
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A NOVEL ARCHITECTURE FOR INTEGRATING SHAPE
CONSTRAINTS IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This research proposes COMONet (Convex-Concave and Monotonicity-
Constrained Neural Networks), a novel neural network architecture designed to
embed inductive biases as shape constraints—specifically, monotonicity, convexity,
concavity, and their combinations—into neural network training. Unlike previous
models addressing only a subset of constraints, COMONet can comprehensively
integrate and enforce eight distinct shape constraints: monotonic increasing, mono-
tonic decreasing, convex, concave, convex increasing, convex decreasing, concave
increasing, and concave decreasing. This integration is achieved through a unique
partially connected structure, wherein inputs are grouped and selectively connected
to specialized neural units employing either exponentiated or normal weights, com-
bined with appropriate activation functions. Depending on the shape constraint
required by each input, COMONet dynamically utilizes its full architecture or a par-
tial configuration, providing significant flexibility. We further provide theoretical
guarantees ensuring the strict enforcement of these constraints, while demonstrating
that COMONet achieves performance comparable to existing benchmark methods.
Moreover, our numerical experiments confirm that COMONet remains robust even
under noisy conditions. Together, these results underscore COMONet’s potential
to advance constrained neural network training as a practical and theoretically
grounded approach.

1 INTRODUCTION

Neural networks often struggle to align with domain knowledge when trained solely through error
minimization, particularly when relying exclusively on observed data (Feelders, 2000; Dugas et al.,
2009; Murdock et al., 2020). Domain knowledge refers to widely recognized or pre-established
information specific to a given field (Yu et al., 2010; Muralidhar et al., 2018), and incorporating it into
neural networks can enhance their reliability and interpretability. One effective approach to achieving
this is through shape constraints, which encode well-defined relationships between input and output
features (Groeneboom & Jongbloed, 2014; Johnson & Jiang, 2018). Ensuring that neural networks
satisfy these constraints is particularly important in critical domains such as finance (Einav et al., 2013;
Nelson et al., 2017), healthcare (Shahid et al., 2019), and law (Shahid et al., 2019), where accurate and
reliable predictions are essential for informed decision-making and system optimization. As a result,
there is growing interest in developing methods that integrate domain knowledge into neural network
training, ensuring that learned models not only fit the data but also comply with real-world constraints
and established principles. Among various possible constraints, monotonicity and convexity (or
concavity) are two fundamental shape constraints that serve as inductive biases and are widely applied
in several different domains (Amos et al., 2017; Kim & Lee, 2024). Monotonicity refers to a property
where the output consistently non-decreases or non-increases1 as the input increases. Meanwhile,
convexity (or concavity) describes a function where, for any two points, the output does not exceed
(does not fall below) the straight line connecting them, indicating an increasing (decreasing) rate
of change. Fig. 1(a) illustrates various types of shape constraints related to monotonic increase
(decrease) and convexity (or concavity) that can be incorporated into a model. It is important to note
that monotonicity does not necessarily imply convexity or concavity, and convex or concave functions

1For readability, we refer to non-decreasing as increasing and non-increasing as decreasing throughout the
rest of the paper.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Non-

Monotonicity

Monotonic

Increase

Monotonic

Decrease

Neither 

Convexity

Nor 

Concavity

Convexity

Concavity

(a)

Constraint
Guarantee

Certified MNN ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓∗

COMET ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓∗

HLL ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
LMN ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Constrained MNN ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓
SMNN ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓
ICNN ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓
SCNN ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shape-Constrained Lattice ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓∗

PenDer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
Proposed (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(b)

Figure 1: (a) Types of shape constraints. (b) Capability comparison with benchmark methods (∗
Indicates structural guarantees that may not hold in practice)
can be monotonically increasing, decreasing, or non-monotonic. Additionally, multiple distinct shape
constraints can be independently and simultaneously imposed within a model.

Recent studies have shown growing interest in monotonic neural networks (Liu et al., 2020; Sivaraman
et al., 2020; Runje & Shankaranarayana, 2023; Kim & Lee, 2024) and convex neural networks
(Amos et al., 2017; Gupta et al., 2018), motivating various efforts to embed such properties into
neural architectures. While substantial progress has been made in enforcing either monotonicity
or convexity (or concavity) individually, research that jointly guarantees both types of constraints
within a single model remains limited. Although several prior works attempt to incorporate multiple
constraints, they often fail to cover all cases illustrated in Fig. 1(a) or to provide strict architectural
guarantees. Mixed shape constraints—convexity, concavity, and monotonicity applied to different
subsets of variables—naturally arise in engineered systems such as HVAC control (Zhang et al., 2017),
concrete strength (Yeh, 2006), network resource allocation (Kelly et al., 1998), portfolio optimization
(Markowitz, 2008), asset pricing (Gu et al., 2020; Fama & French, 2015; Breuer & Windisch, 2019)
and physical dynamics (Goldstein et al., 1950; Spong et al., 2006; Armstrong-Hélouvry et al., 1994).
These constraints are essential for safety, stability, and physical validity, and violations often lead
to infeasible or unsafe behavior. In domains where strict adherence to shape constraints is critical,
even small violations of monotonicity or convexity can result in unreliable predictions, reduced
interpretability, and the loss of theoretical guarantees (Kim & Lee, 2024; Liu et al., 2020) or impact
fairness considerations (Wang & Gupta, 2020). Fig. 1(b) compares existing methods, including ours,
and highlights that most approaches cannot integrate all required shape behaviors when monotonicity
and convexity (or concavity) must coexist.

To address these challenges, we propose COMONet (Convex-Concave and Monotonicity Constrained
Neural Network), a novel yet simple neural network architecture designed to incorporate various
shape constraints related to monotonicity and convexity within a single model. COMONet employs a
partially connected structure, where input features are grouped and selectively connected to various
types of specially designed units. Each unit utilizes either exponentiated or standard weights in com-
bination with carefully chosen activation functions. This architecture enables the model to effectively
learn diverse shape constraints while strictly enforcing all imposed constraints, thereby overcoming
the limitations of existing approaches. Furthermore, depending on the types and composition of
shape constraints that the entire set of input features must satisfy, COMONet can flexibly utilize
either its full structure or only a partial configuration. This flexibility allows the model to enforce
monotonicity, convexity (or concavity), or their combination as needed, ensuring strict compliance
with the specified constraints.

2 RELATED WORK

Monotonic neural networks: Research on monotonic neural networks can be broadly categorized
into two groups, regularization-based approaches and architecture-based approaches. The first group
enforces monotonicity using various regularization techniques. For example, Certified MNN (Liu
et al., 2020) applies penalties to partial derivatives, while COMET (Sivaraman et al., 2020) augments
the dataset with so-called counter-examples for instances that violate monotonicity. These approaches
have limitations, as they may not fully enforce monotonicity without strong regularization and often
rely on external solvers such as MILP (Gurobi Optimization, LLC, 2023) and SMT (Barrett & Tinelli,
2018). The second group consists of hand-designed neural network architectures that inherently

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

guarantee monotonicity. Methods such as HLL (Yanagisawa et al., 2022), LMN (Nolte et al., 2022),
Constrained MNN (Runje & Shankaranarayana, 2023), and SMNN (Kim & Lee, 2024) belong to
this category. While some of these approaches are theoretically proven to ensure monotonicity, their
restricted structures can lead to reduced predictive performance. As shown in Fig. 1(b), monotonic
neural networks cannot naturally incorporate convexity or concavity, as they are explicitly designed
to enforce monotonicity alone.
Convex neural networks: Convexity is a valuable property in model training, as it facilitates
optimization, design, and control (Chen et al., 2018; Yang & Bequette, 2021). Due to these advantages,
research on convex neural networks has gained significant interest. One of the earliest studies in this
field introduced ICNN (Amos et al., 2017), which later inspired various extensions and modifications.
For example, one extension leverages the difference between convex and concave components to
approximate more complex functions (Sankaranarayanan & Rengaswamy, 2022). GON (Zhao et al.,
2022) applied ICNN to optimization tasks, while FCNN (Pfrommer et al., 2024) was developed to
enhance robustness against adversarial attacks. Additionally, a faster learning method for ICNN was
proposed by introducing a novel initialization strategy (Hoedt & Klambauer, 2024). Expanding the
concept of convexity, recent studies have explored monotonic-convexity, which refers to functions
that are both monotonically increasing (decreasing) and convex (concave). An extension of convexity
has also led to structures that combine monotonicity with convexity (or concavity), with SCNN
(Gupta et al., 2018) being a representative example. However, SCNN can handle only convex or
concave shapes and cannot model functions that are monotonic yet neither convex nor concave, such
as x+ sin (x). Moreover, it is unable to capture joint convex-concave interactions, where convex and
concave variables coexist within the same function.

Shape constrained neural networks: Among existing approaches, PenDer (Gupta et al., 2021)
and Shape-Constrained Lattice models (SCL) (Gupta et al., 2018) most closely support the full set of
constraints in Fig. 1(a), but both have structural limitations. PenDer uses regularization, encouraging
but not guaranteeing constraint satisfaction; violations must be detected post hoc rather than prevented.
SCL enforces convexity, concavity, and monotonicity through a discretized lattice parameterization.
Although the lattice structure can theoretically satisfy these constraints, its resolution induces a
trade-off between computational cost and approximation fidelity. To ease this burden, recent work
trains multiple low-dimensional lattices over randomly selected feature subsets and combines them
via an ensemble (Milani Fard et al., 2016; Gupta et al., 2016). Training further requires projected
gradient updates over a large number of linear inequality constraints, which grows rapidly with the
lattice resolution. SCL implementations therefore rely on stochastic constraint sampling (Cotter
et al., 2016), projecting only a small subset at each iteration. Constraint satisfaction may not be
guaranteed at every training step, and temporary violations can occur before convergence. Moreover,
lattice interpolation supports per-feature constraints but cannot model joint convex or joint concave
curvature, which is essential in many optimization or curvature-sensitive tasks (Gupta et al., 2018).
These limitations motivate a unified, end-to-end differentiable framework that guarantees all shape
constraints without approximate projections or post-hoc verification.

3 SHAPE CONSTRAINTS

We consider a continuous, differentiable multivariate function f : [0, 1]d → R. We consider three
classes of local shape constraints—partial (joint) convexity, partial (joint) concavity and partial
monotonicity—that apply to subsets of the input coordinates. Let [d] = {1, . . . , d} and we denote
vectors in Rd by bold lowercase letters (e.g., x, t) and index-sets by calligraphic uppercase letters
(e.g., CV , MN ). To impose distinct shape constraints on different input dimensions, we partition the
coordinates of x ∈ Rd into six disjoint groups:

x =
(
xcv, xmv, xcc, xmc, xmn, xu

)
∈ R|CV| × R|MV| × R|CC| × R|MC| × R|MN| × R|U|,

where, CV ∪MV ∪ CC ∪MC ∪MN ∪ U = [d]. Each index-set enforces a particular constraint on
f : CV (convex only), MV (monotonic + convex), CC (concave only), MC (monotonic + concave),
MN (monotonic only), and U (unconstrained). Further, V = CV ∪MV, C = CC ∪MC, M =
MN ∪MV ∪MC. represents the set contains each, all convex, concave and monotonic features.
Partial convexity and partial joint convexity: Partition x = (xv,x¬v) ∈ Rd with xv ∈ R|V| and
x¬v ∈ Rd−|V|. For each coordinate i ∈ V , write x = (xi,x¬i), where x¬i denotes all coordinates
except xi. We say that f is partially convex in coordinate xi iff, for any fixed x¬i, any xi, x

′
i ∈ R,

and any λ ∈ [0, 1], f(λxi + (1 − λ)x′
i,x¬i) ≤ λ f(xi,x¬i) + (1 − λ) f(x′

i,x¬i). Further, we

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝐱𝑚𝑐 ො𝑦

1st hidden layer

𝐱𝑐𝑐

𝐱𝑚𝑛

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

FC layer

Ref ReLU unit

2nd hidden layer 3rd hidden layer

𝐱𝑚𝑣

𝐱𝑐𝑣

Convex unit

Convex unit Convex unitReLU unit

𝐱𝑢

Figure 2: Structure of COMONet that has 3 hidden layers.

say f is partially joint convex on xv iff, for any fixed x¬v and all xv,x
′
v ∈ R|V| and λ ∈ [0, 1],

f
(
λxv + (1− λ)x′

v,x¬v

)
≤ λ f(xv,x¬v) + (1− λ) f(x′

v,x¬v).

Partial concavity and partial joint concavity. Partition x = (xc,x¬c) ∈ Rd with xc ∈ R|C| and
x¬c ∈ Rd−|C|. For each coordinate i ∈ C, write x = (xi,x¬i), where x¬i denotes all coordinates
except xi. We say that f is partially concave in coordinate xi iff, for any fixed x¬i, any xi, x

′
i ∈ R,

and any λ ∈ [0, 1], f(λxi + (1 − λ)x′
i,x¬i) ≥ λ f(xi,x¬i) + (1 − λ) f(x′

i,x¬i). Further, we
say f is partially joint concave on xc iff, for any fixed x¬c, any xc,x

′
c ∈ R|C|, and any λ ∈ [0, 1],

f
(
λxc + (1− λ)x′

c,x¬c

)
≥ λ f(xc,x¬c) + (1− λ) f(x′

c,x¬c).

Partial monotonicity: Partition x = (xm,x¬m) ∈ Rd with xm ∈ R|M|, x¬m ∈ Rd−|M|. We
say f is partially monotonic increasing on xm iff, ∂f

∂xi
≥ 0,∀i ∈ |M|. And, we say f is partially

monotonic decreasing on xm iff, ∂f
∂xi

≤ 0,∀i ∈ |M|. (For monotonicity, enforcing monotonicity on
each variable individually guarantees joint monotonicity.)

By combining the definitions of partial monotonicity (increasing or decreasing) with partial convexity
(or concavity), we can specify all eight shape-constraint types depicted in Fig. 1(a).

4 PROPOSED METHOD

Fundamental units of COMONet: A key aspect of our approach is employing five distinct
unit types to effectively integrate and enforce diverse shape constraints. These units incorporate
either exponentiated or conventional weights, using ReLU or capped ReLU-n (Liew et al., 2016) as
activation functions. For any real scalar z, we define ReLU = (z)+ = max(0, z) and ReLU-n =
(z)n+ = min{n,max(0, z)}. The equations below define the five units, each of which takes the vector
t as input:

convex unit := hconv(t) =
(
exp(W)⊤t+ b

)
+

(1)

concave unit := hconc(t) = −
(
−
(
exp(W)⊤t+ b

))
+

(2)

monotonic unit := hmono(t) =
(
exp(W)⊤t+ b

)n
+

(3)

relu unit := hrelu(t) =
(
W⊤t+ b

)
+

(4)

ref -relu unit := href-relu(t) = −
(
−
(
W⊤t+ b

))
+

(5)

hconv, hconc and hmono utilize exponentiated weights (Zhang & Zhang, 1999; Agarwal et al., 2021;
Dinh et al., 2016) to constraint reparametrized weight to be positive. hmono employs (z)n+ which
contains both convex and concave hinge components. Further, hconc and href-relu employ point-
symmetric variants of ReLU, −(−(z))+ and ReLU-n, −(−(z))n+. We adopt ReLU and ReLU-n by
default, using ReLU as our baseline for its computational efficiency, resilience to vanishing gradients,
and piecewise linear sparsity that accelerates convergence and boosts generalization (Nair & Hinton,
2010; Glorot et al., 2011). As shown in Appendix G.1, any activation functions meeting the required

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

characteristics can be used instead. Each fundamental unit defined above satisfies the following
properties, as formalized in the lemmas below:

Lemma 4.1. Let hconv : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hconv(t)

]
j
=(

exp(wj)
⊤t+ bj

)
+
. Then, ∀j ∈ [k], fj is jointly convex in t and fj is coordinatewise increasing,

i.e. ∂fj
∂ti

≥ 0, ∀i ∈ [d].

Lemma 4.2. Let hrelu : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hrelu(t)

]
j
=(

w⊤
j t+ bj

)
+
. Then, ∀j ∈ [k], fj is jointly convex in t.

Lemma 4.3. Let hconc : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hconc(t)

]
j
=

−
(
− exp(wj)

⊤t− bj
)
+
. Then, ∀j ∈ [k], fj is jointly concave in t and coordinatewise increasing,

i.e. ∂fj
∂ti

≥ 0, ∀i ∈ [d].

Lemma 4.4. Let href-relu : Rd → Rk and denote its jth coordinate by fj(t) :=
[
href-relu(t)

]
j
=

−
(
−w⊤

j t− bj
)
+
. Then, ∀j ∈ [k], fj is jointly concave in t.

Lemma 4.5. Let hmono : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hmono(t)

]
j
=(

exp(wj)
⊤t+ bj

)n
+
. Then, ∀j ∈ [k], fj is coordinatewise increasing in t, i.e. ∂fj

∂ti
≥ 0, ∀i ∈ [d].

Detailed proofs for lemma 4.3-4.5 are provided at Appendix A.

Network structure: The proposed architecture, illustrated in Fig. 2, adopts a selectively con-
nected design that routes information through designated subsets of connections. This structure is
conceptually similar to the architectures proposed in (Amos et al., 2017) and (Kim & Lee, 2024),
which also utilize partially connected designs. Such a design ensures that the specific properties of
individual input variable groups are preserved, while simultaneously allowing the model to effectively
capture the interactions among all input variables. Let h(i) be the i-th hidden layer. Then the overall
formulation of COMONet, which employs the five distinct types of units with depth l defined above,
is presented below:

When i = 1,

h(1) =
[
h
(1)
relu,cv(xcv), h

(1)
conv(xmv), h

(1)
ref-relu(xcc), h

(1)
conc(xmc), h

(1)
mono(xmn), h

(1)
relu,u(xu)

]
. (6)

When i = 2,

h(2)
conv = hconv([h

(1)
relu,cv(xcv), h

(1)
conv(xmv), h

(1)
mono(xmn), h

(1)
relu,u(xu)]) (7)

h(2)
conc = hconc([h

(1)
ref-relu(xcc), h

(1)
conc(xmc), h

(1)
mono(xmn), h

(1)
relu,u(xu)]) (8)

h(2)
mono = hmono([h

(1)
mono(xmn), h

(1)
relu,u(xu)]) (9)

h
(2)
relu = hrelu([h

(1)
relu,u(xu)]) (10)

h(2) =
[
h(2)

conv, h
(2)
conc, h

(2)
mono, h

(2)
relu

]
(11)

When i ≥ 3,

h(i)
conv = hconv([h

(i−1)
conv , h(i−1)

mono , h
(i−1)
relu ]) (12)

h(i)
conc = hconc([h

(i−1)
conc , h(i−1)

mono , h
(i−1)
relu ]) (13)

h(i)
mono = hmono([h

(i−1)
mono , h

(i−1)
relu ]) (14)

h
(i)
relu = hrelu([h

(i−1)
relu ]) (15)

h(i) =
[
h(i)

conv, h
(i)
conc, h

(i)
mono, h

(i)
relu

]
(16)

Let h(l) the output vector of lth hidden layer, and f(x) be the output node in a fully connected output
layer, then,

f(x) = exp (W)
⊤
h(l) + b (17)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

𝐱𝑚𝑐 ො𝑦

1st hidden layer

𝐱𝑐𝑐

𝐱𝑚𝑛

Concave unit

Monotonic unit

Concave unit

Monotonic unit

Concave unit

Monotonic unit

FC layer

Ref ReLU unit

2nd hidden layer 3rd hidden layer

𝐱𝑚𝑣

𝐱𝑐𝑣

Convex unit

ReLU unit

𝐱𝑢

Convex unit Convex unit

ReLU unit ReLU unit ReLU unit

(a)

𝐱𝑚𝑐 ො𝑦

1st hidden layer

𝐱𝑐𝑐

𝐱𝑚𝑛

Concave unit

Concave unit Concave unitRef ReLU unit

2nd hidden layer 3rd hidden layer

𝐱𝑚𝑣

𝐱𝑐𝑣

Convex unit

Convex unit Convex unitReLU unit

𝐱𝑢

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

FC layer

(b)

Figure 3: Configuration examples: (a) Configuration of COMONet when the input consists only of
xcv and xu, (b) Configuration of COMONet when the input consists only of xmn and xu.

Where, exp (W) and b are the exponentiated weight matrix and bias vector between lth hidden
layer and output layer. Although we present the formulation with a single output node, it naturally
extends to multiple output nodes without issue. The above formulation enables COMONet to train a
neural network that enforces the specified constraints on each variable. Monotonically decreasing
features in MV,MC,MN are multiplied by –1 before training—transforming them into increasing
inputs—and their original sign is restored at inference, enabling seamless integration with other shape
constraints.

Shape-constraint guarantee of COMONet: Following the definitions in Section 3, we now
demonstrate that COMONet satisfies the convexity, concavity, and monotonicity properties. The
proofs of these theorems proceed by invoking the lemma 4.3-4.5 that characterize each unit’s
properties.

Theorem 4.6 (Convexity of COMONet). Let f(x) be the proposed COMONet, which has l hidden
layers. Partition the input x ∈ Rd as x = (xv, x¬v), xv = {xi | i ∈ V}, V ⊆ [d]. Then f(x) is
partially jointly convex with respect to xv .

Theorem 4.7 (Concavity of COMONet). Let f(x) be the proposed COMONet, which has l hidden
layers. Partition the input x ∈ Rd as x = (xc, x¬c), xc = {xi | i ∈ C}, C ⊆ [d]. Then f(x) is
partially jointly concave with respect to xc.

Theorem 4.8 (Monotonicity of COMONet). Let f(x) be the proposed COMONet, which has l hidden
layers. Partition the input x ∈ Rd as x = (xm, x¬m), xm = {xi | i ∈ M}, M ⊆ [d]. Then
f(x) is partially monotonic increasing with respect to xm. In particular, for each xi with i ∈ M, f
is monotonic (increasing) in xi.

Detailed proofs for Theorem 4.6-4.8 are provided at Appendix A. Flow diagrams for each variable
group appear in Appendix A. As illustrated in Appendix B, the unconstrained features xu are
processed by multiple standard ReLU layers—without any shape constraints—allowing them to fully
exploit their expressive capacity as they propagate through the network. Moreover, at each hidden
layer, xu’s activations are routed into the convex, concave, and monotonic units, enabling it to interact
with all other variable groups. Finally, Appendix G.2 demonstrates the overall effectiveness of the
proposed network structure.

High flexibility and modularity: Proposed model demonstrates high modularity and flexibility,
enabling it to be easily tailored to accommodate various relationships and properties of input variables.
This adaptability stems from the structural characteristics of the proposed method, which employs a
partially connected structure. For instance, when the only constraint is convexity—i.e. we partition
the input as x = (xcv,xu) ∈ R|CV| × R|U|. In this case, the resulting configuration—shown in
Fig. 3 (a)—closely resembles the PICNN (Amos et al., 2017) architecture. Similarly, when the only
constraint is monotonicity—i.e. we partition the input as x = (xmn,xu) ∈ R|MN| × R|U|, the
resulting configuration—shown in Fig. 3(b)—aligns with the SMNN (Kim & Lee, 2024) architecture.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Interaction layer: To enhance the expressive power of COMONet while strictly preserving variable-
wise convexity and concavity constraints, we introduce an optional interaction layer.

Icross(x) =
∑
i∈CC

∑
j∈CV

αi,j xixj , (18)

Iintra(x) =
∑

i∈CV, j∈CV, i ̸=j

βi,j xixj +
∑

i∈CC, j∈CC, i ̸=j

βi,j xixj . (19)

First, cross-group interactions in equation 18 enable communication between CV and CC, which
are otherwise processed independently in COMONet. Introducing such interactions is essential for
enhancing the representational capacity of the model. Second, Intra-group interactions in equation 19
enable interactions within CV and CC. Although COMONet inherently imposes strong global
curvature constraints such as joint convexity or joint concavity, some tasks benefit from coordinate-
wise curvature constraints (ceteris paribus), and intra-group interactions provide a mechanism for
this relaxation. A key mathematical requirement for any interaction function I is that it must not
modify the curvature assigned to each variable; Accordingly, its second-order partial derivatives with
respect to each involved variable must identically vanish, ensuring that no sign change in curvature
can occur under any input.

Theorem 4.9. Let f : R2 → R be twice differentiable and satisfy: for all x2 ∈ R, the mapping
x1 7→ f(x1, x2) is convex, and for all x1 ∈ R, the mapping x2 7→ f(x1, x2) is concave. Then, if we
decompose

f(x1, x2) = g(x1) + h(x2) + ϕ(x1, x2),

where g depends only on x1 and h depends only on x2, then the pure interaction term ϕ, which
preserves the convex–concave assignments for any admissible choices of g and h, must be

ϕ(x1, x2) = αx1x2, α ∈ R.

Theorem 4.10. Let f : R2 → R be twice differentiable and jointly convex (or jointly concave) in
(x1, x2), and assume that x1 and x2 belong to the same curvature group of COMONet (both CV or
both CC). Consider adding the bilinear term

ϕ(x1, x2) = β x1x2, β ∈ R,

and redefine the mapping by

f(x1, x2) := f(x1, x2) + ϕ(x1, x2).

Then this addition preserves the assigned per-variable constraints while allowing the joint convexity
(or concavity) in (x1, x2) to be relaxed.

Theorem 4.10 further establishes that such bilinear interactions preserve the constraints of each
variable while allowing controlled relaxation from joint curvature to separate curvature (ceteris
paribus). The proofs of Theorem 4.9 and Theorem 4.10 are provided in Appendix A, and further
implementation details of the interaction layer appear in Appendix C.

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTS ON SYNTHETIC DATASETS

We first evaluated the effectiveness of our proposed method through experiments on synthetic datasets,
aiming to demonstrate that COMONet can satisfy various shape constraints. Since our method is
theoretically proven to guarantee these constraints and has been shown to be adaptable to different
types of inputs, testing all possible combinations of shape constraints introduced in Section 1 would
be unnecessary. Instead, we conducted experiments on two synthetic datasets where different types
of inputs were appropriately mixed and presented the results.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0
0.2

0.4
0.6

0.8
1.0

x1
0.0

0.2

0.4

0.6

0.8
1.0

x 2

0.2

0.1

0.0

0.1

0.2

Ou
tp

ut

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

MLP

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

(b)

Figure 4: (a) Hyperbolic Paraboloid function (b) Contour plots of the fitted models by COMONet
(Left) and MLP (Right) with respect to x1 and x2 when λ = 0.05

Convexity and Concavity: The well-known hyperbolic paraboloid shown in equation 20 and
Fig. 4(a) was chosen because it exhibits both convexity and concavity. In equation 20, x1 is a convex
input, while x2 is a concave input of y. To the best of our knowledge, with the exception of the Pender
method, previous related studies have not addressed cases in which both convexity and concavity
must be satisfied simultaneously. To demonstrate that COMONet accurately fits the function even in
noisy environments, we introduced Gaussian noise ϵ and varied the noise level parameter λ.

y = (x1 − 0.5)2 − (x2 − 0.5)2 + λϵ, ϵ ∼ N(0, 1), xi ∈ [0, 1], i = 1, 2, λ ∈ {0, 0.05, 0.1, 0.2}.
(20)

Since the inputs are exclusively convex and concave, we utilized the COMONet structure shown in
Appendix E.5. for this experiment. Specifically, the ReLU layer and the convex layer were applied
to x1, while the reflected ReLU layer and the concave layer were used for x2. For comparison, a
traditional MLP was employed as the baseline method. At each noise level, we generated 1,000
instances and split them into training (80%) and test (20%) sets.

Table 1: Test MSEs of COMONet and MLP

λ 0 0.05 0.1 0.2

COMONet 0.0010 0.0028 0.0117 0.0448
MLP 0.0001 0.0030 0.0124 0.0529

The test mean squared errors (MSEs) are presented
in Table 1. As shown in Table 1, MLP outperformed
COMONet in the absence of noise. However, as the
noise level increased, COMONet demonstrated better
performance, with a smaller increase in MSE com-
pared to MLP. This demonstrates that COMONet pro-
vides a robust fit to the function. More importantly,
consider Fig. 4(b), which displays the contour plots of the fitted models from both methods. Even
with a small amount of noise, MLP failed to preserve convexity and concavity, whereas our method
consistently maintained these constraints. Although we omitted further visualizations, our method
continues to satisfy them as noise levels increase.

Monotonicity and Convexity: We extended our experiment to a case with more shape constraints.
Specifically, we designed a 4-dimensional example, with the function defined in equation 21.

y =
2πx1 + sin(2πx1)

2π
+ (x2 − 0.5)2 + ex3 + cos(2πx4) + λϵ, ϵ ∼ N(0, 1). (21)

xi ∈ [0, 1], i = 1, 2, 3, 4, λ ∈ {0, 1, 2, 5, 10, 20}.

As shown in equation 21, a distinct shape constraint was assigned to each input feature: x1 is a
monotonically increasing feature, x2 is convex, x3 is monotonic-convex, and x4 is unconstrained in
the noiseless setting. Similar to the previous experiment, we introduced Gaussian noise and controlled
the noise level by adjusting the λ value. At each noise level, we generated 3,000 instances and split
them into training (80%) and test (20%) sets. For comparison, two baseline methods were used in this
experiment. In addition to the traditional MLP, we included a model referred to as “Same Structure”
(shown in Appendix F.1) which shares the same architecture as COMONet but replaces all units with
ReLU layers, meaning no shape constraints were enforced. To ensure a fair comparison, all models
were constructed with an identical number of nodes per unit. The performance results in terms of
MSE are presented in Fig. 5(a). The results indicate that MLP achieved the lowest training MSE

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 5 10 20
0

200

400

600

800

M
SE

COMONet (Ours)
Same Structure
MLP

0 1 2 5 10 20
0

200

400

600

800

M
SE

COMONet (Ours)
Same Structure
MLP

0 1 2 5 10 20
0

200

400

600

800

M
SE

COMONet (Ours)
Same Structure
MLP

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

MLP

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

MLP

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.40

0.44

0.48

0.52

0.56

0.60

0.64

0.68

0.72

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

(b)

Figure 5: (a) MSEs from the experiments at different λ values. (left) Training MSEs, (middle) Test
MSEs, (right) Denoised Test MSEs. (b) Contour plots in the x1-x2 plane for λ = 0 (top) and λ = 1
(bottom), comparing outputs of COMONet, same structure, and MLP.

across all λ values, followed by the Same Structure model, while COMONet exhibited the highest
training error. In contrast, for test MSE, COMONet consistently outperformed the other models, while
MLP exhibited the highest error. This indicates that MLP overfits the noise during training, whereas
our method does not. Notably, in the denoised test MSE—which evaluates performance in predicting
the noise-free ground truth—COMONet maintained robust predictions even as λ increased. These
results quantitatively confirm that the shape constraints enforced by COMONet not only mitigate the
impact of noise but also significantly improve the model’s generalization performance.

Fig. 5(b) shows the contour plots of the fitted models for all three approaches. In the ab-
sence of noise, all models produced reasonable fits. However, even with a small noise level
(λ = 1), the MLP and Same Structure models completely failed to satisfy the constraints, whereas
COMONet successfully preserved monotonicity with respect to x1 and convexity with respect
to x2. This figure confirms that our method effectively maintains the imposed shape constraints.

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75

LIME value
0

1

2

5

10

20

MLP
COMONet

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75

LIME value
0

1

2

5

10

20

MLP
COMONet

Figure 6: LIME values for x1 (Left)
and x3 (Right), with data sampled at x2

and x4 fixed at their mean values in the
test dataset. The values are shown for
COMONet (red) and MLP (blue) across
different λ values.

Trustworthy test using LIME: Fig. 6 demonstrates that
the proposed method prevents incorrect interpretations. It
shows the LIME (Ribeiro et al., 2016) values for x1 and
x3 at the different noise levels. Notice that x1 is a mono-
tonically increasing feature and x3 is monotonic-convex,
meaning their LIME values should always be positive for
a correct interpretation. As shown in the figure, the LIME
values for both x1 and x3 computed from the COMONet
models are consistently positive, with low variance, which
aligns with the expected interpretation. By contrast, LIME
values from the MLP models fluctuate in sign and exhibit
high variance. These results validate that embedding shape
constraints yields more reliable interpretations.

5.2 EXPERIMENTS ON REAL-WORLD DATASETS

We now present the general performance level of our proposed method on real-world datasets through
a comparative study with benchmark techniques. The study consists of two parts, comparison
with monotonic neural networks and comparison with methods incorporating both monotonicity
and convexity. For the first part, five datasets were used. The Auto-MPG(UCI Machine Learning
Repository, 1983–2021) and Blog Feedback (Spiliopoulou et al., 2014) datasets were used for
regression tasks, while the Heart Disease (UCI Machine Learning Repository, 1988–2021), COMPAS
(Angwin et al., 2016), and Loan Defaulter (Wendy Kan / Kaggle, 2024) datasets were used for
classification tasks. The benchmark methods in this comparison include the most recent monotonic
neural networks approaches reviewed in Section 2. For the second part, the Car Sales (hsinha53 /
Kaggle, 2023), Puzzle Sales (dbahri / Kaggle, 2024a), and Wine Quality (dbahri / Kaggle, 2024b)
datasets were used, all of which were designed for regression tasks. The benchmark methods selected
for comparison were SCNN and PenDer, as they incorporate both convexity and monotonic-convexity
constraints. For regression tasks, we reported metrics including mean squared error (MSEs) and root
mean squared error (RMSE), while for classification tasks, we reported accuracy. Further details

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Results on real-world datasets for comparison with monotonic neural networks

Method Auto MPG Heart Disease COMPAS Blog Feedback Loan Defaulter
Test MSE ↓ Test Acc ↑ Test Acc ↑ Test RMSE ↓ Test Acc ↑

DLN You et al. (2017) 13.34 2.42 0.86 0.02 67.9 0.3 0.161 0.001 65.1 0.2
Min-Max Net Daniels & Velikova (2010) 10.14 1.54 0.75 0.04 67.8 0.1 0.163 0.001 64.9 0.1
Non-Neg-DNN −−− −−− 67.3 0.9 0.168 0.001 65.1 0.1
COMET Sivaraman et al. (2020) 8.81 1.81 0.86 0.03 −−− −−− −−−
Certified MNN Liu et al. (2020) −−− −−− 68.8 0.9† 0.158 0.001 65.2 0.1
LMN Nolte et al. (2022) 7.58 1.20† 0.90 0.02 69.3 0.1† 0.160 0.001 65.4 0.0
Constrained MNN Runje & Shankaranarayana (2023) 8.37 0.08 0.89 0.00† 69.2 0.2† 0.156 0.001 65.3 0.1†
SMNN Kim & Lee (2024) 7.44 1.20† 0.88 0.04† 69.3 0.9† 0.150 0.001 65.0 0.1
COMONet (Ours) 7.38 1.32 0.87 0.04† 69.5 1.0 0.153 0.001 64.9 0.1

Table 3: Results on real-world datasets for comparison with SCNN and PenDer

Method Car Sales (Test MSE ↓) Puzzle Sales (Test MSE ↓) Wine Quality (Test MSE ↓)
(conv) (conv, decr) (conc) (conc, incr) (conc) (conc, incr)

SCNN Gupta et al. (2018) 11093 487 10880 291 9460 256† 9258 319 6.32 0.19 6.43 0.18
PenDer Gupta et al. (2021) 10411 107† 10415 104† 9428 113† 9519 92† 5.19 0.11 5.27 0.20†
COMONet (Ours) 10391 140 10410 128 9409 41 9263 86† 5.53 0.46† 5.26 0.06

on the experiments and additional information about the datasets can be found in Appendix E. All
experiments in this section were conducted over multiple iterations, with the mean and standard
deviation reported. The best performance for each dataset is highlighted in bold, and dagger symbol
(†) indicates statistical tie with the best-performing method. We consider two methods to be in a
statistical tie when their mean test MSE one standard deviation intervals overlap.
Comparison with monotonic neural networks: The results shown in Table 2 represent the means
and standard deviations obtained from cross-validation. As shown in Table 2, our method generally
performed well, achieving the best performance on some datasets and remaining comparable to
other methods on the rest. Specifically, it achieved the best results for the Auto-MPG and COMPAS
datasets. For the Heart Disease dataset, it was statistically tied with the best-performing method. On
the Blog Feedback dataset, it ranked second. Although its ranking for the Loan Defaulter dataset was
lower, its accuracy remained within a reasonable range compared to other methods.

Comparison with SCNN and PenDer: Our experimental evaluation compares COMONet against
SCNN and PenDer on three real-world datasets—Car Sales, Puzzle Sales, and Wine Quality—under
two constraint settings per dataset: convex (concave) only, and convex (concave) monotonic. For each
dataset, we used the provided train/test split and averaged the test MSE over five independent runs
using the optimal hyperparameter settings found. Table 3 shows performance of the proposed method
and the comparison methods on these three datasets. COMONet achieves the best Test MSE in four of
the six settings Car Sales (conv), (conv, decr), Puzzle Sales (conc) and Wine Quality (conc, incr), and
when accounting for statistical ties matches or outperforms all baselines across all six settings. While
PenDer matches or outperforms across all datasets and settings, its shape-conformance metrics Mk

and Ck sometimes fall below 1, indicating that it fails to fully satisfy the prescribed constraints. Here,
Mk and Ck denote the proportions of samples satisfying monotonicity and convexity constraints
respectively (Gupta et al., 2021). For example, the convexity score on the Puzzle Sales dataset and
both the monotonicity and convexity scores on the Wine Quality dataset are 0.98 or 0.99—values
close to one but nevertheless indicative of incomplete constraint satisfaction. Table 8 in Appendix F.2
shows the detailed numerical results for PenDer’s performance and its constraint conformance. These
results demonstrate that COMONet not only delivers comparable or superior predictive performance
but also guarantees full adherence to the enforced shape constraints.

6 CONCLUSION
In this work, we introduced COMONet, a gradient-descent–trained neural architecture that embeds
domain knowledge as inductive biases—enforcing convexity, concavity, monotonicity, and their com-
binations—while permitting selective application of these shape constraints per variable. empirical
results on synthetic and real-world datasets demonstrate that COMONet not only matches or exceeds
the predictive performance of existing baselines but also guarantees strict adherence to the specified
constraints. However, COMONet requires a priori knowledge of each variable’s shape constraints,
meaning incomplete or erroneous domain information may impair its effectiveness. In addition, while
COMONet focuses on global variable-wise shape constraints, extending the framework toward condi-
tional or interaction-dependent shape behaviors represents a technically challenging yet promising
direction. Looking ahead, we will seek theoretical guarantees that COMONet serves as a universal
approximator for arbitrary functions under prescribed shape constraints and will explore its use as a
modular component in time-series and image-based tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide the full implementation of our experiments
as supplementary material, enabling others to directly verify and replicate our results. Detailed
descriptions of the experimental settings and procedures are included in Appendix E, covering
datasets, preprocessing step, model configurations, and training protocols. In addition, all theoretical
proofs supporting our methods are presented in Appendix A for completeness and clarity. Together,
these resources are intended to facilitate transparent and reproducible validation of our findings.

REFERENCES

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
Advances in Neural Information Processing Systems, 34:4699–4711, 2021.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International conference
on machine learning, pp. 146–155. PMLR, 2017.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There’s software used
across the country to predict future criminals. And it’s biased against blacks. ProPublica, 23 May,
2016.

Brian Armstrong-Hélouvry, Pierre Dupont, and Carlos Canudas De Wit. A survey of models, analysis
tools and compensation methods for the control of machines with friction. Automatica, 30(7):
1083–1138, 1994.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Springer, 2018.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Matthias Breuer and David Windisch. Investment Dynamics and Earnings-Return Properties: A
Structural Approach. Journal of Accounting Research, 57(3):639–674, 2019.

Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal Control Via Neural Networks: A Convex
Approach. In International Conference on Learning Representations, 2018.

Andrew Cotter, Maya Gupta, and Jan Pfeifer. A light touch for heavily constrained SGD. In
Conference on Learning Theory, pp. 729–771. PMLR, 2016.

Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks. IEEE
Transactions on Neural Networks, 21(6):906–917, 2010.

dbahri / Kaggle. Puzzles Data. https://www.kaggle.com/datasets/dbahri/puzzles,
2024a. accessed: 2025-05-05.

dbahri / Kaggle. Wine Ratings Data. https://www.kaggle.com/datasets/dbahri/
wine-ratings, 2024b. accessed: 2025-05-05.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating
Functional Knowledge in Neural Networks. Journal of Machine Learning Research, 10(6), 2009.

Liran Einav, Mark Jenkins, and Jonathan Levin. The impact of credit scoring on consumer lending.
The RAND Journal of Economics, 44(2):249–274, 2013.

Eugene F Fama and Kenneth R French. A five-factor asset pricing model. Journal of financial
economics, 116(1):1–22, 2015.

Ad J Feelders. Prior knowledge in economic applications of data mining. In European Conference
on Principles of Data Mining and Knowledge Discovery, pp. 395–400. Springer, 2000.

11

https://www.kaggle.com/datasets/dbahri/puzzles
https://www.kaggle.com/datasets/dbahri/wine-ratings
https://www.kaggle.com/datasets/dbahri/wine-ratings


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011.

Herbert Goldstein, Charles P Poole, and John Safko. Classical mechanics, volume 2. Addison-wesley
Reading, MA, 1950.

Piet Groeneboom and Geurt Jongbloed. Nonparametric estimation under shape constraints. Cam-
bridge University Press, 2014.

Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical asset pricing via machine learning. The Review
of Financial Studies, 33(5):2223–2273, 2020.

Akhil Gupta, Lavanya Marla, Ruoyu Sun, Naman Shukla, and Arinbjörn Kolbeinsson. Pender:
Incorporating shape constraints via penalized derivatives. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 11536–11544, 2021.

Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander Mangylov,
Wojciech Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated interpolated look-up
tables. Journal of Machine Learning Research, 17(109):1–47, 2016.

Maya Gupta, Dara Bahri, Andrew Cotter, and Kevin Canini. Diminishing returns shape constraints
for interpretability and regularization. Advances in neural information processing systems, 31,
2018.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Pieter-Jan Hoedt and Günter Klambauer. Principled weight initialisation for input-convex neural
networks. Advances in Neural Information Processing Systems, 36, 2024.

hsinha53 / Kaggle. Car Sales Data. https://www.kaggle.com/datasets/hsinha53/
car-sales/data, 2023. accessed: 2025-05-05.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015.

Andrew L Johnson and Daniel R Jiang. Shape constraints in economics and operations research.
Statistical Science, 33(4):527–546, 2018.

Frank P Kelly, Aman K Maulloo, and David Kim Hong Tan. Rate control for communication
networks: shadow prices, proportional fairness and stability. Journal of the Operational Research
society, 49(3):237–252, 1998.

Hyunho Kim and Jong-Seok Lee. Scalable Monotonic Neural Networks. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=DjIsNDEOYX.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Shan Sung Liew, Mohamed Khalil-Hani, and Rabia Bakhteri. Bounded activation functions for
enhanced training stability of deep neural networks on visual pattern recognition problems. Neuro-
computing, 216:718–734, 2016.

Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks. Advances
in Neural Information Processing Systems, 33:15427–15438, 2020.

Harry M Markowitz. Portfolio selection: efficient diversification of investments. Yale university press,
2008.

Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and flexible
monotonic functions with ensembles of lattices. Advances in neural information processing
systems, 29, 2016.

12

https://www.gurobi.com
https://www.gurobi.com
https://www.kaggle.com/datasets/hsinha53/car-sales/data
https://www.kaggle.com/datasets/hsinha53/car-sales/data
https://openreview.net/forum?id=DjIsNDEOYX
https://openreview.net/forum?id=DjIsNDEOYX


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nikhil Muralidhar, Mohammad Raihanul Islam, Manish Marwah, Anuj Karpatne, and Naren Ra-
makrishnan. Incorporating prior domain knowledge into deep neural networks. In 2018 IEEE
international conference on big data (big data), pp. 36–45. IEEE, 2018.

Ryan J Murdock, Steven K Kauwe, Anthony Yu-Tung Wang, and Taylor D Sparks. Is domain
knowledge necessary for machine learning materials properties? Integrating Materials and
Manufacturing Innovation, 9:221–227, 2020.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

David MQ Nelson, Adriano CM Pereira, and Renato A De Oliveira. Stock market’s price movement
prediction with LSTM neural networks. In 2017 International joint conference on neural networks
(IJCNN), pp. 1419–1426. Ieee, 2017.

Niklas Nolte, Ouail Kitouni, and Mike Williams. Expressive Monotonic Neural Networks. In The
Eleventh International Conference on Learning Representations, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Samuel Pfrommer, Brendon Anderson, Julien Piet, and Somayeh Sojoudi. Asymmetric certified
robustness via feature-convex neural networks. Advances in Neural Information Processing
Systems, 36, 2024.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " Why should i trust you?" Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

R Tyrrell Rockafellar. Convex analysis, volume 28. Princeton university press, 1997.

Davor Runje and Sharath M Shankaranarayana. Constrained monotonic neural networks. In Interna-
tional Conference on Machine Learning, pp. 29338–29353. PMLR, 2023.

Parameswaran Sankaranarayanan and Raghunathan Rengaswamy. CDiNN–Convex difference neural
networks. Neurocomputing, 495:153–168, 2022.

Nida Shahid, Tim Rappon, and Whitney Berta. Applications of artificial neural networks in health
care organizational decision-making: A scoping review. PloS one, 14(2):e0212356, 2019.

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck. Counterexample-
guided learning of monotonic neural networks. Advances in Neural Information Processing
Systems, 33:11936–11948, 2020.

Myra Spiliopoulou, Lars Schmidt-Thieme, and Ruth Janning. Data analysis, machine learning and
knowledge discovery. Springer, 2014.

Mark W Spong, Seth Hutchinson, Mathukumalli Vidyasagar, et al. Robot modeling and control,
volume 3. Wiley New York, 2006.

UCI Machine Learning Repository. Auto MPG Data Set. https://archive.ics.uci.edu/
ml/datasets/auto+mpg, 1983–2021. accessed: 2025-05-05.

UCI Machine Learning Repository. Heart Disease Data Set. https://archive.ics.uci.
edu/ml/datasets/Heart+Disease, 1988–2021. accessed: 2025-05-05.

Serena Wang and Maya Gupta. Deontological ethics by monotonicity shape constraints. In Interna-
tional conference on artificial intelligence and statistics, pp. 2043–2054. PMLR, 2020.

Wendy Kan / Kaggle. Lending Club Loan Data. https://www.kaggle.com/wendykan/
lending-club-loan-data, 2024. accessed: 2025-05-05.

13

https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://www.kaggle.com/wendykan/lending-club-loan-data
https://www.kaggle.com/wendykan/lending-club-loan-data


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hiroki Yanagisawa, Kohei Miyaguchi, and Takayuki Katsuki. Hierarchical Lattice Layer for Partially
Monotone Neural Networks. In Advances in Neural Information Processing Systems, 2022.

Shu Yang and B Wayne Bequette. Optimization-based control using input convex neural networks.
Computers & Chemical Engineering, 144:107143, 2021.

I-Cheng Yeh. Generalization of strength versus water–cementitious ratio relationship to age. Cement
and Concrete Research, 36(10):1865–1873, 2006.

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya Gupta. Deep lattice networks and
partial monotonic functions. Advances in neural information processing systems, 30, 2017.

Ting Yu, Simeon Simoff, and Tony Jan. VQSVM: a case study for incorporating prior domain
knowledge into inductive machine learning. Neurocomputing, 73(13-15):2614–2623, 2010.

Hong Zhang and Zhen Zhang. Feedforward networks with monotone constraints. In IJCNN’99.
International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339), volume 3,
pp. 1820–1823. IEEE, 1999.

Xuan Zhang, Wenbo Shi, Bin Yan, Ali Malkawi, and Na Li. Decentralized and distributed temperature
control via HVAC systems in energy efficient buildings. arXiv preprint arXiv:1702.03308, 2017.

Sen Zhao, Erez Louidor, and Maya Gupta. Global optimization networks. In International Conference
on Machine Learning, pp. 26927–26957. PMLR, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROOFS

Lemma 4.1 Let hconv : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hconv(t)

]
j
=(

exp(wj)
⊤t+ bj

)
+
. Then, ∀j ∈ [k], fj is jointly convex in t and fj is coordinatewise increasing,

i.e. ∂fj
∂ti

≥ 0, ∀i ∈ [d].

Proof. Write the vector-valued map as fj(t) = σ
(
g(t)

)
with

g(t) = exp(wj)
⊤t+ bj ∈ Rk, σ(z) = (z)+ = max(0, z) (applied element-wise).

Where exp(wj)
⊤ and bj indicates jth column vector of weight matrix exp (W) and jth elements

of bias vector b. g is an affine map, hence jointly convex in t (Boyd & Vandenberghe, 2004;
Rockafellar, 1997). And exp (W) has strictly positive weights, so

∇gj(t) = exp(wj) ≥ 0. (element-wise)

And σ : Rk → Rk is convex and increasing coordinatewise (since σ′(z) ∈ {0, 1} ≥ 0). By the
standard result that composition of a convex affine map and a convex increasing scalar function
is jointly convex(Rockafellar, 1997). fj(t) :=

[
hconv(t)

]
j
=

(
exp(wj)

⊤t + bj
)
+

is convex.
Furthermore, by the chain rule,

∂fj
∂xi

= σ′(g(t)) · exp (wj,i) ≥ 0,

where exp (wj,i) refers ith elements of exp(wj), showing coordinate-wise monotonicity. So, fj(t)
is jointly convex and coordinate-wise monotonically increasing in t.

Lemma 4.2 Let hrelu : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hrelu(t)

]
j
=(

w⊤
j t+ bj

)
+
. Then, ∀j ∈ [k], fj is jointly convex in t.

Proof. Write the vector-valued map as fj(t) = σ
(
g(t)

)
with

g(t) = w⊤
j t+ bj ∈ Rk, σ(z) = (z)+ = max(0, z) (applied element-wise).

Where w⊤
j and bj indicates jth column vector of weight matrix exp (W) and jth elements of bias

vector b. g is affine in t, hence jointly convex. And σ : Rk → Rk is convex and coordinate-wise
increasing since, σ′(z) ∈ {0, 1} ≥ 0. By the standard result that composition of a convex affine map
and a convex increasing scalar function is jointly convex. By standard results on composition, fj(t)
is jointly convex in t.

Theorem 4.6. Let f(x) be the proposed COMONet, which has l hidden layers. Partition the input
x ∈ Rd as x = (xv, x¬v), xv = {xi | i ∈ V}, V ⊆ [d]. Then f(x) is partially jointly convex
with respect to xv .

Proof. Let x = (xv, x¬v), xv = (xcv, xmv) so that equivalently x = (xcv, xmv, x¬v). In this
composition, convex features xcv feeds into a hrelu-then-hconv chain, where as convex-monotonic
features xmv feeds into a hconv chain. We show that every layer is jointly convex in xv , which implies
that the entire network is jointly convex in xv . There are two cases:

Case 1: convex features, xcv

First layer on xcv is hrelu:
z(1) = h

(1)
relu(xcv),

which by lemma 4.2 is jointly convex in xcv. Subsequent layers along any path to the output are
convex-units:

z(i) = h(i)
conv(z

(i−1), . . . ),

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

which by lemma 4.1 is also jointly convex and increase in xi. Composition of a convex map and
an affine/increasing convex map remains convex. Hence any path from xcv through hrelu-then-hconv
units which follows the fully connected layer (affine transform) :

f = exp(wj)
⊤z(l) + bj

is jointly convex in xcv .

Case 2: convex-monotonic features, xmv .

First layer on xmv is hconv:
z(1) = h(1)

conv(xmv),

which by lemma 4.2 is jointly convex in xmv. Subsequent layers along any path to the output are
also hconv:

z(i) = h(i)
conv(xmv),

Composition of a convex map and an affine/increasing convex map remains convex. Hence any path
from xi through hconv which follows the fully connected layer (affine transform) :

f = exp(wj)
⊤z(l) + bj

is jointly convex in xmv .

Finally, note that every layer of COMONet receives the concatenated block xv = (xcv,xmv) only
through an affine maps. Since affine maps preserve joint convexity and all subsequent activations are
convex and coordinatewise nondecreasing, the layerwise composition remains jointly convex in the
entire block xv . Hence, f is jointly convex in xv .

Lemma 4.3 Let hconc : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hconv(t)

]
j
=

−
(
− exp(wj)

⊤t − bj
)
+
. Then, ∀j ∈ [k], fj is jointly concave in t and fj is coordinate-wise

increasing, i.e. ∂fj
∂ti

≥ 0, ∀i ∈ [d].

Proof. Write the vector-valued map as fj(t) = σ
(
g(t)

)
with

g(t) = − exp(wj)
⊤t− bj ∈ Rk, σ(z) = −(z)+ = −max(0, z) (applied element-wise).

Where exp(wj)
⊤ and bj indicates jth column vector of weight matrix exp (W) and jth elements

of bias vector b. g is an affine map, hence jointly concave in t (Boyd & Vandenberghe, 2004;
Rockafellar, 1997). And exp (W) has strictly negative weights, so

∇gj(t) = − exp(wj) ≤ 0. (element-wise)

And σ : Rk → Rk is concave and decreasing coordinate-wise (since σ′(z) ∈ {−1, 0} ≤ 0). By the
standard result that composition of a concave affine map and a concave decreasing scalar function is
jointly concave. fj(t) :=

[
hconc(t)

]
j
= −

(
− exp(wj)

⊤t− bj
)
+

is concave. Furthermore, by the
chain rule,

∂fj
∂xi

= σ′(g(t)) · exp (wj,i) ≥ 0,

where exp (wj,i) refers ith elements of exp(wj), showing coordinate-wise monotonicity. So, fj(t)
is jointly concave and coordinate-wise monotonically increasing in t.

Lemma 4.4 Let href-relu : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hrelu(t)

]
j
=

−
(
−w⊤

j t− bj
)
+
. Then, ∀j ∈ [k], fj is jointly concave in t.

Proof. Write the vector-valued map as fj(t) = σ
(
g(t)

)
with

g(t) = −w⊤
j t− bj ∈ Rk, σ(z) = −(z)+ = −max(0, z) (applied element-wise).

Where w⊤
j and bj indicates jth column vector of weight matrix exp (W) and jth elements of bias

vector b. g is affine in t, hence jointly concave. And σ : Rk → Rk is concave and coordinate-wise
decreasing since, σ′(z) ∈ {−1, 0} ≤ 0. By the standard result that composition of a concave affine
map and a concave decreasing scalar function is jointly concave. By standard results on composition,
fj(t) is jointly concave in t.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem 4.7. Let f(x) be the proposed COMONet, which has l hidden layers. Partition the input
x ∈ Rd as x = (xc, x¬c), xc = {xi | i ∈ C}, C ⊆ [d]. Then f(x) is partially jointly concave
with respect to xc.

Proof. Let x = (xc, x¬c), xc = (xcc, xmc) so that equivalently x = (xcc, xmc, x¬c). In this
composition, concave features xcc feeds into a href-relu-then-hconc chain, where as concave-monotonic
features xmc feeds into a hconc chain. We show that every layer is jointly concave in xc, which
implies that the entire network is jointly concave in xc. There are two cases:

Case 1: concave features, xcc

First layer on xcc is href-relu:
z(1) = h

(1)
ref-relu(xcc),

which by lemma 4.4 is jointly concave in xcc. Subsequent layers along any path to the output are
concave-units:

z(i) = h(i)
conc(z

(i−1), . . . ),

which by lemma 4.3 is also jointly concave and increase in xcc. Composition of a concave map and an
affine/increasing concave map remains concave. Hence any path from xi through href-relu-then-hconc
units which follows the fully connected layer (affine transform) :

f = exp(wj)
⊤z(l) + bj

is jointly concave in xcc.

Case 2: concave-monotonic features, xmc

First layer on xmc is hconc:
z(1) = h(1)

conc(xi, . . . ),

which by lemma 4.4 is jointly concave in xmc. Subsequent layers along any path to the output are
also hconc:

z(i) = h(i)
conc(z

(i−1), . . . ),

Composition of a concave map and an affine/increasing concave map remains concave. Hence any
path from xmc through hconc which follows the fully connected layer (affine transform) :

f = exp(wj)
⊤z(l) + bj

is jointly concave in xmc.

Finally, note that every layer of COMONet receives the concatenated block xc = (xcc,xmc) only
through an affine maps. Since affine maps preserve joint concavity and all subsequent activations are
concave and coordinatewise nondecreasing, the layerwise composition remains jointly concave in the
entire block xc. Hence, f is jointly concave in xc.

Lemma 4.5 Let hmono : Rd → Rk and denote its jth coordinate by fj(t) :=
[
hmono(t)

]
j
=(

exp(wj)
⊤t+ bj

)n
+
. Then, ∀j ∈ [k], fj is coordinate-wise increasing in t, i.e. ∂fj

∂ti
≥ 0, ∀i ∈ [d].

Proof. Write the vector-valued map as fj(t) = σ
(
g(t)

)
with

g(t) = exp(wj)
⊤t+bj ∈ Rk, σ(z) = (z)n+ = min(max(0, z), n) (applied element-wise).

Where exp(wj)
⊤ and bj indicates jth column vector of weight matrix exp (W) and jth elements of

bias vector b. g is an affine map, exp (W) has strictly positive weights, so

∇gj(t) = exp(wj) ≥ 0. (element-wise)

And σ : Rk → Rk is monotonically increasing coordinate-wise (since σ′(z) ∈ {0, 1} ≥ 0).
Furthermore, by the chain rule,

∂fj
∂xi

= σ′(g(t)) · exp (wj,i) ≥ 0,

where exp (wj,i) refers ith elements of exp(wj), showing coordinate-wise monotonicity. So, fj(t)
is coordinate-wise monotonic increasing in t.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem 4.8. Let f(x) be the proposed COMONet, which has l hidden layers. Partition the input
x ∈ Rd as x = (xm, x¬m), xm = {xi | i ∈ M}, M ⊆ [d]. Then f(x) is partially monotonic
increasing with respect to xm. In particular, for each xi with i ∈ M, f is monotonic (increasing) in
xi.

Proof. Let x = (xm, x¬m), xm = (xmn,xmv, xmc) so that equivalently x =
(xmn,xmv, xmc, x¬m). We will show that for each fixed setting of all coordinates except a single
xi with i ∈ M , the scalar output f(x) is monotonically increasing in xi. There are three cases:

Case 1: monotonic features xi ∈ xmn

First layer on xi is hmono:
z(1) = h(1)

mono(xi, . . . ),

which by lemma 4.5 is monotonically increasing in xi, Subsequent hidden layers along any path to
the output are consist by monotonic units (hmono), convex units (hconv) and concave units (hconc) for
k = 2, ..., l :

z(k) = h(k)
mono

(
z(k−1), . . .

)
or z(k) = h(k)

conv

(
z(k−1), . . .

)
or z(k) = h(k)

conc

(
z(k−1), . . .

)
.

By lemma 4.5, lemma 4.1 and lemma 4.3, each of these three unit types has nonnegative partial
derivatives in all its inputs. Hence at every hidden layer k, along every path, we have

∂h
(k)
j

∂xi
≥ 0.

The layer-wise computation thus proceeds up to the final hidden layer, indexed k = l. There, the
network produces the feature vector z(l), which is then passed through the output affine map with
strictly positive weights:

f = exp(wj)
⊤z(l) + bj

Because each entry of exp(wj)
⊤ is positive, the total derivative is a positive weighted sum of

nonnegative terms. Therefore
∂f

∂xi
≥ 0,

showing that output of f is monotonically increasing in xi for every xi ∈ xmn.

Case 2: convex and monotonic features, xi ∈ xmv

Every layer along its path is either a convex unit hconv or the fully connected layer. By lemma 4.1,
each hconv has nonnegative partial derivatives, and the fully connected layer does as well. Hence f is
monotonically increasing in xi for every xi ∈ xmv .

Case 3: concave and monotonic features, xi ∈ xmc

Every layer along its path is either a concave unit hconc or the fully connected layer. By lemma 4.3,
each hconc has nonnegative partial derivatives, and the fully connected layer does as well. Hence f is
monotonically increasing in xi for every xi ∈ xmc.

Finally, in all cases, ∂f
∂xi

≥ 0 for every xi ∈ xm. Hence f is partially monotonic increasing in
xm.

Theorem 4.9. Let f : R2 → R be twice differentiable and satisfy: for all x2 ∈ R, the mapping
x1 7→ f(x1, x2) is convex, and for all x1 ∈ R, the mapping x2 7→ f(x1, x2) is concave. Then, if we
decompose

f(x1, x2) = g(x1) + h(x2) + ϕ(x1, x2),

where g depends only on x1 and h depends only on x2, then the pure interaction term ϕ, which
preserves the convex–concave assignments for any admissible choices of g and h, must be

ϕ(x1, x2) = αx1x2, α ∈ R.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Since f is twice differentiable, consider its Hessian:

Hf (x1, x2) =

(
f11 f12
f21 f22

)
, fij =

∂2f

∂xi∂xj
.

Convexity in x1 implies f11(x1, x2) ≥ 0 and concavity in x2 implies

f(x1, x2) = g(x1) + h(x2) + ϕ(x1, x2),

where g and h collect all single-variable terms and ϕ denotes the pure interaction. Since the
magnitudes of g′′(x1) ≥ 0 and h′′(x2) ≤ 0 are arbitrary (learned from data), preserving the
convex–concave curvature assignments for all admissible choices of g′′ and h′′ requires that ϕ
contribute no curvature:

ϕ11(x1, x2) = 0, ϕ22(x1, x2) = 0.

Integrating ϕ11 = 0 twice with respect to x1 gives

ϕ(x1, x2) = A(x2)x1 +B(x2).

Differentiating twice with respect to x2 and using ϕ22 = 0 yields

A′′(x2)x1 +B′′(x2) = 0,

so A′′(x2) = 0 and B′′(x2) = 0. Hence

A(x2) = a1x2 + a0, B(x2) = b1x2 + b0.

Absorbing all single-variable terms into g and h leaves only

ϕ(x1, x2) = a1x1x2.

Thus the interaction term must be of the bilinear form αx1x2, completing the proof.

Theorem 4.10. Let f : R2 → R be twice differentiable and jointly convex (or jointly concave) in
(x1, x2), and assume that x1 and x2 belong to the same curvature group of COMONet (both CV or
both CC). Consider adding the bilinear term

ϕ(x1, x2) = β x1x2, β ∈ R,

and redefine the mapping by

f(x1, x2) := f(x1, x2) + ϕ(x1, x2).

Then this addition preserves the assigned per-variable constraints while allowing the joint convexity
(or concavity) in (x1, x2) to be relaxed.

Proof. Consider the added interaction ϕ(x1, x2) = βx1x2. Its second-order partial derivatives are

ϕ11(x1, x2) = 0, ϕ22(x1, x2) = 0, ϕ12(x1, x2) = ϕ21(x1, x2) = β.

Thus, adding ϕ does not modify the curvature of f with respect to each individual variable, since the
per-variable second derivatives remain unchanged:

(f + ϕ)11 = f11, (f + ϕ)22 = f22.

However, the mixed derivative becomes

(f + ϕ)12 = f12 + β,

so the joint curvature in (x1, x2) is relaxed. Therefore, adding the bilinear term preserves the assigned
per-variable curvature signs and allows the joint curvature to change.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B FLOW DIAGRAMS OF COMONET

Fig. 7 present the flow structure of COMONet to demonstrate how each variable group (xcv , xmv , xcc,
xmc, xmn, xu) contributes to the final prediction through their respective computational flows. Each
subfigure highlights the specific path for a variable group, represented by bold dashed lines, showing
how the input is processed through layers to produce the final output. This detailed visualization
helps to clarify the role and influence of each group of variables in the model’s overall architecture.

𝐱𝑚𝑐 ො𝑦

1st hidden layer

𝐱𝑐𝑐

𝐱𝑚𝑛

FC layer

2nd hidden layer 3rd hidden layer

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Ref ReLU unit

Convex unit

Convex unit Convex unitReLU unit

(a)

ො𝑦

1st hidden layer

FC layer

2nd hidden layer 3rd hidden layer

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Ref ReLU unit

Convex unit

Convex unit Convex unitReLU unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(b)

ො𝑦

1st hidden layer

FC layer

2nd hidden layer 3rd hidden layer

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Ref ReLU unit

Convex unit

Convex unit Convex unitReLU unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(c)

ො𝑦

1st hidden layer

FC layer

2nd hidden layer 3rd hidden layer

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Ref ReLU unit

Convex unit

Convex unit Convex unitReLU unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(d)

ො𝑦

1st hidden layer

FC layer

2nd hidden layer 3rd hidden layer

Concave unit

ReLU unit

Concave unit

ReLU unit

Monotonic unit

ReLU unit

Ref ReLU unit

Convex unit

Convex unitReLU unit

Monotonic unit Monotonic unit

Concave unit

Convex unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(e)

ො𝑦

1st hidden layer

FC layer

2nd hidden layer 3rd hidden layer

Concave unit

Monotonic unit Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Ref ReLU unit

Convex unit

Convex unit Convex unitReLU unit

Concave unit

ReLU unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(f)

Figure 7: Flow diagrams representing the computational flows for each variable group in COMONet.
Bold dashed lines indicate the paths followed by individual variable groups (a) xcv , (b) xmv , (c) xcc,
(d) xcv , (e) xmn, (f) xu.

C INTERACTION LAYER OF COMONET

Fig. 8 and shows the all needed pairwise cross interactions between xcv and xcc. And, Fig. 9 and
shows the all possible pairwise intra interactions between xcc-xcc or xcv-xcv .

𝑥𝑐𝑣,1 𝑥𝑐𝑣,2 ⋯ 𝑥𝑐𝑣,𝑚

𝑥𝑐𝑐,1 𝑥𝑐𝑐,1 × 𝑥𝑐𝑣,1 𝑥𝑐𝑐,1 × 𝑥𝑐𝑣,2 ⋯ 𝑥𝑐𝑐,1 × 𝑥𝑐𝑣,𝑚

𝑥𝑐𝑐,2 𝑥𝑐𝑐,2 × 𝑥𝑐𝑣,1 𝑥𝑐𝑐,2 × 𝑥𝑐𝑣,2 ⋯ 𝑥𝑐𝑐,2 × 𝑥𝑐𝑣,𝑚

⋮ ⋮ ⋮ ⋱ ⋮

𝑥𝑐𝑐,𝑛 𝑥𝑐𝑐,𝑛 × 𝑥𝑐𝑣,1 𝑥𝑐𝑐,𝑛 × 𝑥𝑐𝑣,2 ⋯ 𝑥𝑐𝑐,𝑛 × 𝑥𝑐𝑣,𝑚

𝐱𝑐 = {𝐱𝑐𝑐 , 𝐱𝑚𝑐}𝐱𝑣 = {𝐱𝑐𝑣 , 𝐱𝑚𝑣}

𝐱𝑢𝐱𝑚𝑛

Figure 8: Cross interaction terms between convex and concave features could be captured by
Interaction layer.

𝑥𝑥𝑐𝑐𝑐𝑐,1 𝑥𝑥𝑐𝑐𝑐𝑐,2 𝑥𝑥𝑐𝑐𝑐𝑐,3 ⋯ 𝑥𝑥𝑐𝑐𝑐𝑐,𝑛𝑛

𝑥𝑥𝑐𝑐𝑐𝑐,1 𝑥𝑥𝑐𝑐𝑐𝑐,1 × 𝑥𝑥𝑐𝑐𝑐𝑐,2 𝑥𝑥𝑐𝑐𝑐𝑐,1 × 𝑥𝑥𝑐𝑐𝑐𝑐,3 ⋯ 𝑥𝑥𝑐𝑐𝑐𝑐,1 × 𝑥𝑥𝑐𝑐𝑐𝑐,𝑛𝑛

𝑥𝑥𝑐𝑐𝑐𝑐,2 𝑥𝑥𝑐𝑐𝑐𝑐,2 × 𝑥𝑥𝑐𝑐𝑐𝑐,3 ⋯ 𝑥𝑥𝑐𝑐𝑐𝑐,2 × 𝑥𝑥𝑐𝑐𝑐𝑐,𝑛𝑛

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑥𝑥𝑐𝑐𝑐𝑐,𝑛𝑛−1 ⋱ 𝑥𝑥𝑐𝑐𝑐𝑐,𝑛𝑛−1 × 𝑥𝑥𝑐𝑐𝑐𝑐,𝑛𝑛

𝑥𝑥𝑐𝑐𝑐𝑐,𝑛𝑛 ⋯

𝑥𝑥𝑐𝑐𝑣𝑣,1 𝑥𝑥𝑐𝑐𝑣𝑣,2 𝑥𝑥𝑐𝑐𝑣𝑣,3 ⋯ 𝑥𝑥𝑐𝑐𝑣𝑣,𝑛𝑛

𝑥𝑥𝑐𝑐𝑣𝑣,1 𝑥𝑥𝑐𝑐𝑣𝑣,1 × 𝑥𝑥𝑐𝑐𝑣𝑣,2 𝑥𝑥𝑐𝑐𝑣𝑣,1 × 𝑥𝑥𝑐𝑐𝑣𝑣,3 ⋯ 𝑥𝑥𝑐𝑐𝑐𝑐,1 × 𝑥𝑥𝑐𝑐𝑣𝑣,𝑛𝑛

𝑥𝑥𝑐𝑐𝑐𝑐,2 𝑥𝑥𝑐𝑐𝑣𝑣,2 × 𝑥𝑥𝑐𝑐𝑣𝑣,3 ⋯ 𝑥𝑥𝑐𝑐𝑣𝑣,2 × 𝑥𝑥𝑐𝑐𝑣𝑣,𝑛𝑛

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑥𝑥𝑐𝑐𝑣𝑣,𝑛𝑛−1 ⋱ 𝑥𝑥𝑐𝑐𝑣𝑣,𝑛𝑛−1 × 𝑥𝑥𝑐𝑐𝑣𝑣,𝑛𝑛

𝑥𝑥𝑐𝑐𝑣𝑣,𝑛𝑛 ⋯

Figure 9: Intra-interaction terms between Convex-convex and Concave-concave features could be
captured by Interaction layer.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D CONFIGURATION FLEXIBILITY OF COMONET

Fig. 10 and Fig. 11 shows various COMONet configurations, demonstrating the flexibility of the
proposed method. Fig. 10 illustrates the 24 − 1 = 15 possible configurations obtained by dividing
the variable groups into four categories: xv, xc, xmn, xu. While, table in Fig. 11 shows all
26 − 1 = 63 possible configurations of COMONet. These configurations highlight the ability of
COMONet to handle a wide range of input scenarios while maintaining consistent processing through
its computational layers. This adaptability ensures that the model can be tailored to specific tasks by
including or excluding certain variable groups as needed.

ො𝑦Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

FC layer

Ref ReLU unit

Convex unit

Convex unit Convex unitReLU unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(a)

ො𝑦Concave unit

ReLU unit

Concave unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unitConvex unit

Monotonic unit Monotonic unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

(b)

ො𝑦Concave unit

Monotonic unit

Concave unit

Monotonic unit

Concave unit

Monotonic unit

ReLU unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unit

ReLU unit ReLU unit

Convex unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(c)

ො𝑦Concave unit

Concave unit Concave unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unit

Monotonic unit

ReLU unit

Monotonic unit Monotonic unit

ReLU unit

Convex unit

ReLU unit

𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(d)

ො𝑦Concave unit

ReLU unit ReLU unit ReLU unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unitConvex unit

Concave unit Concave unit

Monotonic unit Monotonic unit Monotonic unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

𝐱𝑢

(e)

ො𝑦Concave unit

Monotonic unit Monotonic unit Monotonic unit

ReLU unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unit

ReLU unit ReLU unit

Convex unit

Concave unitConcave unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑣

𝐱𝑐𝑣

(f)

ො𝑦Concave unit

ReLU unit

Concave unit

ReLU unit

Concave unit

ReLU unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unitConvex unit

Monotonic unit Monotonic unit Monotonic unit𝐱𝑚𝑛

𝐱𝑚𝑣

𝐱𝑐𝑣

(g)

ො𝑦Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unit Convex unit

𝐱𝑚𝑣

𝐱𝑐𝑣

𝐱𝑢

(h)

ො𝑦Concave unit

ReLU unit ReLU unit ReLU unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unitConvex unit

Concave unit Concave unit

Monotonic unit Monotonic unit Monotonic unit

𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑚𝑛

(i)

ො𝑦Concave unit

Monotonic unit Monotonic unit Monotonic unit

ReLU unit

Ref ReLU unit

Convex unit

ReLU unit Convex unitConvex unit

Concave unit Concave unit

ReLU unit ReLU unit

FC layer𝐱𝑚𝑐

𝐱𝑐𝑐

𝐱𝑢

(j)

ො𝑦Concave unit

Concave unit Concave unitRef ReLU unit

Convex unit

Convex unit Convex unitReLU unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

FC layer

𝐱𝑚𝑛

𝐱𝑢

(k)

ො𝑦FC layer

𝐱𝑚𝑣

𝐱𝑐𝑣

Concave unit

Monotonic unit

ReLU unit

Concave unit

Monotonic unit

ReLU unit

Convex unitConvex unit

Concave unit

Monotonic unit

ReLU unit

Ref ReLU unit

Convex unit

ReLU unit

(l)

ො𝑦Concave unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

FC layer

Ref ReLU unit

Convex unit

ReLU unit Convex unitConvex unit

Concave unit Concave unit

𝐱𝑚𝑐

𝐱𝑐𝑐

(m)

ො𝑦Concave unit

Concave unit Concave unitRef ReLU unit

Convex unit

Convex unit Convex unitReLU unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

FC layer

𝐱𝑚𝑛

(n)

ො𝑦Concave unit

Concave unit Concave unitRef ReLU unit

Convex unit

Convex unit Convex unitReLU unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

Monotonic unit

ReLU unit

FC layer

𝐱𝑢

(o)

Figure 10: Examples structures of various configurations for COMONet.

𝐱𝑐𝑣 𝐱𝑚𝑣 𝐱𝑐𝑐 𝐱𝑚𝑐 𝐱𝑚𝑛 𝐱𝑢 𝐱𝑐𝑣 𝐱𝑚𝑣 𝐱𝑐𝑐 𝐱𝑚𝑐 𝐱𝑚𝑛 𝐱𝑢 𝐱𝑐𝑣 𝐱𝑚𝑣 𝐱𝑐𝑐 𝐱𝑚𝑐 𝐱𝑚𝑛 𝐱𝑢 𝐱𝑐𝑣 𝐱𝑚𝑣 𝐱𝑐𝑐 𝐱𝑚𝑐 𝐱𝑚𝑛 𝐱𝑢

6 types of features 16 ✗ ✓ ✓ ✓ ✗ ✓ 33 ✓ ✓ ✗ ✗ ✗ ✓ 50 ✗ ✓ ✗ ✗ ✓ ✗

1 ✓ ✓ ✓ ✓ ✓ ✓ 17 ✓ ✓ ✗ ✗ ✓ ✓ 34 ✓ ✗ ✓ ✗ ✗ ✓ 51 ✗ ✗ ✓ ✗ ✓ ✗

5 types of features 18 ✓ ✗ ✓ ✗ ✓ ✓ 35 ✗ ✓ ✓ ✗ ✗ ✓ 52 ✗ ✗ ✗ ✓ ✓ ✗

2 ✓ ✓ ✓ ✓ ✓ ✗ 19 ✗ ✓ ✓ ✗ ✓ ✓ 36 ✓ ✗ ✗ ✓ ✗ ✓ 53 ✓ ✗ ✗ ✗ ✗ ✓

3 ✓ ✓ ✓ ✓ ✗ ✓ 20 ✓ ✗ ✗ ✓ ✓ ✓ 37 ✗ ✓ ✗ ✓ ✗ ✓ 54 ✗ ✓ ✗ ✗ ✗ ✓

4 ✓ ✓ ✓ ✗ ✓ ✓ 21 ✗ ✓ ✗ ✓ ✓ ✓ 38 ✗ ✗ ✓ ✓ ✗ ✓ 55 ✗ ✗ ✓ ✗ ✗ ✓

5 ✓ ✓ ✗ ✓ ✓ ✓ 22 ✗ ✗ ✓ ✓ ✓ ✓ 39 ✓ ✗ ✗ ✗ ✓ ✓ 56 ✗ ✗ ✗ ✓ ✗ ✓

6 ✓ ✗ ✓ ✓ ✓ ✓ 3 types of features 40 ✗ ✓ ✗ ✗ ✓ ✓ 57 ✗ ✗ ✗ ✗ ✓ ✓

7 ✗ ✓ ✓ ✓ ✓ ✓ 23 ✓ ✓ ✓ ✗ ✗ ✗ 41 ✗ ✗ ✓ ✗ ✓ ✓ 1 types of features

4 types of features 24 ✓ ✓ ✗ ✓ ✗ ✗ 42 ✗ ✗ ✗ ✓ ✓ ✓ 58 ✗ ✗ ✗ ✗ ✗ ✓

8 ✓ ✓ ✓ ✓ ✗ ✗ 25 ✓ ✗ ✓ ✓ ✗ ✗ 2 types of features 59 ✗ ✗ ✗ ✗ ✓ ✗

9 ✓ ✓ ✓ ✗ ✓ ✗ 26 ✗ ✓ ✓ ✓ ✗ ✗ 43 ✓ ✓ ✗ ✗ ✗ ✗ 60 ✗ ✗ ✗ ✓ ✗ ✗

10 ✓ ✓ ✗ ✓ ✓ ✗ 27 ✓ ✓ ✗ ✗ ✓ ✗ 44 ✓ ✗ ✓ ✗ ✗ ✗ 61 ✗ ✗ ✓ ✗ ✗ ✗

11 ✓ ✗ ✓ ✓ ✓ ✗ 28 ✓ ✗ ✓ ✗ ✓ ✗ 45 ✗ ✓ ✓ ✗ ✗ ✗ 62 ✗ ✓ ✗ ✗ ✗ ✗

12 ✗ ✓ ✓ ✓ ✓ ✗ 29 ✗ ✓ ✓ ✗ ✓ ✗ 46 ✓ ✗ ✗ ✓ ✗ ✗ 63 ✓ ✗ ✗ ✗ ✗ ✗

13 ✓ ✓ ✓ ✗ ✗ ✓ 30 ✓ ✗ ✗ ✓ ✓ ✗ 47 ✗ ✓ ✗ ✓ ✗ ✗

14 ✓ ✓ ✗ ✓ ✗ ✓ 31 ✗ ✓ ✗ ✓ ✓ ✗ 48 ✗ ✗ ✓ ✓ ✗ ✗

15 ✓ ✗ ✓ ✓ ✗ ✓ 32 ✗ ✗ ✓ ✓ ✓ ✗ 49 ✓ ✗ ✗ ✗ ✓ ✗

Figure 11: All possible 63 configurations for COMONet.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E DETAILED EXPERIMENT DESCRIPTIONS

E.1 TRAINING CONFIGURATIONS

All experiments in this study were conducted on a system equipped with an Intel(R) Core(TM)
i7-14700K 3.40 GHz processor, 64.0GB of DDR5 RAM, and running Microsoft Windows 11 Pro as
the operating system. For GPU computations, we utilized an NVIDIA GeForce RTX 4070 Ti SUPER
with 16.0GB of memory. The implementation of all models and experiments was carried out using
Python (version 3.12.7) and the PyTorch (Paszke et al., 2019) library (version 2.5.1) with CUDA
(version 12.4). During model training, the ADAM (Kingma & Ba, 2014) optimizer was employed
as the stochastic optimization solver. Hyperparameters for each dataset were explored using a grid
search strategy. For all datasets, the training process incorporated early stopping and, when necessary,
exponentiated batch normalization (EBN) to enhance stability and efficiency. Table 4 summarizes
the hyperparameter settings for the proposed methods. Hyperparameters for both our proposed and
the benchmark methods were selected via grid search over batch sizes of 128, 256, 512, and learning
rates of 0.05, 0.005, 0.002. The number of epochs varied [200, 3000] depending on the dataset. In
general, experiments were conducted using 5-fold cross-validation repeated 5 times, and the mean
and standard deviation (std) across 25 runs were reported. However, when the dataset was split into
train/validation/test, experiments were conducted 5 times, and the mean and standard deviation from
these runs were reported.

Table 4: Hyperparameters of COMONet for real-world datasets

Dataset Number of parameters Learning rate Batch size
COMPAS 1457 0.005 128
Heart Disease 19649 0.002 128
Loan Defaulter 1489 0.0005 512
Blog Feedback 5137 0.0005 256
Auto-MPG 19265 0.005 128

Car sales 1195 0.005 109
Puzzle sales 1819 0.005 155
Wine quality 6753 0.005 512

Table 5: Hyperparameters of benchmark methods for real-world datasets

Methods Dataset Number of parameters Learning rate Batch size
SCNN Car sales 1450 0.005 109
SCNN Puzzle sales 5460 0.005 155
SCNN Wine quality 9094 0.005 512

PenDer Car sales 6401 0.005 109
PenDer Puzzle sales 6529 0.005 155
PenDer Wine quality 10241 0.005 512

E.2 STRATEGIES FOR TRAINING STABILIZATION

In this study, one of the key components of the proposed method, the exponentiated weight (exp(w)),
has the potential to explode as the weight value increases due to the nature of the exponential function.
To address this issue, we adopted the weight initialization strategy introduced in the appendix of
SMNN (Kim & Lee, 2024). Specifically, the initial values of the exponentiated weight w were
sampled from a uniform distribution within the range [−20, 2], effectively preventing the exploding
problem. Furthermore, the scaling parameter γ of the Exponentiated Batch Normalization was
initialized to 0 to ensure stable training, by making exp (γ) to 1. In addition, for activation functions
such as ReLU and ReLU-n, we introduced a Leaky ReLU modification with α = 0.01 in their
off regions. This adjustment preserves the intended properties of each activation function while

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

improving training stability.

Leaky ReLU-n(x) =


αx, if x < 0,

x, if 0 ≤ x ≤ n,

α(x− n) + n, if x > n.

(22)

E.3 EXPONENTIATED BATCH NORMALIZATION

In COMONet, two types of different activation functions (e.g., ReLU and ReLU-n) are employed
across layers, and the weights in certain layers are exponentiated. These differences in activation
types and weight transformations can lead to significant deviations in the value distributions of layer
outputs. In some cases, such discrepancies may result in unstable learning dynamics, necessitating
the use of Batch Normalization(Ioffe, 2015) to stabilize training.

However, traditional Batch Normalization introduces a scaling parameter, γ which can take on
negative values during learning (γ < 0). When γ becomes negative, the normalized output may be
reversed, violating critical Shape Constraints such as monotonicity or convexity. This sign reversal,
in turn, can alter the sign of partial derivatives, fundamentally disrupting structural guarantees for
each varlables.

y =
x− E[x]√
V ar[x] + ϵ

· exp (γ) + β (23)

To address this issue, we propose Exponentiated Batch Normalization (EBN) equation 23, where
the scaling parameter γ is replaced with its exponentiated form, exp (γ) when x refers the outputs
of the layer and y refers the batch normalized outputs. By enforcing exp (γ) to be strictly positive,
we ensure that the normalized output retains its correct sign, thereby preserving the desired Shape
Constraints. This approach effectively mitigates the variance in layer output distributions while
maintaining stable and consistent training dynamics across heterogeneous layers.

E.4 DESCRIPTIONS FOR REAL-WORLD DATASETS

This section provides an overview of the real-world datasets used in the experiments. These datasets
were derived from previously published benchmarks frequently cited in literature on monotonic and
convex neural networks. The criteria for applying shape constraints followed the methodologies
outlined in prior benchmark studies. While precisely defining shape constraints poses challenges,
as mentioned in the conclusion, future research that focuses on identifying these constraints for
specific variables could yield valuable insights. Additionally, some datasets contain instances with
relatively small sample sizes, reflecting realistic challenges often encountered in practical applications.
Effectively addressing such constraints is critical for developing robust and widely applicable models.
Table 6 provides a summarized overview of each dataset, with detailed descriptions presented below
(Bold text indicates monotonic decrease, while italic text denotes concavity.):

AutoMPG: The Auto-MPG dataset is a regression dataset with 7 variables and approximately
398 instances, used to predict a car’s miles per gallon (mpg). It includes monotonic decreasing
relationships between mpg and the variables weight, displacement and horse power.

Heart Disease: The Heart Disease dataset is a classification dataset with 13 variables, used to predict
the presence or absence of heart disease in individuals. Among the variables, trestbps (resting blood
pressure) and chol (cholesterol level) are known to have monotonic increasing relationships with the
risk of heart disease.

COMPAS∗: The COMPAS dataset is a binary classification dataset that predicts whether offenders
in Florida will reoffend within two years based on criminal history data. It includes 13 variables,
of which 4 (number of juvenile misdemeanor, number of other convictions, number of prior adult
convictions, and number of juvenile felony) are known to have monotonic increasing relationships
with recidivism risk. This dataset raises ethical concerns; however, it has been used in recent
publications for comparison studies and remains relevant in research fields focused on fairness.

Blog Feedback: The BlogFeedback dataset is a regression dataset used to predict the number of
comments a blog post will receive within 24 hours. It includes 276 variables, of which 8 variables
(A51, A52, A53, A54, A56, A57, A58, A59) are known to have monotonic increasing relationships
with the number of comments.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Loan Defaulter: The Loan Defaulter dataset is a classification dataset used to predict whether a
customer will default on a loan. It includes loan data from 2007 to 2015 and consists of 28 variables,
among which 5 variables have shape constraints. Number of public record bankruptcies and Debt to
income ratio have monotonic increasing relationships with default risk, while Credit score, Length
of employment, and Annual income have monotonic decreasing relationships with default risk.

Car Sales: The Car Sales dataset is a one-dimensional regression problem aimed at predicting
monthly car sales (in thousands) based on the car price (in thousands). In this problem, the price
variable is constrained to have a convex and monotonically decreasing relationship with car sales.
The dataset consists of a total of 155 entries, with 109 used for training, 32 for testing, and 14 for
validation.

Puzzle Sales: The Puzzle Sales dataset is a regression dataset designed to predict six-month sales
of wooden jigsaw puzzles using features derived from Amazon reviews. Three features are used
for prediction: (1) the average star rating, which is expected to have a monotonically increasing
relationship with sales; (2) the number of reviews; and (3) the word count of reviews, both of which
are expected to exhibit a monotonically increasing and concave relationship with sales. The dataset
includes 156 training examples, 169 validation examples, and 200 test examples.

Wine Quality: The Wine Quality dataset is a regression dataset designed to predict wine scores on
an 80–100 scale using various wine attributes. The dataset consists of 61 variables in total: 21 binary
variables representing the country of production, 39 boolean variables derived from wine descriptions
published by the Wine Enthusiast Magazine, and a continuous variable representing the wine’s price.
Among the 120,919 data entries, 84,642 were used for training, 12,092 for validation, and 24,185
for testing. The variable price was included in the training process with the expectation that it has a
concave and monotonically increasing relationship with wine quality.

Table 6: Descriptions for Real-world Benchmark Datasets

Dataset Task # Instances # Features # Constrained features Monotonic-Convex (Concave) features Monotonic features

Auto-MPG Regression 398 7 3 −−−−−− weights, displacement, horse power
Blog Feedback Regression 54270 276 8 −−−−−− A51,A52,A53,A54,A56,A57,A58,A59

COMPAS Classification 6172 13 4 −−−−−−
number of prior adult convictions,

number of juvenile felony,
number of juvenile misdemeanor,

number of other convictions

Heart Disease Classification 303 13 2 −−−−−− trestbps, chol

Loan Defaulter Classification 488909 28 5 −−−−−−

number of public record bankruptcies,
dept-to-income ratio,

credit score,
length of employment,

annual income
Car Sales Regression 155 1 1 price −−−−−−

Puzzle Sales Regression 525 3 3 number of reviews,
word count star rating

Wine Ratings Regression 120919 61 1 price −−−−−−

E.5 COMONET CONFIGURATION FOR HYPERBOLIC PARABOLOID FUNCTION (20)

The hyperbolic paraboloid function in equation 20 was learned using the structure in Fig. 12.

ො𝑦

Monotonic unit Monotonic unit Monotonic unit

ReLU unit

FC layer

Ref ReLU unit

ReLU unit Convex unit

ReLU unit ReLU unit

Convex unit

Concave unitConcave unit𝑥2

𝑥1

Concave unit

Convex unit

Figure 12: COMOnet Configuration for hyperbolic paraboloid function equation 20.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F SUPPLEMENTAL REPORT OF EXPERIMENTAL RESULTS

F.1 TABULATED NUMERICAL RESULTS FOR FIG. 5

Fig. 5 was created using the data in the following table.

Table 7: Results of Generalization test with equation 21

Network Training MSE Test MSE Denoised test MSE
COMONet (λ = 0) 0.01 0.00 0.01 0.00 0.01 0.00
COMONet (λ = 1) 0.92 0.14 0.99 0.03 0.02 0.01
COMONet (λ = 2) 3.90 0.57 4.03 0.28 0.06 0.02
COMONet (λ = 5) 23.74 3.41 24.88 0.89 0.31 0.10
COMONet (λ = 10) 96.84 14.66 98.07 6.97 0.79 0.36
COMONet (λ = 20) 400.29 55.23 402.42 5.93 3.13 1.32

Same Structure (λ = 0) 0.01 0.01 0.01 0.00 0.01 0.00
Same Structure (λ = 1) 0.77 0.14 1.28 0.10 0.29 0.04
Same Structure (λ = 2) 3.15 0.46 5.31 0.32 1.30 0.22
Same Structure (λ = 5) 19.47 3.21 32.77 1.76 7.21 1.15
Same Structure (λ = 10) 75.09 10.27 128.25 6.85 30.17 5.60
Same Structure (λ = 20) 302.68 44.74 510.34 21.90 106.57 11.04

MLP (λ = 0) 0.00 0.00 0.00 0.00 0.00 0.00
MLP (λ = 1) 0.28 0.08 1.93 0.12 0.97 0.10
MLP (λ = 2) 1.03 0.27 8.15 0.59 4.29 0.49
MLP (λ = 5) 8.23 2.66 48.64 4.03 23.19 3.57
MLP (λ = 10) 26.95 8.68 195.11 14.12 97.22 8.66
MLP (λ = 20) 148.87 42.43 722.66 61.73 334.91 71.79

Fig. 13 illustrates the same structure model employed in experiments on equation 21.

𝐱𝑐𝑜𝑛𝑐𝑚𝑜𝑛𝑜 ො𝑦

1st hidden layer

𝐱𝑐𝑜𝑛𝑐

𝐱𝑚𝑜𝑛𝑜

ReLU unit

ReLU unit

ReLU layer

ReLU unit

ReLU unit

ReLU layer

ReLU unit

ReLU unit

ReLU unit

FC layer

ReLU unit

2nd hidden layer 3rd hidden layer

𝐱𝑐𝑜𝑛𝑣𝑚𝑜𝑛𝑜

𝐱𝑐𝑜𝑛𝑣

ReLU unit

ReLU unit ReLU unitReLU unit

𝐱𝑢𝑛𝑐𝑜𝑛𝑠𝑡

Figure 13: Same structure network

F.2 RESULTS ON PENDER

Table 8 shows Test MSE and Convexity Score Ck and Monotonic Score Mk of PenDer (Gupta et al.,
2021).

Table 8: Test MSE, Convexity Score and Monotonic Score of PenDer on Real-world Dataset.

Dataset Test MSE ↓ Mk Ck
Car Sales (conv) 10411 107 1 1
Car Sales (conv, decr) 10415 104 1 1
Puzzle Sales (conc) 9428 113 1 0.98 0.008
Puzzle Sales (conc, incr) 9519 92 1 0.99 0.004
Wine Quality (conc) 5.19 0.11 1 0.99 0.000
Wine Quality (conc, incr) 5.27 0.20 0.99 0.000 0.99 0.000

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F.3 HYPERBOLIC PARABOLOID WITH INTERACTION TERM

We tested whether COMONet can capture convex–concave interactions using the synthetic function

f(x1, x2) = (x1 − 0.5)2 − (x2 − 0.5)2 + λx1x2, λ ∈ {0, 1, 2, 5, 10}.

Models with the interaction layer enabled (ON) were compared against models without it (OFF)
using the same 1,000 samples, 80/20 split, and cross-validation protocol as in the main experiments.
As shown in Table 9, the ON model maintains low error for increasing λ, while the OFF model fails
to capture the interaction term.

Table 9: Interaction-layer ablation on the convex–concave synthetic function.

Interaction λ Train MSE Test MSE

ON 0 0.0001 ± 0.0000 0.0001 ± 0.0001
ON 1 0.0003 ± 0.0011 0.0004 ± 0.0012
ON 2 0.0019 ± 0.0045 0.0016 ± 0.0045
ON 5 0.0053 ± 0.0098 0.0056 ± 0.0109
ON 10 0.0209 ± 0.0491 0.0188 ± 0.0355

OFF 0 0.0001 ± 0.0000 0.0001 ± 0.0001
OFF 1 0.0080 ± 0.0020 0.0086 ± 0.0017
OFF 2 0.0318 ± 0.0086 0.0357 ± 0.0085
OFF 5 0.1951 ± 0.0738 0.2295 ± 0.0928
OFF 10 0.7576 ± 0.2535 0.8151 ± 0.1596

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.4 FIGURES WITH THE EXPERIMENTAL RESULTS WITH (21)

Fig. 14 represent contour plots varying noise parameter λ from 0 to 5. among 2 variables, x1 is
monotonic increase, and x2 is convex with respect to y.

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

MLP

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2
Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

MLP

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.40

0.44

0.48

0.52

0.56

0.60

0.64

0.68

0.72

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0
x 2

MLP

0.40

0.40

0.41

0.41

0.42

0.43

0.43

0.44

0.44

0.45

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

MLP

0.40

0.41

0.41

0.42

0.43

0.43

0.44

0.44

0.45

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

-0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Figure 14: Contours of x1 and x2 varying within [0,1] when λ = {0, 1, 2, 5}, with x3 and x4 fixed at
0.5. Left: COMONet, Center: Same structure, Right: MLP.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Fig. 15 represent contour plots varying noise parameter λ from 0 to 5. among 2 variables, x2 is
convex, and x3 is monotonic-convex (increase) with respect to y.

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3
COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

MLP

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0
x 3

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

MLP

0.38

0.40

0.42

0.45

0.47

0.50

0.53

0.55

0.57

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

MLP

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

-0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

COMONet

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

Same Structure

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x 3

MLP

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

Figure 15: Contours of x2 and x3 varying within [0,1] when λ = {0, 1, 2, 5}, with x1 and x4 fixed at
0.5. Left: COMONet, Center: Same structure, Right: MLP.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

G ABLATION STUDIES

G.1 VARIOUS ACTIVATION SETTINGS

Fig. 16 and Table 10 represent various cativation functions that satisfies conditions of Monotonicity
and convexity. Among them Monotonic-convex activations can alternate ReLU and convex activations
can alternate ReLU-n.

(a) (b)

Figure 16: Visualization of various activation functions: activation functions in (a) is monotonic-
convex function that can be used for hconv, hrelu, hconc, href-relu and (b) shows monotonic-wavy function
that can be used for hmono

Table 10: Various Activation functions

Activation functions Formula Monotonicity Convexity Remark

ReLU σ(x) =

{
x if x ≥ 0,

0 if x < 0
✓ ✓

Leaky ReLU σ(x) =

{
x if x ≥ 0,

αx if x < 0
✓∗ ✓∗ if 0 < α < 1

ELU σ(x) =

{
x if x ≥ 0,

α(ex − 1) if x < 0
✓∗ ✓∗ if 0 < α < 1

Softplus σ(x) = log(1 + exp (x)) ✓ ✓

Absolute σ(x) = |x| ✗ ✓ unsuitable

ReLU-n σ(x) =


n if x ≥ n,

x if 0 ≤ x < n,

0 if x < 0

✓ ✗

Tanh σ(x) = tanh(x) ✓ ✗
Sigmoid σ(x) = 1

1+e−x ✓ ✗

* Indicates conditionally achieved based on specific configurations.

Table 11 shows that no performance differences across various activations.

Table 11: Performance comparison among various activations settings († Indicates statistical ties.)

Activation Auto MPG Heart Disease Remark
Monotonic activation Convex activation MSE ↓ Test Acc ↑

ReLU ReLU-1 7.38 1.32† 0.85 0.04†
ReLU ReLU-6 7.38 1.32† 0.85 0.04†
ReLU Sigmoid 9.04 2.20† 0.84 0.05†

Leaky ReLU Leaky relu-1 7.03 1.54 0.87 0.04 α = 0.01

ELU Sigmoid 8.67 2.36† 0.87 0.04 α = 0.01
ELU Tanh 7.20 1.59† 0.86 0.05† α = 0.01

Softplus Sigmoid 10.09 2.62 0.84 0.06†
Softplus Tanh 7.46 1.57† 0.87 0.04

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G.2 THE EFFECT OF UPWARD DIRECTIONAL CONNECTIONS

To verify whether COMONet can effectively learn interactions between variable groups, we conducted
an ablation study. The function was designed as in equation 24, where the output y is determined
by three variables x1, x2 and x3. Among these, x1 belongs to xcv, which has a convex relationship
with y, while x2 belongs to xmn, which a monotonic relationship with y. To examine interaction
effects, we varied the coefficient of interaction term α from 0 to 20. We generated a dataset of 1,000
samples from equation 24, using 800 for training and 200 for testing, and evaluated the models
using 5-fold cross-validation repeated five times. We compared four models with different levels
of connectivity in COMONet, as shown in Fig. 18: (a) Not Connected, where variable groups are
completely separated; (b) Sparse-to-Specific, which allows connections only between xcv and xmn

to facilitate learning the known interaction betweenx1 and x2 ; (c) Dense-to-Specific, where only
the connection between xcv and xmn is removed; and (d) Fully Connected, where all groups are
interconnected. As shown in Table 12 and Fig. 17, the Not Connected and Dense-to-Specific models
exhibited increasing Test MSE as α increased, indicating a failure to capture interaction effects. In
contrast, the Sparse-to-Specific and Fully Connected models maintained relatively low Test MSE
despite increasing α, demonstrating their ability to effectively learn the interaction between x1 and
x2. These results empirically validate that COMONet can capture interactions between separated
variable groups.

y = (x1 − 1)
2
+
√
x2 + αx1x

2
2 + sin(2πx3), (24)

xi ∈ [0, 2],∀i ∈ {1, 2, 3},
α,∈ {0, 1, 2, 5, 10, 20}.

Table 12: Comparison of Test MSE Performance.

α Not connected Sparse-to-Specific Dense-to-Specific Fully connected
α = 0 0.01 0.01 0.01 0.01 0.02 0.00 0.03 0.05
α = 1 0.48 0.03 0.04 0.02 0.59 0.22 0.49 0.20
α = 2 1.87 0.11 0.21 0.26 1.94 0.29 0.48 0.79
α = 5 11.75 0.98 0.33 0.08 12.14 0.78 7.76 6.09
α = 10 47.39 6.76 1.79 0.64 47.20 6.56 3.24 1.99
α = 20 193.79 40.07 11.15 12.95 191.13 32.80 15.41 12.44

0 1 2 5 10 20

alpha

0

25

50

75

100

125

150

175

200

Te
st

 M
SE

Fully connected
Dense-to-Specific
Sparse-to-Specific
Not connected

Figure 17: Visualization of
The results in Table 12.

ො𝑦

1st hidden layer

𝐱2

Concave unit

Concave unit Concave unit

FC layer

Ref ReLU unit

2nd hidden layer 3rd hidden layer

𝐱1

Convex unit

ReLU unit

𝐱3

Convex unit

Monotonic unit

ReLU unit

Monotonic unit Monotonic unit

ReLU unit

Convex unit

ReLU unit

(a)

ො𝑦

1st hidden layer

𝐱2

Concave unit

Concave unit Concave unit

FC layer

Ref ReLU unit

2nd hidden layer 3rd hidden layer

𝐱1

Convex unit

ReLU unit

𝐱3

Convex unit

Monotonic unit

ReLU unit

Monotonic unit Monotonic unit

ReLU unit

Convex unit

ReLU unit

(b)

ො𝑦

1st hidden layer

𝐱2

Concave unit

Concave unit Concave unit

FC layer

Ref ReLU unit

2nd hidden layer 3rd hidden layer

𝐱1

Convex unit

ReLU unit

𝐱3

Convex unit

Monotonic unit

ReLU unit

Monotonic unit Monotonic unit

ReLU unit

Convex unit

ReLU unit

(c)

ො𝑦

1st hidden layer

𝐱2

Concave unit

Concave unit Concave unit

FC layer

Ref ReLU unit

2nd hidden layer 3rd hidden layer

𝐱1

Convex unit

ReLU unit

𝐱3

Convex unit

Monotonic unit

ReLU unit

Monotonic unit Monotonic unit

ReLU unit

Convex unit

ReLU unit

(d)

Figure 18: COMONet: (a) Not connected, (b) Sparse-to-Specific, (c) Dense-to-Specific, and (d) Fully
connected.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G.3 ABLATION STUDY ON MISASSIGNED CONSTRAINTS AND SINGLE-FEATURE LEARNING
CAPABILITY

To evaluate the importance of assigning each feature from equation 21 to the correct constraint branch,
we conducted an ablation where the cosine-shaped term cos(2πx4) was intentionally routed to in-
correct branches (monotonic, convex, or monotonic–convex) instead of the intended unconstrained
branch. As shown in Table 13, misassigning x4 leads to substantially higher Train/Test MSE, demon-
strating that each constraint branch serves a distinct purpose and that improper constraint–feature
alignment severely degrades accuracy. When x4 is correctly placed in the unconstrained branch,
the model achieves the lowest error, confirming the necessity of an unconstrained pathway for
non-monotonic and non-convex components.

Table 13: Ablation study on the assignment of x4 to different constraint branches.

Case x4 branch Constraint Train MSE (mean ± std) Test MSE (mean ± std)
Case 1 x4 → xm monotonically increasing 0.472 ± 0.069 0.483 ± 0.061
Case 2 x4 → xmv convex & monotonically increasing 0.468 ± 0.094 0.470 ± 0.081
Case 3 x4 → xcv convex 0.067 ± 0.116 0.063 ± 0.108
Case 4 x4 → xu unconstrained 0.004 ± 0.003 0.005 ± 0.004

We also evaluated whether each constrained component can independently model the correspond-
ing single-feature component from equation 21. The target function was decomposed into four
single-variable terms, each associated with a distinct shape constraint (monotonic, convex, mono-
tonic–convex, and unconstrained). As shown in Table 14, training each branch on its respective term
resulted in very small MSE, demonstrating that all constrained subnetworks accurately capture their
intended shape behavior and reliably express the corresponding single-feature functions.

Table 14: Ablation study showing each branch’s ability to independently learn its single-feature
component in equation 21.

Feature Constraint Train MSE (mean ± std) Test MSE (mean ± std)
x1 monotonically increasing 0.002 ± 0.003 0.002 ± 0.002
x2 convex 0.001 ± 0.001 0.001 ± 0.001
x3 convex & monotonically increasing 0.001 ± 0.001 0.001 ± 0.001
x4 unconstrained 0.002 ± 0.002 0.003 ± 0.001

H BROADER IMPACT

Imposing shape constraints in neural networks can substantially improve model reliability, resilience,
and interpretability—qualities that are especially valuable in sectors like manufacturing, finance, and
healthcare where data may be limited or noisy. Nevertheless, if constraints inadvertently encode
stereotypes or adverse assumptions about protected attributes (such as age, gender, or ethnicity), they
risk perpetuating unfair outcomes. To guard against this, practitioners should systematically evaluate
constraint behavior across different demographic groups and embed fairness checks at every stage of
model development and deployment. Moreover, promoting transparency by publishing constraint
definitions and associated validation tools under an open-source license fosters accountability and
helps ensure these methods serve broad societal interests.

I LLM USAGE STATEMENT

In this work, we utilized a Large Language Model (LLM) solely as an assistive tool in the writing
process. The LLM was specifically employed to refine expressions and to check the clarity of
mathematical formulations authored by us. Importantly, the LLM had no involvement in research
ideation, the development of scientific claims, the design of experiments, or the analysis of results.

31


	Introduction
	Related Work
	Shape Constraints
	Proposed Method
	Numerical Experiments
	Experiments on synthetic datasets
	Experiments on real-world datasets

	Conclusion
	Reproducibility statement
	Proofs
	Flow diagrams of COMONet
	Interaction layer of COMONet
	Configuration flexibility of COMONet
	Detailed Experiment Descriptions
	Training configurations
	Strategies for training stabilization
	Exponentiated batch normalization
	Descriptions for real-world datasets
	COMONet Configuration for hyperbolic paraboloid function (20)

	Supplemental report of experimental results
	Tabulated numerical results for Fig. 5
	Results on PenDer
	Hyperbolic paraboloid with interaction term
	Figures with the experimental results with (21)

	Ablation studies
	Various activation settings
	The effect of upward directional connections
	Ablation study on Misassigned Constraints and Single-Feature Learning Capability

	Broader Impact
	LLM Usage Statement

