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Abstract

It is often of interest to learn a context-sensitive decision policy, such as in contextual multi-
armed bandit processes. To quantify the efficiency of a machine learning algorithm for such
settings, probably approximately correct (PAC) bounds, which bound the number of samples
required, or cumulative regret guarantees, are typically used. However, many real-world
settings have a limited amount of resources for experimentation, and decisions/interventions
may differ in the amount of resources required (e.g., money or time). Therefore it is of
interest to consider how to design an experiment strategy to learn a near-optimal contextual
policy while minimizing the total amount of resources required. In contrast to RL or bandit
approaches that embed costs into the reward function, here we focus on minimizing the
resources needed to learn a near-optimal policy without resource constraints, which is similar
to PAC-style approaches which seek to minimize the amount of data needed to learn a
near-optimal policy. We propose two resource-aware algorithms for the contextual bandit
setting and provide finite sample performance bounds on the resulting best policy that can
be obtained from each of the algorithms. We also evaluate both algorithms on synthetic and
semi-synthetic datasets and show that they significantly reduce the total resources needed to
learn a near-optimal decision policy compared to prior approaches that use resource-unaware
exploration strategies.

1 Introduction

Contextual multi-armed bandits (CMABs) provide a framework for learning to make the best decision per
context. As technology advancements have made it easier to deploy personalized interventions than was
possible historically, CMABs are increasingly relevant to a large range of applications including customer
recommendations, health interventions, and educational technology (Chapelle & Li, 2011; Liao et al., 2020;
Rabbi et al., 2015; Battalio et al., 2021; Bassen et al., 2020; Mu et al., 2021; Henderson et al., 2021). In many
settings, it is common practice to run an experiment to evaluate the potential benefit of a new program.
Experiments are expensive and different interventions may require different resources (such as time or money).
Consequently, it would be helpful to have algorithms that could be used to minimize the experimental budget
needed to learn a near-optimal contextual decision policy for future use. We call this resource-efficient pure
exploration for CMABs.

Consider designing a program to support people to attend their court date (Fishbane et al., 2020; Chohlas-
Wood et al., 2021). Missing a required court appearance can have severe negative consequences even for
a minor offense, which many defendants may be unaware of and wastes time and money in the judicial
system. Therefore, it is of interest to increase the court appearance rate. Historically, if one wanted to
test out interventions that were specific to each individual, one would have had to rely on mailing different
interventions to different individuals. This process requires significant manual human effort and provides
limited time specificity, as it is expensive or impossible to obtain fine-grained timing. In contrast, as the
majority of people now carry a cell phone, one can now automatically send targeted intervention support
(such as text messages, transit coupons, or gift certificates) to specific individuals at specific times. In this
setting, different interventions carry different costs, and these costs may vary by the individual: for example,
a ride to the court house will be more expensive for someone who lives far from the court house, though
providing such support may also be more helpful in enabling that individual to come since the barrier to
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appear is larger. A natural question is whether we can minimize the amount of cost needed to learn a good
context-specific decision policy.

To our knowledge, resource-efficient pure exploration for CMABs has not received prior attention. Historically,
the majority of research on multi-armed bandits (MABs) and CMABs has focused on cumulative regret
minimization (Lattimore & Szepesvári, 2020). Cumulative regret measures policy suboptimality at each round
of interaction during exploration, whereas our pure exploration setting aims to minimize policy suboptimality
only at the end of exploration. For simple (i.e., non-contextual) MABs, the problem of identifying the
best arm (Audibert et al., 2010; Jamieson & Nowak, 2014; Kaufmann et al., 2016) has received significant
attention. Most of this work focuses on sample efficiency and does not consider cost. Another line of work
considers knapsack bandits where there is a fixed budget and tries to maximize the reward obtained given that
cumulative budget (Slivkins, 2019). The majority of this work focuses on the MAB setting though there is
some work for the CMAB case (Wu et al., 2015) which has again focused on cumulative regret given a bound
on the total resources used. Recently there have been a few papers on pure exploration for CMABs (Zanette
et al., 2021; Li et al., 2022; Krishnamurthy et al., 2023). These papers have not considered when actions
may have heterogeneous costs. In the adaptive exploration literature (including Bayesian optimization) there
has been some work on cost-aware exploration (Snoek et al., 2012; Lee et al., 2021; Belakaria et al., 2023;
Astudillo et al., 2021; Paria et al., 2020), but this work has not considered the CMAB setting and has largely
not provided finite sample bounds on the resulting learned optima (though see Paria et al. (2020)).

In the worst case, resource-efficient pure exploration for contextual bandits may be of similar hardness as
sample-efficient pure exploration: as pointed out by Chohlas-Wood et al. (2021), if there is no information
sharing across contexts and actions, acquiring information about the outcomes of a particular context-action
pair will require sampling it directly. However, in many settings of interest additional structure in the
context-action space permits information sharing that enables more efficient, resource-aware learning. For
example, when increasing court appearance rates, demographic features may impact appearance probabilities
regardless of the intervention, and interventions with similar features (consider interventions that vary the
number of text messages received) may have related appearance rates. As we will demonstrate empirically,
such information sharing can be leveraged to create significantly more resource-efficient learning.

Our paper makes the following contributions:

• We introduce the problem of resource-efficient pure exploration for contextual multi-armed bandits.

• We introduce two algorithms for resource-aware pure exploration in CMABs: (1) a non-adaptive
algorithm for settings where the policy cannot be updated during exploration, (2) an adaptive
Bayesian algorithm for settings where we can update our policy as exploration proceeds.

• We provide finite sample performance bounds on the resulting best policy that can be obtained from
each of these approaches, which immediately implies guarantees that asymptotically these approaches
will recover the optimal policy. These bounds are asymptotically equivalent to their resource-unaware
counterparts up to a problem-dependent constant that depends on the cost structure.

• More significantly, we empirically demonstrate our resource-aware algorithms can learn a near-optimal
decision policy with substantially fewer resources than prior resource-unaware algorithms, on synthetic
and semi-synthetic simulations, including a semi-synthetic court appearance simulator (Chohlas-Wood
et al., 2021). These findings highlight the potential of resource-aware exploration. Our code and
data are in Supplementary Material and will be publicly available.

We conclude the paper with a discussion of open issues.

2 Related Work

There is an extensive and growing literature on CMABs and adaptive experimental design.

Cumulative reward optimization for MABs with a budget constraint. A number of papers have considered how
to adaptively pull arms to maximize cumulative reward given a constraint on the total budget used, where
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arms may have heterogeneous treatment effects. These are often called bandits with knapsack constraints
(Badanidiyuru et al., 2014; Agrawal & Devanur, 2016; Agrawal et al., 2016b;a; Slivkins, 2019), and most of
this work focuses on the non-contextual bandit setting, with some work considering Bayesian approaches
(Xia et al., 2015). Sinha et al. (2021) introduce a variant of the MAB problem where the learner is willing to
tolerate a small loss from the highest reward to reduce costs. There has been less work on CMABs, and most
of this work has focused on theoretical analysis, and the algorithms are not always computationally tractable.
For CMABs with budget constraints, Wu et al. (2015) introduce an approximate linear programming method
for small discrete state spaces and provide cumulative regret bounds. Another line of work that is loosely
related to our setting is conservative bandits (Wu et al., 2016), where the learner maximizes the cumulative
reward while ensuring the reward of the chosen arm is above a fixed percentage of a known arm.

Pure exploration in CMABs. Recently there have been several papers that focus on quickly learning a
good decision policy for CMABs, in the efficient pure exploration setting. Zanette et al. (2021) provide a
static (non-adaptive) algorithm with tight minimax bounds on the number of samples needed for learning
a contextual policy with expected near-optimal performance in linear CMABs. Li et al. (2022) provide an
instance-optimal algorithm for PAC learning of the optimal policy within a policy class for contextual bandits,
and very recent work by Krishnamurthy et al. (2023) presents an algorithm for balancing simple regret and
cumulative regret minimization. None of these consider settings where actions have heterogeneous costs.

Active learning. Our setting is loosely related to the active learning problem in machine learning, where the
goal is to maximize the model accuracy while minimizing the total cost of annotating the data used to train
the model. Many previous studies assume that the cost of obtaining each sample is the same, some studies
consider varying costs (Settles et al., 2008; Kapoor et al., 2007; Haertel et al., 2008). However, active learning
is focused on supervised learning models where the next sample is chosen, and the full label is observed.
However, in our contextual bandit setting, we do not get to choose the next state, and we only get to choose
the action for a given state and observe its reward– in this sense, we are in the partial information setting
(we observe no rewards/labels for actions that are not selected).

Bayesian optimization and Experimental design. Our setting also overlaps broadly with many other research
areas focused on efficient data collection to learn the optima of a function (Bayesian optimization) or to gather
as much information as possible about some parameters of interest (Bayesian optimal experimental design).
While Bayesian optimization and pure exploration in bandits are closely related (Srinivas et al., 2012; Krause
& Ong, 2011), Bayesian optimization techniques often use Gaussian processes to model complex, black-box
functions, while bandit algorithms often leverage parametric structure in rewards for statistical efficiency
gains. Some Bayesian optimization papers explicitly consider heterogeneous sampling cost in the acquisition
function used to direct sampling (Snoek et al., 2012; Lee et al., 2021; Astudillo et al., 2021; Belakaria et al.,
2023). A simple approach proposed is to move from the popular acquisition function of expected improvement,
to expected improvement per unit of cost (Snoek et al., 2012). Recent work shows this can be suboptimal in
the Bayesian optimization setting (Astudillo et al., 2021), and has considered unknown costs and using a
multi-step lookahead approach (Astudillo et al., 2021; Lee et al., 2021) with a finite fixed budget. However,
this work has focused on learning the optima for generic function optimization, has not considered parametric
structure, and are focused on finding the best optima given a fixed input budget. In contrast, we provide finite
bounds that can be used to bound the expected simple regret of the learned contextual policy. Perhaps most
similar is work by Paria et al. (2020), which uses a cost-aware version of information-directed sampling (Russo
& Van Roy, 2018) to guide exploration for generic Bayesian optimization. One of our algorithms is also
related to information-directed sampling, but we formulate a different objective and focus on CMABs.

3 Setting

We consider the stochastic contextual bandit environment where at each round n ∈ [N ], a context sn ∈ S
is sampled i.i.d. from a distribution µ. For each context sn, a (potentially context-dependent) action set
Asn

is made available to the learner. The bandit instance is defined by a reward function r : S ×As 7→ R.
Upon choosing an action an ∈ Asn , a stochastic sample rn with mean r(sn, an) is revealed to the learner.
The reward model parameterization will depend on the problem setting and we will shortly consider several
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specific settings. We assume there is a known, deterministic, non-negative resource cost c(s, a) ∈ R+ for each
state-action pair.

We define a decision policy π be a mapping from contexts to actions: π : S → A. Let V (π) denote the
expected reward (i.e., value) of a policy π,

V (π) := Es∼µ[r(s, π(s))], (1)

where the expectation is taken over the context distribution, the stochasticity in the observed rewards, and
any stochasticity in the policy π. The optimal policy π⋆ maximizes the expected reward: π⋆ = maxπ V (π).

In the pure exploration / simple regret setting, the goal is create an efficient exploration policy πe to gather a
dataset D, such that a near-optimal policy π̂(D) can be learned from the resulting dataset D.

In prior work, efficiency has been defined by the number of samples needed to achieve a particular performance
bound ϵ on the resulting policy

V (π⋆)− V (π̂(D)) ≤ ϵ (2)

In our setting, we are interested in designing resource-efficient exploration algorithms, which aims to reduce or
minimize the sum of costs incurred during exploration c(D) =

∑
(sn,an)∈D c(sn, an) relative to the ϵ-accuracy of

the resulting learned policy. While provably minimizing this cost may involve complex optimization programs
(similar to knapsack problems), we will shortly introduce and show that myopic cost-aware exploration
strategies involve the same computational cost as prior related methods, but can offer notable improvements
in the cost required to learn the same ϵ-optimal policy.

Finally, in CMABs, the primary focus has been on the realizable setting where we assume access to a statistical
parameterized model that can capture the true reward function. We will make a similar assumption, and
assume access to a particular function class (such as a linear model) that describes the reward function. We
will consider both the frequentist setting where there is a single fixed but unknown parameter and a Bayesian
setting in which a prior over the reward model parameters is provided.

In general, exactly optimizing this objective may be very challenging, but fortunately we will shortly see that
it is possible to obtain good performance and theoretical guarantees with some simple algorithms. Before
proceeding we briefly define our notation.

Notation. Unless otherwise stated, we let ∥x∥ denote the l2-norm of a vector x ∈ Rd. For a positive
semi-definite matrix Σ ∈ Rd×d, let ||x||Σ =

√
x⊤Σx. For a set S we let ∆(S) denote the set of (appropriately

defined) distributions over S. We use Id ∈ Rd×d to denote the d-dimensional identity matrix.

4 Algorithms

In the pure exploration setting, a key question is whether it is required to specify an exploration policy in
advance of data collection (the static setting) or whether it is possible to update the exploration policy during
data collection in response to observed rewards (the adaptive setting). We present two algorithms, one for
each setting, that build on prior work by introducing modifications to past algorithms to account for costs.
Perhaps surprisingly, we demonstrate that these modifications yield finite data simple regret bounds that are
asymptotically equivalent to their resource-unaware counterparts, up to a problem-dependent constant.

4.1 Static Pure Exploration

In many practical settings of interest, it is not possible to deploy a policy that is updated during explo-
ration (Zanette et al., 2021). Continual updates can require significant engineering overhead, and may
even be infeasible when rewards are delayed or in studies with parallel treatment assignment. Consider
educational applications where many students are assigned to different learning conditions in parallel and
learning outcomes can only be measured months later. Here, we propose a cost-sensitive algorithm for static
exploration in settings where different actions have different costs.
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In particular, we restrict ourselves to the well-studied stochastic linear contextual bandits setting. We
assume there is a known feature map ϕ : S ×As 7→ Rd and the reward model follows rθ⋆(s, a) = ϕ(s, a)⊤θ⋆,
where θ⋆ ∈ Rd is an unknown parameter. Upon choosing an action a ∈ As, the reward r = rθ⋆(s, a) + η
is revealed to the learner, where η is mean-zero, 1-sub-Gaussian noise. As is standard, we assume that
∥θ⋆∥ ≤ 1 and sups,a ∥ϕ(s, a)∥ ≤ 1 such that |rθ⋆(s, a)| ≤ 1. For a given parameter θ ∈ Rd, we define
πθ(s) = argmaxa∈As

ϕ(s, a)⊤θ to be greedy policy with respect to θ. The optimal policy π⋆ is equivalently
defined as πθ⋆ .

Our static pure exploration setting proceeds in two phases. First, we design an exploration policy πe to
to construct a dataset D′ = {(s′

n, a′
n, r′

n)}n=1,...,N . Then, using D′, we extract the regularized least-square
predictor θ̂ =

(
Σ′

N

)−1∑N
i=1 ϕ(s′

n, a′
n)r′

n, where ΣN = λId +
∑

n∈[N ] ϕ(s′
n, a′

n)ϕ(s′
n, a′

n)⊤ and λ > 0. Our
objective is to design πe such that the simple regret of the greedy decision policy π̂ = arg maxa∈As ϕ(s, a)⊤θ̂
is minimized.

Following Zanette et al. (2021), it can be shown that

V (π⋆)− V (π̂) ≤ 2Es∼µ max
a
|ϕ(s, a)⊤(θ⋆ − θ̂)|. (3)

Applying standard concentration inequalties, the following bound holds with probability at least 1− δ,

2Es∼µ max
a
|ϕ(s, a)⊤(θ⋆ − θ̂)| (4)

≤ 2βδEs∼µ max
a
∥ϕ(s, a)∥Σ−1 ,

where βδ =
(√

2 log(2|A|/δ) ∧
√

8d log(6/δ)
)

+
√

λ.

Thus, to learn an ϵ-optimal policy for ϵ > 0, it suffices to design the exploration policy πe so as to minimize
the maximum uncertainty Es∼µ maxa ∥ϕ(s, a)∥Σ−1 .

Zanette et al. (2021) propose the sampler-planner algorithm (S-P), which consists of two subroutines, the
planner and the sampler. The planner leverages an offline set of contexts and runs a reward-free version of
the LinUCB algorithm (Abbasi-Yadkori et al., 2011) that, every time a context sm ∼ µ is observed, selects
action am = arg maxa ∥ϕ(s, a)∥Σ−1

m
that maximizes the uncertainty with respect to the current covariance

matrix. Upon termination, the planner outputs a sequence of policies π1, . . . , πM . The sampler then uses
the average mixture policy πmix to gather a dataset: for each new context, πmix samples an index m ∈ [M ]
uniformly at random and plays πm. Through matrix concentration inequalities, the authors demonstrate
that the sampler’s policy produces a covariance matrix close to what the planner computed with offline data,
which in turn yields a bound on maximum uncertainty and thus simple regret.

Building on the S-P algorithm, we propose the S-P_cost algorithm that consists of two subroutines:
the cost-sensitive planner (see Alg. 1) and cost-sensitive sampler (see Alg. 2). The difference between
our S-P_cost and S-P is that S-P_cost, every time a context sm ∼ µ is observed, chooses action

am = arg maxa

∥ϕ(s,a)∥2
Σ−1

m

c(s,a) (see line 9 of Alg. 1). Intuitively,
∥ϕ(s,a)∥2

Σ−1
m

c(s,a) represents the uncertainty per unit
cost, and we would like to maximize the uncertainty reduction per unit cost.

4.2 Bayesian Resource-Aware Pure Exploration

Bayesian approaches are very popular in adaptive optimization and experimental design, in part because they
provide a natural way to quantify information gain with respect to prior uncertainty, which can be leveraged
for adaptive exploration. We introduce a simple resource-aware algorithm for pure exploration in Bayesian
contextual bandits.

We here consider a more general class of reward models f , such that the observed reward when taking action
a in context s is r = f(s, a, θ) + η, where θ is the unknown parameter, η is mean-zero, 1-sub-Gaussian noise.
We assume that θ is sampled from some known prior distribution.

Let Fn = {s1, a1, r1, s2, a2, r2, . . . , sn−1, an−1, rn−1) be the sequence of states observed, actions taken, and
rewards observed up to the current time point. Define En[X] := E[X|Fn]. Recall that the entropy of
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Algorithm 1 Cost-sensitive planner
1: Input: Contexts C = {s1, . . . , sM}, reg. λreg

2: Σ1 = λregI
3: m = 1
4: for m = 1, 2, . . . M do
5: if det(Σm) > 2 det(Σm) or m = 1 then
6: m← m
7: Σm ← Σm

8: end if

9: Define πm : s 7→ argmaxa∈As

∥ϕ(s,a)∥2
Σ−1

m

c(s,a)
10: Σm+1 = Σm + αϕmϕ⊤

m; ϕm = ϕ(sm, πm(sm))
11: end for
12: return policy mixture πmix of {π1, . . . , πM}

Algorithm 2 Cost-sensitive Sampler
1: Input: πmix = {π1, . . . , πM}, reg. λreg

2: Set D′ = ∅
3: for n = 1, 2, . . . N do
4: Receive context s′

n ∼ µ
5: Sample m ∈ [M ] uniformly at random
6: Select action a′

n = πm(s′
n)

7: Receive feedback reward r′
n

8: Store feedback D′ = D′ ∪ {s′
n, a′

n, r′
n}

9: end for
10: return dataset D′

a probability distribution Px is defined as H(Px) = −
∑

x P (x) log P (x). Given a history Fn, a prior
p(θ), and an observed state sn, we can define a posterior probability distribution over the optimal action
a⋆ = argmaxa∈Asn

f(sn, a, θ) in state sn:

αn(sn, a) = P (a⋆ = a|sn,Fn). (5)

The information gain gn(a′) of selecting a particular action a′ in state sn is defined as the expected reduction
in entropy over the optimal action for state sn after taking action a′:

gn(a′) = En [H(αn(sn, ·))−H(αn+1(sn, ·))] . (6)

A common approach in Bayesian optimization that can also be easily applied in the pure exploration simple
multi-armed bandit setting is to select actions to maximize the information gain. Russo & Van Roy (2018)
introduced information-directed sampling for Bayesian cumulative regret minimization in bandits and extend
the above by considering the ratio of the expected regret to the information gain.

In our setting, we are instead interested in considering the information gain in relation to resources spent. To
do so, we define our exploration policy as one that maximizes the relative information gain per unit cost:

πe(sn) = arg max
a′

gn(a′)
c(sn, a′) . (7)

Our objective is very similar to work in Bayesian optimization that uses expected improvement per unit of
cost an acquisition function (Snoek et al., 2012), though that work did not consider multi-armed bandits or
the contextual setting, nor provided finite sample analysis.

In general, computing the information gain is computationally challenging due to intractable posteriors.
Prior work often considers approximations, and we draw from Russo & Van Roy (2018)’s algorithm for
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Algorithm 3 IG_cost
1: Input: K, r, q
2: Set D′

0 = ∅
3: for n = 1, 2, . . . N do
4: Receive context s′

n ∼ µ
5: Draw θ1, . . . , θK from the posterior p(θ|Fn)
6: Θ̂a ← {m|a = arg maxa′

∑
y qθm,s′

n,a′(y)r(y)}
7: p̂(a∗)← |Θ̂a∗ |/K ∀a∗

8: p̂a(y)←
∑

m qθm,s′
n,a(y)/K ∀y

9: p̂a(a∗, y)←
∑

m∈Θ̂a∗ qθm,s′
n,a(y)/K ∀a∗, y

10: g⃗a ←
∑

a∗,y p̂a(a∗, y) log p̂a(a∗,y)
p̂(a∗)p̂a(y) ∀a ∈ As′

n

11: Select action a′
n = arg maxa∈As′

n

g⃗a

c(s′
n,a)

12: Receive feedback reward r′
n

13: Store feedback D′
n = D′

n−1 ∪ {s′
n, a′

n, r′
n}

14: end for
15: return dataset D′

N

a sample-based approximation to the information gain and present a cost-sensitive information gathering
algorithm for contextual bandits in Alg. 3. This uses a sample-based approximation to Equation 7 and we
restrict our attention to settings with discrete reward outcomes. We let y(s, a) ∈ Y denote the outcome of
choosing action a in context s, where Y is a discrete set.

Alg. 3 takes as input K, r, and q. K is the number of samples drawn independently from the posterior p(θ|Fn)
and r : Y 7→ R is a reward function mapping outcomes to scalar rewards. We let qθ,s,a(y) = P (y(s, a) = y|θ)
be the probability, conditioned on θ, of observing y when action a is selected in context s. Line 6 computes
the optimal action for each value of θ. Line 7 computes the probability that each action is optimal. Line 8
computes the marginal distribution over the particular rewards, and line 9 computes the joint probability
distribution of the optimal action and a particular reward outcome. These quantities are used to compute
the information gain (see a derivation in Appendix A.1), which is then scaled by the inverse of the cost.

5 Experiments

5.1 Synthetic dataset

We first conduct a synthetic experiment to demonstrate the performance of S-P_cost (Alg. 1 & 2) using
a simulator inspired by Zanette et al. (2021). We construct a simple linear contextual bandit problem
with d = 10 and A = {1, . . . , 20}. Each context s ∈ S is associated with features vectors {ϕ(s, a)}a∈A.
Each context belongs to one of two discrete categories with equal probability. In category 1, the action
a ∈ {1, . . . , 10} has features distributed as ϕ(s, a) ∼ N (0, Σa) where Σa = diag(x1, . . . , xd) with xa = 1 and
xi = 0 for all i ̸= a. The action a ∈ {11, . . . , 20} for category 1 has features distributed as ϕ(s, a) ∼ N (0, Σa)
where Σa = diag(x1, . . . , xd) with xa = 1 and xi = 10−9 for all i ̸= a. In category 2, the action a ∈ {1, . . . , 19}
shares the same feature distribution as a ∈ {1, . . . , 19} in category 1, and the last action a = 20 has features
distributed as ϕ(s, 20) ∼ N (0, diag(2, 10−9, . . . , 10−9)). c(s, a) = ∥ϕ(s, a)∥0,∀s, a. The first d− 1 coordinates
of θ⋆ are 1, and the last coordinate is 0. The linear reward model is defined as rθ⋆(s, a) = ϕ(s, a)⊤θ⋆ + η for
some θ⋆ ∈ Rd parameter and some mean-zero 1-subgaussian random variable η. The synthetic dataset is
designed in such a way that about half of the actions are slightly more informative but cost much more than
the other half.

We compare our S-P_cost against two baselines: (1) a random exploration algorithm (Random) that
chooses actions uniformly and (2) the cost-unaware sampler-planner algorithm (S-P) proposed in Zanette
et al. (2021). For S-P and S-P_cost, the planner is first run on an independent set of contexts of size
M = 500. All algorithms are then used to collect a dataset of size N = 500. After each sample is collected
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during exploration, we calculate the value of the resulting greedy decision policy for each algorithm on a
held-out test set of 500 data points. The policy value is computed as the average reward on the test set.
Additionally, we calculate the value of the optimal policy, which has access to the true reward model, as a
baseline. All algorithms used λ = 1, and the planner used α = 1, as these work well empirically (Zanette
et al., 2021). We ran the experiment for 50 trials using random seeds 1-50.

We find that S-P_cost learns an ϵ-optimal policy at a lower exploration cost than S-P. Figure 1a shows
cumulative exploration costs plotted over the performance gap ϵ (i.e., the difference between the value of the
optimal policy and the learned policy). This is because S-P_cost tends to sample actions 1− 10 that have
a cost of 1 in both contexts, which is sufficient to get information about all the coordinates, while S-P tends
to sample actions 10− 20 and suffers a cost of 10 for each sample.

5.2 Court appearance dataset

We evaluate IG_cost using a semi-synthetic court appearance simulator from Chohlas-Wood et al. (2021),
which is grounded in real case data from the Santa Clara County Public Defender Office. In this setting, a
policymaker seeks to help individuals attend their mandatory court dates by providing government-sponsored
transportation assistance. Individuals can receive one of three mutually exclusive interventions a: rideshare
assistance, a transit voucher, or no transportation assistance. The round-trip rides cost $5 for every mile
between an individual’s home address and the main courthouse and back. The transit voucher costs $7.5.
Since our algorithm requires c(s, a) > 0,∀s, a, we assume that the no transportation assistance intervention
has a cost of $0.1, which is negligible compared to the other interventions. The simulator considers the
binary outcome y ∈ {0, 1} that indicates whether a client appeared at their court date. The simulator uses a
logistic reward model where P(rθ⋆(s, a) = 1) = logit−1(ϕ(s, a)⊤θ⋆) for some unknown θ⋆ ∈ Rd. The reward is
independent across draws.

The resulting dataset consists of 12, 636 example cases. Each data point is a 7-dimensional feature vector
associated with the true appearance probability of the individual, the observed binary outcome, and the cost
of the intervention if provided each of the three interventions. The simulator is designed in such a way that
the type of assistance that is best for each individual varies across the population. The goal is to learn which
intervention maximizes the appearance probability for each individual.

We compare our IG_cost against four baselines: (1) a random exploration algorithm (Random) that always
chooses actions uniformly, (2) Thompson sampling (Thompson) (Russo et al., 2018), (3) Contextual Gaussian
Process Upper Confidence Bound (CGP-UCB) (Krause & Ong, 2011), and (4) the cost-unaware algorithm
that only considers the information gain (IG). Thompson maintains a posterior over the parameters of
the reward model. Every time a context s ∼ µ is observed, Thompson samples θ from this posterior and
selects the action a = arg maxa rθ(s, a). We compare against Thompson because prior work (Chohlas-Wood
et al., 2021) has shown that Thompson is good at simple regret minimization even though it optimizes for
cumulative regret. CGP-UCB is a Bayesian optimization approach to pure exploration that relies on an
underlying Gaussian process (GP) that takes as input a policy’s parameters and is trained to predict policy
value. CGP-UCB proceeds by selecting a candidate policy that maximizes the upper confidence bound
over policy value as predicted by the GP model. We also introduce IG, which selects action a = arg max g⃗a

that maximizes the information gain instead of the relative information gain per cost (see line 11 of Alg.
3). Following Chohlas-Wood et al. (2021), we use non-informative priors, and we use the sim function in
arm (Gelman, 2011) to do posterior sampling (see experiment details Appendix A.2).

We run the experiment for 50 trials using random seeds 1-50. In each trial, we randomly sample 1500 data
points as the training data and test data, respectively. Following Chohlas-Wood et al. (2021), we start each
trial with a randomly selected warm-up group of 4 people. We run all algorithms on the training data such
that they observe the same contexts but may take different actions. After each training observation, we
calculate the value of the resulting greedy decision policies, which is the appearance rate under the policy on
test data. As a baseline, we calculate the value of the optimal policy given access to the true reward model.

We find that IG_cost can learn an ϵ-optimal decision policy using substantially fewer exploration resources
than the other cost-unaware algorithms. Figure 1b shows cumulative exploration costs plotted over the
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Figure 1: Our cost-aware algorithms (S-P_cost and IG_cost) can learn a near-optimal decision policy
using substantially fewer resources than traditional cost-unaware algorithms in both the synthetic and court
appearance settings. The x-axis shows the performance gap ϵ, which is the difference between the value of
the optimal policy and the learned decision policy. The y-axis shows the total cost of the experiment. Each
line represents the mean of 50 trials, with error bars indicating the standard deviation. We averaged costs
within 50 equally spaced ϵ intervals. For (b), we smoothed the data using a 30-iteration running average.

performance gap ϵ (i.e., the difference between the appearance rate under the optimal policy and the learned
policy).

6 Theoretical Guarantees

In this section, we study the theoretical properties of our cost-sensitive algorithms and show that they can
provably recover ϵ-optimal policies in certain settings, provided the ratio between the maximum costs and
minimum costs is bounded. Our objective is to bound the difference in values between the optimal policy π⋆

and the learned policy π̂ in terms of the number of interactions. In particular, we find that the cost-sensitive
algorithms are competitive with cost-unaware algorithms in terms of sample complexity. We define the
worst-case cost ratio as γ := maxa c(a)

mina c(a) . Our first result concerns the S-P_cost algorithm, which, in the
stateless case, reduces to selecting an = argmaxa

∥ϕ(a)∥Σn

c(a) .
Theorem 6.1 (Cost-sensitive sampler-planner). For a linear contextual bandit with known feature map

ϕ : (s, a) 7→ ϕ(a), S-P_cost selects a1, . . . , aN where an = maxa

∥ϕ(sn,a)∥2
Σ−1

m

c(sn,a) . If we let α = 1, M = Θ(N),
and λ = Ω̃(d), then the following holds with probability at least 1− δ.

V (π⋆)− V (π̂) ≤ Õ

(
βδ

√
γd log (λ + N)

N

)
. (8)

Next, we consider the cost-sensitive information gathering algorithm, IG_cost. Here we provide a generic
Bayesian-style analysis where we consider a prior reward functions r∗ (and thus π⋆(s) = argmaxa r∗(s, a).
Recall the algorithm selects an = argmaxa

gn(sn,a)
c(sn,a) where gn(s, a) is the information gain, defined as the

conditional mutual information I(a∗
n; rn,a|Fn−1, s) between the reward rn,a that would be received for selecting

action a in state s and a∗
n at step n, conditioned on the history Fn−1 = (s1, a1, r1, . . . , sn−1, an−1, rn−1) of

actions and observations so far. Note that this is the mutual information conditioned on the fixed values
(Fn−1, s), not averaged over them.

A key quantity in our analysis is the information ratio, originally introduced by Russo & Van Roy (2018):

Ψn := min
π

Es

Ea∼π(·|s) [r∗(s, a∗)− r∗(s, a)|Fn−1]2

Ea∼π(·|s)gn(s, a) (9)

9
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We assume that Ψn ≤ Ψ for some Ψ ∈ R≥0. Ψ is known to bounded for many standard bandit problems
(Russo & Van Roy, 2018), including the linear contextual bandit, for which we also provide a specialized
bound.
Theorem 6.2 (Cost-sensitive information gathering). For a contextual bandit problem, IG_cost produces a
policy π̂ over N rounds such that the Bayesian regret is bounded as

E [V (π⋆)− V (π̂)] ≤ O

(√
γΨI(π⋆;FN )

N

)
, (10)

where the expectation is over the prior of contextual bandit problems, and I(π⋆;FT ) denotes the mutual
information between the optimal policy and the history under the data collection algorithm. Furthermore, if
the prior is over d-dimensional linear contextual bandits, the Bayesian regret can be bounded as

E [V (π⋆)− V (π̂)] = Õ
(√

γd2/N
)

. (11)

The first applies generally to contextual bandit problems, even nonlinear ones. However, to make concrete the
guarantees, especially in well studied settings, we specialize the second bound to the case of linear contextual
bandits, which follows by applying prior work (Hao et al., 2022) to bound Ψ = O(d) and I(π⋆;FN ) = Õ(d).
This show IG_cost is competitive with standard information-directed sampling that ignores the cost, up to
scaling by γ.

The above two theorems prove that, assuming the ratio between the minimum and maximum cost per context
is bounded γ, we can guarantee that our proposed approaches will converge to an ϵ-optimal policy, and have
a sample complexity that is upper bounded with the same dominant terms as prior state-of-the-art methods,
with an additional factor of √γ (see full proofs in Appendix B).

Naturally, it would be of significant additional interest if we could guarantee that the resource cost complexity,
to learn a near-optimal decision policy, from our new methods is guaranteed to be smaller than prior methods.
Unfortunately this is, in general, non-trivial and comparisons are subtle due to the granular nature of
uncertainty refinement. To illustrate this, consider using our S-P_cost versus prior approach S-P on a
non-contextual bandit with a one-dimensional (scalar) action space, with two potential actions: a1 = 1.0
with cost c(a1) = 1.0 and a2 = 0.9 with cost 0.6. Assume both algorithms use a regularization of λ = 1. On
the first round S-P will select action a1, and S-P_cost will select a2. After this the new covariance matrix
ΣS-P = λ + a2

1 = 2 and ΣS-P_cost = λ + a2
2 = 1.81. Recall that the covariance matrix (here of the sampled

actions) directly controls an upper bound on the resulting policy suboptimality through Es maxa ∥ϕ(s, a)∥Σ−1 .
It is clear that achieving Σ = 1.81 costs less than achieving Σ = 2. However, it is not possible to obtain
Σ = 2 using the S-P_cost algorithm, since the next action it will select yields an updated Σ of 2 or 2.62.
In general, selecting actions will cause the covariance matrix to update in discrete jumps, and so it will be
hard to compare the relative cost to achieve a particular ϵ-accuracy, since that might only be feasible by
overpaying and achieving lower ϵ than what was required.

However, it is important to note that there are some cases where S-P_cost will be guaranteed to have
smaller cost than S-P. For example, assume that for each state, there always exists 2 actions, one with
negligibly smaller norm with cost cmin and the other with cost cmax. Here the updated covariance matrix
after each step will be essentially identical, but S-P_cost will cost O( cmind2

ϵ2 ) compared to S-P’s cost of
O( cmaxd2

ϵ2 ).

7 Discussion and Conclusion

Our approach for Bayesian pure exploration for contextual bandits maximized the information gain per
cost for the current context but did not consider the potential benefit for all contexts. Recent work by
Hao et al. (2022) has demonstrated that such conditional strategies may be outperformed by context-aware
strategies in cumulative regret minimization (without costs), which presents an interesting direction for
further investigation. A very interesting open question is whether it is important to consider longer horizons
when designing sampling strategies to learn near-optimal policies given heterogeneous resource costs.

10
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Our work has highlighted the substantial potential impact of considering costs during pure exploration. We
presented two algorithms that provided substantial gains in illustrative synthetic and semi-synthetic problems
and a theoretical analysis that shows that maximizing information gain per cost can still provide simple
regret bounds of similar rates to the cost-free case in some settings.
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A Algorithm and experiment details

A.1 Definition of Information Gain in Alg. 3

Let A∗ be a random variable that represents the optimal action, and Yn,a be the outcome when action a is
selected at time n. As in Russo & Van Roy (2018), the information gain from an action a is defined to be:

gn(a) := In(A∗; Yn,a) (12)
= DKL (P ((A∗, Yn,a) ∈ ·|Fn) || P (A∗ ∈ ·|Fn)P (Yn,a ∈ ·|Fn)) (13)

=
∑
a∗,y

p̂a(a∗, y) log p̂a(a∗, y)
p̂(a∗)p̂a(y) . (14)

A.2 Experiment Details for Court Appearance Dataset

In the court appearance dataset, we have 7 raw features for each individual: (1) whether the client identifies
as Vietnamese; (2) whether the case is a felony; (3) whether the client identifies as male; (4) the client’s age;
(5) the natural log of the distance, in miles, between the client’s home address and the courthouse, minus
the natural log of the maximum allowed distance of 20 miles (so that all distance attributes are negative,
with values of higher magnitude being closer to the courthouse); (6) the number of known failures to appear
in the past two years; and (7) the inverse number of required court appearances in the past two years. For
additional details about the data generation process, see Appendix E in Chohlas-Wood et al. (2021).

Following Chohlas-Wood et al. (2021), we start each trial with a randomly selected warm-up group of 4
people. The first two people are assigned a transit voucher and a rideshare, respectively. The other two
people are assigned no transportation assistance. The costs during this warm-up period are not considered
in the evaluation. We use non-informative priors for Thompson, IG, and IG_cost, and we use the sim
function in arm (Gelman, 2011) to do posterior sampling.

For IG and IG_cost, we use K = 10 because a moderate number of samples might be enough to generate
close approximations to the information gain (Russo & Van Roy, 2018).

For CGP-UCB, we use the Upper Confidence Bound (UCB) acquisition function with beta = 0.1. In each
optimization step, we draw 50 policies from the parameter space, and the candidate policy with the highest
UCB is evaluated on 5 randomly selected contexts. We estimate the value of the candidate policy using
the average reward achieved by the policy on these 5 data points. We update the GP posterior using this
5-sample estimate of V (π) at each iteration. Since CGP-UCB requires the search space to be bounded, we
constrain the parameter space to [−5, 5]d based on the true reward parameter. We initialize the Gaussian
process model using the greedy decision policy extracted from the warm-up data.

B Proofs of Theoretical Results

B.1 Cost-Sensitive Sampler-Planner

Define the following notation as used in the sampler-planner paper:

Σm = λI + α
∑

s∈[m−1]

ϕsϕ⊤
s (15)

Σ′
n = λI +

∑
s∈[m−1]

ϕ′
sϕ′

s
⊤ (16)

are the covariance matrices collected during the offline and online phases, respectively. Here α ∈ (0, 1]. We
also use Σm̄ to denote the covariance matrix that is used at round m during batching (since the covariance
matrices are only updated once the determinant reaches a certain threshold). The following is a standard
error bound on the value difference of the policy learned through the algorithm.
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Lemma B.1. The simple regret is bounded in terms of the regression error as

V (π⋆)− V (π̂) ≤ 2∥θ⋆ − θ̂N∥Σ′
N
· Es

[
max

a
∥ϕ(s, a)∥Σ′

N
−1

]
. (17)

Standard concentration inequalities will guarantee a bound on ∥θ⋆ − θ̂N∥Σ′
N

of order Õ(
√

d). Thus we are
concerned with ensuring that ∥ϕ(x, a)∥Σ′

N
−1 shrinks. We will leverage the following relationship between the

planner and sampler, which shows that Es maxa ∥ϕ(s, a)∥Σ′
N

−1 can be bounded by Es maxa ∥ϕ(s, a)∥Σ−1
M

.
Lemma B.2 (Lemma 3 and 4 of Zanette et al. (2021)). Let K be a random variable that denotes the
total number of policy switches. Fix δ > 0 and let λ = Ω(log(d/δ)) and M = Ω

(
KN

λ log (dNK/λδ)
)

and
1/α = Ω

(
K
λ log (dNK/λδ)

)
. There is an absolute constant C > 0 such that, with probability at least 1− 3

4 δ,

Es max
a
∥ϕ(s, a)∥Σ′

N
−1 ≤ C

M

log(1/δ) +
∑

m∈[M ]

max
a
∥ϕ(sm, a)∥Σ−1

m

 . (18)

Note that K = O(d log (1 + M/dλ)) (Lemma 15 of Zanette et al. (2021)), so we can choose λ, M, α with
enough margin ahead of time.

We note that this result holds as long as the conditions above are satisfied and as long as the algorithms
are employed such that the actions taken at sampling time reflect the actions taking during planning (as in
sampling from the set of policies that is generated).

Proof of Theorem 6.1. We can now show a bound on the average of uncertainties under the planner.

Es max
a
∥ϕ(s, a)∥Σ−1

M
≤ C

M

∑
m

max
a
∥ϕ(sm, a)∥Σ−1

m̄
+ C log(1/δ)

M
(19)

= 1
M

∑
m

max
a
∥ϕ(sm, a)∥Σ−1

m̄
·

√
c(sm, a)
c(sm, a) + C log(1/δ)

M
(20)

≤ 1
M

∑
m

√
cmax(sm) max

a

∥ϕ(sm, a)∥Σ−1
m̄√

c(sm, a)
+ C log(1/δ)

M
(21)

= 1
M

∑
m

√
cmax(sm)

∥ϕ(sm, am)∥Σ−1
m̄√

c(sm, am)
+ C log(1/δ)

M
(22)

≤
√

2
M

∑
m

√
cmax(sm)

∥ϕ(sm, am)∥Σ−1
m√

c(sm, am)
+ C log(1/δ)

M
(23)

≤
√

2γ

M

∑
m

∥ϕ(sm, am)∥Σ−1
m

+ C log(1/δ)
M

(24)

= Õ

(√
γdM log(λ + M)

α
+ C log(1/δ)

)
. (25)

The first inequality uses the above lemma. The third line upper bounds with the worst case action. The

fourth line uses the fact that am is selected by taking am = argmax
∥ϕ(sm,a)∥2

Σ−1
m̄

c(sm,a) . The fifth line converts the
batched covariance matrix to the individual per-step covariance matrices (Abbasi-Yadkori et al., 2011). Uses
the upper bound on the ratio between the largest and smallest values of c. Finally, we apply the elliptical
potential lemma (Lattimore & Szepesvári, 2020).

B.2 Cost-Sensitive Information Gathering

Proof of Theorem 6.2. As is conventional for analyses of information-directed sampling, we define

∆n(s, a) = En [r(s, π⋆(s))− r(x, π̂n(s))] (26)
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where π̂n(s) = argmaxa En [r(s, a)] and En is expectation conditioned on information observed up until time
n.

E [V (π⋆)− V (π̂)] ≤ E
[
min

a
∆N (s, a)

]
(27)

≤ 1
N

∑
n

E
[
min

a
∆n(sn, a)

]
(28)

Note that from the choice of an, we also have

∆n(sn, a) = ∆n(sn, a)√
gn(sn, an)/c(sn, an)

·

√
gn(sn, an)
c(sn, an) (29)

= ∆n(sn, a)
maxa′

√
gn(sn, a′)/c(sn, a′)

·

√
gn(sn, an)

c(sn, ) (30)

≤ √γ · ∆n(sn, a)
maxa′

√
gn(sn, a′)

·
√

gn(sn, an) (31)

where in the second line, we have used the definition of an and the third uses bounded ratio of the max and
min costs. Taking the min over a, we can bound this with the information ratio:

mina ∆n(sn, a)
maxa′

√
gn(sn, a′)

≤
Ea∼π(·|sn) [∆n(sn, a)]√

Ea∼π(·|sn)gn(sn, a)
∀π (32)

which implies that Esn

[
mina ∆n(sn,a)

maxa′
√

gn(sn,a′)

]
≤
√

Ψ. Therefore, we can bound the average of the costs now using

Holder’s inequality and the information ratio. For simplicity, let EN also denote the uniform expectation over
the time indices n ∈ {1, . . . , N}. Then,

E [V (π⋆)− V (π̂)] ≤ EN

[
min

a
∆n(sn, a)

]
(33)

≤ √γ · EN

[
min

π

∆n(sn, π)√
gn(sn, π)

·
√

gn(sn, an)
]

(34)

≤

√
γEN

[
min

π

∆2
n(sn, π)

gn(sn, π)

]
· E [gn(sn, an)] (35)

≤
√

γΨ 1
N

E
∑

n

gn(sn, an) (36)

By the data processing inequality and the tensorization of the mutual information, we have that

E
∑

n

gn(sn, an) ≤ I(π⋆;FN ). (37)

.

We now specialize our result to the linear contextual bandit setting. As per the bound in Equation 36, the key
steps will be to bound Ψ and I(π⋆;FN ) for the linear contextual bandit setting. Our results draw strongly
from the results presented in Hao et al. (2022).

We first bound I(π⋆;FN ):
I(π⋆;FN ) ≤ I(θ∗;FN ), (38)

using a second application of the data processing inequality.

We then apply Lemma 5.8 from Hao et al. (2021) that proves I(θ∗;FN ) ≤ 2d log(Cdn) for some constant
C > 0.
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Next, to bound Ψ, we follow the proof structure from Lemma 6.4 of Hao et al. (2022). Specifically, they prove
that

Esn
min

π

∆2
n(sn, π)

gn(sn, π) (39)

is bounded by the information ratio of the Thompson Sampling algorithm, which is bounded by O(d).

Combining these results, this guarantees that the simple regret is bounded by at most Õ
(√

γd/N
)

.
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