq 0$). By the
 772 standard result that composition of a convex affine map and a convex increasing scalar function
 773 is **jointly** convex (Rockafellar, 1997). $f_j(\mathbf{t}) := [h_{\text{conv}}(\mathbf{t})]_j = (\exp(\mathbf{w}_j)^\top \mathbf{t} + b_j)_+$ is convex.
 774 Furthermore, by the chain rule,
 775

$$776 \quad \frac{\partial f_j}{\partial x_i} = \sigma'(g(\mathbf{t})) \cdot \exp(w_{j,i}) \geq 0,$$

777 where $\exp(w_{j,i})$ refers i th elements of $\exp(\mathbf{w}_j)$, showing coordinate-wise monotonicity. So, $f_j(\mathbf{t})$
 778 is **jointly** convex and coordinate-wise monotonically increasing in \mathbf{t} . \square

781 **Lemma 4.2** Let $h_{\text{relu}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{relu}}(\mathbf{t})]_j =$
 782 $(\mathbf{w}_j^\top \mathbf{t} + b_j)_+$. Then, $\forall j \in [k]$, f_j is **jointly** convex in \mathbf{t} .
 783

785 *Proof.* Write the vector-valued map as $f_j(\mathbf{t}) = \sigma(g(\mathbf{t}))$ with
 786

$$787 \quad g(\mathbf{t}) = \mathbf{w}_j^\top \mathbf{t} + b_j \in \mathbb{R}^k, \quad \sigma(\mathbf{z}) = (\mathbf{z})_+ = \max(0, \mathbf{z}) \quad (\text{applied element-wise}).$$

788 Where \mathbf{w}_j^\top and b_j indicates j th column vector of weight matrix $\exp(\mathbf{W})$ and j th elements of bias
 789 vector \mathbf{b} . g is affine in \mathbf{t} , hence **jointly** convex. And $\sigma : \mathbb{R}^k \rightarrow \mathbb{R}^k$ is convex and coordinate-wise
 790 increasing since, $\sigma'(z) \in \{0, 1\} \geq 0$. By the standard result that composition of a convex affine map
 791 and a convex increasing scalar function is **jointly** convex. By standard results on composition, $f_j(\mathbf{t})$
 792 is **jointly** convex in \mathbf{t} . \square

795 **Theorem 4.6.** Let $f(\mathbf{x})$ be the proposed COMONet, which has l hidden layers. Partition the input
 796 $\mathbf{x} \in \mathbb{R}^d$ as $\mathbf{x} = (\mathbf{x}_v, \mathbf{x}_{\neg v})$, $\mathbf{x}_v = \{x_i \mid i \in \mathcal{V}\}$, $\mathcal{V} \subseteq [d]$. Then $f(\mathbf{x})$ is *partially* **jointly** convex
 797 with respect to \mathbf{x}_v .
 798

800 *Proof.* Let $\mathbf{x} = (\mathbf{x}_v, \mathbf{x}_{\neg v})$, $\mathbf{x}_v = (\mathbf{x}_{cv}, \mathbf{x}_{mv})$ so that equivalently $\mathbf{x} = (\mathbf{x}_{cv}, \mathbf{x}_{mv}, \mathbf{x}_{\neg v})$. In this
 801 composition, convex features \mathbf{x}_{cv} feeds into a h_{relu} -then- h_{conv} chain, where as convex-monotonic
 802 features \mathbf{x}_{mv} feeds into a h_{conv} chain. **We show that every layer is jointly convex in \mathbf{x}_v , which implies**
 803 **that the entire network is jointly convex in \mathbf{x}_v .** There are two cases:

804 Case 1: convex features, \mathbf{x}_{cv}

805 First layer on \mathbf{x}_{cv} is h_{relu} :

$$806 \quad \mathbf{z}^{(1)} = h_{\text{relu}}^{(1)}(\mathbf{x}_{cv}),$$

807 which by lemma 4.2 is **jointly** convex in \mathbf{x}_{cv} . Subsequent layers along any path to the output are
 808 convex-units:
 809

$$\mathbf{z}^{(i)} = h_{\text{conv}}^{(i)}(\mathbf{z}^{(i-1)}, \dots),$$

810 which by lemma 4.1 is also **jointly** convex and increase in x_i . Composition of a convex map and
 811 an affine/increasing convex map remains convex. Hence any path from \mathbf{x}_{cv} through h_{relu} -then- h_{conv}
 812 units which follows the fully connected layer (affine transform) :

$$813 \quad 814 \quad f = \exp(\mathbf{w}_j)^\top \mathbf{z}^{(l)} + b_j$$

815 is **jointly** convex in \mathbf{x}_{cv} .

816 Case 2: convex-monotonic features, \mathbf{x}_{mv} .

817 First layer on \mathbf{x}_{mv} is h_{conv} :

$$818 \quad 819 \quad \mathbf{z}^{(1)} = h_{\text{conv}}^{(1)}(\mathbf{x}_{mv}),$$

820 which by lemma 4.2 is **jointly** convex in \mathbf{x}_{mv} . Subsequent layers along any path to the output are
 821 also h_{conv} :

$$822 \quad \mathbf{z}^{(i)} = h_{\text{conv}}^{(i)}(\mathbf{x}_{mv}),$$

823 Composition of a convex map and an affine/increasing convex map remains convex. Hence any path
 824 from x_i through h_{conv} which follows the fully connected layer (affine transform) :

$$825 \quad 826 \quad f = \exp(\mathbf{w}_j)^\top \mathbf{z}^{(l)} + b_j$$

827 is **jointly** convex in \mathbf{x}_{mv} .

828 Finally, note that every layer of COMONet receives the concatenated block $\mathbf{x}_v = (\mathbf{x}_{cv}, \mathbf{x}_{mv})$ only
 829 through an affine maps. Since affine maps preserve joint convexity and all subsequent activations are
 830 convex and coordinatewise nondecreasing, the layerwise composition remains **jointly convex** in the
 831 entire block \mathbf{x}_v . Hence, f is **jointly convex** in \mathbf{x}_v . \square

832 **Lemma 4.3** Let $h_{\text{conc}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{conv}}(\mathbf{t})]_j =$
 833 $-(-\exp(\mathbf{w}_j)^\top \mathbf{t} - b_j)_+$. Then, $\forall j \in [k]$, f_j is **jointly** concave in \mathbf{t} and f_j is coordinate-wise
 834 increasing, i.e. $\frac{\partial f_j}{\partial t_i} \geq 0, \forall i \in [d]$.
 835

836 *Proof.* Write the vector-valued map as $f_j(\mathbf{t}) = \sigma(g(\mathbf{t}))$ with

$$837 \quad 838 \quad g(\mathbf{t}) = -\exp(\mathbf{w}_j)^\top \mathbf{t} - b_j \in \mathbb{R}^k, \quad \sigma(\mathbf{z}) = -(\mathbf{z})_+ = -\max(0, \mathbf{z}) \quad (\text{applied element-wise}).$$

839 Where $\exp(\mathbf{w}_j)^\top$ and b_j indicates j th column vector of weight matrix $\exp(\mathbf{W})$ and j th elements
 840 of bias vector \mathbf{b} . g is an affine map, hence **jointly** concave in \mathbf{t} (Boyd & Vandenberghe, 2004;
 841 Rockafellar, 1997). And $\exp(\mathbf{W})$ has strictly negative weights, so

$$842 \quad 843 \quad \nabla g_j(\mathbf{t}) = -\exp(\mathbf{w}_j) \leq 0. \quad (\text{element-wise})$$

844 And $\sigma : \mathbb{R}^k \rightarrow \mathbb{R}^k$ is concave and decreasing coordinate-wise (since $\sigma'(z) \in \{-1, 0\} \leq 0$). By the
 845 standard result that composition of a concave affine map and a concave decreasing scalar function is
 846 **jointly** concave. $f_j(\mathbf{t}) := [h_{\text{conc}}(\mathbf{t})]_j = -(-\exp(\mathbf{w}_j)^\top \mathbf{t} - b_j)_+$ is concave. Furthermore, by the
 847 chain rule,

$$848 \quad 849 \quad \frac{\partial f_j}{\partial x_i} = \sigma'(g(\mathbf{t})) \cdot \exp(w_{j,i}) \geq 0,$$

850 where $\exp(w_{j,i})$ refers i th elements of $\exp(\mathbf{w}_j)$, showing coordinate-wise monotonicity. So, $f_j(\mathbf{t})$
 851 is **jointly** concave and coordinate-wise monotonically increasing in \mathbf{t} . \square

852 **Lemma 4.4** Let $h_{\text{ref-relu}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{relu}}(\mathbf{t})]_j =$
 853 $-(-\mathbf{w}_j^\top \mathbf{t} - b_j)_+$. Then, $\forall j \in [k]$, f_j is **jointly** concave in \mathbf{t} .

854 *Proof.* Write the vector-valued map as $f_j(\mathbf{t}) = \sigma(g(\mathbf{t}))$ with

$$855 \quad 856 \quad g(\mathbf{t}) = -\mathbf{w}_j^\top \mathbf{t} - b_j \in \mathbb{R}^k, \quad \sigma(\mathbf{z}) = -(\mathbf{z})_+ = -\max(0, \mathbf{z}) \quad (\text{applied element-wise}).$$

857 Where \mathbf{w}_j^\top and b_j indicates j th column vector of weight matrix $\exp(\mathbf{W})$ and j th elements of bias
 858 vector \mathbf{b} . g is affine in \mathbf{t} , hence **jointly** concave. And $\sigma : \mathbb{R}^k \rightarrow \mathbb{R}^k$ is concave and coordinate-wise
 859 decreasing since, $\sigma'(z) \in \{-1, 0\} \leq 0$. By the standard result that composition of a concave affine
 860 map and a concave decreasing scalar function is **jointly** concave. By standard results on composition,
 861 $f_j(\mathbf{t})$ is **jointly** concave in \mathbf{t} . \square

864 **Theorem 4.7.** Let $f(\mathbf{x})$ be the proposed COMONet, which has l hidden layers. Partition the input
 865 $\mathbf{x} \in \mathbb{R}^d$ as $\mathbf{x} = (\mathbf{x}_c, \mathbf{x}_{\neg c})$, $\mathbf{x}_c = \{x_i \mid i \in \mathcal{C}\}$, $\mathcal{C} \subseteq [d]$. Then $f(\mathbf{x})$ is *partially jointly concave*
 866 with respect to \mathbf{x}_c .
 867

868 *Proof.* Let $\mathbf{x} = (\mathbf{x}_c, \mathbf{x}_{\neg c})$, $\mathbf{x}_c = (\mathbf{x}_{cc}, \mathbf{x}_{mc})$ so that equivalently $\mathbf{x} = (\mathbf{x}_{cc}, \mathbf{x}_{mc}, \mathbf{x}_{\neg c})$. In this
 869 composition, concave features \mathbf{x}_{cc} feeds into a $h_{\text{ref-relu}}$ -then- h_{conc} chain, whereas concave-monotonic
 870 features \mathbf{x}_{mc} feeds into a h_{conc} chain. **We show that every layer is jointly concave in \mathbf{x}_c , which**
 871 **implies that the entire network is jointly concave in \mathbf{x}_c .** There are two cases:

872 Case 1: concave features, \mathbf{x}_{cc}
 873

874 First layer on \mathbf{x}_{cc} is $h_{\text{ref-relu}}$:

$$\mathbf{z}^{(1)} = h_{\text{ref-relu}}^{(1)}(\mathbf{x}_{cc}),$$

875 which by lemma 4.4 is *jointly* concave in \mathbf{x}_{cc} . Subsequent layers along any path to the output are
 876 concave-units:

$$\mathbf{z}^{(i)} = h_{\text{conc}}^{(i)}(\mathbf{z}^{(i-1)}, \dots),$$

877 which by lemma 4.3 is also *jointly* concave and increasing in \mathbf{x}_{cc} . Composition of a concave map and an
 878 affine/increasing concave map remains concave. Hence any path from x_i through $h_{\text{ref-relu}}$ -then- h_{conc}
 879 units which follows the fully connected layer (affine transform) :

$$f = \exp(\mathbf{w}_j)^\top \mathbf{z}^{(l)} + b_j$$

880 is *jointly* concave in \mathbf{x}_{cc} .
 881

882 Case 2: concave-monotonic features, \mathbf{x}_{mc}
 883

884 First layer on \mathbf{x}_{mc} is h_{conc} :

$$\mathbf{z}^{(1)} = h_{\text{conc}}^{(1)}(x_i, \dots),$$

885 which by lemma 4.4 is *jointly* concave in \mathbf{x}_{mc} . Subsequent layers along any path to the output are
 886 also h_{conc} :

$$\mathbf{z}^{(i)} = h_{\text{conc}}^{(i)}(\mathbf{z}^{(i-1)}, \dots),$$

887 Composition of a concave map and an affine/increasing concave map remains concave. Hence any
 888 path from \mathbf{x}_{mc} through h_{conc} which follows the fully connected layer (affine transform) :

$$f = \exp(\mathbf{w}_j)^\top \mathbf{z}^{(l)} + b_j$$

889 is *jointly* concave in \mathbf{x}_{mc} .
 890

891 Finally, note that every layer of COMONet receives the concatenated block $\mathbf{x}_c = (\mathbf{x}_{cc}, \mathbf{x}_{mc})$ only
 892 through an affine maps. Since affine maps preserve joint concavity and all subsequent activations are
 893 concave and coordinatewise nondecreasing, the layerwise composition remains jointly concave in the
 894 entire block \mathbf{x}_c . Hence, f is *jointly concave in \mathbf{x}_c* . \square

901 **Lemma 4.5** Let $h_{\text{mono}} : \mathbb{R}^d \rightarrow \mathbb{R}^k$ and denote its j th coordinate by $f_j(\mathbf{t}) := [h_{\text{mono}}(\mathbf{t})]_j =$
 902 $(\exp(\mathbf{w}_j)^\top \mathbf{t} + b_j)_+^n$. Then, $\forall j \in [k]$, f_j is coordinate-wise increasing in \mathbf{t} , i.e. $\frac{\partial f_j}{\partial t_i} \geq 0, \forall i \in [d]$.
 903

904 *Proof.* Write the vector-valued map as $f_j(\mathbf{t}) = \sigma(g(\mathbf{t}))$ with

$$g(\mathbf{t}) = \exp(\mathbf{w}_j)^\top \mathbf{t} + b_j \in \mathbb{R}^k, \quad \sigma(\mathbf{z}) = (\mathbf{z})_+^n = \min(\max(0, \mathbf{z}), n) \quad (\text{applied element-wise}).$$

905 Where $\exp(\mathbf{w}_j)^\top$ and b_j indicates j th column vector of weight matrix $\exp(\mathbf{W})$ and j th elements of
 906 bias vector \mathbf{b} . g is an affine map, $\exp(\mathbf{W})$ has strictly positive weights, so

$$\nabla g_j(\mathbf{t}) = \exp(\mathbf{w}_j) \geq 0. \quad (\text{element-wise})$$

907 And $\sigma : \mathbb{R}^k \rightarrow \mathbb{R}^k$ is monotonically increasing coordinate-wise (since $\sigma'(z) \in \{0, 1\} \geq 0$).
 908 Furthermore, by the chain rule,

$$\frac{\partial f_j}{\partial x_i} = \sigma'(g(\mathbf{t})) \cdot \exp(w_{j,i}) \geq 0,$$

909 where $\exp(w_{j,i})$ refers i th elements of $\exp(\mathbf{w}_j)$, showing coordinate-wise monotonicity. So, $f_j(\mathbf{t})$
 910 is coordinate-wise monotonic increasing in \mathbf{t} . \square

918 **Theorem 4.8.** Let $f(\mathbf{x})$ be the proposed COMONet, which has l hidden layers. Partition the input
 919 $\mathbf{x} \in \mathbb{R}^d$ as $\mathbf{x} = (\mathbf{x}_m, \mathbf{x}_{\neg m})$, $\mathbf{x}_m = \{x_i \mid i \in \mathcal{M}\}$, $\mathcal{M} \subseteq [d]$. Then $f(\mathbf{x})$ is *partially monotonic*
 920 *increasing* with respect to \mathbf{x}_m . In particular, for each x_i with $i \in \mathcal{M}$, f is monotonic (increasing) in
 921 x_i .
 922

923 *Proof.* Let $\mathbf{x} = (\mathbf{x}_m, \mathbf{x}_{\neg m})$, $\mathbf{x}_m = (\mathbf{x}_{mn}, \mathbf{x}_{mv}, \mathbf{x}_{mc})$ so that equivalently $\mathbf{x} =$
 924 $(\mathbf{x}_{mn}, \mathbf{x}_{mv}, \mathbf{x}_{mc}, \mathbf{x}_{\neg m})$. We will show that for each fixed setting of all coordinates except a single
 925 x_i with $i \in \mathcal{M}$, the scalar output $f(\mathbf{x})$ is monotonically increasing in x_i . There are three cases:
 926

927 Case 1: monotonic features $x_i \in \mathbf{x}_{mn}$

928 First layer on x_i is h_{mono} :

$$\mathbf{z}^{(1)} = h_{\text{mono}}^{(1)}(x_i, \dots),$$

930 which by lemma 4.5 is monotonically increasing in x_i . Subsequent hidden layers along any path to
 931 the output are consist by monotonic units (h_{mono}), convex units (h_{conv}) and concave units (h_{conc}) for
 932 $k = 2, \dots, l$:

$$\mathbf{z}^{(k)} = h_{\text{mono}}^{(k)}(\mathbf{z}^{(k-1)}, \dots) \quad \text{or} \quad \mathbf{z}^{(k)} = h_{\text{conv}}^{(k)}(\mathbf{z}^{(k-1)}, \dots) \quad \text{or} \quad \mathbf{z}^{(k)} = h_{\text{conc}}^{(k)}(\mathbf{z}^{(k-1)}, \dots).$$

935 By lemma 4.5, lemma 4.1 and lemma 4.3, each of these three unit types has nonnegative partial
 936 derivatives in all its inputs. Hence at every hidden layer k , along every path, we have
 937

$$\frac{\partial h_j^{(k)}}{\partial x_i} \geq 0.$$

941 The layer-wise computation thus proceeds up to the final hidden layer, indexed $k = l$. There, the
 942 network produces the feature vector $\mathbf{z}^{(l)}$, which is then passed through the output affine map with
 943 strictly positive weights:

$$f = \exp(\mathbf{w}_j)^\top \mathbf{z}^{(l)} + b_j$$

945 Because each entry of $\exp(\mathbf{w}_j)^\top$ is positive, the total derivative is a positive weighted sum of
 946 nonnegative terms. Therefore

$$\frac{\partial f}{\partial x_i} \geq 0,$$

949 showing that output of f is monotonically increasing in x_i for every $x_i \in \mathbf{x}_{mn}$.
 950

951 Case 2: convex and monotonic features, $x_i \in \mathbf{x}_{mv}$

952 Every layer along its path is either a convex unit h_{conv} or the fully connected layer. By lemma 4.1,
 953 each h_{conv} has nonnegative partial derivatives, and the fully connected layer does as well. Hence f is
 954 monotonically increasing in x_i for every $x_i \in \mathbf{x}_{mv}$.
 955

Case 3: concave and monotonic features, $x_i \in \mathbf{x}_{mc}$

957 Every layer along its path is either a concave unit h_{conc} or the fully connected layer. By lemma 4.3,
 958 each h_{conc} has nonnegative partial derivatives, and the fully connected layer does as well. Hence f is
 959 monotonically increasing in x_i for every $x_i \in \mathbf{x}_{mc}$.
 960

Finally, in all cases, $\frac{\partial f}{\partial x_i} \geq 0$ for every $x_i \in \mathbf{x}_m$. Hence f is partially monotonic increasing in
 961 \mathbf{x}_m . \square
 962

963 **Theorem 4.9.** Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be twice differentiable and satisfy: for all $x_2 \in \mathbb{R}$, the mapping
 964 $x_1 \mapsto f(x_1, x_2)$ is convex, and for all $x_1 \in \mathbb{R}$, the mapping $x_2 \mapsto f(x_1, x_2)$ is concave. Then, if we
 965 decompose

$$f(x_1, x_2) = g(x_1) + h(x_2) + \phi(x_1, x_2),$$

967 where g depends only on x_1 and h depends only on x_2 , then the pure interaction term ϕ , which
 968 preserves the convex-concave assignments for any admissible choices of g and h , must be
 969

$$\phi(x_1, x_2) = \alpha x_1 x_2, \quad \alpha \in \mathbb{R}.$$

971

972 *Proof.* Since f is twice differentiable, consider its Hessian:
 973

$$974 \quad H_f(x_1, x_2) = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix}, \quad f_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

975 Convexity in x_1 implies $f_{11}(x_1, x_2) \geq 0$ and concavity in x_2 implies
 976

$$977 \quad f(x_1, x_2) = g(x_1) + h(x_2) + \phi(x_1, x_2),$$

978 where g and h collect all single-variable terms and ϕ denotes the pure interaction. Since the
 979 magnitudes of $g''(x_1) \geq 0$ and $h''(x_2) \leq 0$ are arbitrary (learned from data), preserving the
 980 convex-concave curvature assignments for *all* admissible choices of g'' and h'' requires that ϕ
 981 contribute no curvature:
 982

$$983 \quad \phi_{11}(x_1, x_2) = 0, \quad \phi_{22}(x_1, x_2) = 0.$$

984 Integrating $\phi_{11} = 0$ twice with respect to x_1 gives
 985

$$986 \quad \phi(x_1, x_2) = A(x_2) x_1 + B(x_2).$$

987 Differentiating twice with respect to x_2 and using $\phi_{22} = 0$ yields
 988

$$989 \quad A''(x_2) x_1 + B''(x_2) = 0,$$

990 so $A''(x_2) = 0$ and $B''(x_2) = 0$. Hence
 991

$$992 \quad A(x_2) = a_1 x_2 + a_0, \quad B(x_2) = b_1 x_2 + b_0.$$

993 Absorbing all single-variable terms into g and h leaves only
 994

$$995 \quad \phi(x_1, x_2) = a_1 x_1 x_2.$$

996 Thus the interaction term must be of the bilinear form $\alpha x_1 x_2$, completing the proof. \square
 997

1000 **Theorem 4.10.** Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be twice differentiable and jointly convex (or jointly concave) in
 1001 (x_1, x_2) , and assume that x_1 and x_2 belong to the same curvature group of COMONet (both \mathcal{CV} or
 1002 both \mathcal{CC}). Consider adding the bilinear term
 1003

$$1004 \quad \phi(x_1, x_2) = \beta x_1 x_2, \quad \beta \in \mathbb{R},$$

1005 and redefine the mapping by
 1006

$$1007 \quad f(x_1, x_2) := f(x_1, x_2) + \phi(x_1, x_2).$$

1008 Then this addition preserves the assigned per-variable constraints while allowing the joint convexity
 1009 (or concavity) in (x_1, x_2) to be relaxed.
 1010

1012 *Proof.* Consider the added interaction $\phi(x_1, x_2) = \beta x_1 x_2$. Its second-order partial derivatives are
 1013

$$1014 \quad \phi_{11}(x_1, x_2) = 0, \quad \phi_{22}(x_1, x_2) = 0, \quad \phi_{12}(x_1, x_2) = \phi_{21}(x_1, x_2) = \beta.$$

1015 Thus, adding ϕ does not modify the curvature of f with respect to each individual variable, since the
 1016 per-variable second derivatives remain unchanged:
 1017

$$1018 \quad (f + \phi)_{11} = f_{11}, \quad (f + \phi)_{22} = f_{22}.$$

1019 However, the mixed derivative becomes
 1020

$$1021 \quad (f + \phi)_{12} = f_{12} + \beta,$$

1022 so the joint curvature in (x_1, x_2) is relaxed. Therefore, adding the bilinear term preserves the assigned
 1023 per-variable curvature signs and allows the joint curvature to change. \square
 1024

1026 **B FLOW DIAGRAMS OF COMONET**
1027

1028 Fig. 7 present the flow structure of COMONet to demonstrate how each variable group (\mathbf{x}_{cv} , \mathbf{x}_{mv} , \mathbf{x}_{cc} ,
1029 \mathbf{x}_{mc} , \mathbf{x}_{mn} , \mathbf{x}_u) contributes to the final prediction through their respective computational flows. Each
1030 subfigure highlights the specific path for a variable group, represented by bold dashed lines, showing
1031 how the input is processed through layers to produce the final output. This detailed visualization
1032 helps to clarify the role and influence of each group of variables in the model's overall architecture.
1033

1038 Figure 7: Flow diagrams representing the computational flows for each variable group in COMONet.
1039 (a) \mathbf{x}_{cv} , (b) \mathbf{x}_{mv} , (c) \mathbf{x}_{cc} ,
1040 (d) \mathbf{x}_{cv} , (e) \mathbf{x}_{mn} , (f) \mathbf{x}_u .
1041
1042
1043

1044 **C INTERACTION LAYER OF COMONET**
1045

1046 Fig. 8 and shows the all needed pairwise cross interactions between \mathbf{x}_{cv} and \mathbf{x}_{cc} . And, Fig. 9 and
1047 shows the all possible pairwise intra interactions between \mathbf{x}_{cc} - \mathbf{x}_{cc} or \mathbf{x}_{cv} - \mathbf{x}_{cv} .
1048
1049

1054 Figure 8: Cross interaction terms between convex and concave features could be captured by
1055 Interaction layer.
1056
1057
1058
1059
1060
1061
1062
1063

	$x_{cv,1}$	$x_{cv,2}$	$x_{cv,3}$...	$x_{cv,n}$
$x_{cv,1}$		$x_{cv,1} \times x_{cv,2}$	$x_{cv,1} \times x_{cv,3}$...	$x_{cv,1} \times x_{cv,n}$
$x_{cv,2}$			$x_{cv,2} \times x_{cv,3}$...	$x_{cv,2} \times x_{cv,n}$
\vdots	\vdots	\vdots	\vdots	...	\vdots
$x_{cv,n-1}$				\ddots	$x_{cv,n-1} \times x_{cv,n}$
$x_{cv,n}$...

1068 Figure 9: Intra-interaction terms between Convex-convex and Concave-concave features could be
1069 captured by Interaction layer.
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 **D CONFIGURATION FLEXIBILITY OF COMONET**
1081

1082 Fig. 10 and Fig. 11 shows various COMONet configurations, demonstrating the flexibility of the
1083 proposed method. Fig. 10 illustrates the $2^4 - 1 = 15$ possible configurations obtained by dividing
1084 the variable groups into four categories: \mathbf{x}_v , \mathbf{x}_c , \mathbf{x}_{mn} , \mathbf{x}_u . While, table in Fig. 11 shows all
1085 $2^6 - 1 = 63$ possible configurations of COMONet. These configurations highlight the ability of
1086 COMONet to handle a wide range of input scenarios while maintaining consistent processing through
1087 its computational layers. This adaptability ensures that the model can be tailored to specific tasks by
1088 including or excluding certain variable groups as needed.

1116 **Figure 10: Examples structures of various configurations for COMONet.**
1117

	\mathbf{x}_{cv}	\mathbf{x}_{mv}	\mathbf{x}_{cc}	\mathbf{x}_{mc}	\mathbf{x}_{mn}	\mathbf{x}_u	\mathbf{x}_{cv}	\mathbf{x}_{mv}	\mathbf{x}_{cc}	\mathbf{x}_{mc}	\mathbf{x}_{mn}	\mathbf{x}_u	\mathbf{x}_{cv}	\mathbf{x}_{mv}	\mathbf{x}_{cc}	\mathbf{x}_{mc}	\mathbf{x}_{mn}	\mathbf{x}_u	\mathbf{x}_{cv}	\mathbf{x}_{mv}	\mathbf{x}_{cc}	\mathbf{x}_{mc}	\mathbf{x}_{mn}	\mathbf{x}_u		
6 types of features																										
1	✓	✓	✓	✓	✓	✓	16	✗	✓	✓	✓	✗	✓	33	✓	✓	✗	✗	✗	✓	50	✗	✓	✗	✓	✗
5 types of features																										
2	✓	✓	✓	✓	✓	✓	17	✓	✓	✗	✓	✓	✓	34	✓	✗	✓	✓	✓	✓	51	✗	✗	✓	✗	✓
3	✓	✓	✓	✓	✓	✗	18	✓	✗	✓	✗	✓	✓	35	✗	✓	✓	✗	✗	✓	52	✗	✗	✗	✓	✓
4	✓	✓	✓	✓	✗	✓	19	✗	✓	✓	✗	✓	✓	36	✓	✗	✗	✓	✓	✓	53	✓	✗	✗	✗	✓
5	✓	✓	✗	✓	✓	✓	20	✓	✗	✗	✓	✓	✓	37	✗	✓	✗	✓	✓	✓	54	✗	✓	✗	✗	✓
6	✓	✗	✓	✓	✓	✓	21	✗	✓	✗	✓	✓	✓	38	✗	✓	✓	✓	✓	✓	55	✗	✗	✓	✗	✓
7	✗	✓	✓	✓	✓	✓	22	✗	✗	✓	✓	✓	✓	39	✓	✗	✗	✓	✓	✓	56	✗	✗	✗	✓	✓
3 types of features																										
8	✓	✓	✓	✓	✓	✗	23	✓	✓	✓	✗	✗	✗	41	✗	✗	✓	✗	✓	✓	57	✗	✗	✗	✗	✓
4 types of features																										
9	✓	✓	✓	✓	✗	✓	24	✓	✓	✓	✓	✗	✗	42	✗	✗	✗	✓	✓	✓	58	✗	✗	✗	✗	✓
10	✓	✓	✗	✓	✓	✓	25	✓	✗	✓	✓	✓	✗	43	✓	✓	✗	✗	✗	✓	59	✗	✗	✗	✓	✗
11	✓	✗	✓	✓	✓	✓	26	✗	✓	✓	✓	✓	✗	44	✓	✗	✓	✗	✗	✓	60	✗	✗	✗	✓	✗
12	✗	✓	✓	✓	✓	✓	27	✓	✓	✗	✓	✓	✗	45	✗	✓	✓	✗	✗	✓	61	✗	✗	✓	✗	✗
13	✓	✓	✓	✗	✗	✓	28	✓	✗	✓	✗	✓	✗	46	✓	✗	✗	✓	✗	✓	62	✗	✓	✗	✗	✗
14	✓	✓	✗	✓	✗	✓	29	✗	✓	✓	✓	✓	✗	47	✗	✓	✗	✓	✓	✗	63	✓	✗	✗	✗	✗
15	✓	✗	✓	✓	✗	✓	30	✓	✗	✓	✓	✓	✓	48	✗	✗	✓	✓	✓	✗						
							31	✗	✓	✗	✓	✓	✓	49	✓	✗	✗	✗	✓	✓						
							32	✗	✗	✓	✓	✓	✓													

1132 **Figure 11: All possible 63 configurations for COMONet.**
1133

1134 **E DETAILED EXPERIMENT DESCRIPTIONS**
11351136 **E.1 TRAINING CONFIGURATIONS**
1137

1138 All experiments in this study were conducted on a system equipped with an Intel(R) Core(TM)
 1139 i7-14700K 3.40 GHz processor, 64.0GB of DDR5 RAM, and running Microsoft Windows 11 Pro as
 1140 the operating system. For GPU computations, we utilized an NVIDIA GeForce RTX 4070 Ti SUPER
 1141 with 16.0GB of memory. The implementation of all models and experiments was carried out using
 1142 Python (version 3.12.7) and the PyTorch (Paszke et al., 2019) library (version 2.5.1) with CUDA
 1143 (version 12.4). During model training, the ADAM (Kingma & Ba, 2014) optimizer was employed
 1144 as the stochastic optimization solver. Hyperparameters for each dataset were explored using a grid
 1145 search strategy. For all datasets, the training process incorporated early stopping and, when necessary,
 1146 exponentiated batch normalization (EBN) to enhance stability and efficiency. Table 4 summarizes
 1147 the hyperparameter settings for the proposed methods. Hyperparameters for both our proposed and
 1148 the benchmark methods were selected via grid search over batch sizes of 128, 256, 512, and learning
 1149 rates of 0.05, 0.005, 0.002. The number of epochs varied [200, 3000] depending on the dataset. In
 1150 general, experiments were conducted using 5-fold cross-validation repeated 5 times, and the mean
 1151 and standard deviation (std) across 25 runs were reported. However, when the dataset was split into
 1152 train/validation/test, experiments were conducted 5 times, and the mean and standard deviation from
 1153 these runs were reported.

1154 **Table 4: Hyperparameters of COMONet for real-world datasets**

1155 Dataset	1156 Number of parameters	1157 Learning rate	1158 Batch size
1159 COMPAS	1457	0.005	128
1160 Heart Disease	19649	0.002	128
1161 Loan Defaulter	1489	0.0005	512
1162 Blog Feedback	5137	0.0005	256
1163 Auto-MPG	19265	0.005	128
1164 Car sales	1195	0.005	109
Puzzle sales	1819	0.005	155
Wine quality	6753	0.005	512

1166 **Table 5: Hyperparameters of benchmark methods for real-world datasets**

1169 Methods	1170 Dataset	1171 Number of parameters	1172 Learning rate	1173 Batch size
1174 SCNN	Car sales	1450	0.005	109
1175 SCNN	Puzzle sales	5460	0.005	155
1176 SCNN	Wine quality	9094	0.005	512
PenDer	Car sales	6401	0.005	109
PenDer	Puzzle sales	6529	0.005	155
PenDer	Wine quality	10241	0.005	512

1178 **E.2 STRATEGIES FOR TRAINING STABILIZATION**
1179

1180 In this study, one of the key components of the proposed method, the exponentiated weight ($\exp(w)$),
 1181 has the potential to explode as the weight value increases due to the nature of the exponential function.
 1182 To address this issue, we adopted the weight initialization strategy introduced in the appendix of
 1183 SMNN (Kim & Lee, 2024). Specifically, the initial values of the exponentiated weight w were
 1184 sampled from a uniform distribution within the range $[-20, 2]$, effectively preventing the exploding
 1185 problem. Furthermore, the scaling parameter γ of the Exponentiated Batch Normalization was
 1186 initialized to 0 to ensure stable training, by making $\exp(\gamma)$ to 1. In addition, for activation functions
 1187 such as ReLU and ReLU-n, we introduced a Leaky ReLU modification with $\alpha = 0.01$ in their
 1188 off regions. This adjustment preserves the intended properties of each activation function while

1188 improving training stability.
 1189

$$\text{Leaky ReLU-}n(x) = \begin{cases} \alpha x, & \text{if } x < 0, \\ x, & \text{if } 0 \leq x \leq n, \\ \alpha(x - n) + n, & \text{if } x > n. \end{cases} \quad (22)$$

1193
 1194 **E.3 EXPONENTIATED BATCH NORMALIZATION**
 1195

1196 In COMONet, two types of different activation functions (e.g., ReLU and ReLU- n) are employed
 1197 across layers, and the weights in certain layers are exponentiated. These differences in activation
 1198 types and weight transformations can lead to significant deviations in the value distributions of layer
 1199 outputs. In some cases, such discrepancies may result in unstable learning dynamics, necessitating
 1200 the use of Batch Normalization(Ioffe, 2015) to stabilize training.

1201 However, traditional Batch Normalization introduces a scaling parameter, γ which can take on
 1202 negative values during learning ($\gamma < 0$). When γ becomes negative, the normalized output may be
 1203 reversed, violating critical Shape Constraints such as monotonicity or convexity. This sign reversal,
 1204 in turn, can alter the sign of partial derivatives, fundamentally disrupting structural guarantees for
 1205 each varlables.

$$y = \frac{x - \mathbb{E}[x]}{\sqrt{\text{Var}[x] + \epsilon}} \cdot \exp(\gamma) + \beta \quad (23)$$

1206 To address this issue, we propose Exponentiated Batch Normalization (EBN) equation 23, where
 1207 the scaling parameter γ is replaced with its exponentiated form, $\exp(\gamma)$ when x refers the outputs
 1208 of the layer and y refers the batch normalized outputs. By enforcing $\exp(\gamma)$ to be strictly positive,
 1209 we ensure that the normalized output retains its correct sign, thereby preserving the desired Shape
 1210 Constraints. This approach effectively mitigates the variance in layer output distributions while
 1211 maintaining stable and consistent training dynamics across heterogeneous layers.

1212
 1213 **E.4 DESCRIPTIONS FOR REAL-WORLD DATASETS**
 1214

1215 This section provides an overview of the real-world datasets used in the experiments. These datasets
 1216 were derived from previously published benchmarks frequently cited in literature on monotonic and
 1217 convex neural networks. The criteria for applying shape constraints followed the methodologies
 1218 outlined in prior benchmark studies. While precisely defining shape constraints poses challenges,
 1219 as mentioned in the conclusion, future research that focuses on identifying these constraints for
 1220 specific variables could yield valuable insights. Additionally, some datasets contain instances with
 1221 relatively small sample sizes, reflecting realistic challenges often encountered in practical applications.
 1222 Effectively addressing such constraints is critical for developing robust and widely applicable models.
 1223 Table 6 provides a summarized overview of each dataset, with detailed descriptions presented below
 1224 (**Bold** text indicates monotonic decrease, while *italic* text denotes concavity.):

1225 **AutoMPG:** The Auto-MPG dataset is a regression dataset with 7 variables and approximately
 1226 398 instances, used to predict a car’s miles per gallon (mpg). It includes monotonic decreasing
 1227 relationships between mpg and the variables **weight**, **displacement** and **horse power**.

1228 **Heart Disease:** The Heart Disease dataset is a classification dataset with 13 variables, used to predict
 1229 the presence or absence of heart disease in individuals. Among the variables, trestbps (resting blood
 1230 pressure) and chol (cholesterol level) are known to have monotonic increasing relationships with the
 1231 risk of heart disease.

1232 **COMPAS*:** The COMPAS dataset is a binary classification dataset that predicts whether offenders
 1233 in Florida will reoffend within two years based on criminal history data. It includes 13 variables,
 1234 of which 4 (number of juvenile misdemeanor, number of other convictions, number of prior adult
 1235 convictions, and number of juvenile felony) are known to have monotonic increasing relationships
 1236 with recidivism risk. This dataset raises ethical concerns; however, it has been used in recent
 1237 publications for comparison studies and remains relevant in research fields focused on fairness.

1238 **Blog Feedback:** The BlogFeedback dataset is a regression dataset used to predict the number of
 1239 comments a blog post will receive within 24 hours. It includes 276 variables, of which 8 variables
 1240 (A51, A52, A53, A54, A56, A57, A58, A59) are known to have monotonic increasing relationships
 1241 with the number of comments.

1242 **Loan Defaulter:** The Loan Defaulter dataset is a classification dataset used to predict whether a
 1243 customer will default on a loan. It includes loan data from 2007 to 2015 and consists of 28 variables,
 1244 among which 5 variables have shape constraints. Number of public record bankruptcies and Debt to
 1245 income ratio have monotonic increasing relationships with default risk, while **Credit score**, **Length**
 1246 of **employment**, and **Annual income** have monotonic decreasing relationships with default risk.

1247 **Car Sales:** The Car Sales dataset is a one-dimensional regression problem aimed at predicting
 1248 monthly car sales (in thousands) based on the car price (in thousands). In this problem, the **price**
 1249 variable is constrained to have a convex and monotonically decreasing relationship with car sales.
 1250 The dataset consists of a total of 155 entries, with 109 used for training, 32 for testing, and 14 for
 1251 validation.

1252 **Puzzle Sales:** The Puzzle Sales dataset is a regression dataset designed to predict six-month sales
 1253 of wooden jigsaw puzzles using features derived from Amazon reviews. Three features are used
 1254 for prediction: (1) the average star rating, which is expected to have a monotonically increasing
 1255 relationship with sales; (2) *the number of reviews*; and (3) *the word count of reviews*, both of which
 1256 are expected to exhibit a monotonically increasing and concave relationship with sales. The dataset
 1257 includes 156 training examples, 169 validation examples, and 200 test examples.

1258 **Wine Quality:** The Wine Quality dataset is a regression dataset designed to predict wine scores on
 1259 an 80–100 scale using various wine attributes. The dataset consists of 61 variables in total: 21 binary
 1260 variables representing the country of production, 39 boolean variables derived from wine descriptions
 1261 published by the Wine Enthusiast Magazine, and a continuous variable representing the wine’s price.
 1262 Among the 120,919 data entries, 84,642 were used for training, 12,092 for validation, and 24,185
 1263 for testing. The variable *price* was included in the training process with the expectation that it has a
 1264 concave and monotonically increasing relationship with wine quality.

1265
 1266 **Table 6: Descriptions for Real-world Benchmark Datasets**

Dataset	Task	# Instances	# Features	# Constrained features	Monotonic-Convex (Concave) features	Monotonic features
Auto-MPG	Regression	398	7	3	-----	weights, displacement, horse power
Blog Feedback	Regression	54270	276	8	-----	A51,A52,A53,A54,A56,A57,A58,A59
COMPAS	Classification	6172	13	4	-----	number of prior adult convictions, number of juvenile felony, number of juvenile misdemeanor, number of other convictions
Heart Disease	Classification	303	13	2	-----	trestbps, chol
Loan Defaulter	Classification	488909	28	5	-----	number of public record bankruptcies, dept-to-income ratio, credit score , length of employment , annual income
Car Sales	Regression	155	1	1	price	-----
Puzzle Sales	Regression	525	3	3	<i>number of reviews</i> , <i>word count</i>	star rating
Wine Ratings	Regression	120919	61	1	<i>price</i>	-----

1280
 1281 **E.5 COMONET CONFIGURATION FOR HYPERBOLIC PARABOLOID FUNCTION (20)**

1282 The hyperbolic paraboloid function in equation 20 was learned using the structure in Fig. 12.

1283
 1284 **Figure 12: COMONet Configuration for hyperbolic paraboloid function equation 20.**

1296 **F SUPPLEMENTAL REPORT OF EXPERIMENTAL RESULTS**
12971298 **F.1 TABULATED NUMERICAL RESULTS FOR FIG. 5**
12991300 Fig. 5 was created using the data in the following table.
13011302 Table 7: Results of Generalization test with equation 21
1303

Network	Training MSE	Test MSE	Denoised test MSE
COMONet ($\lambda = 0$)	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00
COMONet ($\lambda = 1$)	0.92 ± 0.14	0.99 ± 0.03	0.02 ± 0.01
COMONet ($\lambda = 2$)	3.90 ± 0.57	4.03 ± 0.28	0.06 ± 0.02
COMONet ($\lambda = 5$)	23.74 ± 3.41	24.88 ± 0.89	0.31 ± 0.10
COMONet ($\lambda = 10$)	96.84 ± 14.66	98.07 ± 6.97	0.79 ± 0.36
COMONet ($\lambda = 20$)	400.29 ± 55.23	402.42 ± 5.93	3.13 ± 1.32
Same Structure ($\lambda = 0$)	0.01 ± 0.01	0.01 ± 0.00	0.01 ± 0.00
Same Structure ($\lambda = 1$)	0.77 ± 0.14	1.28 ± 0.10	0.29 ± 0.04
Same Structure ($\lambda = 2$)	3.15 ± 0.46	5.31 ± 0.32	1.30 ± 0.22
Same Structure ($\lambda = 5$)	19.47 ± 3.21	32.77 ± 1.76	7.21 ± 1.15
Same Structure ($\lambda = 10$)	75.09 ± 10.27	128.25 ± 6.85	30.17 ± 5.60
Same Structure ($\lambda = 20$)	302.68 ± 44.74	510.34 ± 21.90	106.57 ± 11.04
MLP ($\lambda = 0$)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
MLP ($\lambda = 1$)	0.28 ± 0.08	1.93 ± 0.12	0.97 ± 0.10
MLP ($\lambda = 2$)	1.03 ± 0.27	8.15 ± 0.59	4.29 ± 0.49
MLP ($\lambda = 5$)	8.23 ± 2.66	48.64 ± 4.03	23.19 ± 3.57
MLP ($\lambda = 10$)	26.95 ± 8.68	195.11 ± 14.12	97.22 ± 8.66
MLP ($\lambda = 20$)	148.87 ± 42.43	722.66 ± 61.73	334.91 ± 71.79

1321 Fig. 13 illustrates the same structure model employed in experiments on equation 21.
13221333 Figure 13: Same structure network
13341335 **F.2 RESULTS ON PENDER**
13361337 Table 8 shows Test MSE and Convexity Score \mathcal{C}_k and Monotonic Score \mathcal{M}_k of PenDer (Gupta et al.,
1338 2021).
13391340 Table 8: Test MSE, Convexity Score and Monotonic Score of PenDer on Real-world Dataset.
1341

Dataset	Test MSE \downarrow	\mathcal{M}_k	\mathcal{C}_k
Car Sales (conv)	10411 ± 107	1	1
Car Sales (conv, decr)	10415 ± 104	1	1
Puzzle Sales (conc)	9428 ± 113	1	0.98 ± 0.008
Puzzle Sales (conc, incr)	9519 ± 92	1	0.99 ± 0.004
Wine Quality (conc)	5.19 ± 0.11	1	0.99 ± 0.000
Wine Quality (conc, incr)	5.27 ± 0.20	0.99 ± 0.000	0.99 ± 0.000

1350

F.3 HYPERBOLIC PARABOLOID WITH INTERACTION TERM

1351

1352 We tested whether COMONet can capture convex-concave interactions using the synthetic function

1353

1354
$$f(x_1, x_2) = (x_1 - 0.5)^2 - (x_2 - 0.5)^2 + \lambda x_1 x_2, \quad \lambda \in \{0, 1, 2, 5, 10\}.$$

1355

1356 Models with the interaction layer enabled (ON) were compared against models without it (OFF)
1357 using the same 1,000 samples, 80/20 split, and cross-validation protocol as in the main experiments.
1358 As shown in Table 9, the ON model maintains low error for increasing λ , while the OFF model fails
1359 to capture the interaction term.

1360

Table 9: Interaction-layer ablation on the convex-concave synthetic function.

1361

1362

Interaction	λ	Train MSE	Test MSE
ON	0	0.0001 ± 0.0000	0.0001 ± 0.0001
ON	1	0.0003 ± 0.0011	0.0004 ± 0.0012
ON	2	0.0019 ± 0.0045	0.0016 ± 0.0045
ON	5	0.0053 ± 0.0098	0.0056 ± 0.0109
ON	10	0.0209 ± 0.0491	0.0188 ± 0.0355
OFF	0	0.0001 ± 0.0000	0.0001 ± 0.0001
OFF	1	0.0080 ± 0.0020	0.0086 ± 0.0017
OFF	2	0.0318 ± 0.0086	0.0357 ± 0.0085
OFF	5	0.1951 ± 0.0738	0.2295 ± 0.0928
OFF	10	0.7576 ± 0.2535	0.8151 ± 0.1596

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405

F.4 FIGURES WITH THE EXPERIMENTAL RESULTS WITH (21)

1406
1407Fig. 14 represent contour plots varying noise parameter λ from 0 to 5. among 2 variables, x_1 is
monotonic increase, and x_2 is convex with respect to y .

1408

1409

1447

1448

1449

Figure 14: Contours of x_1 and x_2 varying within $[0,1]$ when $\lambda = \{0, 1, 2, 5\}$, with x_3 and x_4 fixed at
0.5. **Left:** COMONet, **Center:** Same structure, **Right:** MLP.

1451

1452

1453

1454

1455

1456

1457

1458
 1459 Fig. 15 represent contour plots varying noise parameter λ from 0 to 5. among 2 variables, x_2 is
 1460 convex, and x_3 is monotonic-convex (increase) with respect to y .
 1461

1512 G ABLATION STUDIES

1514 G.1 VARIOUS ACTIVATION SETTINGS

1516 Fig. 16 and Table 10 represent various activation functions that satisfies conditions of Monotonicity
 1517 and convexity. Among them Monotonic-convex activations can alternate ReLU and convex activations
 1518 can alternate ReLU- n .

1530 Figure 16: **Visualization of various activation functions:** activation functions in (a) is monotonic-
 1531 convex function that can be used for h_{conv} , h_{relu} , h_{conc} , $h_{\text{ref-relu}}$ and (b) shows monotonic-wavy function
 1532 that can be used for h_{mono}

1534 Table 10: Various Activation functions

1536 Activation functions	1537 Formula	1538 Monotonicity	1539 Convexity	1540 Remark
1538 ReLU	$\sigma(x) = \begin{cases} x & \text{if } x \geq 0, \\ 0 & \text{if } x < 0 \end{cases}$	✓	✓	
1540 Leaky ReLU	$\sigma(x) = \begin{cases} x & \text{if } x \geq 0, \\ \alpha x & \text{if } x < 0 \end{cases}$	✓*	✓*	if $0 < \alpha < 1$
1542 ELU	$\sigma(x) = \begin{cases} x & \text{if } x \geq 0, \\ \alpha(e^x - 1) & \text{if } x < 0 \end{cases}$	✓*	✓*	if $0 < \alpha < 1$
1544 Softplus	$\sigma(x) = \log(1 + \exp(x))$	✓	✓	
1545 Absolute	$\sigma(x) = x $	✗	✓	unsuitable
1546 ReLU- n	$\sigma(x) = \begin{cases} n & \text{if } x \geq n, \\ x & \text{if } 0 \leq x < n, \\ 0 & \text{if } x < 0 \end{cases}$	✓	✗	
1549 Tanh	$\sigma(x) = \tanh(x)$	✓	✗	
1550 Sigmoid	$\sigma(x) = \frac{1}{1+e^{-x}}$	✓	✗	

1551 * Indicates conditionally achieved based on specific configurations.

1552 Table 11 shows that no performance differences across various activations.

1554 Table 11: Performance comparison among various activations settings († Indicates statistical ties.)

1556 Activation	1557 Auto MPG	1558 Heart Disease	1559 Remark
1558 Monotonic activation	1559 Convex activation	1560 MSE \downarrow	1561 Test Acc \uparrow
1559 ReLU	ReLU-1	$7.38 \pm 1.32^\dagger$	$0.85 \pm 0.04^\dagger$
1560 ReLU	ReLU-6	$7.38 \pm 1.32^\dagger$	$0.85 \pm 0.04^\dagger$
1561 ReLU	Sigmoid	$9.04 \pm 2.20^\dagger$	$0.84 \pm 0.05^\dagger$
1562 Leaky ReLU	Leaky relu-1	7.03 ± 1.54	0.87 ± 0.04 $\alpha = 0.01$
1563 ELU	Sigmoid	$8.67 \pm 2.36^\dagger$	0.87 ± 0.04 $\alpha = 0.01$
1564 ELU	Tanh	$7.20 \pm 1.59^\dagger$	$0.86 \pm 0.05^\dagger$ $\alpha = 0.01$
1565 Softplus	Sigmoid	10.09 ± 2.62	$0.84 \pm 0.06^\dagger$
1565 Softplus	Tanh	$7.46 \pm 1.57^\dagger$	0.87 ± 0.04

1566
1567

G.2 THE EFFECT OF UPWARD DIRECTIONAL CONNECTIONS

1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583

To verify whether COMONet can effectively learn interactions between variable groups, we conducted an ablation study. The function was designed as in equation 24, where the output y is determined by three variables x_1, x_2 and x_3 . Among these, x_1 belongs to \mathbf{x}_{cv} , which has a convex relationship with y , while x_2 belongs to \mathbf{x}_{mn} , which has a monotonic relationship with y . To examine interaction effects, we varied the coefficient of interaction term α from 0 to 20. We generated a dataset of 1,000 samples from equation 24, using 800 for training and 200 for testing, and evaluated the models using 5-fold cross-validation repeated five times. We compared four models with different levels of connectivity in COMONet, as shown in Fig. 18: (a) Not Connected, where variable groups are completely separated; (b) Sparse-to-Specific, which allows connections only between \mathbf{x}_{cv} and \mathbf{x}_{mn} to facilitate learning the known interaction between x_1 and x_2 ; (c) Dense-to-Specific, where only the connection between \mathbf{x}_{cv} and \mathbf{x}_{mn} is removed; and (d) Fully Connected, where all groups are interconnected. As shown in Table 12 and Fig. 17, the Not Connected and Dense-to-Specific models exhibited increasing Test MSE as α increased, indicating a failure to capture interaction effects. In contrast, the Sparse-to-Specific and Fully Connected models maintained relatively low Test MSE despite increasing α , demonstrating their ability to effectively learn the interaction between x_1 and x_2 . These results empirically validate that COMONet can capture interactions between separated variable groups.

1584
1585
1586
1587

$$y = (x_1 - 1)^2 + \sqrt{x_2} + \alpha x_1 x_2^2 + \sin(2\pi x_3), \quad (24)$$

$$x_i \in [0, 2], \forall i \in \{1, 2, 3\},$$

$$\alpha \in \{0, 1, 2, 5, 10, 20\}.$$

1588
1589

Table 12: Comparison of Test MSE Performance.

1590
1591
1592
1593
1594
1595
1596
1597
1598

α	Not connected	Sparse-to-Specific	Dense-to-Specific	Fully connected
$\alpha = 0$	0.01 ± 0.01	0.01 ± 0.01	0.02 ± 0.00	0.03 ± 0.05
$\alpha = 1$	0.48 ± 0.03	0.04 ± 0.02	0.59 ± 0.22	0.49 ± 0.20
$\alpha = 2$	1.87 ± 0.11	0.21 ± 0.26	1.94 ± 0.29	0.48 ± 0.79
$\alpha = 5$	11.75 ± 0.98	0.33 ± 0.08	12.14 ± 0.78	7.76 ± 6.09
$\alpha = 10$	47.39 ± 6.76	1.79 ± 0.64	47.20 ± 6.56	3.24 ± 1.99
$\alpha = 20$	193.79 ± 40.07	11.15 ± 12.95	191.13 ± 32.80	15.41 ± 12.44

1615
1616
1617
1618
1619

Figure 18: COMONet: (a) Not connected, (b) Sparse-to-Specific, (c) Dense-to-Specific, and (d) Fully connected.

Figure 17: Visualization of The results in Table 12.

1620 **G.3 ABLATION STUDY ON MISASSIGNED CONSTRAINTS AND SINGLE-FEATURE LEARNING**
1621 **CAPABILITY**
1622

1623 To evaluate the importance of assigning each feature from equation 21 to the correct constraint branch,
1624 we conducted an ablation where the cosine-shaped term $\cos(2\pi x_4)$ was intentionally routed to in-
1625 correct branches (monotonic, convex, or monotonic-convex) instead of the intended unconstrained
1626 branch. As shown in Table 13, misassigning x_4 leads to substantially higher Train/Test MSE, demon-
1627 strating that each constraint branch serves a distinct purpose and that improper constraint-feature
1628 alignment severely degrades accuracy. When x_4 is correctly placed in the unconstrained branch,
1629 the model achieves the lowest error, confirming the necessity of an unconstrained pathway for
1630 non-monotonic and non-convex components.
1631
Table 13: Ablation study on the assignment of x_4 to different constraint branches.

Case	x_4 branch	Constraint	Train MSE (mean \pm std)	Test MSE (mean \pm std)
Case 1	$x_4 \rightarrow x_m$	monotonically increasing	0.472 ± 0.069	0.483 ± 0.061
Case 2	$x_4 \rightarrow x_{mv}$	convex & monotonically increasing	0.468 ± 0.094	0.470 ± 0.081
Case 3	$x_4 \rightarrow x_{cv}$	convex	0.067 ± 0.116	0.063 ± 0.108
Case 4	$x_4 \rightarrow x_u$	unconstrained	0.004 ± 0.003	0.005 ± 0.004

1633 We also evaluated whether each constrained component can independently model the correspond-
1634 ing single-feature component from equation 21. The target function was decomposed into four
1635 single-variable terms, each associated with a distinct shape constraint (monotonic, convex,
1636 monotonic-convex, and unconstrained). As shown in Table 14, training each branch on its respective term
1637 resulted in very small MSE, demonstrating that all constrained subnetworks accurately capture their
1638 intended shape behavior and reliably express the corresponding single-feature functions.
1639

Table 14: Ablation study showing each branch’s ability to independently learn its single-feature component in equation 21.

Feature	Constraint	Train MSE (mean \pm std)	Test MSE (mean \pm std)
x_1	monotonically increasing	0.002 ± 0.003	0.002 ± 0.002
x_2	convex	0.001 ± 0.001	0.001 ± 0.001
x_3	convex & monotonically increasing	0.001 ± 0.001	0.001 ± 0.001
x_4	unconstrained	0.002 ± 0.002	0.003 ± 0.001

1654 **H BROADER IMPACT**
1655

1656 Imposing shape constraints in neural networks can substantially improve model reliability, resilience,
1657 and interpretability—qualities that are especially valuable in sectors like manufacturing, finance, and
1658 healthcare where data may be limited or noisy. Nevertheless, if constraints inadvertently encode
1659 stereotypes or adverse assumptions about protected attributes (such as age, gender, or ethnicity), they
1660 risk perpetuating unfair outcomes. To guard against this, practitioners should systematically evaluate
1661 constraint behavior across different demographic groups and embed fairness checks at every stage of
1662 model development and deployment. Moreover, promoting transparency by publishing constraint
1663 definitions and associated validation tools under an open-source license fosters accountability and
1664 helps ensure these methods serve broad societal interests.
1665

1666 **I LLM USAGE STATEMENT**
1667

1668 In this work, we utilized a Large Language Model (LLM) solely as an assistive tool in the writing
1669 process. The LLM was specifically employed to refine expressions and to check the clarity of
1670 mathematical formulations authored by us. Importantly, the LLM had no involvement in research
1671 ideation, the development of scientific claims, the design of experiments, or the analysis of results.
1672