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ABSTRACT

This research proposes COMONet (Convex-Concave and Monotonicity-
Constrained Neural Networks), a novel neural network architecture designed to
embed inductive biases as shape constraints—specifically, monotonicity, convexity,
concavity, and their combinations—into neural network training. Unlike previous
models addressing only a subset of constraints, COMONet can comprehensively
integrate and enforce eight distinct shape constraints: monotonic increasing, mono-
tonic decreasing, convex, concave, convex increasing, convex decreasing, concave
increasing, and concave decreasing. This integration is achieved through a unique
partially connected structure, wherein inputs are grouped and selectively connected
to specialized neural units employing either exponentiated or normal weights, com-
bined with appropriate activation functions. Depending on the shape constraint
required by each input, COMONet dynamically utilizes its full architecture or a par-
tial configuration, providing significant flexibility. We further provide theoretical
guarantees ensuring the strict enforcement of these constraints, while demonstrating
that COMONet achieves performance comparable to existing benchmark methods.
Moreover, our numerical experiments confirm that COMONet remains robust even
under noisy conditions. Together, these results underscore COMONet’s potential
to advance constrained neural network training as a practical and theoretically
grounded approach.

1 INTRODUCTION

Neural networks often struggle to align with domain knowledge when trained solely through error
minimization, particularly when relying exclusively on observed data (Feelders), 2000; Dugas et al.,
2009; Murdock et al., |2020). Domain knowledge refers to widely recognized or pre-established
information specific to a given field (Yu et al.l [2010; Muralidhar et al., 2018)), and incorporating
it into neural networks can enhance their reliability and interpretability. One effective approach
to achieving this is through shape constraints, which encode well-defined relationships between
input and output features (Groeneboom & Jongbloed, 2014} Johnson & Jiang} 2018)). Ensuring that
neural networks satisfy these constraints is particularly important in critical domains such as finance
(Einav et al.| 2013} [Nelson et al., 2017)), healthcare (Shahid et al.l 2019), and law (Shahid et al.|
2019), where accurate and reliable predictions are essential for informed decision-making and system
optimization. As a result, there is growing interest in developing methods that integrate domain
knowledge into neural network training, ensuring that learned models not only fit the data but also
comply with real-world constraints and established principles. Among various possible constraints,
monotonicity and convexity (concavity) are two fundamental shape constraints that serve as inductive
biases and are widely applied in several different domains (Amos et al., [2017; Kim & Lee} [2024).
Monotonicity refers to a property where the output consistently non-decreases or non-increases | as
the input increases. Meanwhile, convexity (concavity) describes a function where, for any two points,
the output does not exceed (does not fall below) the straight line connecting them, indicating an
increasing (decreasing) rate of change. Fig.[I|a) illustrates various types of shape constraints related
to monotonic increase (decrease) and convexity (concavity) that can be incorporated into a model. It
is important to note that monotonicity does not necessarily imply convexity or concavity, and convex

'For readability, we refer to non-decreasing as increasing and non-increasing as decreasing throughout the
rest of the paper.
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Figure 1: (a) Types of shape constraints. (b) Capability comparison with benchmark methods

or concave functions can be monotonically increasing, decreasing, or non-monotonic. Additionally,
multiple distinct shape constraints can be independently and simultaneously imposed within a model.

Recent studies have shown growing interest in monotonic neural networks (Liu et al.,[2020; Sivaraman
et al., [2020; Runje & Shankaranarayana), 2023} |Kim & Leel|2024)) and convex neural networks (Amos
et al.l 2017} |Gupta et al., 2018), leading to various efforts to embed these properties into neural
architectures. While significant progress has been made in enforcing either monotonicity or convexity
(concavity) individually, studies that impose both constraints simultaneously within a single model
remain limited. Some prior works have attempted to incorporate both types of constraints, yet they
often fall short of fully enforcing all cases illustrated in Fig.[T[a) or providing strict guarantees
of constraint satisfaction. In domains where strict adherence to shape constraints is critical (e.g.,
healthcare or finance), even small violations of monotonicity or convexity may lead to unreliable
predictions, reduced interpretability, and the loss of theoretical guarantees that motivate the use of
such models (Kim & Lee} 2024; [Liu et al.| [2020). Fig.[I[b) compares the capabilities of existing
methods, including ours, and highlights that most prior approaches are unable to integrate all shape
constraints within the context of monotonicity and convexity (concavity).

To address these challenges, we propose COMONet (Convex-Concave and Monotonicity Constrained
Neural Network), a novel yet simple neural network architecture designed to incorporate various
shape constraints related to monotonicity and convexity within a single model. COMONet employs a
partially connected structure, where input features are grouped and selectively connected to various
types of specially designed units. Each unit utilizes either exponentiated or standard weights in com-
bination with carefully chosen activation functions. This architecture enables the model to effectively
learn diverse shape constraints while strictly enforcing all imposed constraints, thereby overcoming
the limitations of existing approaches. Furthermore, depending on the types and composition of
shape constraints that the entire set of input features must satisfy, COMONet can flexibly utilize
either its full structure or only a partial configuration. This flexibility allows the model to enforce
monotonicity, convexity (concavity), or their combination as needed, ensuring strict compliance with
the specified constraints.

2 RELATED WORK

Monotonic neural networks: Research on monotonic neural networks can be broadly categorized
into two groups, regularization-based approaches and architecture-based approaches. The first group
enforces monotonicity using various regularization techniques. For example, Certified MNN (Liu
et al.,|2020) applies penalties to partial derivatives, while COMET (Sivaraman et al.,[2020) augments
the dataset with so-called counter-examples for instances that violate monotonicity. These approaches
have limitations, as they may not fully enforce monotonicity without strong regularization and often
rely on external solvers such as MILP (Gurobi Optimization, LLC||[2023)) and SMT (Barrett & Tinellil
2018). The second group consists of hand-designed neural network architectures that inherently
guarantee monotonicity. Methods such as HLL (Yanagisawa et al.,2022), LMN (Nolte et al., 2022),
Constrained MNN (Runje & Shankaranarayanal 2023)), and SMNN (Kim & Lee, |2024) belong to
this category. While some of these approaches are theoretically proven to ensure monotonicity, their
restricted structures can lead to reduced predictive performance. As shown in Fig. [T(b), monotonic
neural networks cannot naturally incorporate convexity or concavity, as they are explicitly designed
to enforce monotonicity alone.
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Convex neural networks: Convexity is a valuable property in model training, as it facilitates
optimization, design, and control (Chen et al.,[2018;|Yang & Bequettel [2021)). Due to these advantages,
research on convex neural networks has gained significant interest. One of the earliest studies in this
field introduced ICNN (Amos et al.,2017), which later inspired various extensions and modifications.
For example, one extension leverages the difference between convex and concave components to
approximate more complex functions (Sankaranarayanan & Rengaswamy, |[2022). GON (Zhao et al.,
2022) applied ICNN to optimization tasks, while FCNN (Pfrommer et al.| 2024) was developed to
enhance robustness against adversarial attacks. Additionally, a faster learning method for ICNN was
proposed by introducing a novel initialization strategy (Hoedt & Klambauer, [2024). Expanding the
concept of convexity, recent studies have explored monotonic-convexity, which refers to functions
that are both monotonically increasing (decreasing) and convex (concave). Research in this direction
has led to the development of models such as the Shape-Constrained Lattice model and SCNN
(Gupta et al., [2018)). However, the former relies on a lattice structure to enforce shape constraints,
resulting in significantly increased computational complexity as the input dimension grows, making
it non-scalable. Additionally, both are limited to convex and concave functions and cannot effectively
estimate monotonic functions that are neither convex nor concave (e. g. x + sin (z)).

Shape constrained neural networks: To the best of our knowledge, PenDer (Gupta et al., 2021)
appears to be the only existing method capable of incorporating all eight shape constraints depicted in
Fig.[T(a). However, PenDer is a regularization-based approach, meaning it may fail to fully enforce the
given constraints during training as they reported in experiments. As a result, an additional verification
process is required to check whether the constraints are actually satisfied. However, this verification
process only identifies constraint violations rather than ensuring compliance. Consequently, the
model predictions cannot be trusted to consistently adhere to the desired constraints, particularly in
domains where constraint violations are unacceptable. Due to this limitation, there remains a need for
the development of a method that can integrate all possible shape constraints while strictly guarantee
their satisfaction.

3 SHAPE CONSTRAINTS

We consider a continuous, differentiable multivariate function f: [0, 1]¢ — R. We introduce three
classes of local shape constraints—partial convexity, partial concavity and partial monotonixity—that
apply to subsets of the input coordinates. Let [d] = {1,...,d} and we denote vectors in R? by
bold lowercase letters (e.g., X, t) and index-sets by calligraphic uppercase letters (e.g., CV, MN).
To impose distinct shape constraints on different input dimensions, we partition the coordinates of
x € R into six disjoint groups:

X = (Xevs Xmos Xeey Xmes Xmn, Xu) € RICVEx RMYE s RICE 5 RIMCL 5 RIMNT 5 RIUI

where, CV U MV UCC U MC U MN UU = [d]. Each index-set enforces a particular constraint on
f: CV (convex only), MV (monotonic + convex), CC (concave only), MC (monotonic + concave),
MN (monotonic only), and I/ (unconstrained). Further, V = CV UMV, C=CCUMC, M=
MN UMY U MC. represents that set contains each, all convex, concave and monotonic features.

Partial convexity: Partition x = (x,,x_,) € R?, with x,, € RV, x_, € RV, We say f is
partially convex on x,, iff, for any fixed x—,, and all x,,,x}, € RVl and X € [0,1], f(Ax, + (1 —
A) Xy Xow) <A f (%0, Xo0) + (1= A) (%], %X0)-

Partial concavity: partition x = (x.,x-.) € R? with x. € RI°l, x_. € R¥I°l. We say f is
partially concave on x,, iff, for any fixed x_. and all x.,x’, € R/l and X € [0, 1], F(Axe+ (1 -
A) XLy Xoe) = A f(XeyXoe) + (1= A) (%L, Xe)-

Partial monotonicity: Partition x = (X,,,,X_,) € R? with x,,, € RMI, x_ € RI-IMI We
say f is partially monotonic increasing on X, iff, % > 0,Vi € |[M]|. And, we say f is partially

monotonic decreasing on x,, iff, % <0,Vi € IM|.

By combining the definitions of partial monotonicity (increasing or decreasing) with partial convexity
(partial concavity), we can specify all eight shape-constraint types depicted in Fig. [T(a).
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Figure 2: Structure of COMONet that has 3 hidden layers.

4 PROPOSED METHOD

Fundamental units of COMONet: A key aspect of our approach is employing five distinct unit
types to effectively integrate and enforce diverse shape constraints. These units incorporate either
exponentiated or conventional weights, using ReLU (Nair & Hinton| |2010) or capped ReLU-n (Liew
et al., 20106) as activation functions. For any real scalar z, we define ReLU = ()4 = max(0, z) and
ReLU-n = (2)} = min{n, max(0, z)}. The equations below define the five units, each of which
takes the vector t as input:

convex unit = heony(t) = (exp(W) Tt + b)+ (1
concave unit = heone(t) = — (— (eXp(W)Tt + b))+ 2)
monotonic unit == hmeno(t) = (exp(W)Tt + b)jlr 3)
relu unit == hep(t) = (WTt + b)+ 4)
ref-relu unit == Aepen (t) = — (— (WTt + b))Jr 5)

heconvs Peone and Ameno Utilize exponentiated weights (Zhang & Zhang) [1999; |Agarwal et al., 2021}
Dinh et al., [2016) to constraint reparametrized weight to be positive. /umono employs (z)"} which
contains both convex and concave hinge components. Further, heone and hyer.rery €mploy point-
symmetric variants of ReLU, —(—(z))4 and ReLU-n, —(—(2))’;. We adopt ReLU and ReLU-n by
default, using ReLLU as our baseline for its computational efficiency, resilience to vanishing gradients,
and piecewise linear sparsity that accelerates convergence and boosts generalization (Nair & Hinton,
2010; Glorot et al., 201T). As shown in Appendix [G.I] any activation functions meeting the required
characteristics can be used instead. Each fundamental unit defined above satisfies the following
properties, as formalized in the lemmas below:

Lemma 4.1. Let heony @ RY — R¥ and denote its jth coordinate by f;(t) = [hconv(t)]j =

(exp(w;) Tt + bj)+. Then, ¥j € [k], f; is convex in t and f; is coordinatewise increasing, i.e.
95 >0, vi € [d]

Lemma 4.2. Let hyey : RY — RF and denote its jth coordinate by f;(t) = [hrelu(t)]j =
(WJ-Tt + bj)+. Then, Vj € [k], f; is convex in t.
Lemma 4.3. Let heone : R4 — R and denote its jth coordinate by fi(t) = [hcom (t)] .=

J
—(—exp(w;) "t — bj)+. Then, Yj € [k], f; is concave in t and coordinatewise increasing, i.e.

o j .

55> 0,vi € [d).

Lemma 4.4. Let hyefrery : R? — R” and denote its jth coordinate by f;(t) = [href_relu (t)]j =
—(—w/t— bj)+. Then, Vj € [k|, f; is concave in t.

Lemma 4.5. Let hpono : R® — RF and denote its jth coordinate by fit) = [hmono (t)] =

J
(exp(w;) Tt + bj)i. Then, Vj € [k|, f; is coordinatewise increasing in t, i.e. % >0, Vi € [d].

Detailed proofs for lemma [4.3]4.5]are provided at Appendix [A]

4
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Network structure: The proposed architecture, illustrated in Fig. [2| adopts a selectivly connected
design, where connections are partially connected to selectively route. This structure is conceptually
similar to the architectures proposed in (Amos et al., 2017 and (Kim & Lee, 2024), which also utilize
partially connected designs. Such a design ensures that the specific properties of individual input
variable groups are preserved, while simultaneously allowing the model to effectively capture the
interactions among all input variables. The overall formulation of COMONet, which employs the
five distinct types of units with depth [ defined above, is presented below:

When: =1,
1 1 1
h(l) = [ht("el)u,cv (XCV)7 hggnv(XmV)’ hiez—relu(XCC% hg(l)zlc (Xm0)7 hg())no (xIIll’l)’ hl(rel)u,u(xu)] :
When 7 = 2,

h, = hmnvth;l 0 %)y SO (Ko ), o (K ) B (30)]) ©)

2o = heone([hretn co (%ee) M8 (Kime) s BiEho () B (x0)]) ™)

7o = Panono([h s;gm<xmn>7 I (%)) ®)

I = hreta ([ (x))) ©)

B = (1@ hZe hZho )] (10)
When 7 > 3,

hDhy = heons ([him RS b)) (1)

hihe = heone ([R5, WS BGY)) (12)

R0 = Punono (G, B 1)) (13)

hio = heeta([h5, ) (14)

P = (B s Bhs B (1)

Let (") the output vector of Ith hidden layer, and f(x) be the output node in a fully connected output
layer, then,

f(x) =exp(W) a0 +b (16)
Where, exp (W) and b are the exponentiated weight matrix and bias vector between [th hidden
layer and output layer. Although we present the formulation with a single output node, it naturally
extends to multiple output nodes without issue. The above formulation enables COMONet to train a
neural network that enforces the specified constraints on each variable. Monotonically decreasing
features in MV, MC, MN are multiplied by —1 before training—transforming them into increasing
inputs—and their original sign is restored at inference, enabling seamless integration with other shape
constraints.

Shape-constraint guarantee of COMONet: Following the definitions in Section [3| we now
demonstrate that COMONet satisfies the convexity, concavity, and monotonicity properties. The
proofs of these theorems proceed by invoking the lemma [A.3}4.5] that characterize each unit’s
properties.

Theorem 4.6 (Convexity of COMONet). Ler f(x) be the proposed COMONet, which has | hidden
layers. Partition the inputx € RY as x = (Xy, X-p), X, = {z; |i €V}, V C[d]. Then f(x) is
partially convex with respect to x,,. In particular, for each x; withi € V, f is convex in x; (holding
the other coordinates fixed).

Theorem 4.7 (Concavity of COMONet). Let f(x) be the proposed COMONet, which has | hidden
layers. Partition the inputx € R asx = (x¢, X-¢), X.={w;|i€C}, C C[d]. Then f(x)is
partially concave with respect to X.. In particular, for each x; with i € C, f is concave in x; (holding
the other coordinates fixed).

Theorem 4.8 (Monotonicity of COMONet). Let f(x) be the proposed COMONet, which has | hidden
layers. Partition the input x € R asx = (Xpm, X-m), Xm = {z; |i € M}, M C [d]. Then
f(x) is partially monotonic increasing with respect to X,. In particular, for each x; withi € M, f
is monotonic (increasing) in ;.
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Figure 3: Configuration examples: (a) Configuration of COMONet when the input consists only of
Xy and Xx,,, (b) Configuration of COMONet when the input consists only of X,,, and x,,.

Detailed proofs for Theorem {.6}{4.8|are provided at Appendix [A] Flow diagrams for each variable
group appear in Appendix [A] As illustrated in Appendix [B] the unconstrained features x,, are
processed by multiple standard ReLU layers—without any shape constraints—allowing them to fully
exploit their expressive capacity as they propagate through the network. Moreover, at each hidden
layer, x,,’s activations are routed into the convex, concave, and monotonic units, enabling it to interact
with all other variable groups. Finally, Appendix [G.2]demonstrates the overall effectiveness of the
proposed network structure.

High flexibility and modularity: Proposed model demonstrates high modularity and flexibility,
enabling it to be easily tailored to accommodate various relationships and properties of input variables.
This adaptability stems from the structural characteristics of the proposed method, which employs a
partially connected structure. For instance, when the only constraint is convexity—i.e. we partition
the input as X = (X, X,) € RICVI x R, In this case, the resulting configuration—shown in
Fig. E] (a)—closely resembles the PICNN (Amos et al.,|2017) architecture. Similarly, when the only
constraint is monotonicity—i.e. we partition the input as X = (X, Xy) € RIMNT 5 RIUI the
resulting configuration—shown in Fig. [3{b)—aligns with the SMNN (Kim & Lee} [2024) architecture.

Interaction layer: Proposed partially connected architecture permits pairwise information exchange
among all four input groups x,, X., Xmn, and x,, except between x,, and x., if we partition the
variables into four group V, C, M, and U. To capture any necessary cross—group interactions between
V and C, we introduce an optional Interaction Layer. Any twice-differentiable function that is convex
in one variable and concave in the other admits only a bilinear cross term,
Theorem 4.9. Let f : R? — R be twice differentiable and satisfy : For all x5 € R, the mapping
x1 — f(x1,x2) is convex. And for all x1 € R, the mapping x2 — f(x1, x2) is concave. Then, if we
decompose

[, 22) = g(@1) + h(x2) + d(21, 22),
where g depends only on x1 and h depends only on xo, then pure interaction term ¢ must be

o(x1,22) = ax129, a€R.

Detailed proof for Theorem [4.9]is provided in Appendix [A]l Assuming the existence of variables x,,
and x. and their pairwise interactions, by introducing interaction layer, the model f is re-defined as:
F0) = f0) +9(x), gx) =D i a-a;,VieV,VjeCaeR, (17)
i=1 j=1
Further implementation details about interaction layer appear in Appendix [C|

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTS ON SYNTHETIC DATASETS

We first evaluated the effectiveness of our proposed method through experiments on synthetic datasets,
aiming to demonstrate that COMONet can satisfy various shape constraints. Since our method is
theoretically proven to guarantee these constraints and has been shown to be adaptable to different
types of inputs, testing all possible combinations of shape constraints introduced in Section[I] would
be unnecessary. Instead, we conducted experiments on two synthetic datasets where different types
of inputs were appropriately mixed and presented the results.
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Figure 4: (a) Hyperbolic Paraboloid function (b) Contour plots of the fitted models by COMONet
(Left) and MLP (Right) with respect to 1 and x5 when A = 0.05

Convexity and Concavity: The well-known hyperbolic paraboloid shown in equation [I8] and
Fig. B{a) was chosen because it exhibits both convexity and concavity. In equation[I8] z; is a convex
input, while x5 is a concave input of y. To the best of our knowledge, with the exception of the Pender
method, previous related studies have not addressed cases in which both convexity and concavity
must be satisfied simultaneously. To demonstrate that COMONet accurately fits the function even in
noisy environments, we introduced Gaussian noise € and varied the noise level parameter \.

y=(x1—0.5)% = (£2—0.5)% + Xe, e~ N(0,1),2; €[0,1],i=1,2, X< {0,0.05,0.1,0.2}.
(18)

Since the inputs are exclusively convex and concave, we utilized the COMONet structure shown in
Appendix [E33] for this experiment. Specifically, the ReLU layer and the convex layer were applied
to x1, while the reflected ReLLU layer and the concave layer were used for x5. For comparison, a
traditional MLP was employed as the baseline method. At each noise level, we generated 1,000
instances and split them into training (80%) and test (20%) sets.

The test mean squared errors (MSEs) are presented
in Table [T As shown in the Table [T} MLP outper- Table I: Test MSEs of COMONet and MLP
formed COMONet in the absence of noise. However,

as the noise level increased, COMONet demonstrated A 0 0.05 0.1 0.2
better performance, with a smaller increase in MSE ~ COMONet  0.0010  0.0028 0.0117  0.0448
compared to MLP. This demonstrates that COMONet MLP 0.0001  0.0030 0.0124  0.0529

provides a robust fit to the function. More importantly,

consider Fig. f{b), which displays the contour plots of the fitted models from both methods. Even
with a small amount of noise, MLP failed to preserve convexity and concavity, whereas our method
consistently maintained these constraints. Although we omitted further visualizations, our method
continues to satisfy them as noise levels increase.

Monotonicity and Convexity: We extended our experiment to a case with more shape constraints.
Specifically, we designed a 4-dimensional example, with the function defined in equation [T9]
2 in 2
y= (272 +2sm 1) | (23 — 0.5)2 4 €% + cos2may + Ae, €~ N(0,1).  (19)
™

2 €[0,1],i=1,2,3,4, € {0,1,2,5,10,20}.

As shown in equation [T9] a distinct shape constraint was assigned to each input feature: z; is a
monotonically increasing feature, x5 is convex, x3 is monotonic-convex, and x4 is unconstrained.
Similar to the previous experiment, we introduced Gaussian noise and controlled the noise level by
adjusting the \ value. At each noise level, we generated 3,000 instances and split them into training
(80%) and test (20%) sets. For comparison, two baseline methods were used in this experiment.
In addition to the traditional MLP, we included a model referred to as “Same Structure” (shown in
Appendix [FI) which shares the same architecture as COMONet but replaces all units with ReLU
layers, meaning no shape constraints were enforced. To ensure a fair comparison, all models were
constructed with an identical number of nodes per unit. The performance results in terms of MSE
are presented in Fig. [5[a). The results indicate that MLP achieved the lowest training MSE across
all X values, followed by the Same Structure model, while COMONet exhibited the highest training
error. In contrast, for test MSE, COMONet consistently outperformed the other models, while MLP
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Figure 5: (a) MSEs from the experiments at different A values. (left) Training MSEs, (middle) Test
MSEzs, (right) Denoised Test MSEs. (b) Contour plots in the z1-z5 plane for A = 0 (top) and A = 1
(bottom), comparing outputs of COMONet, same structure, and MLP.

exhibited the highest error. This indicates that MLP overfits the noise during training, whereas our
method does not. Notably, in the denoised test MSE—which evaluates performance in predicting
the noise-free ground truth—COMONet maintained robust predictions even as A increased. These
results quantitatively confirm that the shape constraints enforced by COMONet not only mitigate the
impact of noise but also significantly improve the model’s generalization performance.

Fig. [5(b) shows the contour plots of the fitted models for all three approaches. In the ab-
sence of noise, all models produced reasonable fits. However, even with a small noise level
(A = 1), the MLP and Same Structure models completely failed to satisfy the constraints, whereas
COMONet successfully preserved monotonicity with respect to x1 and convexity with respect
to x9. This figure confirms that our method effectively maintains the imposed shape constraints.

Trustworthy test using LIME:  Fig.[6|demonstrates that
the proposed method prevents incorrect interpretations. It
shows the LIME (Ribeiro et al,2016) values for z; and
x3 at the different noise levels. Notice that 1 is a mono-
tonically increasing feature and x3 is monotonic-convex, U UmEvalie T T T LMEvalue T
meaning their LIME values should always be positive for
a correct interpretation. As shown in the figure, the LIME
values for both x; and x3 computed from the COMONet
models are consistently positive, with low variance, which
aligns with the expected interpretation. By contrast, LIME
values from the MLP models fluctuate in sign and exhibit
high variance. These results validate that embedding shape
constraints yields more reliable interpretations.

@ MLP
@ COMONet

o] @ COMONet !

Figure 6: LIME values for z; (Left)
and x3 (Right), with data sampled at x5
and x4 fixed at their mean values in the
test dataset. The values are shown for
COMONet (red) and MLP (blue) across
different A values.

5.2 EXPERIMENTS ON REAL-WORLD DATASETS

We now present the general performance level of our proposed method on real-world datasets through
a comparative study with benchmark techniques. The study consists of two parts, comparison
with monotonic neural networks and comparison with methods incorporating both monotonicity
and convexity. For the first part, five datasets were used. The Auto-MPG(UCI Machine Learning|
Repository}, [1983-2021)) and Blog Feedback (Spiliopoulou et al., [2014) datasets were used for
regression tasks, while the Heart Disease (UCI Machine Learning Repositoryl, [1988-2021)), COMPAS
(Angwin et all, 2016), and Loan Defaulter (Wendy Kan / Kaggle), 2024) datasets were used for
classification tasks. The benchmark methods in this comparison include the most recent monotonic
neural networks approaches reviewed in Section 2] For the second part, the Car Sales
2023), Puzzle Sales (dbahri / Kaggle| [2024a), and Wine Quality (dbahri / Kaggle, 2024b)
datasets were used, all of which were designed for regression tasks. The benchmark methods selected
for comparison were SCNN and PenDer, as they incorporate both convexity and monotonic-convexity
constraints. For regression tasks, we reported metrics including mean squared error (MSEs) and root
mean squared error (RMSE), while for classification tasks, we reported accuracy. Further details
on the experiments and additional information about the datasets can be found in Appendix[E] All
experiments in this section were conducted over multiple iterations, with the mean and standard
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deviation reported. The best performance for each dataset is highlighted in bold, and dagger symbol
(T) indicates statistical tie with the best-performing method. We consider two methods to be in a
statistical tie when their mean test MSE = one standard deviation intervals overlap.

Table 2: Results on real-world datasets for comparison with monotonic neural networks

Method Auto MPG Heart Disease COMPAS Blog Feedback  Loan Defaul
Test MSE | Test Acc Test Acc 1 Test RMSE | Test Acc T
DLN|You et al.|(2017) 13.34 +2.42 0.86 +£0.02 67.9+0.3 0.161 = 0.001 65.1+0.2
Min-Max Net|Daniels & Velikova|(2010) 10.14 +1.54 0.75+0.04 67.8+0.1 0.163 = 0.001 64.9+0.1
Non-Neg-DNN ——— - —— 67.3£0.9 0.168 = 0.001 65.1+0.1
COMET Sivaraman et al. |(2020) 8.81 £1.81 0.86 +0.03 - —— ——— - — =
Certified MINN/|L1u et al.[(2020) ——— ——— 68.8£0.97 0.158 £ 0.001 65.2+0.1
LMN|Nolte et al.|(2022) 7.58 +1.20f 0.90 +0.02 69.3+0.17 0.160 +0.001 65.4+0.0
Constrained MNN |[Runje & Shankaranarayana|(2023) 8.37£0.08 0.89 £ 0.00 69.2 £0.27 0.156 +£0.001 65.3+0.17
SMNN Kim & Lee (2024} 7.44+1.20 0.88 +£0.04 69.3+0.97 0.150+0.001 65.0+0.1
COMONet (Ours) 7.38+1.3 0.87+0.04 69.5+1.0 0.153 +0.001 64.9+0.1

Comparison with monotonic neural networks: The results shown in Table 2] represent the means
and standard deviations obtained from cross-validation. As shown in the Table[2] our method generally
performed well, achieving the best performance on some datasets and remaining comparable to other
methods on the rest. Specifically, it achieved the best results for the Auto-MPG and COMPAS
datasets. For the Heart Disease dataset, it was statistically tied with the best-performing method. On
the Blog Feedback dataset, it ranked second. Although its ranking for the Loan Defaulter dataset was
lower, its accuracy remained within a reasonable range compared to other methods.

Table 3: Results on real-world datasets for comparison with SCNN and PenDer

Method Car Sales (Test MSE |) Puzzle Sales (Test MSE |) Wine Quality (Test MSE |)
(conv) (conv, decr) (conc) (conc, incr) (conc) (conc, incr)

SCNN|Gupta et al.|(2018) 11093 £ 487 10880 + 291 9460 + 2561 9258 +£ 319 6.32+0.19 6.43+0.18
PenDer|Gupta et al.|[(2021)  10411+107 10415+ 104f 9428 £113 9519 + 92} 519+0.11 5.27 £0.20%
COMONet (Ours) 10426 +128f 10378 £119 9443 £138t 9277 +233t1  5.53+0.461 5.26 +0.06

Comparison with SCNN and PenDer: Our experimental evaluation compares COMONet against
SCNN and PenDer on three real-world datasets—Car Sales, Puzzle Sales, and Wine Quality—under
two constraint settings per dataset: convex (concave) only, and convex (concave) monotonic. For
each dataset, we used the provided train/test split and averaged the test MSE over five independent
runs using the optimal hyperparameter settings found. Table[3]shows performance of the proposed
method and the comparison methods on these three datasets. COMONet achieves the best Test MSE
in two of the six settings Car Sales (conv, decr) and Wine Quality (conc, incr), and when accounting
for statistical ties matches or outperforms all baselines across all six settings. While PenDer matches
or outperforms across all datasets and settings, its shape-conformance metrics My, and Cj sometimes
fall below 1, indicating that it fails to fully satisfy the prescribed constraints. Here, M and Cy,
denote the proportions of samples satisfying monotonicity and convexity constraints respectively
(Gupta et al.| [2021)). For example, the convexity score on the Puzzle Sales dataset and both the
monotonicity and convexity scores on the Wine Quality dataset are 0.98 or 0.99—values close to one
but nevertheless indicative of incomplete constraint satisfaction. Table[§|in Appendix [F.2]shows the
detailed numerical results for PenDer’s performance and its constraint conformance. These results
demonstrate that COMONet not only delivers comparable or superior predictive performance but
also guarantees full adherence to the enforced shape constraints.

6 CONCLUSION

In this work, we introduced COMONet, a gradient-descent—trained neural architecture that embeds
domain knowledge as inductive biases—enforcing convexity, concavity, monotonicity, and their com-
binations—while permitting selective application of these shape constraints per variable. empirical
results on synthetic and real-world datasets demonstrate that COMONet not only matches or exceeds
the predictive performance of existing baselines but also guarantees strict adherence to the specified
constraints. However, COMONet requires a priori knowledge of each variable’s shape constraints,
meaning incomplete or erroneous domain information may impair its effectiveness. Looking ahead,
we will seek theoretical guarantees that COMONet serves as a universal approximator for arbitrary
functions under prescribed shape constraints and will explore its use as a modular component in
time-series and image-based tasks.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide the full implementation of our experiments
as supplementary material, enabling others to directly verify and replicate our results. Detailed
descriptions of the experimental settings and procedures are included in Appendix [E] covering
datasets, preprocessing step, model configurations, and training protocols. In addition, all theoretical
proofs supporting our methods are presented in Appendix [A]for completeness and clarity. Together,
these resources are intended to facilitate transparent and reproducible validation of our findings.
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A PROOFS
Lemma Let heony : R — RF and denote its jth coordinate by f;(t) = [hconv(t)]j =

(exp(w;) 't + bj)+. Then, Vj € [k], f; is convex in t and f; is coordinatewise increasing, i.e.
9 > 0,vi € [d).

Proof. Write the vector-valued map as f;(t) = o(g(t)) with
g(t) = exp(w;) "t +b; € R¥ o(z) = (z);+ = max(0,z) (applied element-wise).

Where exp(w;) " and b; indicates jth column vector of weight matrix exp (W) and jth elements
of bias vector b. g is an affine map, hence convex in t (Boyd & Vandenberghe, 2004} Rockafellar,
1997). And exp (W) has strictly positive weights, so

Vg;(t) = exp(w;) > 0. (element-wise)

And o : R¥ — RF is convex and increasing coordinatewise (since o/(z) € {0,1} > 0). By the
standard result that composition of a convex affine map and a convex increasing scalar function is
convex(Rockafellar, [1997). f;(t) = [hconv(t)]j = (exp(w;) "t +b;) , is convex. Furthermore,
by the chain rule,

91

6587;
where exp (wj ;) refers ith elements of exp(w ), showing coordinate-wise monotonicity. So, f;(t)
is convex and coordinate-wise monotonically increasing in t.

=a'(g(t)) - exp (w;;) > 0,

Lemma Let Ay : RY — RF and denote its jth coordinate by f;(t) = [hl.elu(t)L -
(WjTt +b;), . Then, Vj € [k], f; is convex in t.

Proof. Write the vector-valued map as f;(t) = o(g(t)) with

g(t) = ijt +b; € RY, o(z) = (z);+ = max(0,z) (applied element-wise).

Where ij and b; indicates jth column vector of weight matrix exp (W) and jth elements of bias
vector b. g is affine in t, hence convex. And o : R* — R* is convex and coordinate-wise increasing
since, o’(z) € {0,1} > 0. By the standard result that composition of a convex affine map and a
convex increasing scalar function is convex. By standard results on composition, f;(t) is convex in
t.

Theorem Let f(x) be the proposed COMONet, which has [ hidden layers. Partition the input
x €RYasx = (x,, X-0), X, ={x;|i €V}, V C[d]. Then f(x) is partially convex with
respect to x,,. In particular, for each z; with ¢ € V), f is convex in z; (holding the other coordinates
fixed).

Proof. Let x = (Xy, X-v), Xy = (Xev, Xmyp) SO that equivalently X = (Xey, Xy, X—y ). In this
composition, convex features X, feeds into a Ay, -then-heony chain, where as convex-monotonic
features x,,, feeds into a h.y,y chain. We will show that for each fixed setting of all coordinates
except a single x; with ¢ € V, the scalar output f(x) is convex in x;. There are two cases:

Case 1: convex features, x; € X,
First layer on x; iS Agely:

1
z) = hr(elzl(xi, ce),

which by lemma[4.2]is convex in z;. Subsequent layers along any path to the output are convex-units:

2 = hg (2", ),

13
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which by lemma [4.1] is also convex and increase in z;. Composition of a convex map and an
affine/increasing convex map remains convex. Hence any path from x; through Ay -then-hgony units
which follows the fully connected layer (affine transform) :

f=exp(w;) 2" +b;
is convex in x; for every x; € Xc,.
Case 2: convex-monotonic features, x; € X,
First layer on x; iS hcony:
2 = g, (i, ..),
which by lemma[4.2]is convex in x;. Subsequent layers along any path to the output are also Acony:
2 = hgh (7Y, ),

Composition of a convex map and an affine/increasing convex map remains convex. Hence any path
from x; through hco,, Which follows the fully connected layer (affine transform) :

T
f=exp(w;) 2 + b,
is convex in x; for every x; € Xy

Thus, having shown that for each component x;, Vi € V, f is convex in z; (with all other coordinates

held fixed), it follows that f(x) is partially convex with respect to x,,. O
Lemma Let heone : RY — RF and denote its jth coordinate by fit) = [hconv(t)]j =

—(—exp(w;) "t — bj)+. Then, Vj € [k], f; is concave in t and f; is coordinate-wise increasing, i.e.
8L > 0,vi e [d].

Proof. Write the vector-valued map as f;(t) = o (g(t)) with
g(t) = —exp(w;) "t —b; € R¥ o(z) = —(z)+ = —max(0,z) (applied element-wise).

Where exp(w;) T and b; indicates jth column vector of weight matrix exp (W) and jth elements of
bias vector b. g is an affine map, hence concave in t (Boyd & Vandenberghe, [2004; Rockafellar,
1997). And exp (W) has strictly negative weights, so

Vg;(t) = —exp(w;) < 0. (element-wise)

And o : RF — RF is concave and decreasing coordinate-wise (since o/ (z) € {—1,0} < 0). By the
standard result that composition of a concave affine map and a concave decreasing scalar function is
concave. f;(t) = [hconc(t)]j = —(—exp(w;) "t — b;) , is concave. Furthermore, by the chain

rule, p
17
(“)x]i =0'(g(t)) - exp (w;;) > 0,

where exp (w; ;) refers ith elements of exp(w), showing coordinate-wise monotonicity. So, f;(t)
is concave and coordinate-wise monotonically increasing in t. O

Lemma m Let Mefrela : RY — R* and denote its jth coordinate by f;(t) = [hrelu(t)]j =
f(fwl;rt — bj)+. Then, Vj € [k], f; is concave in t.

Proof. Write the vector-valued map as f;(t) = o(g(t)) with

g(t) = fijt —b; € R, o(z) = —(z)+ = —max(0,z) (applied element-wise).

Where ij and b; indicates jth column vector of weight matrix exp (W) and jth elements of bias

vector b. ¢ is affine in t, hence concave. And o : R¥ — R¥ is concave and coordinate-wise
decreasing since, o’(z) € {—1,0} < 0. By the standard result that composition of a concave affine
map and a concave decreasing scalar function is concave. By standard results on composition, f;(t)
is concave in t.
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Theorem Let f(x) be the proposed COMONet, which has [ hidden layers. Partition the input
x € RYasx = (X X-¢), X.={z;|i€C}, CC[d]. Then f(x) is partially concave with
respect to x.. In particular, for each x; with ¢ € C, f is concave in x; (holding the other coordinates
fixed).

Proof. Let x = (X¢, X—¢), Xe = (Xee, Xme) SO that equivalently X = (Xcc, Xme, X-c). In this
composition, concave features X.. feeds into a Agegrery-then-heone chain, where as concave-monotonic
features x,,. feeds into a hone chain. We will show that for each fixed setting of all coordinates
except a single x; with ¢ € C, the scalar output f(x) is concave in x;. There are two cases:

Case 1: concave features, x; € X..

First layer on x; iS Arefrelu:

1
z(l) = r(ef?relu(xh s ),

which by lemmaf.4]is concave in ;. Subsequent layers along any path to the output are concave-
units:
7z — p()

conc

(2670, ..,

which by lemma [.3]is also concave and increase in x;. Composition of a concave map and an
affine/increasing concave map remains concave. Hence any path from z; through hef rejy-then-heone
units which follows the fully connected layer (affine transform) :

f=exp(w;) 2" 4 b;
is concave in x; for every x; € X..
Case 2: concave-monotonic features, x; € X,
First layer on x; iS hconc:

2 = nlY) (x5, ...),

conc

which by lemmad.4]is concave in x;. Subsequent layers along any path to the output are also hconc:
(207D, ..),

Composition of a concave map and an affine/increasing concave map remains concave. Hence any
path from z; through h¢one which follows the fully connected layer (affine transform) :

20 — p(0)

conc

f=-exp(w;) 2" 4 b;
is concave in z; for every x; € Xc.

Thus, having shown that for each component x;, Vi € C, f is concave in x; (with all other coordinates
held fixed), it follows that f(x) is partially concave with respect to x.. O

J

(exp(w;) Tt + bj)I. Then, Vj € [k], f; is coordinate-wise increasing in t, i.e. %—2 >0, Vi€ [d)].

Lemma Let hmono : R? — R* and denote its jth coordinate by fit) = [hmono(t)] L=

Proof. Write the vector-valued map as f;(t) = o(g(t)) with

n

g(t) = exp(w;) "t+b; € R¥ o(z) = (z)} = min(max(0,z),n) (applied element-wise).
Where exp(w;) " and b; indicates jth column vector of weight matrix exp (W) and jth elements of
bias vector b. ¢ is an affine map, exp (W) has strictly positive weights, so

Vg;(t) = exp(w;) > 0. (element-wise)

And o : R¥ — R is monotonically increasing coordinate-wise (since o/(z) € {0,1} > 0).
Furthermore, by the chain rule,
f;
8.131‘

where exp (wj ;) refers ith elements of exp(w ), showing coordinate-wise monotonicity. So, f;(t)
is coordinate-wise monotonic increasing in t.

=0’ (g(t)) - exp (w;;) > 0,
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Theorem Let f(x) be the proposed COMONet, which has [ hidden layers. Partition the input
x €R¥asx = (X, Xom), Xm = {x; | i € M}, M C [d]. Then f(x) is partially monotonic
increasing with respect to x,,. In particular, for each x; with ¢ € M, f is monotonically increasing
in Zi.

Proof. Let x = (Xm» X-m), Xm = (Xmn,Xmu; Xme) SO that equivalently x =
(Xmns Xmws Xme, X—m ). We will show that for each fixed setting of all coordinates except a single
x; with ¢ € M, the scalar output f(x) is monotonically increasing in z;. There are three cases:

Case 1: monotonic features x; € X,nn

First layer on x; iS Amono:
1 1
Z( ) = hlgno)no(zi? s )7
which by lemma4.3]is monotonically increasing in x;, Subsequent hidden layers along any path to
the output are consist by monotonic units (hmoeno), convex units (heony) and concave units (heone) for

k=2,..1:

2" = pk) (z(k_l)7 ...) or 2% = pk) (z(k_l), ...) or z*) = pk) (z(k_l)7 ).

conv

By lemma [.3] lemma [4.1] and lemma each of these three unit types has nonnegative partial
derivatives in all its inputs. Hence at every hidden layer k, along every path, we have
(k)
Oh;
8xi
The layer-wise computation thus proceeds up to the final hidden layer, indexed k& = [. There, the

network produces the feature vector z(), which is then passed through the output affine map with
strictly positive weights:

> 0.

f=exp(w;) 2" 4 b;
Because each entry of exp(wj)T is positive, the total derivative is a positive weighted sum of
nonnegative terms. Therefore
0
! >0

aﬁL’i =7

showing that output of f is monotonically increasing in x; for every x; € Xp,.

Case 2: convex and monotonic features, z; € X,

Every layer along its path is either a convex unit Aoy, or the fully connected layer. By lemma4.1|
each hony has nonnegative partial derivatives, and the fully connected layer does as well. Hence f is
monotonically increasing in x; for every x; € Xy -

Case 3: concave and monotonic features, x; € X,

Every layer along its path is either a concave unit hgonc or the fully connected layer. By lemmafd.3]
each honc has nonnegative partial derivatives, and the fully connected layer does as well. Hence f is
monotonically increasing in x; for every x; € X,..

Finally, in all cases, % > 0 for every x; € X,,. Hence f is partially monotonic increasing in
X O

Theorem Let f : R? — R be twice differentiable and satisfy : For all z5 € R, the mapping
21 +— f(x1,x9) is convex. And for all z; € R, the mapping x5 > f(x1,x2) is concave. Then, if
we decompose

f(@1,22) = g(@1) + h(x2) + $(71, 72),

where g depends only on z; and h depends only on x5, then pure interaction term ¢ must be

d(z1,22) = ax179, a€R.

Proof. Since f is twice differentiable, consider its Hessian:
S Sz ’f
H = = .
sl 2) <f21 Ja2 )’ Jis Ox;0x;
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Convexity in 7 implies f11(x1,z2) > 0 and concavity in x5 implies faz(z1,z2) < 0. We therefore
decompose
f(@1,22) = g(z1) + h(22) + ¢(1,22),

where g and h absorb all single-variable terms, and ¢ is the pure interaction term.

Noting

fi1=9"(@1) + ¢11,  faz = B (x2) + @22,
the sign constraints imply ¢1; = C is constant in x5 and ¢92 = Cs is constant in x;. Integrating
¢11 = C7 twice with respect to x; gives:

C
d(x1,x0) = %x% + A(z2) 21 + B(x2).

Differentiating twice in x5 and Setting ¢9o = C yields
A//($2)1‘1 + B//(l‘g) = CQ,
so A”(z2) = 0 and B”(z3) = C5. Hence

C
A(z) = a1z2 +ag, B(za) = 72;133 + byzg + by.
Absorbing the single-variable parts into g and h leaves only

¢(l‘1,$2) = a1 r1r2.

Therefore,
f(@1,22) = g(z1) + h(22) + az122,
showing that the interaction term must be of the form a z . O

Corollary A.1 (Vanishing interaction under extra monotonicity). Under the assumptions of The-
orem further assume that at least one of the univariate mappings is monotonic; specifically,
either

x1 > f(x1,x2) is monotonic for every xa, or xo— f(x1,x2) is monotonic for every x1.

Then the coefficient a must be zero, and hence ¢(x1, x3) = 0.

Proof. Without loss of generality, suppose 21 — f(x1, 22) is non-decreasing. From

of /

671(:”1’ r2) = g'(x1) + aws,
monotonicity demands this derivative keep a fixed nonnegative sign for all real x5. Since x5 ranges
over R, the only way ¢’(x1) + a x2 never changes sign is a = 0. Therefore ¢ (1, z2) = 0. O
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B FLOW DIAGRAMS OF COMONET

Fig.[7present the flow structure of COMONet to demonstrate how each variable group (X¢u, X, Xees
Xmes Xmn» Xy) contributes to the final prediction through their respective computational flows. Each
subfigure highlights the specific path for a variable group, represented by bold dashed lines, showing
how the input is processed through layers to produce the final output. This detailed visualization
helps to clarify the role and influence of each group of variables in the model’s overall architecture.
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Figure 7: Flow diagrams representing the computational flows for each variable group in COMONet.
Bold dashed lines indicate the paths followed by individual variable groups (a) Xy (b) Xmu, (€) Xees

(d) Xcv, (©) Xmn, (F) X

C

INTERACTION LAYER OF COMONET

Fig. shows the all needed pairwise interactions between x, and x., Let x € R< then, by theorem
the possible pairwises that could have interaction term deed only between %, and X..

1
: i
1
= -k - = X X, 000 X,
Xy = {Xeps Xmp} i Xc = {Xcer Xmc} Gl cv2 1Y
1 \ ’ 1 xcc,l xcc,l X xcv,l xcc,l X XCV,Z xcc,l X xw,m
1 A4 1
1 A% 1
1 VAY 1 Xee,2 Xee2 X Xev1 Xce2 X Xev2 Xce2 X Xevm
1 VY 1
] / \ ]
1 U \ 1
Xpmn [— Xy
Xcen Xeen X Xevn Xeeqn X Xev,2 Xcen X Xevm

Figure 8: Interaction terms between convex and concave features could be captured by Interaction
layer.
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D CONFIGURATION FLEXIBILITY OF COMONET

Fig. [0 and Fig. shows various COMONet configurations, demonstrating the flexibility of the
proposed method. Fig. Elillustrates the 2* — 1 = 15 possible configurations obtained by dividing
the variable groups into four categories: X,, X., Xmn, Xy. While, table in Fig. @ shows all
26 — 1 = 63 possible configurations of COMONet. These configurations highlight the ability of
COMONet to handle a wide range of input scenarios while maintaining consistent processing through
its computational layers. This adaptability ensures that the model can be tailored to specific tasks by
including or excluding certain variable groups as needed.

oy o I [ o) o e
[l % = e
e Howw 1/ N e S N
[ /l ; = /8T
] e
(b) ©
="
,,,,,,,,, = - — S WA
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Figure 9: Examples structures of various configurations for COMONet.
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Figure 10: All possible 63 configurations for COMONet.
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E DETAILED EXPERIMENT DESCRIPTIONS

E.1 TRAINING CONFIGURATIONS

All experiments in this study were conducted on a system equipped with an Intel(R) Core(TM)
17-14700K 3.40 GHz processor, 64.0GB of DDRS RAM, and running Microsoft Windows 11 Pro as
the operating system. For GPU computations, we utilized an NVIDIA GeForce RTX 4070 Ti SUPER
with 16.0GB of memory. The implementation of all models and experiments was carried out using
Python (version 3.12.7) and the PyTorch (Paszke et al., 2019) library (version 2.5.1) with CUDA
(version 12.4). During model training, the ADAM (Kingma & Ba, [2014)) optimizer was employed
as the stochastic optimization solver. Hyperparameters for each dataset were explored using a grid
search strategy. For all datasets, the training process incorporated early stopping and, when necessary,
exponentiated batch normalization (EBN) to enhance stability and efficiency. Table ] summarizes
the hyperparameter settings for the proposed methods. Hyperparameters for both our proposed and
the benchmark methods were selected via grid search over batch sizes of 128, 256, 512, and learning
rates of 0.05,0.005, 0.002. The number of epochs varied [200, 3000] depending on the dataset. In
general, experiments were conducted using 5-fold cross-validation repeated 5 times, and the mean
and standard deviation (std) across 25 runs were reported. However, when the dataset was split into
train/validation/test, experiments were conducted 5 times, and the mean and standard deviation from
these runs were reported.

Table 4: Hyperparameters of COMONet for real-world datasets

Dataset Number of parameters Learning rate Batch size
COMPAS 1457 0.005 128
Heart Disease 19649 0.002 128
Loan Defaulter 1489 0.0005 512
Blog Feedback 5137 0.0005 256
Auto-MPG 19265 0.005 128
Car sales 6401 0.005 109
Puzzle sales 9729 0.005 155
Wine quality 6753 0.005 512

Table 5: Hyperparameters of benchmark methods for real-world datasets

Methods Dataset Number of parameters Learning rate Batch size
SCNN Car sales 1450 0.005 109
SCNN Puzzle sales 5460 0.005 155
SCNN Wine quality 9094 0.005 512
PenDer Car sales 6401 0.005 109
PenDer Puzzle sales 6529 0.005 155
PenDer Wine quality 10241 0.005 512

E.2 STRATEGIES FOR TRAINING STABILIZATION

In this study, one of the key components of the proposed method, the exponentiated weight (exp(w)),
has the potential to explode as the weight value increases due to the nature of the exponential function.
To address this issue, we adopted the weight initialization strategy introduced in the appendix of
SMNN (Kim & Leel 2024). Specifically, the initial values of the exponentiated weight w were
sampled from a uniform distribution within the range [—20, 2], effectively preventing the exploding
problem. Furthermore, the scaling parameter ~y of the Exponentiated Batch Normalization was
initialized to 0 to ensure stable training, by making exp () to 1. In addition, for activation functions
such as ReLLU and ReLU-n, we introduced a Leaky ReLU modification with « = 0.01 in their
off regions. This adjustment preserves the intended properties of each activation function while
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improving training stability.

ax, ifx <0,
Leaky ReLU-n(x) = ¢ x, if0 <z <mn, (20)
a(z—n)+n, ifx>n.

E.3 EXPONENTIATED BATCH NORMALIZATION

In COMONet, two types of different activation functions (e.g., ReLU and ReLU-n) are employed
across layers, and the weights in certain layers are exponentiated. These differences in activation
types and weight transformations can lead to significant deviations in the value distributions of layer
outputs. In some cases, such discrepancies may result in unstable learning dynamics, necessitating
the use of Batch Normalization(loffel, 2015) to stabilize training.

However, traditional Batch Normalization introduces a scaling parameter, v which can take on
negative values during learning (7 < 0). When 7 becomes negative, the normalized output may be
reversed, violating critical Shape Constraints such as monotonicity or convexity. This sign reversal,
in turn, can alter the sign of partial derivatives, fundamentally disrupting structural guarantees for
each varlables. &

y=— ()48 1)

VVarlx] +e

To address this issue, we propose Exponentiated Batch Normalization (EBN) equation 21} where
the scaling parameter ~ is replaced with its exponentiated form, exp () when x refers the outputs
of the layer and y refers the batch normalized outputs. By enforcing exp () to be strictly positive,
we ensure that the normalized output retains its correct sign, thereby preserving the desired Shape
Constraints. This approach effectively mitigates the variance in layer output distributions while
maintaining stable and consistent training dynamics across heterogeneous layers.

E.4 DESCRIPTIONS FOR REAL-WORLD DATASETS

This section provides an overview of the real-world datasets used in the experiments. These datasets
were derived from previously published benchmarks frequently cited in literature on monotonic and
convex neural networks. The criteria for applying shape constraints followed the methodologies
outlined in prior benchmark studies. While precisely defining shape constraints poses challenges,
as mentioned in the conclusion, future research that focuses on identifying these constraints for
specific variables could yield valuable insights. Additionally, some datasets contain instances with
relatively small sample sizes, reflecting realistic challenges often encountered in practical applications.
Effectively addressing such constraints is critical for developing robust and widely applicable models.
Table[6|provides a summarized overview of each dataset, with detailed descriptions presented below
(Bold text indicates monotonic decrease, while italic text denotes concavity.):

AutoMPG: The Auto-MPG dataset is a regression dataset with 7 variables and approximately
398 instances, used to predict a car’s miles per gallon (mpg). It includes monotonic decreasing
relationships between mpg and the variables weight, displacement and horse power.

Heart Disease: The Heart Disease dataset is a classification dataset with 13 variables, used to predict
the presence or absence of heart disease in individuals. Among the variables, trestbps (resting blood
pressure) and chol (cholesterol level) are known to have monotonic increasing relationships with the
risk of heart disease.

COMPAS*: The COMPAS dataset is a binary classification dataset that predicts whether offenders
in Florida will reoffend within two years based on criminal history data. It includes 13 variables,
of which 4 (number of juvenile misdemeanor, number of other convictions, number of prior adult
convictions, and number of juvenile felony) are known to have monotonic increasing relationships
with recidivism risk. This dataset raises ethical concerns; however, it has been used in recent
publications for comparison studies and remains relevant in research fields focused on fairness.

Blog Feedback: The BlogFeedback dataset is a regression dataset used to predict the number of
comments a blog post will receive within 24 hours. It includes 276 variables, of which 8 variables
(AS51, A52, A53, A54, A56, A57, A58, A59) are known to have monotonic increasing relationships
with the number of comments.
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Loan Defaulter: The Loan Defaulter dataset is a classification dataset used to predict whether a
customer will default on a loan. It includes loan data from 2007 to 2015 and consists of 28 variables,
among which 5 variables have shape constraints. Number of public record bankruptcies and Debt to
income ratio have monotonic increasing relationships with default risk, while Credit score, Length
of employment, and Annual income have monotonic decreasing relationships with default risk.

Car Sales: The Car Sales dataset is a one-dimensional regression problem aimed at predicting
monthly car sales (in thousands) based on the car price (in thousands). In this problem, the price
variable is constrained to have a convex and monotonically decreasing relationship with car sales.
The dataset consists of a total of 155 entries, with 109 used for training, 32 for testing, and 14 for
validation.

Puzzle Sales: The Puzzle Sales dataset is a regression dataset designed to predict six-month sales
of wooden jigsaw puzzles using features derived from Amazon reviews. Three features are used
for prediction: (1) the average star rating, which is expected to have a monotonically increasing
relationship with sales; (2) the number of reviews; and (3) the word count of reviews, both of which
are expected to exhibit a monotonically increasing and concave relationship with sales. The dataset
includes 156 training examples, 169 validation examples, and 200 test examples.

Wine Quality: The Wine Quality dataset is a regression dataset designed to predict wine scores on
an 80-100 scale using various wine attributes. The dataset consists of 61 variables in total: 21 binary
variables representing the country of production, 39 boolean variables derived from wine descriptions
published by the Wine Enthusiast Magazine, and a continuous variable representing the wine’s price.
Among the 120,919 data entries, 84,642 were used for training, 12,092 for validation, and 24,185
for testing. The variable price was included in the training process with the expectation that it has a
concave and monotonically increasing relationship with wine quality.

Table 6: Descriptions for Real-world Benchmark Datasets

Dataset Task # Instances  # Features  # Constrained features Monotonic-Convex (Concave) features Monotonic features
Auto-MPG Regression 398 7 3 — e weights, displacement, horse power
Blog Feedback Regression 54270 276 I A51,A52,A53,A54,A56,A57,A58,A59

number of prior adult convictions,
number of juvenile felony,
number of juvenile misdemeanor,
number of other convictions

COMPAS Classification 6172 13 4 =

Heart Disease  Classification 303 13 2 == trestbps, chol

number of public record bankruptcies,
dept-to-income ratio,
Loan Defaulter  Classification 488909 28 I credit score,
length of employment,
annual income

Car Sales Regression 155 1 1 price
Puzzle Sales Regression 525 3 3 nw’ﬁi;;{ ;Z:lztews, star rating
Wine Ratings Regression 120919 61 1 price

E.5 COMONET CONFIGURATION FOR HYPERBOLIC PARABOLOID FUNCTION (T8))

The hyperbolic paraboloid function in equation[I8| was learned using the structure in Fig.[TT]

| X1 H ReLU unit |—'I Convex unit I———I Convex unit
|x2 H Ref ReLU unit |—v| Concave unit |—0| Concave unit

FC layer y

Figure 11: COMonet Configuration for hyperbolic paraboloid function equation
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F SUPPLEMENTAL REPORT OF EXPERIMENTAL RESULTS

F.1 TABULATED NUMERICAL RESULTS FOR FIG.

Fig.[5| was created using the data in the following table.

Table 7: Results of Generalization test with equation

Network Training MSE Test MSE Denoised test MSE
COMONet (A = 0) 0.01 +£0.00 0.01 +£0.00 0.01 +£0.00
COMONet (A =1) 0.92+0.14 0.99 +0.03 0.02 +£0.01
COMONet (A = 2) 3.90 £0.57 4.03 +£0.28 0.06 +=0.02
COMONet (A = 5) 23.74 +3.41 24.88 +0.89 0.31+0.10
COMONet (A = 10) 96.84 + 14.66 98.07 +6.97 0.79 +0.36
COMONeEet (A = 20) 400.29 £+ 55.23 402.42 +£5.93 3.13+1.32
Same Structure (A = 0) 0.01 +0.01 0.01 +=0.00 0.01 +=0.00
Same Structure (A = 1) 0.77+0.14 1.28+0.10 0.29 +£0.04
Same Structure (A = 2) 3.15+0.46 5.31£0.32 1.30+0.22
Same Structure (A = 5) 19.47+3.21 32.77+1.76 7.21+1.15
Same Structure (A = 10) 75.09 +10.27 128.25 +£6.85 30.17+5.60
Same Structure (A = 20)  302.68 +£44.74  510.34 +21.90 106.57 +11.04
MLP (A = 0) 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00
MLP (A =1) 0.28 £0.08 1.93+0.12 0.97 +£0.10
MLP (A = 2) 1.03 +0.27 8.15+0.59 4.29 +0.49
MLP (A = 5) 8.23 £ 2.66 48.64 +4.03 23.19 + 3.57
MLP (A = 10) 26.95 + 8.68 195.11 +14.12 97.22 + 8.66
MLP (A = 20) 148.87+42.43  722.66 +61.73 334.91 £71.79

Fig.[12]illustrates the same structure model employed in experiments on equation 19}

Xconv ReLU unit ReLU unit H ReLU unit
|xconvmono ReLU unit
Xconc |-> ReLU unit ReLU unit ReLU unit
|xconcmono |-' ReLU unit FC layer b4
|xmmw H ReLU unit ReLU unit ReLU unit
|Xuncon5t H ReLU layer ReLU layer ReLU unit
1 hidden layer 24 hidden layer 3,4 hidden layer

Figure 12: Same structure network

F.2 RESULTS ON PENDER

Table [8] shows Test MSE and Convexity Score C;, and Monotonic Score M, of PenDer (Gupta et al.|
2021)).

Table 8: Test MSE, Convexity Score and Monotonic Score of PenDer on Real-world Dataset.

Dataset Test MSE | M, Cr
Car Sales (conv) 10411 £ 107 1 1
Car Sales (conv, decr) 10415+ 104 1 1
Puzzle Sales (conc) 9428 +113 1 0.98 +0.008
Puzzle Sales (conc, incr) 9519 + 92 1 0.99 +0.004
Wine Quality (conc) 5.19+0.11 1 0.99 +0.000

Wine Quality (conc, incr)  5.27+0.20 0.99+0.000 0.99 +0.000
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F.3 FIGURES WITH THE EXPERIMENTAL RESULTS WITH (T9)

Fig. [13] represent contour plots varying noise parameter A from 0 to 5. among 2 variables, x1 is
monotonic increase, and 2 is convex with respect to y.
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Figure 13: Contours of x1 and xo varying within [0,1] when A = {0,1, 2,5}, with z3 and x4 fixed at
0.5. Left: COMONet, Center: Same structure, Right: MLP.
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Fig. |14| represent contour plots varying noise parameter A from 0 to 5. among 2 variables, z3 is
convex, and x3 is monotonic-convex (increase) with respect to y.
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Figure 14: Contours of x5 and x3 varying within [0,1] when A = {0, 1, 2,5}, with z; and x4 fixed at
0.5. Left: COMONet, Center: Same structure, Right: MLP.
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G ABLATION STUDIES

G.1 VARIOUS ACTIVATION SETTINGS

Fig.[15]and Table[9|represent various cativation functions that satisfies conditions of Monotonicity and
convexity. Among them Monotonic-convex activations can alternate ReLU and convex activations
can alternate ReLU-n.

= RelLU-1
Tanh
= Sigmoid

- RelU

ELU
—— Leaky RelLU
- Softplus

(a) (b)

Figure 15: Visualization of various activation functions: activation functions in (a) is monotonic-
convex function that can be used for hcony, Prelus Pconcs Prefreln @nd (b) shows monotonic-wavy function
that can be used for Apono

Table 9: Various Activation functions

Activation functions Formula Monotonicity ~ Convexity Remark
x ifx >0,
ReLU U("E)f{o o0 v v
i >
Leaky ReLU o(z) = {x ifz >0, v v ifo<a<l
ar ifzr<0
T ifz >0
EL T) = - * * if 1
U o(z) {a(ef‘fl) <0 v v ifo<acx<
Softplus o(z) =log(l + exp (x)) v v
Absolute o(z) = |z| X v unsuitable
n ifzx>n,
ReLU-n olz)=<z if0<z<n, v X
0 ifz<0
Tanh o(x) = tanh(z) 4 X
Sigmoid o(z) = 7= v X

* Indicates conditionally achieved based on specific configurations.

Table [T0] shows that no performance differences across various activations.

Table 10: Performance comparison among various activations settings (t Indicates statistical ties.)

Activation Auto MPG Heart Disease Remark
Monotonic activation ~ Convex activation MSE | Test Acc T
ReLU ReLU-1 7.38+1.32 0.85+0.04
ReLU ReLU-6 7.38+1.32 0.85+0.04
ReLU Sigmoid 9.04 +2.20 0.84 +0.05
Leaky ReLU Leaky relu-1 7.03+1.54 0.87+0.04 a=0.01
ELU Sigmoid 8.67 £ 2.36 0.87+0.04 a =0.01
ELU Tanh 7.20+1.59 0.86 +0.05 a=0.01
Softplus Sigmoid 10.09 £ 2.6 0.84 £0.06
Softplus Tanh 7.46 £ 1.577 0.87+0.04
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G.2 THE EFFECT OF UPWARD DIRECTIONAL CONNECTIONS

To verify whether COMONet can effectively learn interactions between variable groups, we conducted
an ablation study. The function was designed as in equation [22] where the output y is determined
by three variables z;, x5 and x3. Among these, z; belongs to x.,, which has a convex relationship
with y, while x5 belongs to x,,,,,, which a monotonic relationship with y. To examine interaction
effects, we varied the coefficient of interaction term « from 0 to 20. We generated a dataset of 1,000
samples from equation [22] using 800 for training and 200 for testing, and evaluated the models
using 5-fold cross-validation repeated five times. We compared four models with different levels
of connectivity in COMONet, as shown in Fig. (a) Not Connected, where variable groups are
completely separated; (b) Sparse-to-Specific, which allows connections only between X, and X,
to facilitate learning the known interaction betweenz; and zs ; (c) Dense-to-Specific, where only
the connection between X, and X,,,, is removed; and (d) Fully Connected, where all groups are
interconnected. As shown in Table[TT]and Fig.[I6] the Not Connected and Dense-to-Specific models
exhibited increasing Test MSE as « increased, indicating a failure to capture interaction effects. In
contrast, the Sparse-to-Specific and Fully Connected models maintained relatively low Test MSE
despite increasing «, demonstrating their ability to effectively learn the interaction between x; and
zo. These results empirically validate that COMONet can capture interactions between separated
variable groups.

y=(r1 — 1) + /T2 + az1 23 + sin(27a3), (22)

€[0,2],Vi € {1,2,3},
o, € {0,1,2,5,10,20}.

- -©- Fully connected /IZ‘
. b Dense-to-Specific S
Table 11: Comparison of Test MSE Performance. | -A- Sparse-to-Specific /
W 5] ~E- Not connected i
wn ’
z.
i v
& s /,
@ Not connected  Sparse-to-Specific Dense-to-Specific  Fully connected ? /,
a=0  0.01+001 0.010.01 0.02%0.00 0.03%0.05 e
a=1 0.48 +0.03 0.04+0.02 0.59 +0.22 0.49 +0.20 T3 5 o
a=2 1.87+0.11 0.21+0.26 1.94+0.29 0.48 +0.79 alpha
a=5 11.75+0.98 0.33+£0.08 12.14+0.78 7.76 +6.09 . . . . .
a=10 47.39+6.76 1.79 +0.64 47.20 £ 6.56 3.2441.99 Figure 16: Visualization of
a=20 193.79+40.07  11.15+12.95 191.13+£32.80  15.41+12.44 The results in Table 10.
l Xy H ReLU unit H Convex unit l—-l Convex unit l Xy H ReLU unit Convex unit H Convex unit
; 5
Y [y AW prowesmerery VAR proseror = - oo o
l X3 H ReLU unit r—-l ReLU unit ’—-I ReLU unit l X3 H ReLU unit H ReLU unit }—-I ReLU unit
14 hidden layer 2,,q hidden layer 3,4 hidden layer 14 hidden layer 2,4 hidden layer 3,4 hidden layer
l Xy H ReLU unit H Convex unit H Convex unit l Xy H ReLU unit H Convex unit Convex unit
[ X, H Monotonic unit Monotonic unit ‘Monotonic unit [ Xz H Monotonic unit Monotonic unit Monotonic unit
[ X3 H ReLU unit ReLU unit ReLU unit [ X3 H ReLU unit ReLU unit ReLU unit
14 hidden layer 2,,q hidden layer 3,4 hidden layer 14 hidden layer 2,4 hidden layer 3,4 hidden layer
(© (d

Figure 17: COMONet: (a) Not connected, (b) Sparse-to-Specific, (c) Dense-to-Specific, and (d) Fully
connected.
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H BROADER IMPACT

Imposing shape constraints in neural networks can substantially improve model reliability, resilience,
and interpretability—qualities that are especially valuable in sectors like manufacturing, finance, and
healthcare where data may be limited or noisy. Nevertheless, if constraints inadvertently encode
stereotypes or adverse assumptions about protected attributes (such as age, gender, or ethnicity), they
risk perpetuating unfair outcomes. To guard against this, practitioners should systematically evaluate
constraint behavior across different demographic groups and embed fairness checks at every stage of
model development and deployment. Moreover, promoting transparency by publishing constraint
definitions and associated validation tools under an open-source license fosters accountability and
helps ensure these methods serve broad societal interests.

I LLM USAGE STATEMENT

In this work, we utilized a Large Language Model (LLM) solely as an assistive tool in the writing
process. The LLLM was specifically employed to refine expressions and to check the clarity and
correctness of mathematical formulations authored by us. Importantly, the LLM had no involvement
in research ideation, the development of scientific claims, the design of experiments, or the analysis
of results.
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