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Abstract

This paper studies tabular reinforcement learning (RL) in the hybrid setting, which
assumes access to both an offline dataset and online interactions with the unknown
environment. A central question boils down to how to efficiently utilize online
data to strengthen and complement the offline dataset and enable effective policy
fine-tuning. Leveraging recent advances in reward-agnostic exploration and of-
fline RL, we design a three-stage hybrid RL algorithm that beats the best of both
worlds — pure offline RL and pure online RL — in terms of sample complexities.
The proposed algorithm does not require any reward information during data col-
lection. Our theory is developed based on a new notion called single-policy partial
concentrability, which captures the trade-off between distribution mismatch and
miscoverage and guides the interplay between offline and online data.

1 Introduction

As reinforcement learning (RL) shows promise in achieving super-human empirical success across
diverse fields (e.g., games (Silver et al., 2016; Vinyals et al., 2019; Berner et al., 2019; Mnih et al.,
2013), robotics (Brambilla et al., 2013), autonomous driving (Shalev-Shwartz et al., 2016)), the-
oretical understanding about RL has also been substantially expanded, with the aim of distilling
fundamental principles that can inform and guide practice. Among all sorts of theoretical questions
being pursued, how to make the best use of data emerges as a question of profound interest for
problems with enormous dimensionality.

There are at least two mainstream mechanisms when it comes to data collection: online RL and
offline RL. Let us briefly describe their attributes and differences as follows.

Online RL. In this setting, an agent learns how to maximize her cumulative reward through interac-
tion with the unknown environment (by, say, executing a sequence of adaptively chosen actions and
utilizing the instantaneous feedback of the environment). Given that all information about the envi-
ronment is obtained through real-time data collection, the main challenge lies in how to (optimally)
manage the trade-off between exploration and exploitation. Towards this, one popular approach
advertises the principle of optimism in the face of uncertainty — e.g., employing upper confidence
bounds during value estimation to guide exploration — whose effectiveness has been shown for both
the tabular case (Auer and Ortner, 2006; Jaksch et al., 2010; Azar et al., 2017; Dann et al., 2017; Jin
et al., 2018; Bai et al., 2019; Dong et al., 2019; Zhang et al., 2020b; Ménard et al., 2021b; Li et al.,
2021b) and the case with function approximation (Jin et al., 2020b; Zanette et al., 2020; Zhou et al.,
2021a; Li et al., 2021a; Du et al., 2021; Jin et al., 2021a; Foster et al., 2021; Chen et al., 2022b).

Offline RL. In contrast, offline RL assumes access to a pre-collected dataset, without given permis-
sion to perform any further data collection. The feasibility of reliable offline RL depends heavily
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on the quality of the dataset at hand. A central challenge stems from the presence of distribution
shift: the distribution of the offline dataset might differ significantly from that induced by the target
policy. Another common challenge arises from insufficient data coverage: a nontrivial fraction of
the state-action pairs might be inadequately visited in the available dataset, thus precluding one from
faithfully evaluating many policies based solely on the offline dataset. To circumvent these obsta-
cles, recent works proposed the principle of pessimism in the face of uncertainty, recommending
caution when selecting poorly visited actions (Liu et al., 2020; Kumar et al., 2020; Jin et al., 2021b;
Rashidinejad et al., 2021; Uehara and Sun, 2021; Li et al., 2022; Yin et al., 2021; Shi et al., 2022;
Cai et al., 2022). Without requiring uniform coverage of all policies, the pessimism approach proves
effective as long as the so-called single-policy concentrability is satisfied, which only assumes ade-
quate coverage over the part of the state-action space reachable by the desirable policy.

In reality, however, both mechanisms above come with limitations. For instance, even the single-
policy concentrability requirement might be too stringent (and hence fragile) for offline RL, as it is
not uncommon for the historical dataset to miss a small yet essential part of the state-action space.
Pure online RL might also be overly restrictive, given that there might be information from past data
that could help initialize online exploration and mitigate the burden of further data collection.

All this motivates the studies of hybrid RL, a scenario where the agent has access to an offline
dataset while, in the meantime, (limited) online data collection is permitted as well. Oftentimes, this
scenario is practically not only feasible but also appealing: on the one hand, offline data provides
useful information for policy pre-training, while further online exploration helps enrich existing data
and allows for effective policy fine-tuning. As a matter of fact, multiple empirical works (Rajeswaran
et al., 2017; Vecerik et al., 2017; Kalashnikov et al., 2018; Hester et al., 2018; Nair et al., 2018, 2020)
indicated that combining online RL with offline datasets outperforms both pure online RL and pure
offline RL. Nevertheless, theoretical pursuits about hybrid RL are lagging behind. Two recent works
Ross and Bagnell (2012); Xie et al. (2021b) studied a restricted setting, where the agent is aware of a
Markovian behavior policy (a policy that generates offline data) and can either execute the behavior
policy or any other adaptive choice to draw samples in each episode; in this case, Xie et al. (2021b)
proved that under the single-policy concentrability assumption of the offline dataset, having perfect
knowledge about the behavior policy does not improve online exploration in the minimax sense.
Another strand of works Song et al. (2022); Nakamoto et al. (2023); Wagenmaker and Pacchiano
(2022) looked at a more general offline dataset and investigated how to leverage offline data in online
exploration. From the sample complexity viewpoint, Wagenmaker and Pacchiano (2022) studied the
statistical benefits of hybrid RL in the presence of linear function approximation; the result therein,
however, required strong assumptions on data coverage (i.e., all-policy concentrability) and fell short
of unveiling provable gains in the tabular case (as we shall elucidate momentarily). In light of such
theoretical inadequacy in previous works, this paper is motivated to pursue the following question:

Does hybrid RL allow for improved sample complexity compared to pure online
or offline RL in the tabular case?

1.1 Main contributions

We deliver an affirmative answer to the above question. Further relaxing the single-policy concen-
trability assumption, we introduce a relaxed notation called single-policy partial concentrability (to
be made precise in Definition 2), which (i) allows the dataset to miss a fraction of the state-action
space visited by the optimal policy and (ii) captures the tradeoff between distribution mismatch and
lack of coverage. Armed with this notion, our results reveal provable statistical benefits of hybrid
RL compared with both pure online and offline RL. The main contributions are summarized below.

A novel three-stage algorithm. We design a new hybrid RL algorithm consisting of three stages.
In the first stage, we obtain crude estimation of the occupancy distribution dπ w.r.t. any policy π as
well as the data distribution doff of the offline dataset. The second stage performs online exploration;
in particular, we execute one exploration policy to imitate the offline dataset and another one to
explore the inadequately visited part of the unknown environment, with both policies computed by
approximately solving convex optimization sub-problems. Notably, these two stages do not count
on the availability of reward information, and thus operate in a reward-agnostic manner. The final
stage then invokes the state-of-the-art offline RL algorithm for policy learning, on the basis of all
data we have available (including both online and offline data).
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Computationally efficient subroutines. Throughout the first two stages of the algorithm, we need
to solve a couple of convex sub-problems with exponentially large dimensions. In order to attain
computational efficiency, we design efficient Frank-Wolfe-type paradigms to solve the sub-problems
approximately, which run in polynomial time. This plays a crucial role in ensuring computational
tractability of the proposed three-stage algorithm.

Improved sample complexity. We characterize the sample complexity of our algorithm (see Theo-
rem 1), which provably improves upon both pure online and offline RL. On the one hand, hybrid
RL achieves strictly enhanced performance compared to pure offline RL (assuming the same sample
size) when the offline data falls short of covering all state-action pairs reachable by the desired pol-
icy. On the other hand, the sample size allocated to online exploration in our algorithm might only
need to be proportional to the fraction σ of the state-action space uncovered by the offline dataset,
thus resulting in sample size saving in general compared to pure online RL (a case with σ = 1).

Notation. Let us also introduce several useful notation. For integer m > 0, we let [m] represent
the set {1, · · · ,m}. For any set B, we denote by Bc its complement. For any policy π0, we let 1π0

:
Π→ {0, 1} be an indicator function such that 1π0

(π) = 1 if π = π0 and 1π0
(π) = 0 otherwise. For

any finite set A, we denote by ∆(A) the probability simplex over A. Letting X :=
(
S,A,H, 1

ε ,
1
δ

)
,

we use the notation f(X ) = O(g(X )) or f(X ) . g(X ) to indicate the existence of a universal
constant C1 > 0 such that f ≤ C1g, the notation f(X ) & g(X ) to indicate that g(X ) = O(f(X )),
and the notation f(X ) � g(X ) to mean that f(X ) . g(X ) and f(X ) & g(X ) hold simultaneously.
The notation Õ(·) is defined in the same way as O(·) except that it hides logarithmic factors.

2 Preliminaries and problem settings

Episodic finite-horizon MDPs. We study episodic finite-horizon Markov decision processes with
S states, A actions, and horizon length H . We useM = (S,A, H, P = {Ph}Hh=1, r = {rh}Hh=1) to
represent such an MDP, where S = [S] and A = [A] represent the state space and the action space,
respectively. For each step h ∈ [H], we let Ph : S ×A → ∆(S) represent the transition probability
at this step, such that taking action a in state s at step h yields a transition to the next state drawn
from the distribution Ph(· | s, a); throughout the paper, we often employ the shorthand notation
Ph,s,a := Ph(·|s, a). Another ingredient is the reward function specified by rh : S × A → [0, 1] at
step h; namely, the agent will receive an immediate reward rh(s, a) upon executing action a in state
s at step h. It is assumed that the reward function is fully revealed upon completion of online data
collection. Additionally, we assume throughout that each episode of the MDP starts from an initial
state independently generated from some (unknown) initial state distribution ρ ∈ ∆(S).

A time-inhomogeneous Markovian policy is often denoted by π = {πh}Hh=1 with πh : S → ∆(A),
where πh(· | s) characterizes the (randomized) action selection probability of the agent in state s at
step h. If π is a deterministic policy, then we often abuse the noation and let πh(s) represent the
action selected in state s at step h. We find it convenient to introduce the following notation:

Π := the set of all deterministic policies. (1)

We also need to handle mixed deterministic policies (i.e., each realization of the policy is randomly
drawn from a mixture of deterministic policies). A mixed deterministic policy πmixed is denoted by

πmixed =
∑

π∈Π
µ(π)π = Eπ∼µ[π] for some µ ∈ ∆(Π). (2)

Moreover, for any policy π, we define its associated value function (resp. Q-function) as follows,
representing the expected cumulative rewards conditioned on an initial state (resp. an initial state-
action pair):

V πh (s) := Eπ
[∑

h′:h≤h′≤H
rh′(s, a)

∣∣∣∣ sh = s

]
, ∀s ∈ S;

Qπh(s, a) := Eπ
[∑

h′:h≤h′≤H
rh′(s, a)

∣∣∣∣ sh = s, ah = a

]
, ∀(s, a) ∈ S ×A.

Here, the expectation is over the length-H sample trajectory (s1, a1, s2, a2, . . . , sH , aH) when exe-
cuting policy π inM, where sh (resp. ah) denotes the state (resp. action) at step h of this trajectory.
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When the initial state is drawn from ρ, we further augment the notation and denote

V π1 (ρ) = Es∼ρ
[
V π1 (s)

]
.

Importantly, there exists at least one deterministic policy, denoted by π? throughout, that is able to
maximize V πh (s) and Qπh(s, a) simultaneously for all (h, s, a) ∈ [H]× S ×A; namely,

V ?h (s) := V π
?

h (s) = max
π

V πh (s), Q?h(s, a) := Qπ
?

h (s, a) = max
π

Qπh(s, a), ∀(s, a) ∈ S ×A.

Moving beyond value functions and Q-functions, we would like to define, for each policy π, the
associated state-action occupancy distribution dπ = [dπh]1≤h≤H such that

dπh(s, a) := P(sh = s, ah = a |π), ∀(s, a, h) ∈ S ×A× [H];

in other words, this is the probability of the state-action pair (s, a) ∈ S × A being visited by π at
step h. We shall also overload dπ to represent the state occupancy distribution such that

dπh(s) :=
∑

a∈A
dπh(s, a) = P(sh = s |π), ∀(s, h) ∈ S × [H]. (3)

Given that each episode always starts with a state drawn from ρ, it is easily seen that dπ1 (s) = ρ(s)
for any policy π and any s ∈ S.

Sampling mechanism. We consider a hybrid RL setting that assumes access to a historical dataset
as well as the ability to further explore the environment via real-time sampling, as detailed below.

Offline data. Suppose that we have available a historical dataset (also called an offline dataset)

Doff =
{
τk,off

}
1≤k≤Koff , (4)

containing Koff sample trajectories each of length H . Here, the k-th trajectory in Doff is denoted by

τk,off =
(
sk,off

1 , ak,off
1 , . . . , sk,off

H , ak,off
H

)
, (5)

where sk,off
h and ak,off

h indicate respectively the state and action at step h of this trajectory τk,off . It
is assumed that each trajectory τk,off is drawn independently using policy πoff , which takes the form
of a mixture of deterministic policies

πoff = Eπ∼µoff

[
π
]

with µoff ∈ ∆(Π). (6)

Note that the learner only has access to the data samples but not πoff . Throughout the paper, we use
doff = {doff

h }1≤h≤H to represent the occupancy distribution of this offline dataset such that

doff
h (s, a) := P

(
(sk,off
h , ak,off

h ) = (s, a)
)
, ∀(s, a, h) ∈ S ×A× [H]. (7)

Online exploration. In addition to the offline dataset, the learner is allowed to interact with the
unknown environment and collect more data in real time, in the hope of compensating for the insuf-
ficiency of the pre-collected data at hand and fine-tuning the policy estimate. More specifically, the
learner is able to sample Kon trajectories sequentially. In each sample trajectory,

• the initial state is generated independently from an (unknown) distribution ρ ∈ ∆(S);
• the learner selects a policy to execute the MDP, obtaining a sample trajectory of length H .

The total number of sample trajectories is thus given by

K = Koff +Kon. (8)

Concentrability assumptions for the offline dataset. To quantify the quality of the historical
dataset, prior offline RL literature introduced the following single-policy concentrability coefficient
based on certain density ratio of interest; see, e.g., Rashidinejad et al. (2021); Li et al. (2022).
Definition 1 (Single-policy concentrability). The single-policy concentrability coefficient C? of the
offline dataset Doff is defined as

C? := max
(s,a,h)∈S×A×[H]

dπ
?

h (s, a)

doff
h (s, a)

. (9)
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In words, C? employs the `∞-norm of the density ratio dπ
?

/doff to capture the shift of distributions
between the occupancy distribution induced by the desired policy π? and the data distribution at
hand. The terminology “single-policy” underscores that Definition 1 only compares the offline data
distribution against the one generated by a single policy π?, which stands in stark contrast to other
all-policy concentrability coefficients that are defined to account for all policies simultaneously.

One notable fact about Definition 1 is that: for C? to be finite, the historical data distribution needs
to cover all state-action-step tuples reachable by π?. This requirement is, in general, inevitable if
only the offline dataset is available; see the minimax lower bounds in Rashidinejad et al. (2021);
Li et al. (2022) for more precise justifications. However, a requirement of this kind could be overly
stringent for the hybrid setting considered herein, as the issue of incomplete coverage can potentially
be overcome with the aid of online data collection. In light of this observation, we generalize
Definition 1 to account for the trade-offs between distributional mismatch and partial coverage.

Definition 2 (Single-policy partial concentrability). For any σ ∈ [0, 1], the single-policy partial
concentrability coefficient C?(σ) of the offline dataset Doff is defined as

C?(σ) := min

{
max

1≤h≤H
max

(s,a)∈Gh

dπ
?

h (s, a)

doff
h (s, a)

∣∣∣∣ {Gh}1≤h≤H ∈ G(σ)

}
, (10)

where

G(σ) :=

{
{Gh}1≤h≤H ⊆ S ×A

∣∣∣∣ 1

H

H∑
h=1

∑
(s,a)/∈Gh

dπ
?

h (s, a) ≤ σ
}
. (11)

In Definition 2, we allow a fraction of the state-action space reachable by π? to be insufficiently
covered (as reflected in the definition of G(σ) measured by the state-action occupancy distribution)
— hence the terminology “partial”. Intuitively, Gh corresponds to a set of state-action pairs that
undergo reasonable distribution shift (so that the corresponding density ratio does not rise above
C?(σ)), whereas the total occupancy density of its complement subset Gc

h induced by π? is under
control (i.e., no larger than σ when averaged across steps). As a self-evident fact, C?(σ) is non-
increasing in σ; this means that as σ increases, we might incur a less severe distribution shift in a
restricted part, at the price of less coverage. In this sense, C?(σ) reflects certain tradeoffs between
distribution shift and coverage. Clearly, C?(σ) reduces to C? in Definition 1 by taking σ = 0.

Goal. Given a historical dataset Doff containing Koff sample trajectories, we would like to design
an online exploration scheme, in conjunction with the accompanying policy learning algorithm, so
as to achieve desirable policy learning (or policy fine-tuning) in a data-efficient manner. Ideally, we
would expect a hybrid RL algorithm to harvest provable statistical benefits compared to both purely
online RL and purely offline RL approaches.

3 Algorithm

In this section, we propose a new algorithm to tackle the hybrid RL setting. Our algorithm design
leverages recent ideas developed in offline RL and reward-agnostic exploration to improve sample
efficiency. Our algorithm consists of three stages to be described shortly; informally, the first two
stages conduct reward-agnostic exploration to imitate and complement the offline dataset, whereas
the third stage invokes a sample-optimal offline RL algorithm to compute a near-optimal policy.

In the sequel, we split the offline dataset Doff into two halves:

Doff,1 and Doff,2, (12)

whereDoff,1 (resp.Doff,2) consists of the first (resp. last) Koff/2 independent trajectories fromDoff .
As we shall also see momentarily, online exploration in the proposed algorithm — which collects
Kon trajectories in total — can be divided into three parts, collecting Kon

prepare, Kon
imitate and Kon

explore

sample trajectories, respectively. Throughout this paper, for simplicity we choose

Kon
prepare = Kon

imitate = Kon
explore = Kon/3. (13)
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3.1 A three-stage algorithm

We now elaborate on the three stages of the proposed algorithm. Due to space limitation, the pseu-
docode of the complete algorithm is provided in Appendix B.

Stage 1: estimation of the occupancy distributions. As a preparatory step for reward-agnostic
exploration, we first attempt to estimate the occupancy distribution induced by any policy as well as
the occupancy distribution doff associated with the historical dataset, as described below.

Estimating dπ for any policy π. In this step, we would like to sample the environment and collect
a set of sample trajectories, in a way that allows for reasonable estimation of the occupancy distri-
bution dπ induced by any policy π. For this purpose, we invoke the exploration strategy and the
accompanying estimation scheme developed in Li et al. (2023). Working forward (i.e., from h = 1
to H), this approach collects, for each step h, a set of N sample trajectories in order to facilitate
estimation of the occupancy distributions, which amounts to a total number of

NH =: Kon
prepare = Kon/3 (14)

sample trajectories collected in this stage. See Algorithm 3 in Appendix D.1 for a precise description
of this strategy. Noteworthily, while Algorithm 3 specifies how to estimate d̂π for any policy π, we
won’t need to compute it explicitly unless this policy π is encountered during the subsequent steps
of the algorithm; in other words, d̂π should be viewed as a sort of “function handle” that will only
be executed when called later.

Estimating doff for the historical dataset Doff . In addition, we are in need of estimating the occu-
pancy distribution doff . Towards this end, we propose the following empirical estimate using the
Koff/2 sample trajectories from Doff,1:

d̂off
h (s, a) =

2Noff
h (s, a)

Koff
1

(
Noff
h (s, a)

Koff
≥ coff

{
log HSA

δ

Koff
+
H4S4A4 log HSA

δ

N
+
SA

Kon

})
(15)

for all (s, a) ∈ S × A, where coff > 0 is some universal constant. Here, 1 − δ indicates the target
success probability, and

Noff
h (s, a) =

Koff/2∑
k=1

1
(
sk,off
h = s, ak,off

h = a
)
, ∀(s, a) ∈ S ×A. (16)

In other words, d̂off
h (s, a) is taken to be the empirical visitation frequency of (s, a) in Doff,1 if (s, a)

is adequately visited, and zero otherwise. The cutoff threshold will be made clear in our analysis.

Stage 2: online exploration. Armed with the above estimates of the occupancy distributions, we
can readily proceed to compute the desired exploration policies and sample the environment. We
seek to devise two exploration strategies, with one strategy selected to imitate the offline dataset,
and the other one employed to explore the insufficiently visited territory. As a preliminary fact, if
we have a dataset containing K independent trajectories — generated independently from a mixture
of deterministic policies with occupancy distribution db — then it has been shown previously (see,
e.g., Li et al. (2023, Section 3.3)) that the model-based offline approach is able to compute a policy
π̂ obeying

V ?(ρ)− V π̂(ρ) . H

[∑
h

∑
s,a

dπ
?

h (s, a)

1/H +Kondb
h(s, a)

] 1
2

. (17)

This upper bound in (17) provides a guideline regarding how to design a sample-efficient exploration
scheme.

Imitating the offline dataset. The offline dataset Doff is most informative when it contains expert
data, a scenario when the data distribution resembles the distribution induced by the optimal policy
π?. If this is the case, then it is desirable to find a policy similar to πoff in (6) (the mixed policy gen-
erating Doff ) and employ it to collect new data, in order to retain and further strength the benefits of
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such offline data. To do so, we attempt to approximate dπ
?

by d̂off in (17) when attempting to mini-
mize (17). In fact, we would like to compute a mixture of deterministic policies by (approximately)
solving the following optimization problem:

µimitate ≈ arg min
µ∈∆(Π)

H∑
h=1

∑
s∈S

max
a∈A

d̂off
h (s, a)

1
KonH + Eπ′∼µ

[
d̂π
′
h (s, a)

] , (18)

which is clearly equivalent to

µimitate ≈ arg min
µ∈∆(Π)

max
π:S×[H]→∆(A)

H∑
h=1

∑
s∈S

Ea∼πh(·|s)

[
d̂off
h (s, a)

1
KonH + Eπ′∼µ

[
d̂π
′
h (s, a)

]]. (19)

In order to solve this minimax problem (19) (note that its objective function is convex in µ), we resort
to the Follow-The-Regularized-Leader (FTRL) strategy from the online learning literature (Shalev-
Shwartz, 2012); more specifically, we perform the following updates iteratively for t = 1, . . . , Tmax:

πt+1
h (· | s) ∝ exp

(
η

t∑
k=1

d̂off
h (s, ·)

1
KonH + Eπ′∼µk

[
d̂π
′
h (s, ·)

]), ∀s ∈ S, (20a)

µt+1 ≈ arg min
µ∈∆(Π)

H∑
h=1

∑
s∈S

Ea∼πt+1
h (·|s)

[
d̂off
h (s, a)

1
KonH + Eπ′∼µ

[
d̂π
′
h (s, a)

]], (20b)

where η denotes the learning rate to be specified later. We shall discuss how to solve the optimization
sub-problem (20b) in Appendix C. The output of this step is a mixture of deterministic policies
taking the following form:

πimitate = Eπ∼µimitate [π] with µimitate =
1

Tmax

Tmax∑
t=1

µt. (21)

Exploring the unknown environment. In addition to mimicking the behavior of the historical dataset,
we shall also attempt to explore the environment in a way that complements pre-collected data.
Towards this end, it suffices to invoke the reward-agnostic online exploration scheme proposed in Li
et al. (2023), whose precise description will be provided in Algorithm 5 in Appendix D.2 to make
the paper self-contained. The resulting policy mixture is denoted by

πexplore = Eπ∼µexplore [π], (22)

with µexplore ∈ ∆(Π) representing the associated weight vector.

With the above two exploration policies (21) and (22) in place, we execute the MDP to obtain sample
trajectories as follows:

1) Execute the MDP Kon
imitate times using policy πimitate to obtain a dataset containing

Kon
imitate = Kon/3 independent sample trajectories, denoted by Don

imitate;

2) Execute the MDP Kon
explore times using policy πexplore to obtain a dataset containing

Kon
explore = Kon/3 independent sample trajectories, denoted by Don

explore.

Stage 3: policy learning via offline RL. Once the above online exploration process is completed,
we are positioned to compute a near-optimal policy on the basis of the data in hand. More precisely,

• Let us look at the following dataset

D = Doff,2 ∪ Don
imitate ∪ Don

explore. (23)

In light of the complicated statistical dependency betweenDoff,1 andDon
imitate∪Don

explore, we
only include the second half Doff,2 of the offline dataset Doff , so as to exploit the fact that
Doff,2 is statistically independent from Don

imitate ∪ Don
explore.

• We invoke the pessimistic model-based offline RL algorithm proposed in Li et al. (2022) to
compute the final policy estimate π̂; see Algorithm 6 in Appendix D.3 for more details.
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4 Main results

As it turns out, Algorithm 1 is capable of achieving provable sample efficiency, as demonstrated in
the following theorem. Here and below, we recall that K = Koff +Kon.

Theorem 1. Consider δ ∈ (0, 1) and ε ∈ (0, H]. Choose the algorithmic parameters such that

η =

√
logA

2Tmax(KonH)2
and Tmax ≥ 2(KonH)2 logA.

Suppose that

Kon +Koff ≥ c1
H3SC?(σ)

ε2
log2 K

δ
(24a)

Kon ≥ c1
H3SAmin{Hσ, 1}

ε2
log

K

δ
(24b)

for some large enough constant c1 > 0. Then with probability at least 1 − δ, the policy π̂ returned
by Algorithm 1 satisfies

V ?1 (ρ)− V π̂(ρ) ≤ ε,
provided that Kon and Koff both exceed some polynomial poly(H,S,A,C?(σ), log K

δ ) (indepen-
dent of ε).

The proof is deferred to Appendix E. In a nutshell, Theorem 1 uncovers that our algorithm yields
ε-accuracy as long as

Kon +Koff &
H3SC?(σ)

ε2
log2 K

δ
, (25a)

Kon &
H3SAmin{Hσ, 1}

ε2
log

K

δ
, (25b)

ignoring lower-order terms. Several implications of this result are as follows.

Sample complexity benefits compared with pure online or pure offline RL. To make apparent
its advantage compared with both pure offline and online RL, we make comparisons with several
most relevant works. Discussions of other related works are deferred to Appendix A.

Sample complexity with balanced online and offline data. For the ease of presentation, let us look
at a simple case where Koff = Kon = K/2. The the sample complexity bound (25) in this case
simplifies to

Õ

(
min
σ∈[0,1]

{
H3SAmin{Hσ, 1}

ε2
+
H3SC?(σ)

ε2

})
=: Õ

(
min
σ∈[0,1]

fmixed(σ)

)
. (26)

Comparisons with pure online RL. We now look at pure online RL, corresponding to the case
where K = Kon (so that all sample episodes are collected via online exploration). In this case,
the minimax-optimal sample complexity for computing an ε-optimal policy is known to be (Azar
et al., 2017; Li et al., 2023)

Õ

(
H3SA

ε2

)
= Õ

(
fmixed(1)

)
(27)

assuming that ε is sufficiently small, which is clearly worse than (26). For instance, if there exists
some very small σ � 1/H obeying C?(σ) . 1, then the ratio of (26) to (27) is at most

Hσ + 1/A� 1, (28)
thus resulting in substantial sample size savings.

Comparisons with pure offline RL. In contrast, in the pure offline case whereK = Koff , the minimax
sample complexity is known to be (Li et al., 2022)

Õ

(
H3SC?(0)

ε2

)
= Õ

(
fmixed(0)

)
(29)

for any target accuracy level ε, which is apparently larger than (26) in general. In particular, recog-
nizing that C?(0) = ∞ in the presence of incomplete coverage of the state-action space reachable
by π?, we might harvest enormous sample size benefits (by exploiting the ability of online RL to
visit the previously uncovered state-action-step tuples).

8



Comparison with Wagenmaker and Pacchiano (2022). It is worth noting that Wagenmaker and
Pacchiano (2022) also considered policy fine-tuning and proposed a method called FTPedel to tackle
linear MDPs. The results therein, however, were mainly instance-dependent, thus making it difficult
to compare in general. That being said, we would like to clarify two points:

• Wagenmaker and Pacchiano (2022) imposed all-policy concentrability assumptions, requr-
ing the combined dataset (i.e., the offline and online data altogether) to cover certain feature
vectors for all linear softmax policies (see Wagenmaker and Pacchiano (2022, Definition
4.1)). In contrast, our results only assume single-policy (partial) concentrability, which is
much weaker than the all-policy counterpart.

• When specializing Wagenmaker and Pacchiano (2022, Corollary 1) to the tabular cases, the
sample complexity therein becomes Õ(H7S2A2/ε2), which is much larger than our result.

Miscellaneous properties of the proposed algorithm. In addition to the sample complexity ad-
vantages, the proposed hybrid RL enjoys several attributes that could be practically appealing.

Adaptivity to unknown optimal σ. While we have introduced the parameter σ to capture incomplete
coverage, our algorithm does not rely on any knowledge of σ. Take the balanced case described
around (26) for instance: our algorithm automatically identifies the optimal σ that minimizes the
function fmixed(σ) over all σ ∈ [0, 1]. In other words, Algorithm 1 is able to automatically identify
the optimal trade-offs between distribution mismatch and inadequate coverage.

Reward-agnostic data collection. It is noteworthy that the online exploration procedure employed
in Algorithm 1 does not require any prior information about the reward function. In other words, it
is mainly designed to improve coverage of the state-action space, a property independent from the
reward function. In truth, the reward function is only queried at the last step to output the learned
policy. This enables us to perform hybrid RL in a reward-agnostic manner, which is particularly
intriguing in practice, as there is no shortage of scenarios where the reward functions might be
engineered subsequently to meet different objectives.

Strengthening behavior cloning. Another notable feature is that our algorithm does not rely on prior
knowledge about the policies generating the offline dataset Doff ; in fact, it is capable of finding a
mixed exploration policy πimitate that inherits the advantages of the unknown behavior policy πoff .
This could be of particular interest for behavior cloning, where the offline dataset Doff is generated
by an expert policy, with C? = C?(0) ≈ 1, i.e. the expert policy covers the optimal one. In
this situation, the supplement of online data collection improves behavior cloning by lowering the

statistical error from
√

H3SC?

Koff
to
√

H3SC?

Koff+Kon
, together with an executable learned policy πimitate.

Computational complexity. We now take a moment to discuss the computational cost of the pro-
posed algorithm. In Stage 1, we need to first estimate the transition matrices {Ph}, which can be
accomplished with runtime O(Kon). In the ensuing stages, we call Algorithm 3 to estimate d̂π for
each π we encounter. When computing πimitate, we need to calculate d̂π for T1 = TmaxT2 times,
where T2 denotes the number of iterations for calculating µt+1 in Eq. (20b); in comparison, the
computational cost of estimating dπ to yield πexplore in Eq. (22) is much smaller. For each d̂π , it
needs O(HS2A) computation. With a slight modification on the target Eq. (19) as follows

µimitate ≈

arg min
µ∈∆(Π)

H∑
h=1

∑
s∈S

max
a∈A

d̂off
h (s, a)

1
KH +O

(
1
SH

)
d̂off
h (s, a) + E

π′∼µexplore

[
d̂π
′
h (s, a)

]
+ E
π′∼µ

[
d̂π
′
h (s, a)

] ,
(30)

we can find a good enough πimitate with Tmax = Õ(H2S2) for η � 1
H2S2 and O(H4S4A2) Frank-

Wolfe updates for α � 1
H3S3A2 . These taken collectively lead to the following computational

complexity for each stage: O(Kon +H7S8A3 +KoffH) for Stage 1, O(H7S7A3) for Stage 2, and
O(KH) for Stage 3.
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5 Discussion

We have studied the policy fine-tuning problem of practical interest, where one is allowed to exploit
pre-collected historical data to facilitate and improve online RL. We have proposed a three-stage
algorithm tailored to the tabular setting, which attains provable sample size savings compared with
both pure online RL and pure offline RL algorithms. Our algorithm design has leveraged key insights
from recent advances in both model-based offline RL and reward-agnostic online RL.

While the proposed algorithm achieves provable sample efficiency, this cannot be guaranteed unless
the sample size already surpasses a fairly large threshold (in other words, the algorithm imposes
a high burn-in cost). It would be of great interest to see whether one can achieve sample opti-
mality for the entire ε-range. Another issue arises from the computation side: even though the
proposed algorithm can be implemented in polynomial time, the computational complexity of the
Frank-Wolfe-type subroutine might already be too expensive for solving problems with enormous
dimensionality. Can we hope to further accelerate it to make it practically more appealing? Finally,
it might also be interesting to study sample-efficient hybrid RL in the presence of low-complexity
function approximation, in the hope of further reducing sample complexity.
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A Other related works

In this section, we briefly discuss a small set of additional prior works related to the current paper.

(Reward-aware) online RL. In online RL, an agent seeks to find a near-optimal policy by se-
quentially and adaptively interacting with the unknown environment, without having access to any
additional offline dataset. The extensive studies of online RL gravitate around how to optimally trade
off exploration against exploitation, for which the principle of optimism in the face of uncertainty
plays a crucial role (Auer and Ortner, 2006; Jaksch et al., 2010; Azar et al., 2017; Dann et al., 2017;
Jin et al., 2018; Bai et al., 2019; Dong et al., 2019; Zhang et al., 2020b; Ménard et al., 2021b; Li
et al., 2021b; Zhang et al., 2023). Information-theoretic regret lower bounds have been established
by Domingues et al. (2021); Jin et al. (2018), which are shown to be achievable (up to log factor) by
the model-based approach for arbitrary sample sizes (Zhang et al., 2023). A further strand of works
extended these studies to the case with function approximation, including both linear function ap-
proximation (Jin et al., 2020b; Zanette et al., 2020; Zhou et al., 2021a; Li et al., 2021a) and other
more general families of function approximation (Du et al., 2021; Jin et al., 2021a; Foster et al.,
2021).

Offline RL. In contrast to online RL, offline RL assumes access to a pre-collected offline dataset
and precludes active interactions with the environment. Given the absence of further data collection,
the sample complexity of pure offline RL depends heavily upon the quality of the offline dataset at
hand, which has often been characterized via some sorts of concentrability coefficients in prior works
(Rashidinejad et al., 2021; Zhan et al., 2022). Earlier works (Munos and Szepesvári, 2008; Chen
and Jiang, 2019) typically operated under the assumption of all-policy concentrability — namely,
the assumption that the dataset covers the visited state-action pairs of all possible policies — thus
imposing a stringent requirement for the offline dataset to be highly explorative. To circumvent this
stringent assumption, Liu et al. (2020); Kumar et al. (2020); Jin et al. (2021b); Rashidinejad et al.
(2021); Uehara and Sun (2021); Li et al. (2022); Yin et al. (2021); Shi et al. (2022); Yan et al. (2023)
incorporated the pessimism principle amid uncertainty into the algorithm designs and, as a result,
required only single-policy concentrability (so that the dataset only needs to cover the part of the
state-action space reachable by the optimal policy). With regards to the basic tabular case, Li et al.
(2022) proved that the pessimistic model-based offline algorithm is capable of achieving minimax-
optimal sample complexity for the full ε-range, accommodating both the episodic finite-horizon case
and the discounted infinite-horizon analog. Moving beyond single-agent tabular settings, a recent
line of works investigated offline RL in the presence of general function approximation (Jin et al.,
2020c; Xie et al., 2021a; Zhan et al., 2022), environment shift (Zhou et al., 2021b; Shi and Chi,
2022), and in the context of zero-sum Markov games (Cui and Du, 2022; Yan et al., 2022).

Hybrid RL. While there were a number of empirical works (Rajeswaran et al., 2017; Vecerik
et al., 2017; Kalashnikov et al., 2018; Hester et al., 2018; Nair et al., 2018, 2020) suggesting the
perfromance gain of combining online RL with offline datasets (compared to pure online or offline
learning), rigorous theoretical evidence remained highly limited. Ross and Bagnell (2012); Xie et al.
(2021b) attempted to develop theoretical understanding by looking at one special hybrid scenario,
where the agent can perform either of the following in each episode: (i) collecting a new online
episode; and (ii) executing a prescribed and fixed reference policy to generate a sample episode. In
this setting, Xie et al. (2021b) showed that in the minimax sense, combining online learning with
samples generated by such a reference policy is not advantageous in comparison with pure online or
offline RL. Note that our results do not contradict with the lower bound in Xie et al. (2021b), given
that we exploit “partial” single-policy concentrability that implies additional structure except for the
worst case. Akin to the current paper, Song et al. (2022); Wagenmaker and Pacchiano (2022) studied
online RL with additional access to an offline dataset. Nevertheless, Song et al. (2022) mainly
focused on the issue of computational efficiency, and the algorithm proposed therein does not come
with improved sample complexity. In contrast, Wagenmaker and Pacchiano (2022) focused attention
on statistical efficiency, although the sample complexity derived therein is highly suboptimal when
specialized to the tabular setting.

Reward-free and task-agnostic exploration. Reward-free and task-agnostic exploration, which
refer to the scenario where the agent first collects online sample trajectories without guidance of
any information about the reward function(s), has garnered much recent attention (Brafman and
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Tennenholtz, 2002; Jin et al., 2020a; Zhang et al., 2020a, 2021b; Huang et al., 2022). Focusing on
the tabular case, the earlier work Jin et al. (2020a) put forward a reward-free exploration scheme
that achieves minimax optimality in terms of the dependency on S, A and 1/ε, with the horizon
dependency further improved by subsequent works (Kaufmann et al., 2021; Ménard et al., 2021a; Li
et al., 2023). In particular, the exploration scheme proposed in Li et al. (2023) was shown to achieve
minimax-optimal sample complexity when there exist a polynomial number of pre-determined but
unseen reward functions of interest, which inspires the algorithm design of the present paper. More-
over, reward-free RL has been extended to account for function approximation, including both linear
(Wang et al., 2020; Agarwal et al., 2020; Qiao and Wang, 2022; Zhang et al., 2021a; Wagenmaker
et al., 2022) and nonlinear function classes (Chen et al., 2022a).

B Pseudocode of Algorithm 1

In this section, we provide the whole procedure for the proposed hybrid RL algorithm, with several
subroutines deferred to Appendix C and Appendix D.

Algorithm 1: The proposed hybrid RL algorithm.

1 Input: offline dataset Doff (containing Koff trajectories), parameters N,Kon, Tmax, learning
rate η.

2 Initialize: π1
h(a | s) = 1/A for any (s, a, h); K = Koff +Kon; split Doff into two halves Doff,1

and Doff,2.
/* Estimation of occupancy distributions for any policy π. */

3 Call Algorithm 3, which allows one to specify d̂πh(s, a) for any deterministic policy π and any
(s, a, h).
/* Estimation of occupancy distributions of the historical data. */

4 Use the dataset Doff,1 to compute

d̂off
h (s, a) =

2Noff
h (s, a)

Koff
1

(
Noff
h (s, a)

Koff
≥ coff

{
log HSA

δ

Koff
+
H4S4A4 log HSA

δ

N
+
SA

Kon

})
for any (s, a, h), where Noff

h (s, a) =
∑Koff/2
k=1 1(skh = s, akh = a) and coff > 0 is some

absolute constant.
/* Compute a general sample-efficient online exploration scheme. */

5 Call Algorithm 5 with estimators d̂π to compute policy πexplore and the associated weight
µexplore.
/* Compute an online exploration scheme tailored to the offline dataset.

*/
6 for t = 1, · · · , Tmax do
7 Compute µt using Algorithm 2.
8 Update πt+1

h (a | s) for all (s, a, h) ∈ S ×A× [H] such that:

πt+1
h (a | s) =

exp

(
η
∑t
k=1

d̂off
h (s,a)

1
KonH+E

π′∼µk

[
d̂π
′
h (s,a)

])
∑
a′∈A exp

(
η
∑t
k=1

d̂off
h (s,a′)

1
KonH+E

π′∼µk

[
d̂π
′
h (s,a′)

]) ,
9 Set µimitate = 1

Tmax

∑Tmax

t=1 µ
t and πimitate = Eπ∼µimitate [π].

/* Sampling using the above two exploration policies. */
10 Collect Kon

imitate (resp. Kon
explore) sample trajectories using πimitate (resp. πexplore) to form a

dataset Don
imitate (resp. Don

explore).
/* Run the model-based offline RL algorithm. */

11 Apply Algorithm 6 to the dataset D = Doff,2 ∪ Don
imitate ∪ Don

explore to compute a policy π̂.
12 Output: policy π̂.
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C Subroutine for solving the subproblem (20b)

While (20b) is a convex optimization subproblem, it involves optimization over a parameter space
with exponentially large dimensions. In order to solve it in a computationally feasible manner, we
propose a tailored subroutine based on the Frank-Wolfe algorithm (Bubeck, 2015).

Before proceeding, recall that when specifying d̂π in Algorithm 3, we draw N independent tra-
jectories {sn,h1 , an,h1 , . . . , sn,hh+1}1≤n≤N and compute an empirical estimate P̂h of the probability
transition kernel at step h such that

P̂h(s′ | s, a) =
1(Nh(s, a) > ξ)

max
{
Nh(s, a), 1

} N∑
n=1

1(sn,hh = s, an,hh = a, sn,hh+1 = s′), ∀(s, a, s′) ∈ S ×A× S,

(31)

where Nh(s, a) =
∑N
n=1 1{s

n,h
h = s, an,hh = a}.

The proposed Frank-Wolfe-type algorithm. With this set of notation in place and with an initial
guess taken to be the indicator function µ(1) = 1πinit for an arbitrary policy πinit ∈ Π, the k-th
iteration of our iterative procedure for solving (20b) can be described as follows.

• Computing a search direction. The search direction of the Frank-Wolfe algorithm is typi-
cally taken to be a feasible direction that maximizes its correlation with the gradient of the
objective function (Bubeck, 2015). When specialized to the current sub-problem (20b), the
search direction can be taken to be the Dirac measure δπ(k) , where

π(k) = arg max
π∈Π

f
(
π, µ(k)

)
:=

H∑
h=1

∑
s∈S

Ea∼πt+1
h (·|s)

[
d̂πh(s, a)d̂off

h (s, a)(
1

KonH + Eπ′∼µ(k)

[
d̂π
′
h (s, a)

])2
]
.

(32)

As it turns out, this optimization problem (32) can be efficiently solved by applying dy-
namic programming (Bertsekas, 2017) to an augmented MDPMoff constructed as follows.

– Introduce an augmented finite-horizon MDPMoff = (S ∪ {saug},A, H, P̂ aug, roff),
where saug is an augmented state. We choose the reward function to be

roff
h (s, a) =


πt+1
h (a | s)d̂off

h (s,a)(
1

KonH+E
π′∼µ(k)

[
d̂π
′
h (s,a)

])2 , if (s, a, h) ∈ S ×A× [H],

0, if (s, a, h) ∈ {saug} × A× [H],

(33)

and the probability transition kernel as

P̂ aug
h (s′ | s, a) =

{
P̂h(s′ | s, a), if s′ ∈ S
1−

∑
s′∈S P̂h(s′ | s, a), if s′ = saug

for all (s, a, h) ∈ S ×A× [H],

(34a)

P̂ aug
h (s′ | saug, a) = 1(s′ = saug) for all (a, h) ∈ A× [H].

(34b)

• Frank-Wolfe updates. We then update the iterate µ(k+1) as a convex combination of the
current iterate and the direction found in the previous step:

µ(k+1) = (1− α)µ(k) + α1π(k) , (35)

where the stepsize is chosen to be

α =
S

(KonH)3
. (36)
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Stopping rule. It is also necessary to specify the stopping rule of the above iterative procedure.
Throughout this paper, the above subroutine will terminate as long as

H∑
h=1

∑
s∈S

Ea∼πt+1
h (·|s)

[
d̂off
h (s, a)

1
KonH + Eπ′∼µ(k)

[
d̂π
′
h (s, a)

]] ≤ 108SH, (37)

with the final output taken to be µt+1 = µ(k). We shall justify the feasibility of this stopping rule
(namely, the fact that this stopping criterion can be met by some mixed policy) in Appendix F.

Iteration complexity. Encouragingly, the above subroutine in conjunction with the stopping rule
(37) leads to an iteration complexity no larger than

(iteration complexity) O

(
(KonH)4

S2

)
(38)

The proof of this claim is postponed to Section F.

Algorithm 2: Subroutine for solving the sub-problem (20b).
1 Initialize: µ(1) = 1πinit for an arbitrary policy πinit ∈ Π.
2 for k = 1, 2, · · · do
3 Exit for-loop if the following condition is met: // stopping criterion
4

H∑
h=1

∑
s∈S

Ea∼πt+1
h (·|s)

[
d̂off
h (s, a)

1
KonH + Eπ′∼µ(k)

[
d̂π
′
h (s, a)

]] ≤ 108SH. (39)

/* Find the search direction */
5 Compute the optimal deterministic policy π(k),aug of the MDP

Moff = (S ∪ {saug},A, H, P̂ aug, roff), where saug is an augmented state,

roff
h (s, a) =


πt+1
h (a | s)d̂off

h (s,a)(
1

KonH+E
π′∼µ(k)

[
d̂π
′
h (s,a)

])2 , if (s, a, h) ∈ S ×A× [H],

0, if (s, a, h) ∈ {saug} × A× [H],
(40)

and the augmented probability transition kernel is given by

P̂ aug
h (s′ | s, a) =

{
P̂h(s′ | s, a), if s′ ∈ S
1−

∑
s′∈S P̂h(s′ | s, a), if s′ = saug

for all (s, a, h) ∈ S ×A× [H];

(41a)

P̂ aug
h (s′ | saug, a) = 1(s′ = saug) for all (a, h) ∈ A× [H].

(41b)6

Let π(k) be the corresponding optimal deterministic policy of π(k),aug in the original state
space.

7 Update // Frank-Wolfe update
8

µ(k+1) = (1− α)µ(k) + α1π(k) , where α =
S

(KonH)3
.

9 Output: the policy mixture µt+1 = µ(k).

D Useful algorithmic subroutines from prior works

In this section, we provide precise descriptions of several useful algorithmic subroutines that have
been developed in recent works. The algorithm procedures are directly quoted from these prior
works, with slight modification.
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D.1 Subroutine: occupancy estimation for any policy π

The first subroutine we’d like to describe is concerned with estimating the occupancy distribution
dπ induced by any policy π, based on a carefully designed exploration strategy. This algorithm,
proposed by Li et al. (2023), seeks to estimate {dπh} step by step (i.e., from h = 1, . . . ,H). For
each h, it computes an appropriate exploration policy πexplore,h to adequately explore what happens
between step h and step h + 1, and then collect N sample trajectories using πexplore,h. These turns
allow us to estimate the occupancy distribution dπh+1 for step h + 1. See Algorithm 3 for a precise
description.

Algorithm 3: Subroutine for estimating occupancy distributions for any policy π (Li et al.,
2023).

1 Input: target success probability 1− δ, threshold ξ = cξH
3S3A3 log(HSA/δ).

/* Estimate occupancy distributions for step 1. */
2 Draw N independent episodes (using arbitrary policies), whose initial states are i.i.d. drawn

from sn,01
i.i.d.∼ ρ (1 ≤ n ≤ N). Define the following functions

d̂π1 (s) =
1

N

N∑
n=1

1{sn,01 = s}, d̂π1 (s, a) = d̂π1 (s)π1(a | s) (42)

for any deterministic policy π : S × [H]→ ∆(A) and any (s, a) ∈ S ×A. (Note that these
functions are defined for future use and not computed for the moment, as we have not
specified policy π.)
/* Estimate occupancy distributions for steps 2, . . . ,H. */

3 for h = 1 to H − 1 do
/* Collect N sample trajectories using a suitable exploration policy.

*/
4 Call Algorithm 4 to compute an exploration policy πexplore,h and compute an estimate P̂h of

the true transition kernel Ph.
/* Specify how to compute d̂πh+1 for any policy π. */

5 For any deterministic policy π : S × [H]→ ∆(A) and any (s, a) ∈ S ×A, define
d̂πh+1(s) =

〈
P̂h(s | ·, ·), d̂πh(·, ·)

〉
, d̂πh+1(s, a) = d̂πh+1(s)πh+1(a | s). (43)

We note, however, that Algorithm 3 requires another subroutine to compute a suitable exploration
policy πexplore,h. As it turns out, this can be accomplished by approximately solving the following
problem

µ̂h ≈ arg max
µ∈∆(Π)

∑
(s,a)∈S×A

log

[
1

KH
+ E
π∼µ

[
d̂πh(s, a)

]]
(44)

via the Frank-Wolfe algorithm and returning πexplore,h = Eπ∼µ̂h [π]. See Algorithm 4 for details.

D.2 Subroutine: reward-agnostic online exploration

Based on the estimated occupancy distributions specified in Algorithm 3, Li et al. (2023) proposed
a reward-independent online exploration scheme that proves useful in exploring an unknown envi-
ronment. In a nutshell, this scheme computes a desired exploration policy by approximately solving
the following optimization sub-problem:

µexplore ≈ arg max
µ∈∆(Π)


H∑
h=1

∑
(s,a)∈S×A

log

[
1

KonH
+ Eπ∼µ

[
d̂πh(s, a)

]] . (47)

again using the Frank-Wolfe algorithm; the resulting policy takes the form of a mixture of deter-
ministic policies, as given by πexplore = Eπ∼µexplore [π]. This exploration policy is then employed to
execute the MDP for a number of times in order to collect enough information about the unknowns.
See Algorithm 5 for the whole procedure.
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Algorithm 4: Subroutine for computing the exploration policy for step h in occupancy estima-
tion (Li et al., 2023).

1 Initialize: µ(0) = 1πinit for an arbitrary policy πinit ∈ Π, Tmax = b50SA log(KH)c.
2 for t = 0 to Tmax do

/* find the optimal policy */
3 Compute the optimal deterministic policy π(t),b of the augmented MDP

Mh
b = (S ∪ {saug},A, H, P̂ aug,h, rhb ), where saug is an augmented state,

rhb,j(s, a) =

{ 1
1

KonH+E
π∼µ(t)

[
d̂πh(s,a)

] , if (s, a, j) ∈ S ×A× {h},

0, if s = saug or j 6= h,
(45)

and the augmented probability transition kernel is defined as

P̂ aug,h
j (s′ | s, a) =

{
P̂j(s

′ | s, a), if s′ ∈ S
1−

∑
s′∈S P̂j(s

′ | s, a), if s′ = saug
for all (s, a, j) ∈ S ×A× [h];

(46a)

P̂ aug,h
j (s′ | s, a) = 1(s′ = saug) if s = saug or j > h. (46b)4

Let π(t) be the corresponding optimal deterministic policy of π(t),b in the original state
space.

5 Compute // choose the stepsize6

αt =
1
SAg(π(t), d̂, µ(t))− 1

g(π(t), d̂, µ(t))− 1
, where g(π, d̂, µ) =

∑
(s,a)∈S×A

1
KonH + d̂πh(s, a)

1
KonH + Eπ∼µ[d̂πh(s, a)]

.

Here, d̂πh(s, a) is computed via (42) for h = 1, and (43) for h ≥ 2.
7 If g(π(t), d̂, µ(t)) ≤ 2SA then exit for-loop. // stopping rule
8 Update // Frank-Wolfe update
9

µ(t+1) = (1− αt)µ(t) + αt 1π(t) .

10 Set πexplore,h = Eπ∼µ(t) [π] with µ̂h = µ(t). // The final exploration policy for
step h.

/* Draw samples using πexplore,h to estimate the transition kernel. */
11 Draw N independent trajectories {sn,h1 , an,h1 , . . . , sn,hh+1}1≤n≤N using policy πexplore,h and

compute

P̂h(s′ | s, a) =
1(Nh(s, a) > ξ)

max
{
Nh(s, a), 1

} N∑
n=1

1(sn,hh = s, an,hh = a, sn,hh+1 = s′), ∀(s, a, s′) ∈ S×A×S,

where Nh(s, a) =
∑N
n=1 1{s

n,h
h = s, an,hh = a}.

12 Output: the exploration policy πexplore,h, the weight µ̂h, and the estimated kernel P̂h.

D.3 Subroutine: pessimistic model-based offline RL

Given a historical dataset containing a collection of statistically independent sample trajectories, Li
et al. (2022) came up with a model-based approach that enjoys provable minimax optimality. This
approach first employs a two-fold subsampling trick in order to decouple the statistical dependency
across different steps of a single trajectory. After this subsampling step, this approach resorts to
the principle of pessimism in the face of uncertainty, which employs value iteration but penalizes
the updates via proper variance-aware penalization (i.e., Bernstein-style lower confidence bounds).
Details can be found in Algorithm 6.
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Algorithm 5: Subroutine for computing the desired online exploration policy (Li et al., 2023).

1 Initialize: µ(0)
b = δπinit for an arbitrary policy πinit ∈ Π, Tmax = b50SAH log(KH)c.

2 for t = 0 to Tmax do
/* find the optimal policy */

3 Compute the optimal deterministic policy π(t),b of the MDP
Mb = (S ∪ {saug},A, H, P̂ aug, rb), where saug is an augmented state,

rb,h(s, a) =


1

1
KonH+E

π∼µ(t)
b

[
d̂πh(s,a)

] , if (s, a, h) ∈ S ×A× [H],

0, if (s, a, h) ∈ {saug} × A× [H],
(48)

and the augmented probability transition kernel is given by

P̂ aug
h (s′ | s, a) =

{
P̂h(s′ | s, a), if s′ ∈ S
1−

∑
s′∈S P̂h(s′ | s, a), if s′ = saug

for all (s, a, h) ∈ S ×A× [H];

(49a)

P̂ aug
h (s′ | saug, a) = 1(s′ = saug) for all (a, h) ∈ A× [H].

(49b)4

Let π(t) be the corresponding optimal deterministic policy of π(t),b in the original state
space.

5 Compute // choose the stepsize6

αt =
1

SAH g(π(t), d̂, µ
(t)
b )− 1

g(π(t), d̂, µ
(t)
b )− 1

, where g(π, d̂, µ) =

H∑
h=1

∑
(s,a)∈S×A

1
KonH + d̂πh(s, a)

1
KonH + Eπ∼µ

[
d̂πh(s, a)

] .
Here, d̂πh(s, a) is computed via (42) for h = 1, and (43) for h ≥ 2.

7 If g(π(t), d̂, µ
(t)
b ) ≤ 2HSA then exit for-loop. // stopping rule

8 Update // Frank-Wolfe update
9

µ
(t+1)
b = (1− αt)µ(t)

b + αt 1π(t) .

10 Output: the exploration policy πexplore = E
π∼µ(t)

b

[π] and the associated weight µexplore = µ
(t)
b .

Algorithm 6: A pessimistic model-based offline RL algorithm (Li et al., 2022).
1 Input: a dataset D; reward function r. Let K0 denote the number of sample trajectories in D.
2 Subsampling: run the following procedure to generate the subsampled dataset Dtrim.

1) Data splitting. Split D into two halves: Dmain (which contains the first K0/2 trajectories),
and Daux (which contains the remaining K0/2 trajectories); we let Nmain

h (s)
(resp. N aux

h (s)) denote the number of sample transitions in Dmain (resp. Daux) that
transition from state s at step h.

2) Lower bounding {Nmain
h (s)} using Daux. For each s ∈ S and 1 ≤ h ≤ H , compute

N trim
h (s) := max

{
N aux
h (s)− 10

√
N aux
h (s) log

HS

δ
, 0

}
; (50)

3) Random subsampling. Let Dmain′ be the set of all sample transitions (i.e., the quadruples
taking the form (s, a, h, s′)) from Dmain. Subsample Dmain′ to obtain Dtrim, such that for
each (s, h) ∈ S × [H], Dtrim contains min{N trim

h (s), Nmain
h (s)} sample transitions

randomly drawn from Dmain′. (We shall also let N trim
h (s, a) denote the number of samples

that visits (s, a, h) in Dtrim.)
3 Run VI-LCB: set D0 = Dtrim; run Algorithm 7 to compute a policy π̂.
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Algorithm 7: Offline value iteration with lower confidence bounds (Li et al., 2022).
1 Input: dataset D0; reward function r; target success probability 1− δ.
2 Initialization: V̂H+1 = 0.
3 for h = H, · · · , 1 do
4 compute the empirical transition kernel P̂h as

P̂h(s′ | s, a) =

 1
Nh(s,a)

N∑
i=1

1
{

(si, ai, hi, s
′
i) = (s, a, h, s′)

}
, if Nh(s, a) > 0,

1
S , else,

(51)

where Nh(s, a) :=
∑N
i=1 1

{
(si, ai, hi) = (s, a, h)

}
and

Nh(s) :=
∑N
i=1 1

{
(si, hi) = (s, h)

}
.

5 for s ∈ S, a ∈ A do
6 compute the penalty term bh(s, a) as

∀(s, a, h) ∈ S ×A× [H] : bh(s, a) = min

{√
cb log K

δ

Nh(s, a)
VarP̂h(·|s,a)

(
V̂h+1

)
+ cbH

log K
δ

Nh(s, a)
, H

}
7

for some universal constant cb > 0 (e.g., cb = 16); set
Q̂h(s, a) = max

{
rh(s, a) + P̂h,s,aV̂h+1 − bh(s, a), 0

}
.

8 for s ∈ S do
9 set V̂h(s) = maxa Q̂h(s, a) and π̂h(s) ∈ arg maxa Q̂h(s, a).

10 Output: π̂ = {π̂h}1≤h≤H .

E Analysis of Theorem 1

In this section, we present the proof for our main result in Theorem 1. Throughout the proof, we let
{Gh}1≤h≤H denote a sequence of subsets obeying

max
1≤h≤H

max
(s,a)∈Gh

dπ
?

h (s, a)

doff
h (s, a)

= C?(σ) and
1

H

H∑
h=1

∑
(s,a)/∈Gh

dπ
?

h (s, a) ≤ σ, (52)

as motivated by Definition 2. As it turns out, if Kon ≥ c1
H3SA
ε2 log K

δ for some large enough
constant c1 > 0, then the claimed result in Theorem 1 follows immediately from the main theory in
Li et al. (2023) developed for pure online exploration. As a result, it sufficies to prove the theorem
by replacing Condition (24b) with

Kon ≥ c1
H4SAσ

ε2
log

K

δ
(53)

throughout this section.

On a high level, our proof comprises the following three steps:

• Establish the proximity of d̂off (resp. d̂π) and doff (resp. dπ).

• Show that the mixed policy πimitate is able to mimic and strengthen the offline dataset Doff ,
while the mixed policy πexplore is capable of exploring the part of the state-action space that
has not been adequately visited by Doff .

• Derive the sub-optimality of the policy returned by the offline RL algorithm (i.e., Algo-
rithm 6) when applied to the hybrid dataset D = Doff,2 ∪ Don

imitate ∪ Don
explore.

In the sequel, we shall elaborate on these three steps.
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E.1 Step 1: establishing the proximity of d̂π (resp. d̂off ) and dπ (resp. doff )

To begin with, the goodness of the occupancy distribution estimators d̂π (cf. Algorithm 3) has been
analyzed in Li et al. (2023, Lemma 4), which come with the following performance guarantees.
Lemma 1 (Li et al. (2023)). Recall that ξ = cξH

3S3A3 log HSA
δ for some large enough constant

cξ > 0. With probability at least 1− δ, the estimated occupancy distributions specified in Algorithm
3 satisfy

1

2
d̂πh(s, a)− ξ

4N
≤ dπh(s, a) ≤ 2d̂πh(s, a) + 2eπh(s, a) +

ξ

4N
(54)

simultaneously for all (s, a, h) ∈ S ×A× [H] and all deterministic policy π ∈ Π, provided that

Kon ≥ CNH18S14A14 log2 HSA

δ
(55)

for some large enough constant CN > 0. Here, {eπh(s, a)} is some non-negative sequence satisfying∑
s,a

eπh(s, a) ≤ 2SA

Kon
+

13SAHξ

N
for all h ∈ [H] and all deterministic Markov policy π.

(56)

We now turn to the estimator d̂off (cf. (15)) for the occupancy distribution of the offline dataset, for
which we begin with the following lemma concerning the proximity of doff

h and d̂off
h . The proof of

this lemma is deferred to Section G.1.
Lemma 2. Suppose that coff ≥ 48. With probability at least 1− δ/3, one has

1

3
d̂off
h (s, a) ≤ doff

h (s, a) ≤ d̂off
h (s, a) + 5coff

{
log HSA

δ

Koff
+
H4S4A4 log HSA

δ

N
+
SA

Kon

}
(57)

simultaneously for all (s, a, h) ∈ S ×A× [H].

This lemma implies that: when doff
h (s, a) .

log HSA
δ

Koff +
H4S4A4 log HSA

δ

N + SA
Kon , the estimator d̂off

h (s, a)

might be unable to track doff
h (s, a) in a faithful manner. This motivates us to single out the following

two subsets of state-action pairs for which d̂off
h (s, a) might become problematic at step h:

• the set Gc
h (see (11) for the definition of Gh), which corresponds to the set of optimal state-

action pairs that even the true data distribution doff
h cannot cover adequately;

• another set T small
h defined as

T small
h :=

{
(s, a) : doff

h (s, a) ≤ 10coff

(
log HSA

δ

Koff
+
H4S4A4 log HSA

δ

N
+
SA

Kon

)}
, (58)

comprising those state-action pairs for which d̂off
h (s, a) might not be a faithful estimator of

doff
h (s, a).

In what follow, we shall adopt the notation:

Th := Gc
h ∪ T small

h . (59)

It is straightforward to demonstrate that:

• For any (s, a) /∈ T small
h , it is seen from Lemma 2 that

doff
h (s, a) ≤ d̂off

h (s, a) +
1

2
doff
h (s, a) ⇐⇒ doff

h (s, a) ≤ 2d̂off
h (s, a). (60)

• For any (s, a) ∈ Gh, Condition (52) tells us that

dπ
?

h (s, a) ≤ C?(σ)doff
h (s, a). (61)
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As a consequence, any (s, a) /∈ Th necessarily obeys

dπ
?

h (s, a) ≤ C?(σ)doff
h (s, a) ≤ 2C?(σ)d̂off

h (s, a). (62)

Another useful observation that we can readily make is as follows:

H∑
h=1

∑
(s,a)∈Th

dπ
?

h (s, a) ≤
H∑
h=1

∑
(s,a)/∈Gh

dπ
?

h (s, a) +

H∑
h=1

∑
(s,a)∈Gh∩T small

h

dπ
?

h (s, a)

≤ Hσ +

H∑
h=1

∑
(s,a)∈Gh∩T small

h

dπ
?

h (s, a)

≤ Hσ + C?(σ)

H∑
h=1

∑
(s,a)∈T small

h

doff
h (s, a)1

(
a = π?(s)

)
≤ Hσ + C?(σ)HS · 10coff

(
log HSA

δ

Koff
+
H4S4A4 log HSA

δ

N
+
SA

Kon

)
≤ Hσ + 10coff

(
C?(σ)HS log HSA

δ

Koff
+

4C?(σ)H6S5A4 log HSA
δ

Kon

)
=: σ̂.

(63)

Here, the second and the third lines arise from Condition (52), the penultimate line invokes the
definition (58) of T small

h , whereas the last line is valid since N = Kon/(3H) (see (14)).

E.2 Step 2: showing that πimitate (resp. πexplore) covers d̂off (resp. dπ
?

) adequately

In this step, we aim to demonstrate the quality of the two exploration policies πimitate and πexplore,
designed for different purposes.

Goodness of πimitate. We begin by assessing the quality of the exploration policy πimitate. Towards
this, we first make note of the following crude bound:

d̂off
h (s, a)

1
KonH + Eπ′∼µt

[
d̂πh(s, a)

] ≤ d̂off
h (s, a)

1
KonH

≤ KonH =: L.

In view of the convergence guarantees for FTRL (Shalev-Shwartz, 2012, Corollary 2.16), we see

that: if η =
√

logA
2TmaxL2 =

√
logA

2Tmax(KonH)2 , then running FTRL for Tmax iterations results in

max
a∈A

1

Tmax

Tmax∑
t=1

d̂off
h (s, a)

1
KonH + Eπ∼µt

[
d̂πh(s, a)

] − 1

Tmax

Tmax∑
t=1

∑
a∈A

πth(a | s) d̂off
h (s, a)

1
KonH + Eπ∼µt

[
d̂πh(s, a)

]
≤ KonH

√
2 logA

Tmax
(64)

for all s ∈ S and 1 ≤ h ≤ H . Therefore, recalling that µimitate = 1
Tmax

∑Tmax

t=1 µ
t and applying

Jensen’s inequality yield

H∑
h=1

∑
s∈S

max
a∈A

d̂off
h (s, a)

1
KonH + Eπ∼µimitate

[
d̂πh(s, a)

]
≤

H∑
h=1

∑
s∈S

max
a∈A

1

Tmax

Tmax∑
t=1

d̂off
h (s, a)

1
KonH + Eπ∼µt

[
d̂πh(s, a)

]
≤

H∑
h=1

∑
(s,a)∈S×A

1

Tmax

Tmax∑
t=1

πth(a | s) d̂off
h (s, a)

1
KonH + Eπ∼µt

[
d̂πh(s, a)

] +KonH2S

√
2 logA

Tmax
, (65)
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where the second inequality results from (64). In addition, it follows from the stopping rule (37) that

H∑
h=1

∑
(s,a)∈S×A

πth(a | s) d̂off
h (s, a)

1
KonH + Eπ∼µt

[
d̂πh(s, a)

] ≤ 108SH. (66)

As a consequence, combining (65) and (66) yields∑
h∈[H]

∑
s∈S

max
a∈A

d̂off
h (s, a)

1
KonH + Eπ∼µimitate

[
d̂πh(s, a)

] ≤ 108SH +KonH2S

√
2 logA

Tmax
≤ 109SH, (67)

provided that Tmax ≥ 2(KonH)2 logA. The fact that the left-hand side of (67) is well-controlled
suggests that πimitate is able to cover d̂off adequately, a crucial fact we shall rely on in the subsequent
analysis.

Goodness of πexplore. Next, we turn attention to the other exploration policy πexplore, computed
via Algorithm 5. The following performance guarantees have been established in Li et al. (2023,
Section 3.2).
Lemma 3. The distribution µexplore ∈ ∆(Π) returned by Algorithm 5 satisfies

max
π

H∑
h=1

∑
(s,a)∈S×A

d̂πh(s, a)
1

KonH + Eπ′∼µexplore

[
d̂π
′
h (s, a)

] ≤ 2HSA.

In light of the performance bound (17) for the subsequent offline RL approach, Lemma 3 suggests
that πexplore is able to explore well with regards to the visitation of any policy π — including the
optimal policy π?.

E.3 Step 3: establishing the performance of offline RL

Now, we can readily proceed to analyze the performance of the model-based offline procedure de-
scribed in Algorithm 6. In this subsection, we abuse the notation P̂ to represent the empirical tran-
sition kernel constructed within the offline subroutine in Algorithm 7. Additionally, we introduce a
S-dimensional vector dπ

?

h := [dπ
?

h (s)]s∈S .

E.3.1 Step 3.1: error decomposition

To begin with, we convert the sub-optimality gap of the policy estimate π̂ into several terms that
shall be controlled separately. The following two preliminary facts, which have been established in
Li et al. (2022), prove useful for this purpose.
Lemma 4. With probability exceeding 1− δ/3, one has

Nmain
h (s, a) ≥ N trim

h (s, a), ∀(s, a, h) ∈ S ×A× [H]

and 〈
dπ

?

j , V ?j − V π̂j
〉
≤ 2

∑
h:h≥j

∑
s,a

dπ
?

h (s, a)bh(s, a), 1 ≤ h ≤ H,

where bh(s, a) is defined in line 7 of Algorithm 7.

In view of Lemma 4, we can derive, for all j ∈ [H],〈
dπ

?

j , V ?j − V π̂j
〉
≤ 2

∑
h:h≥j

∑
s,a

dπ
?

h (s, a)bh(s, a) = 2
∑
h:h≥j

∑
s

dπ
?

h

(
s, π?h(s)

)
bh
(
s, π?h(s)

)
≤ 2

∑
h:h≥j

∑
s: (s,π?(s))/∈Th

√
2dπ

?

h

(
s, π?h(s)

)
C?(σ)d̂off

h

(
s, π?h(s)

)
bh
(
s, π?h(s)

)
+ 2

∑
h:h≥j

∑
(s,a)∈Th

dπ
?

h (s, a)bh(s, a)

≤ 2
∑
h:h≥j

∑
s: (s,π?(s))/∈Th

√
2dπ

?

h

(
s, π?h(s)

)
C?(σ)d̂off

h

(
s, π?h(s)

)
bh
(
s, π?h(s)

)
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+ 4
∑
h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a)bh(s, a) +
8H2SA

Kon
+

53cξH
6S4A4

N
log

HSA

δ
.

Here, the second line comes from (62), whereas the third line is due to Lemma 1 and the basic
fact that bh(s, a) ≤ H (see line 7 of Algorithm 7). Substituting the definition of bh (see line 7 of
Algorithm 7) into the above display and applying Lemma 4, we arrive at

〈
dπ

?

j , V ?j − V π̂j
〉
≤
∑
h:h≥j

∑
s

max
a:(s,a)/∈Th

{√
8dπ

?

h (s, a)C?(σ)d̂off
h (s, a)·

min

{√
cb log K

δ

N trim
h (s, a)

VarP̂h(·|s,a)

(
V̂h+1

)
+
cbH log K

δ

N trim
h (s, a)

, H

}}

+ 4H
∑
h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a)

√
cb log K

δ

N trim
h (s, a) + 1

+
8H2SA

Kon
+

53cξH
6S4A4

N
log

K

δ
,

(68)

where we recall that cb > 0 is also an absolute constant used to specify bh(s, a).

It is worth noting that the right-hand side of (68) involves a variance term VarP̂h(·|s,a)

(
V̂h+1

)
w.r.t. the empirical model P̂ . As it turns out, the following lemma established in Li et al.
(2022, Lemma 8) makes apparent the intimate connection between VarP̂h(·|s,a)

(
V̂h+1

)
and

VarPh(·|s,a)

(
V̂h+1

)
.

Lemma 5. With probability exceeding 1− δ/3, we have, for all (s, a, h) ∈ S ×A× [H],

VarP̂h(·|s,a)

(
V̂h+1

)
≤ 2VarPh(·|s,a)

(
V̂h+1

)
+

10H2 log K
δ

3N trim
h (s, a)

.

Substituting the result of Lemma 5 into (68) leads to〈
dπ

?

j , V ?j − V π̂j
〉
≤ γ1 + γ2 +

8H2SA

Kon
+

53cξH
6S4A4

N
log

K

δ
, (69)

where

γ1 :=
∑
h:h≥j

∑
s

max
a:(s,a)/∈Th

{
2

√
2dπ

?

h (s, a)C?(σ)d̂off
h (s, a) min

{√
2cb log K

δ

N trim
h (s, a)

VarPh(·|s,a)

(
V̂h+1

)
+

4cbH log K
δ

N trim
h (s, a)

, H

}}
;

γ2 := 4H
∑
h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a)

√
cb log K

δ

N trim
h (s, a) + 1

.

This leaves us with two terms to bound, which we shall accomplish separately in the ensuing two
steps.

E.3.2 Step 3.2: controlling γ1 in (69)

Regarding the first term γ1 on the right-hand side of (69), let us first define the set Ih as follows:

Ih :=
{

(s, a) : Eπ∼µimitate

[
d̂πh(s, a)

]
≥ ξ

N

}
, (70)

where we remind the reader that ξ = cξH
3S3A3 log HSA

δ for some constant cξ > 0. Armed with
this set, we can deduce that∑

h:h≥j

∑
s

max
a:(s,a)/∈Ih∪Th

√
2dπ

?

h (s, a)C?(σ)d̂off
h (s, a)

≤
∑
h:h≥j

∑
s

2 max
a:(s,a)/∈Ih

C?(σ)d̂off
h (s, a)
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≤ 2C?(σ)
( 1

KonH
+

ξ

N

) ∑
h:h≥j

∑
s

max
a

d̂off
h (s, a)

1
KonH + Eπ∼µimitate

[
d̂πh(s, a)

]
≤ 218HSC?(σ)

( ξ
N

+
1

KonH

)
,

where the first inequality arises from (62), the penulminate line utilizes the definition (70) of Ih, and
the last line comes from (67). This in turn allows us to upper bound γ1 as follows:

γ1 ≤
∑
h:h≥j

∑
s

2 max
a:(s,a)∈Ih

√
2dπ

?

h (s, a)C?(σ)d̂off
h (s, a) min

{√
2cb log HK

δ

N trim
h (s, a)

VarPh(·|s,a)

(
V̂h+1

)
+

4cbH log K
δ

N trim
h (s, a)

, H

}

+
∑
h:h≥j

∑
s

2 max
a:(s,a)/∈Ih∪Th

√
2dπ

?

h (s, a)C?(σ)d̂off
h (s, a) ·H

≤
∑
h:h≥j

∑
s

2 max
a:(s,a)∈Ih

√
2dπ

?

h (s, a)C?(σ)d̂off
h (s, a) min

{√
2cb log HK

δ

N trim
h (s, a)

VarPh(·|s,a)

(
V̂h+1

)
+

4cbH log K
δ

N trim
h (s, a)

, H

}

+ 436H2SC?(σ)
( ξ
N

+
1

KonH

)
≤ 16cb

∑
h:h≥j

∑
s

max
a:(s,a)∈Ih

√
2dπ

?

h (s, a)C?(σ)d̂off
h (s, a)

√
VarPh(·|s,a)

(
V̂h+1

)
+H

N trim
h (s, a) + 1/H

log2 K

δ

+ 436H2SC?(σ)
( ξ
N

+
1

KonH

)
, (71)

where the last line makes use of the elementary fact that min
{
x
y ,

u
w

}
≤ x+u

y+w for any x, y, u, w > 0.

In addition, note that for any s obeying Eπ∼µimitate

[
dπh(s)

]
≥ ξ/N , we have

E
[
N aux
h (s)

]
=

1

4
Koffdoff

h (s) +
1

6
KonEπ∼µimitate

[
dπh(s)

]
+

1

6
KonEπ∼µexplore

[
dπh(s)

]
≥ 1

6
KonEπ∼µimitate

[
dπh(s)

]
≥ 1

6
Kon · ξ

N
=

1

2
cξH

4S3A3 log
HSA

δ
,

where the last line invokes the definition of Ih and the choice NH = 1
3K

on. It can then be straight-
forwardly justified using elementary concentration inequalities (see, e.g., Alon and Spencer (2016,
Appendix A.1)) that: with probability exceeding 1− δ/10,

N aux
h (s) ≥ 1

2
E
[
N aux
h (s)

]
≥ 1

4
cξH

4S3A3 log
HSA

δ
holds simultaneously for all (s, h) ∈ S × [H], and as a result,

N trim
h (s) ≥ N aux

h (s)− 10

√
N aux
h (s) log

HS

δ
≥ 1

2
N aux
h (s) ≥ 1

4
E
[
N aux
h (s)

]
≥ 1

24
KonEπ∼µimitate

[
dπh(s)

]
.

Moreover, for any (s, a) ∈ Ih (cf. (70)), one can invoke Lemma 2 to obtain

Eπ∼µimitate

[
dπh(s)

]
≥ 1

3
Eπ∼µimitate

[
d̂πh(s)

]
≥ ξ

3N
.

Applying the same concentration of measurement argument as above further reveals that:

N trim
h (s, a) ≥ 1

24
KonEπ∼µimitate

[
dπh(s, a)

]
≥ 1

72
KonEπ∼µimitate

[
d̂πh(s, a)

]
any (s, a) ∈ Ih. Substitution into (71) then gives

γ1 ≤ 16cb

∑
h:h≥j

∑
s

max
a:(s,a)∈Ih

√
2dπ

?

h (s, a)C?(σ)d̂off
h (s, a)

√√√√ VarPh(·|s,a)

(
V̂h+1

)
+H

1/H + 1
72K

onEπ∼µimitate

[
d̂πh(s, a)

] log2 K

δ
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+ 436H2SC?(σ)
( ξ
N

+
1

KonH

)
. (72)

By virtue of the Cauchy-Schwarz inequality, we can further derive

∑
h:h≥j

∑
s

max
a

√
dπ

?

h (s, a)C?(σ)d̂off
h (s, a)

√√√√ VarPh(·|s,a)

(
V̂h+1

)
+H

1/H + 1
72K

onEπ∼µimitate

[
d̂πh(s, a)

]
≤
√∑
h:h≥j

∑
s,a

dπ
?

h (s, a)
(
VarPh(·|s,a)

(
V̂h+1

)
+H

)
·

√√√√∑
h:h≥j

∑
s

max
a

C?(σ)d̂off
h (s, a)

1/H + 1
72K

onEπ∼µimitate

[
d̂πh(s, a)

] .
(73)

To further control this term, we resort to the following lemma, whose proof is deferred to Sec-
tion G.2.
Lemma 6. With probability at least 1− δ/6, we have, for all j ∈ [H],∑

h:h≥j

∑
s,a

dπ
?

h (s, a)VarPh(·|s,a)

(
V̂h+1

)
≤ 5H2,

provided that

Kon ≥ c11

(
H18S14A14 +H5S4A3C?(σ)

)
log2 K

δ

Koff ≥ c11HS
(
C?(σ) +A

)
log

K

δ
for some sufficiently large constant c11 > 0.

Putting Lemma 6 together with (67) and (73), we obtain

∑
h:h≥j

∑
s

max
a

√
dπ

?

h (s, a)C?(σ)d̂off
h (s, a)

√√√√ VarPh(·|s,a)

(
V̂h+1

)
+H

1/H + 1
72K

onEπ∈µimitate

[
d̂πh(s, a)

] .√H3SC?(σ)

Kon
.

(74)
Substitution into (72) results in

γ1 ≤

√
H3SC?(σ) log2 K

δ

Kon
+H2SC?(σ)

( ξ
N

+
1

KonH

)
. (75)

Akin to (72) and (75), we can also focus on the offline dataset and obtain

γ1 .

√
H3SC?(σ)

Koff
log2 K

δ
+H2SC?(σ)

( ξ
N

+
1

KoffH

)
. (76)

Combine (75) and (76) to arrive at

γ1 .min

{√
H3SC?(σ)

Kon
log2 K

δ
,

√
H3SC?(σ)

Koff
log2 K

δ

}
+H2SC?(σ)

( ξ
N

+
1

min{Kon,Koff}H

)
.

√
H3SC?(σ)

max{Kon,Koff}
log2 K

δ
+H2SC?(σ)

( ξ
N

+
1

min{Kon,Koff}H

)
.

√
H3SC?(σ)

Kon +Koff
log2 K

δ
+H2SC?(σ)

( ξ
N

+
1

min{Kon,Koff}H

)
. (77)

E.3.3 Step 3.3: controlling γ2 in (69)

We now turn attention to the term γ2 on the right-hand side of (69). Akin to (72), we can deduce
that

γ2 ≤ 16cbH
∑
h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a)

√√√√ log K
δ

1 + 1
72K

onEπ∼µexplore

[
d̂πh(s, a)

] + 436H2SA
( ξ
N

+
1

KonH

)
.

(78)
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The Cauchy-Schwarz inequality then tells us that

∑
h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a)

√
1

1 + 1
72K

onEπ∼µexplore

[
d̂πh(s, a)

]
≤

√√√√∑
h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a)

1 + 1
72K

onEπ∼µexplore

[
d̂πh(s, a)

] ·√∑
h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a)

≤ 6

√
2HSA

Kon
·
√∑
h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a)

≤ 6

√
2HSA(2σ̂ +HSξ/N)

Kon
,

where σ̂ is defined in (63). Here, the penultimate line invokes Lemma 3, and the last line is valid
since (according to Lemma 1 and (63))∑

h:h≥j

∑
(s,a)∈Th

d̂π
?

h (s, a) =
∑
h:h≥j

∑
s:(s,π?(s))∈Th

d̂π
?

h

(
s, π?(s)

)
≤ 2

∑
h:h≥j

∑
s:(s,π?(s))∈Th

dπ
?

h

(
s, π?(s)

)
+
HSξ

N

≤ 2σ̂ +
HSξ

N
.

Substitution of the above inequality into (78) yields

γ2 ≤ 96cb

√
2H3SA(2σ̂ +HSξ/N)

Kon
log

HK

δ
+ 436H2SA

( ξ
N

+
1

KonH

)
. (79)

E.3.4 Step 3.4: putting all pieces together

To finish up, combining (69),(77) and (79) reveals that: with probability at least 1− δ, one has

V ?1 (ρ)− V π̂(ρ) =
〈
dπ

?

1 , V ?1 − V π̂
〉

.

√
H3SC?(σ) log2 K

δ

Kon +Koff
+

√
H4SAσ log K

δ

Kon
+

√
H4S2AC?(σ) log2 K

δ

KoffKon

+

√
H8S6A5C?(σ) log2 K

δ

NKon
+

√
H4S3A2C?(σ) log K

δ

KKon

+
H6S4A4 +H5S4A3C?(σ)

N
log

K

δ
+
H2S(C?(σ) +A)

min{Kon,Koff}

.

√
H3SC?(σ) log2 K

δ

Kon +Koff
+

√
H4SAσ log K

δ

Kon
+
H6S4A4 +H5S4A3C?(σ)

Kon
log2 K

δ
+
H2S(C?(σ) +A)

Koff
,

(80)

where the last inequality holds true as long as min{Koff ,Kon} & HSA. Taking the right-hand side
of (80) to be no larger than ε, we immediately establish Theorem 1 under the sample complexity
assumption in this theorem.
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F Proof for the stopping criterion and the iteration complexity for solving
(20b)

Feasibility of the stopping rule (37). We first demonstrate that the stopping rule (37) can be
satisfied by some mixed policy, namely,

min
µ∈∆(Π)

H∑
h=1

∑
s∈S

Ea∼πt+1
h (·|s)

[
d̂off
h (s, a)

1
KH + Eπ∼µ

[
d̂πh(s, a)

]] ≤ 108SH. (81)

Towards this end, we focus attention on analyzing a specific choice of the mixed policy µoff — the
one that represents the mixed policy that generates the offline dataset. Making use of the definition
(15) of d̂off gives

d̂off
h (s, a) =

2Noff
h (s, a)

Koff
1

(
Noff
h (s, a)

Koff
≥ coff

{
log HSA

δ

Koff
+
H4S4A4 log HSA

δ

N
+
SA

K

})
≤ 3doff

h (s, a)1

(
3

2
doff
h (s, a) ≥ coff

{
log HSA

δ

Koff
+
H4S4A4 log HSA

δ

N
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where the second line relies on (94). This combined with Lemma 1 results in∑
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Moreover, inequality (56) tells us that: when doff
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In turn, this implies that
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Consequently, combine (83) and (85) to yield
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which clearly validates the claim (81) (with an even better pre-constant).

Before moving forward, we single out one useful property that arises from the above arguments:
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To prove the validity of this claim (87), it suffices to make the following two observations:
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• When doff
h (s, a) ≥ 2

3coff

(H4S4A4 log HSA
δ

N + SA
Kon

)
, it has been shown in (83) and (84) in

conjunction with (82) that

Eπ∼µoff

[
d̂πh(s, a)

]
≥ 1

4
doff
h (s, a) ≥ 1

12
d̂off
h (s, a). (88)

• When doff
h (s, a) < 2

3coff

(H4S4A4 log HSA
δ

N + SA
Kon

)
, one sees from (82) that d̂off

h (s, a) = 0,
and hence (87) holds true trivially.

Iteration complexity. Suppose that the stopping criterion (37) is not yet met in the k-th iteration,
namely,
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where the first inequality follows from the choice (32) of π(k), the second inequality is a consequence
of the relation (87), and the last line makes use of (89). This in turn allows one to demonstrate that
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where the last line results from (90) and the condition (89). We can then readily derive
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where the third line relies on the update rule (35), and the last line utilizes the choice (36) of α.

In summary, the above argument reveals that: before the stopping criterion is met, each iteration is
able to make progress at least as large as in (91). Recognizing the crude bound
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that holds for any µ ∈ ∆(Π), one can combine this with (91) to conclude that: the proposed proce-
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iterations, as claimed.

G Proofs of technical lemmas

G.1 Proof of Lemma 2

The Bernstein inequality combined with the union bound tells us that, with probability at least
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holds simultaneously for all (s, a, h) ∈ S × A × [H], where the last line invokes the AM-GM
inequality. This in turn reveals that
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As a result, we can show that:
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Taken collectively, these inequalities demonstrate that
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provided that coff > 0 is sufficiently large.

G.2 Proof of Lemma 6

Before embarking on the proof, let us introduce several notation. For each 1 ≤ h ≤ H , define
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To begin with, it can be easily seen from (69) and the basic fact VarPh(·|s,a)
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holds for any j ∈ [H].Note that we have bounded γ2 in (79). We then need to bound γ3.

With regards to the term γ3: invoking similar arguments as for (72) leads to
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where the second step invokes the Cauchy-Schwartz inequality, and the last line comes from (67).
Similarly, repeating the above argument but focusing on the offline dataset, we can derive (which
we omit for the sake of brevity)
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where the last line makes use of (86).
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Combining (98), (99) and (79) with (97), we can show that〈
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for all 1 ≤ j ≤ H , with the proviso that

H7S5A4

Kon
log2 K

δ
≤ c10

H5S4A3C?(σ) log K
δ

Kon
≤ c10

HSC?(σ) log K
δ

Koff
≤ c10

HSA log K
δ

Koff
≤ c10

for some sufficiently small constant c10 > 0. As a consequence, we can demonstrate that∑
h:h≥j

∑
s,a

dπ
?

h (s, a)VarPh(·|s,a)(V̂h+1)

≤
∑
h:h≥j

2
∑
s,a

dπ
?

h (s, a)
(
VarPh(·|s,a)(V

?
h+1) + VarPh(·|s,a)(V

?
h+1 − V̂h+1)

)
≤ 4H2 +H

∑
h:h≥j

∑
s

dπ
?

h

(
s, π?(s)

)
EPh(·|s,π?(s))

[
V ?h+1 − V̂h+1

]
= 4H2 +H

∑
h:h≥j

(
dπ

?

h

)>
Pπ

?

h

[
V ?h+1 − V̂h+1

]
= 4H2 +H

∑
h≥j

(
dπ

?

h+1

)>[
V ?h+1 − V̂h+1

]
≤ 5H2 (101)

for all 1 ≤ j ≤ H . Here, the third line in (101) applies the following fact∑
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where the second identity comes from the Bellman equation; the third relation uses the fact that
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