
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING THE MIXTURE-OF-EXPERTS WITH
NADARAYA-WATSON KERNEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) has become a cornerstone in recent state-of-the-art large
language models (LLMs). Traditionally, MoE relies on Softmax as the router
score function to aggregate expert output, a designed choice that has persisted from
the earliest MoE models to modern LLMs, and is now widely regarded as standard
practice. However, the necessity of using Softmax to project router weights into
a probability simplex remains an unchallenged assumption rather than a princi-
pled design choice. In this work, we first revisit the classical Nadaraya–Watson
regression and observe that MoE shares the same mathematical formulation as
Nadaraya–Watson regression. Furthermore, we show that both feed-forward neural
network (FFN) and MoE can be interpreted as a special case of Nadaraya–Watson
regression, where the kernel function corresponds to the input neurons of the
output layer. Motivated by these insights, we propose the zero-additional-cost
Kernel Inspired Router with Normalization (KERN), an FFN-style router func-
tion, as an alternative to Softmax. We demonstrate that this router generalizes
both Sigmoid- and Softmax-based routers. Based on empirical observations and
established practices in FFN implementation, we recommend the use of ReLU
activation and ℓ2-normalization in KERN router function. Comprehensive
experiments in MoE and LLM validate the effectiveness of the proposed FFN-style
router function KERN.

1 INTRODUCTION

Recent years have witnessed remarkable progress in Large Language Models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Touvron et al., 2023), driven primarily by the exponential growth of
training data and model parameters. With the mixture of experts (MoE), there is great progress
in language modeling (Fedus et al., 2022; Puigcerver et al., 2024; Jiang et al., 2024; Meta, 2025;
Liu et al., 2024a; Team et al., 2025) and computer vision (Riquelme et al., 2021; Lin et al., 2024b).
The MoE architecture (Jacobs et al., 1991; Shazeer et al., 2017; Roller et al., 2021) has emerged as
an efficient alternative that allows parameter scaling while maintaining manageable computational
requirements. The successful integration of MoE with Transformer architectures (Vaswani et al.,
2017) has led to the development of exceptionally large yet efficient language models (Dai et al.,
2024; Jiang et al., 2024; Shen et al., 2024; Wei et al., 2024), demonstrating the tremendous potential
of this approach.

A critical and widely adopted design choice in modern MoE architectures is the use of the Softmax
function as the core routing mechanism. This approach, prominently featured in large-scale mod-
els (Lepikhin et al., 2021; Jiang et al., 2024; Liu et al., 2024a; Team et al., 2025), has effectively
become the de facto standard for state-of-the-art systems. The function Softmax naturally induces
a probability distribution on the available experts. This property ensures that the routing weights
for each token sum to one, promoting a balanced and interpretable allocation. However, despite
its prevalence and intuitive appeal, the theoretical justification for its exclusive dominance remains
somewhat unclear. Recently, Sigmoid has been proven to be a better router function (Nguyen et al.,
2024a), which is also investigated and adopted as an alternative router score function by DeepSeek
(Dai et al., 2024; Liu et al., 2024a). Their findings suggest that a Sigmoid-based routing function
performs effectively in MoE.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we revisit the fundamental design principles of MoE routing by re-examining it through
the statistical lens of the Nadaraya-Watson regression estimator (Nadaraya, 1964; Watson, 1964).
We propose a novel interpretation: the router’s output for a given input token can be viewed as a set
of dynamic kernel weights assigned to each expert. Each expert, in turn, acts as a value function,
producing an aggregated output. This perspective is further reinforced by the architectural parallels
within the Transformer (Vaswani et al., 2017). We posit that the router’s computation is analogous to
the first linear layer of a standard feed-forward network (FFN), which projects the input into a higher-
dimensional space and can be interpreted as calculating a set of unnormalized scores or weights.
The experts subsequently play the role of the second FFN layer, which operates on these weighted
features to produce the final values (Geva et al., 2020). Inspired by structural similarities between
MoE, Nadaraya-Watson regression, and FFN, we introduce a new class of simple yet effective router
functions for MoE. Our primary proposed method defines an FFN-style router function, which
generalizes both Softmax- and Sigmoid-based router functions. To align well with the practical and
widely recognized FFN setups, we adopt the ReLU activation and a computationally lightweight
ℓ2-normalization in the router function. This modification ensures that the magnitude of the MoE
output is invariant with the number of experts, leading to more balanced expert participation and
improved training stability without enforcing a probabilistic simplex constraint. Our key contributions
are summarized as follows:

• A Novel Perspective: We reframe the MoE layer through the lens of the Nadaraya-Watson
regression, interpreting it as a generalized FFN, providing a more flexible and principled
view of expert aggregation.

• KERN Router Function: Motivated by the perspective of structure similarity, we pro-
pose Kernel Inspired Router with Normalization (KERN), a new family of simple yet
effective FFN-style router functions. By introducing widely adopted ReLU activation and
ℓ2-normalization, KERN promotes balanced expert utilization and stable training without
the constraints or computational profile of Softmax, and crucially, without introducing any
additional parameters or significant overhead.

• Extensive Empirical Validation: We conduct a comprehensive evaluation of KERN across
a wide range of experimental setups, including varying model scales, sequence lengths,
training dataset sizes and domains, and sparsity coefficients.

2 RELATED WORK

Large Language Models. With the inspiration of the language model scaling law (Kaplan et al.,
2020), LLMs (Touvron et al., 2023; Achiam et al., 2023; Jiang et al., 2024; Liu et al., 2024a; Yang
et al., 2025; Team et al., 2025; Comanici et al., 2025) have shown remarkable capabilities in a
wide range of open-ended tasks, marking significant progress toward achieving general artificial
intelligence. With the Transformer architecture (Vaswani et al., 2017), LLMs achieve significant
performance in various areas, including reasoning (Achiam et al., 2023; Liu et al., 2024a; Team
et al., 2025), language-visual model (Liu et al., 2023a; Jin et al., 2024a; Riquelme et al., 2021),
language-audio (Yang et al., 2023; Rouditchenko et al., 2025) and so on.

Mixture-of-Experts. The MoE (Jacobs et al., 1991) is proposed to reduce the active parameters and
aggregate the outputs of several models to reduce the training cost and empower expressiveness. With
the development of LLMs, the MoE becomes increasingly attractive and dominant in applications
of large-scale tasks (Achiam et al., 2023; Meta, 2025), where they must balance the load of experts
(Lewis et al., 2021; Roller et al., 2021; Dai et al., 2024). The MoE originally presents its ability in
the machine translation tasks (Shazeer et al., 2017). Later, Gshard (Lepikhin et al., 2021) proposes
a more efficient implementation on parallel devices. To further improve the efficiency, Switch
Transformer (Fedus et al., 2022) alternatively uses a single expert for one token prediction. Recently,
a zero-cost expert (Jin et al., 2024b) is introduced, where the expert does not involve computation via
skip connections. We notice that most of these works utilize Softmax as the router function.

Feed-Forward Network. FFN represents the standard neural network architecture, with origins
tracing back to the early development of deep learning. Numerous studies have examined different
activation functions and normalization techniques to enhance their expressiveness and training

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

stability (Householder, 1941; Fukushima, 1980; 2007; Hendrycks & Gimpel, 2016). More recently,
research has shifted toward understanding the role of FFNs within Transformer models, where they
are often interpreted as a form of static memory, in contrast to the dynamic memory provided by
attention mechanisms. From this perspective, Transformers can be viewed as integrating both static
and dynamic memory, each contributing distinct modes of information processing (Liu et al., 2023b;
Zhong et al., 2025).

3 METHOD

In this section, we first introduce the well-known Nadaraya–Watson regression and then compare its
mathematical formulation with that of MoE. Motivated by their structural similarity, we reinterpret
the MoE as a large FNN. Inspired by the new perspective of interpretation and the well-recognized
FFN setups, we design an FFN-style router function of MoE, namely, KERN, which is equipped
with ReLU activation and ℓ2-normalization. We also analyze the relationships and advantages of
KERN, compared to widely recognized Softmax and Sigmoid router functions.

3.1 NADARAYA-WATSON REGRESSION

The Nadaraya-Watson estimator predicts the output y for an input x by assigning weights to training
samples {(xi,yi)}Ni=1 according to their similarity to x:

fNW(x) =

N∑
i=1

K(x,xi)∑N
j=1 K(x,xj)

yi (1)

where K(·, ·) is a kernel function measuring the similarity between two points. The most widely used
choice is the Gaussian kernel formulated as K(u,v) = exp(−∥u− v∥2/2σ2), where the bandwidth
σ (standard deviation of the Gaussian distribution) controls the smoothness of the estimator.

In practice, the bandwidth σ is typically unknown and treated as a hyperparameter. A more flexible
approach is to regard σ as a trainable parameter to be optimized. Equivalently, we define a param-
eterized kernel as K(u,v;w) = exp(−w∥u − v∥2/2), where w > 0 is a learnable weight. The
corresponding estimator becomes

fNW(x;w) =

N∑
i=1

K(x,xi;w)∑N
j=1 K(x,xj ;w)

yi. (2)

This parametric formulation allows the model to adapt the kernel bandwidth during training, improv-
ing flexibility and performance in practice. Moreover, the idea naturally extends beyond Gaussian
kernels that one can generalize to a learnable kernel of the form K(u,v;w), parameterized by a
vector w.

3.2 FFN AS PARAMETRIC NADARAYA-WATSON REGRESSION

The output layer of a standard FNN admits

FFN(x) =

h∑
i=1

ϕ (LN (⟨wi,Φ(x)⟩))︸ ︷︷ ︸
Adaptive kernel weight

· vi︸︷︷︸
Value

, (3)

where ϕ is the activation function in the FFN, Φ(x) denotes the hidden representation input to
the output layer, and V = [v1, . . . ,vh] are the output-layer weights. Here, LN(·) denotes layer
normalization.

Comparing Equation (3) with the adaptive Nadaraya-Watson estimator in Equation (2), we see that
the FFN implicitly defines a parameterized FFN-style kernel function

K(x, {wi, bi}) = ϕ (⟨wi,Φ(x)⟩) , (4)

where the normalization is applied after the kernel function, the role of the labels yi is played by
the value vectors vi, and Φ is a transformation function. In this analogy, the normalization step in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Equation (2) corresponds to ℓ1-normalization LN (x) = x
∥x∥1

. This observation motivates a natural
generalization of replacing the normalization LN (·) in Nadaraya-Watson regression with a more
commonly used ℓ2-normalization in FFN. This perspective provides a mathematical interpretation of
the FFN as a special instantiation of parametric Nadaraya-Watson regression.

3.3 MIXTURE-OF-EXPERTS AS PARAMETRIC NADARAYA-WATSON REGRESSION

The MoE model combines multiple expert networks {Em(x)}Mm=1 through a router g(x):

MoE(x) =
M∑

m=1

gm(x)Em(x), (5)

where the router g(x) = [g1(x), . . . , gM (x)] admits Softmax outputs:

gm(x) =
exp(⟨wm,x⟩)∑M
j=1 exp(⟨wj ,x⟩)

.

The structure in Equation (5) closely resembles Nadaraya-Watson regression in Equation (2) that
the router weight gm(x) can be viewed as a kernel function K(x,wm), while each expert output
Em(x) corresponds to an observation ym being aggregated. Recall from the previous section that we
generalized the kernel function to the FFN-style form given in Equation (4). Under this perspective,
the MoE in Equation (5) can be interpreted and designed as a large network that aggregates expert
networks {Em(x)}Mm=1 via such an FFN-style kernel function given by:

gm(x) = ϕ (LN (⟨wm,Φ(x)⟩)) . (6)

3.4 KERN ROUTER FUNCTION

Let Φ(x) ∈ Rd denote the representation that feeds the router. We introduce a novel router function
defined in Equation (6), namely, the kernel-inspired router with normalization (KERN), that instan-
tiates the FFN-style router with a linear projection followed by (i) ℓ2-normalization, (ii) a ReLU
activation, and (iii) an optimal learnable global scaler:

s(x) = WsΦ(x) + bs,

s̄(x) =
s(x)

∥s(x)∥2 + ε
,

r(x) = ReLU(s̄(x)),

ĝ(x) = γ · r(x),

(7)

where Ws ∈ RM×d and bs ∈ RM are the router parameters, ε is a small constant that guards against
division by zero, and γ is a learnable scalar initialized to 1. The normalization step keeps the scale of
the logits invariant to the number of experts M , while the ReLU activation preserves sparsity without
resorting to exponential functions. We further discussed the effect of ReLU in Appendix J. During
inference and training, we retain only the top-k routed experts:

Tk(x) = TopKIndices(ĝ(x), k) , (8)
gm(x) = ĝm(x)1[m ∈ Tk(x)] , (9)

MoEKERN(x) =

M∑
m=1

gm(x)Em(x). (10)

Because KERN does not project the router outputs onto the probability simplex, we do not perform
an additional ℓ1 rescaling; the magnitude of gm(x) is instead controlled by the global scale γ and the
ℓ2 constraint. This simple construction matches the inductive biases of standard FFNs while avoiding
the gradient saturation issues of exponential routers.

Comparisons to existing router functions. From this viewpoint, the standard MoE with a Softmax
router corresponds to an FFN-style router where ℓ1-normalization is applied through LN(·) and the
exponential function serves as the activation. Interestingly, recent work has shown that replacing the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Softmax with a Sigmoid router yields improved performance. It also admits an FFN interpretation
that the router function reduces to a Sigmoid activation ϕ(·) without layer normalization. Hence, our
interpretation frames MoE routing as a general framework that encompasses the most widely adopted
router functions. However, under this formulation, the commonly used Softmax and Sigmoid routers
appear atypical when compared with standard FFN activations and layer normalization in deep
learning. This observation motivates us to explore and design the router function KERN, which is
more consistent with the classical FFN paradigm, as discussed in the next paragraph.

Practical setups for the FFN-style router function KERN. To better align with common practices
in deep learning, we propose adopting router functions that mirror typical FFN designs, namely
using a ReLU activation ϕ(·) combined with widely-adopted ℓ2-normalization LN(·). This choice
is motivated by the following observations. First, exponential-type activations are rarely used in
modern architectures, as they tend to be highly sensitive to input values, leading to rapid value
explosion and gradient vanishing. In contrast, ReLU-type activations, or even linear outputs without
nonlinearity, are far more common in practice, providing numerical stability and robustness during
training. Second, although all vector norms are mathematically equivalent in finite-dimensional
spaces, ℓ2-normalization remains the dominant choice in deep learning. Specifically, ℓ2-normalization
stabilizes the variance of vectors, ensuring scale consistency and stable computation regardless of
model size.

Advantages of the KERN router function. First, the gradient vanishing problem inherent in
Softmax and Sigmoid (exponential-type) router functions can be alleviated by adopting the proposed
FFN-style router (KERN) with appropriate activation functions. Prior studies have highlighted that
Softmax and Sigmoid activations often suffer from saturation, that small values push experts toward
near-inactivity, resulting in negligible gradient updates. Intuitively, if an expert stays at an almost-zero
routing weight, the vanishing gradient problem can trap it in this poor state, preventing meaningful
updates or improvements. In contrast, the proposed KERN reduces this risk. The gradients vanish
less severely, ensuring that even less active experts still receive updates, therefore, promoting better
expert utilization and training dynamics. Second, ℓ2-normalization in KERN preserves the variance
of the MoE output at a constant scale. Since experts are independently and properly initialized, we
may assume that the outputs of the M experts, {Em(x)}Mm=1, are independent and have bounded
norm (i.e., ∥Em(x)∥2 = O(1)). Under this assumption, the MoE with KERN at initialization
satisfies

E
[
∥MoEKERN(x)∥22

]
= E

∥∥∥∥∥
M∑

m=1

gm(x)Em(x)

∥∥∥∥∥
2

2


=

M∑
m=1

(gm(x))
2 E

[
∥Em(x)∥22

]
= O(1) ·

M∑
m=1

(gm(x))
2
= O(1).

The final equality holds for most commonly used activation functions ϕ (e.g., ReLU, LeakyReLU,
Tanh, GeLU) when applied within the proposed FFN-style router function, where KERN adopts
ReLU activation. This result demonstrates that ℓ2-normalization maintains the MoE output at
a constant scale, thereby ensuring stable network computations and training. Such stability is
consistent with the initialization principles commonly adopted in deep neural networks, e.g., Kaiming
initialization.

4 EXPERIMENT

Baseline. We compare the proposed KERN with the Dense model and MoE with other router
functions. To be specific, we evaluate KERN against a range of routers, including Softmax, Sigmoid,
and Tanh. For the MoE and Dense model, they have the same active parameters. Additionally, for
the MoE model, the ratio of active parameters and total parameters is 8, where there are 64 experts
in total and 8 active experts. We utilize more than 8 active experts, as recent works propose using a
larger number of active experts (Liu et al., 2024a; Team et al., 2025).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Datasets. Our analysis involves training language models on the Arxiv and Books3 datasets, which
are frequently used benchmarks for evaluating model performance (Press et al., 2022). Moreover, we
train the model on the large-scale dataset FinWeb-Edu (Penedo et al., 2024; Lozhkov et al., 2024)
and evaluate on downstream datasets, including ARC (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2020), ScIQ (Welbl et al., 2017), and WinoGrande (Sakaguchi et al., 2021)

Experiment settings. Initially, we compare KERN with other baselines at training lengths 512
and 1024, using decoder-only Transformers (Brown et al., 2020) with model size 125M, whose
configuration is shown in Appendix D. Subsequently, we evaluate the performance of larger model
sizes, specifically 350M and 2.7 B. Finally, we analyze routers and MoE models by various active
experts while holding the active ratio fixed, and we examine the effect of sparsity.

4.1 COMPARISONS WITH BASELINES

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

1.8

2.0

2.2

2.4

Va
lid

at
io

n
Lo

ss

Arxiv Dataset (Length 512)
Dense
Softmax
Sigmoid
Tanh
KERN

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

Books3 Dataset (Length 512)
Dense
Softmax
Sigmoid
Tanh
KERN

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

1.8

2.0

2.2

Va
lid

at
io

n
Lo

ss

Arxiv Dataset (Length 1024)
Dense
Softmax
Sigmoid
Tanh
KERN

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

Books3 Dataset (Length 1024)
Dense
Softmax
Sigmoid
Tanh
KERN

Figure 1: The performance of different methods on the Arxiv and Books3 dataset, with model
parameter 520M, activated parameter 125M, training lengths of 512 and 1024.

KERN achieves superior performance across different datasets. We validate our method on the
Arxiv and Books3 datasets in Figure 1. On Arxiv with training length 512, the Dense model (125M)
reaches losses of 2.3396 and 1.0925 at steps 5,000 and 50,000, respectively. The Softmax router
shows a higher initial loss (2.4586) but a better final loss (1.8781), suggesting a potentially slower
convergence rate but strong final performance. Our KERN method achieves the best results at both
checkpoints (2.3975 and 1.8291). A similar trend is observed on the Books3 dataset. The Dense
model records 4.1460 (step 5,000) and 3.4429 (step 50,000). The Softmax router achieves 4.3011 and
3.3882. Once again, KERN delivers the best performance, with losses of 4.2165 and 3.3080 at steps
5,000 and 50,000, respectively. Therefore, regardless of the training dataset, KERN consistently
achieves state-of-the-art performance.

KERN achieves superior performance across varying training lengths. We further evaluate
model performances among various router functions using a context length of 512 on the Books3
dataset. The baseline Dense model achieves a loss of 3.4429. Among these MoE routers, Sigmoid
(3.3206), Tanh (3.3388), and Softmax (3.3882) all outperform the Dense baseline. The proposed
KERN method achieves the best performance with a loss of 3.3080. When the context length is
increased to 1024, the performance ranking remains consistent: the Dense model attains a loss
of 3.2454, while Softmax, Tanh, and Sigmoid achieve 3.1714, 3.1224 and 3.1031, respectively.
Notably, KERN again achieves the lowest loss 3.0914, demonstrating its robustness across different
training lengths.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
Lo

ss

Books3 Dataset (Length 2048)
Dense
Softmax
Sigmoid
Tanh
KERN

Figure 2: The performance on training length 2048.

KERN achieves superior performance
with longer context lengths. The advan-
tage of KERN is further demonstrated at
a longer context length of 2048 in Figure
2. The baseline Dense model achieves
a loss of 3.1249. The Softmax router
shows an improvement with a loss of
3.0442, while Sigmoid (2.9635) and Tanh
(2.9868) perform better still. The proposed
KERN method achieves the best perfor-
mance overall, with a lowest loss of 2.9535.
These results confirm that KERN maintains its effectiveness and superiority as the training length
increases.

4.2 THE PERFORMANCE ON LARGE LANGUAGE MODELS

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.2

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

1.7B Parameter (Activated 350M, Length 512)
Dense
Softmax
Sigmoid
Tanh
KERN

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.2

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

6.9B Parameter (Activated 1.3B, Length 512)
Dense
Softmax
Sigmoid
Tanh
KERN

Figure 3: The performance of different methods on the Books3 dataset, with active model size 350M
and 1.3B.

The performance gap provided by KERN is maintained for large models. For Figure 8, while
increasing the active model size from 125M to 1.3B parameters reduces the loss for all baseline
methods, KERN consistently achieves the best performance at every scale. At 350M parameters, its
loss of 3.2188 is lower than that of the comparable Softmax (3.2709) and Dense (3.3500) models.
This lead is extended at the 1.3B scale, where KERN’s loss of 3.1241 significantly outperforms the
Softmax (3.1814) and Dense (3.2219) results. This demonstrates that KERN is not only effective
but is particularly advantageous for training larger-scale models.

4.3 THE EFFECT OF GRANULARITY

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

1.8

2.0

2.2

2.4

Va
lid

at
io

n
Lo

ss

Different Granularity (Arxiv)
Softmax-32-4-768
Softmax-64-8-384
Softmax-128-16-192
Softmax-256-32-96
KERN-32-4-768
KERN-64-8-384
KERN-128-16-192
KERN-256-32-96

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

Different Granularity (Books3)
Softmax-32-4-768
Softmax-64-8-384
Softmax-128-16-192
Softmax-256-32-96
KERN-32-4-768
KERN-64-8-384
KERN-128-16-192
KERN-256-32-96

Figure 4: The performance of different methods on the Arxiv and Books3 dataset, with different
active expert numbers and the same active parameter number. The Softmax− 64− 8− 384 suggests
that the router function is Softmax, and there are 64 experts, 8 active experts, and each expert’s
intermediate size is 384.

KERN consistently outperforms Softmax across expert counts. Figure 4 provides compelling
evidence for the practical superiority of KERN. When evaluated against the standard Softmax
baseline, our method achieves higher performance regardless of the number of experts activated

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

during inference—a parameter we varied from 4 to 32. This demonstrates the robustness of our
method irrespective of the specific capacity used during inference.

KERN achieves better performance than other routers with small granularity (e.g., more
experts, smaller expert size). As shown in Figure 7, with 256 experts, 8 active experts, and an
expert intermediate size is 96, the Softmax achieves 4.3139 loss at evaluation step 5K and 3.4150 loss
at evaluation step 50K. The Sigmoid and Tanh achieve 4.2924 loss and 4.2435 loss at the evaluation
step 5K, and Sigmoid and Tanh achieve 3.3302 loss and 3.3276 loss at the evaluation step 50K. The
KERN achieves the best performance 4.2294 loss at evaluation step 5K and 3.2962 loss at evaluation
step 50K. Therefore, KERN achieves better performance than other routers with small granularity.

4.4 THE EFFECT OF SPARSITY

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

1.8

2.0

2.2

2.4

Va
lid

at
io

n
Lo

ss

Different Sparsity Number (Arxiv)
Softmax-32-8-384
Softmax-64-8-384
Softmax-128-8-384
Softmax-256-8-384
KERN-32-8-384
KERN-64-8-384
KERN-128-8-384
KERN-256-8-384

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

Different Sparsity Number (Books3)
Softmax-32-8-384
Softmax-64-8-384
Softmax-128-8-384
Softmax-256-8-384
KERN-32-8-384
KERN-64-8-384
KERN-128-8-384
KERN-256-8-384

Figure 5: The performance of different methods on the Arxiv and Books3 dataset, with different total
expert numbers and the same active parameter number. The Softmax− 64− 8− 384 suggests that
the router function is Softmax, and there are 64 experts, 8 active experts, and each expert’s
intermediate size is 384.

KERN outperforms Softmax across all sparsity levels. As evidenced by Figure 5, KERN
achieves a lower loss than the Softmax baseline for every total number of experts tested (32 to 256)
on both the Books3 and Arxiv datasets. On Books3, KERN’s loss (3.3487, 3.3080, 3.2820, 3.2672)
is consistently superior to Softmax’s (3.3981, 3.3882, 3.3817, 3.3761). This trend holds on the Arxiv
dataset, where KERN’s results (1.8466, 1.8291, 1.8195, 1.8141) are consistently better than those of
Softmax (1.8835, 1.8781, 1.8738, 1.8754). This demonstrates that the performance gain of KERN
is robust to changes in model sparsity.

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

Large Sparsity Performance (Books3)
Dense
Softmax
Sigmoid
Tanh
KERN

Figure 6: The performance with 256 experts, 8 active
experts and each expert’s intermediate dimension is 384.

KERN achieves better performance
than other routers with large sparsity.
As shown in Figure 6, with 256 experts, 8
active experts, and an expert intermediate
size of 384, the Softmax achieves 4.3059
loss at evaluation step 5K and 3.3761 loss
at evaluation step 50K. The Sigmoid and
Tanh achieve 4.2924 loss and 4.2435 loss
at the evaluation step 5K, and Sigmoid and
Tanh achieve 3.2760 loss and 3.2972 loss
at the evaluation step 50K. The KERN
achieves the best performance 4.1926 loss
at evaluation step 5K and 3.2672 loss at evaluation step 50K. Therefore, KERN achieves better
performance than other routers with large sparsity.

4.5 THE PERFORMANCE ON LARGE-SCALE PRETRAIN DATASET

Downstream Evaluation. We evaluate performance on standard benchmarks, including ARC (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ScIQ (Welbl et al., 2017), and
WinoGrande (Sakaguchi et al., 2021), using the lm-evaluation-harness (Gao et al., 2024)
codebase. The evaluation metric is the accuracy. We train the model with 50K steps with training

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Main language modeling results against different methods. All models are trained on the
same subset of the FineWeb-Edu dataset (Penedo et al., 2024; Lozhkov et al., 2024) with the GPT-2
tokenizer.

Model ARC-E ARC-C Hellaswag PIQA ScIQ Winograde Avg

520M (Active 125M) params
Dense 47.35 20.48 31.59 66.21 73.60 51.85 48.51

Softmax 49.49 20.39 34.81 69.42 75.50 49.64 49.88
Tanh 51.60 21.59 35.90 69.91 76.90 53.28 51.53

Sigmoid 51.89 20.99 37.11 70.78 78.50 51.54 51.80
KERN 53.32 21.67 37.12 70.89 77.80 52.01 52.14

1.7B (Active 350M) params
Dense 51.26 22.10 35.07 70.13 77.60 50.12 51.05

Softmax 51.94 22.78 37.65 70.13 79.70 52.57 52.46
Tanh 55.51 23.21 40.30 72.03 81.60 52.41 54.18

Sigmoid 56.61 23.81 40.78 72.74 80.40 53.99 54.72
KERN 56.48 24.40 40.68 73.61 82.00 53.59 55.13

6.9B (Active 1.3B) params
Dense 58.59 24.15 42.36 72.85 82.90 55.80 56.11

Softmax 59.51 23.55 42.29 73.18 84.70 55.72 56.49
Tanh 61.20 26.79 45.01 73.29 85.20 56.75 58.04

Sigmoid 62.33 27.47 45.52 74.43 84.70 56.83 58.55
KERN 61.20 27.90 45.95 75.19 84.90 58.17 58.88

length 1024 and training tokens 50B. The model sizes are 520M (active 125M), 1.7B (active 350M),
and 6.9B (active 1.3B). We display the zero-shot evaluation results of models here in Tables 1.

With the same active parameter, the KERN is always better than the routers, from small model
size (e.g., 125M active) to larger model size (e.g., 1.3B active). At a 520M model size (125M
active), KERN achieves an average performance of 52.14, surpassing Dense (48.51), Softmax
(49.88), Tanh (51.53), and Sigmoid (51.80). With a 1.7B model size (350M active), it scores 55.13,
outperforming Dense (51.05), Softmax (52.46), Tanh (54.18), and Sigmoid (54.72). Similarly, at
6.9B (1.3B active), it reaches 58.88, exceeding Dense (56.11), Softmax (56.49), Tanh (58.04), and
Sigmoid (58.55). Therefore, KERN is always better than the routers, from small model size to larger
model size.

With the same active parameters, the performance gap between KERN and Softmax is com-
parable to that between Softmax and Dense model. For a 520M model (125M active), the
performance gap between KERN and Softmax is 2.26, compared to the 1.37 gap between Softmax
and Dense. With a 1.7B model (350M active), the KERN-Softmax gap widens to 2.67, while the
Softmax-Dense gap is 0.61. At the 6.9B scale (1.3B active), the KERN-Softmax gap remains
significant at 2.39, vastly exceeding the 0.38 gap between Softmax and Dense. The MoE model
achieves a significant performance gain over the Dense model. Since KERN achieves an even larger
gain at zero additional cost, it should be a critical component for model sparsity.

5 CONCLUSION

In general, the use of the Softmax function has been the de facto standard for generating router
scores in MoE models. In this work, we challenge this convention by recasting MoE routing through
the novel lens of the Nadaraya-Watson estimator. Motivated by this perspective, we introduce the
novel KERN router function for MoE, an FFN-style kernel function with ReLU activation and
ℓ2-normalization. We extensively validate the efficacy of these functions through comprehensive
experiments across varying model scales, sequence lengths, and, most significantly, in large-scale
pre-training followed by downstream task evaluation. Our empirical results demonstrate that these
simpler alternatives are not only viable but often match or exceed the performance of Softmax-based
routing. We believe this work opens a new direction for router design and anticipate that KERN will
serve as a strong baseline and a potential substitute for Softmax in future MoE architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for
routed language models. In International conference on machine learning, pp. 4057–4086. PMLR,
2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Damai Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. DeepSeekMoE: Towards ultimate expert specialization in mixture-of-experts
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1280–1297, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.70. URL https://aclanthology.org/2024.acl-long.
70/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models
with mixture-of-experts. In International conference on machine learning, pp. 5547–5569. PMLR,
2022.

10

https://aclanthology.org/N19-1300/
https://aclanthology.org/2024.acl-long.70/
https://aclanthology.org/2024.acl-long.70/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 2007.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Alston S Householder. A theory of steady-state activity in nerve-fiber networks: I. definitions and
preliminary lemmas. The bulletin of mathematical biophysics, 3(2):63–69, 1941.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Peng Jin, Jinfa Huang, Pengfei Xiong, Shangxuan Tian, Chang Liu, Xiangyang Ji, Li Yuan, and Jie
Chen. Video-text as game players: Hierarchical banzhaf interaction for cross-modal representation
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2472–2482, 2023.

Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified
visual representation empowers large language models with image and video understanding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13700–13710, 2024a.

Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. Moe++: Accelerating mixture-of-experts methods
with zero-computation experts. arXiv preprint arXiv:2410.07348, 2024b.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

11

https://zenodo.org/records/12608602

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReAding
comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel
(eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pp. 785–794, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
doi: 10.18653/v1/D17-1082. URL https://aclanthology.org/D17-1082/.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=qrwe7XHTmYb.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Yatian
Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models. arXiv
preprint arXiv:2401.15947, 2024a.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-LLaVA:
Learning united visual representation by alignment before projection. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 5971–5984, Miami, Florida, USA, November
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.342. URL
https://aclanthology.org/2024.emnlp-main.342/.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Dongyang Liu, Renrui Zhang, Longtian Qiu, Siyuan Huang, Weifeng Lin, Shitian Zhao, Shijie
Geng, Ziyi Lin, Peng Jin, Kaipeng Zhang, Wenqi Shao, Chao Xu, Conghui He, Junjun He,
Hao Shao, Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao. SPHINX-x: Scaling data and
parameters for a family of multi-modal large language models. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 32400–32420. PMLR, 21–27 Jul 2024b. URL
https://proceedings.mlr.press/v235/liu24cc.html.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892–34916, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 26296–26306, 2024c.

Zeyu Liu, Tim Dettmers, Xi Lin, Veselin Stoyanov, and Xian Li. Towards a unified view of
sparse feed-forward network in pretraining large language model. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 15038–15061, Singapore, December 2023b. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.930. URL https:
//aclanthology.org/2023.emnlp-main.930/.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai. meta. com/blog/llama-4-multimodal-intelligence/, checked on, 4(7):2025, 2025.

Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):
141–142, 1964.

12

https://aclanthology.org/D17-1082/
https://openreview.net/forum?id=qrwe7XHTmYb
https://aclanthology.org/2024.emnlp-main.342/
https://proceedings.mlr.press/v235/liu24cc.html
https://aclanthology.org/2023.emnlp-main.930/
https://aclanthology.org/2023.emnlp-main.930/
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huy Nguyen, Nhat Ho, and Alessandro Rinaldo. On least square estimation in softmax gating mixture
of experts. arXiv preprint arXiv:2402.02952, 2024a.

Huy Nguyen, Nhat Ho, and Alessandro Rinaldo. Sigmoid gating is more sample efficient than
softmax gating in mixture of experts. Advances in Neural Information Processing Systems, 37:
118357–118388, 2024b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=n6SCkn2QaG.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Joan Puigcerver, Carlos Riquelme Ruiz, Basil Mustafa, and Neil Houlsby. From sparse to soft
mixtures of experts. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=jxpsAj7ltE.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
advances in neural information processing systems, 34:17555–17566, 2021.

Andrew Rouditchenko, Saurabhchand Bhati, Edson Araujo, Samuel Thomas, Hilde Kuehne, Rogerio
Feris, and James Glass. Omni-r1: Do you really need audio to fine-tune your audio llm? arXiv
preprint arXiv:2505.09439, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
sense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
(eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 4463–4473, Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/D19-1454/.

13

https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=jxpsAj7ltE
https://aclanthology.org/D19-1454/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=B1ckMDqlg.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with
0.1 m dollars. arXiv preprint arXiv:2404.07413, 2024.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha, Sachin
Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang
Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh, Luke Zettlemoyer, Noah
Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an
open corpus of three trillion tokens for language model pretraining research. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 15725–15788, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.840.
URL https://aclanthology.org/2024.acl-long.840/.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Geoffrey S Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A,
pp. 359–372, 1964.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao
Zhang, Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques for
mixture-of-experts language models. arXiv preprint arXiv:2406.06563, 2024.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), Proceedings of the 3rd Workshop
on Noisy User-generated Text, pp. 94–106, Copenhagen, Denmark, September 2017. Association
for Computational Linguistics. doi: 10.18653/v1/W17-4413. URL https://aclanthology.
org/W17-4413/.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=09iOdaeOzp.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You.
Openmoe: An early effort on open mixture-of-experts language models. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
1YDeZU8Lt5.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

14

https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://aclanthology.org/2024.acl-long.840/
https://aclanthology.org/W17-4413/
https://aclanthology.org/W17-4413/
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=1YDeZU8Lt5
https://openreview.net/forum?id=1YDeZU8Lt5

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Dongchao Yang, Jinchuan Tian, Xu Tan, Rongjie Huang, Songxiang Liu, Xuankai Chang, Jiatong
Shi, Sheng Zhao, Jiang Bian, Xixin Wu, et al. Uniaudio: An audio foundation model toward
universal audio generation. arXiv preprint arXiv:2310.00704, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697–12706. PMLR, 2021.

Shu Zhong, Mingyu Xu, Tenglong Ao, and Guang Shi. Understanding transformer from the perspec-
tive of associative memory. arXiv preprint arXiv:2505.19488, 2025.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng. LLaMA-
MoE: Building mixture-of-experts from LLaMA with continual pre-training. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 15913–15923, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.890. URL
https://aclanthology.org/2024.emnlp-main.890/.

15

https://aclanthology.org/P19-1472/
https://aclanthology.org/2024.emnlp-main.890/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

This research work is fundamentally focused on the architectural and algorithmic enhancement of
the Mixture-of-Experts (MoE) model paradigm. Our primary contribution involves a novel integra-
tion of non-parametric kernel regression methods, specifically the Nadaraya-Watson estimator, to
re-formulate the gating mechanism traditionally governed by the Softmax function. This approach
replaces the standard Softmax-based probability distribution with a kernel-smoothed weighting
scheme based on the KERN between an input token and each expert’s representative vector. Conse-
quently, this research does not introduce any novel, domain-specific ethical claims or societal impacts
that diverge from the well-documented considerations already associated with large-scale language
models in general.

B REPRODUCIBILITY STATEMENT

A comprehensive elucidation of the proposed methodology is presented in Section 3, which details
the theoretical foundations and algorithmic structure of our approach. To ensure reproducibility and
facilitate further research, we have made our complete code implementation publicly available. This
code, which includes scripts for training, inference, and analysis, is comprehensively documented in
Appendix L. Furthermore, the complete set of hyperparameters, architectural details, and training
configurations for all models discussed in our experiments are provided in Appendix D.

C THE USAGE OF LLM

For this work, we mainly use the Large Language Model to aid or polish writing.

D MODEL CONFIGURATION

All experiments are conducted on 8 GPUs. The 125M and 350M model configuration is the following.

Table 2: Model Configurations.

125M 350M
Training sequence length 512 512

Batch size 32 × 8 32 × 8
Number of iterations 50k 50k

Dropout prob. 0.0 0.0
Attention dropout prob. 0.0 0.0

Attention head 12 16
Feature dimension 768 1024

Layer number 12 24
Optimizer Adam Adam

Optimizer parameter betas [0.9, 0.95] [0.9, 0.95]
Learning rate 6e− 4 3e− 4

Precision float16 float16
Total Expert Number 64 64

Active Expert Number 8 8

E TIME COST AND COMPUTATIONAL COST

Theoretically, the proposed method does not have additional cost. A central advantage of the
proposed gating mechanism is its computational parsimony. The core operation involves calculating
the L2-norm for each expert’s representation vector and for the input token’s projection. The primary
operation—division by the L2-norm—constitutes an element-wise operation. Therefore, when

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

analyzed from a theoretical perspective, the proposed router introduces no substantive additional
time cost compared to the conventional Softmax-based approach, making it an efficient drop-in
replacement.

F PERFORMANCE WITH SMALL GRANULARITY

5k 10K 15K 20K 25K 30K 35K 40K 45K 50K
Validation Step

3.4

3.6

3.8

4.0

4.2
Va

lid
at

io
n

Lo
ss

Small Granularity Performance
Dense
Softmax
Sigmoid
Tanh
KERN

Figure 7: The performance with 256 experts, 32 active experts and each expert’s intermediate
dimension is 96.

G THE TRAINING LOSS WITH DIFFERENT METHODS

0 10000 20000 30000 40000 50000
Training Step

3 × 100

4 × 100

5 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

Training Loss (Length 512, Books3)
Dense
Softmax
Sigmoid
Tanh
KERN

Figure 8: The performance of different methods on the Books3 dataset, with active model size 125M
and training length 512. There are 64 experts and 8 active experts.

The Dense model demonstrates a characteristically rapid initial learning phase, achieving a swift and
substantial reduction in loss during the early stages of training. This aggressive early convergence
suggests a highly efficient optimization landscape for simpler, parameter-dense architectures, allowing
them to quickly capitalize on low-hanging fruit within the dataset. However, this initial advantage
is not sustained over the long term. As the number of training steps increases, the Dense model’s
loss curve begins to exhibit signs of stagnation and ultimately plateaus at a higher value than its
MoE counterparts. This pattern indicates that while the Dense model is easier to converge to a
reasonable solution, it is ultimately constrained by its architectural limitations. The monolithic nature
of its parameters appears to create a lower performance ceiling, limiting its capacity to capture the
complex, nuanced patterns present in the data. In essence, it finds a good solution quickly but lacks
the expressive power to find a great one. In stark contrast, the MoE model, particularly the one
enhanced with the KERN technique, exhibits a profoundly different and more powerful learning
trajectory. While its initial loss reduction may be marginally less explosive than the Dense model’s,
it demonstrates remarkable consistency and resilience throughout the entire training process. The
KERN model does not merely converge; it continues to refine its performance, driving the loss to a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

significantly lower plateau. This sustained improvement underscores a superior capacity for learning
and generalization

H THE IMPORTANCE OF CONSIDERING ALL ROUTER LOGIT

0 10000 20000 30000 40000 50000
Training Step

0.08

0.06

0.04

0.02

0.00
Tr

ai
ni

ng
 L

os
s

Training Loss GAP (Length 512, Books3)

Loss(KERN-After)-Loss(KERN)

Figure 9: The performance of different methods on the Books3 dataset, with active model size 125M
and training length 512. KERN: use KERN before Top-K choice. KERN-After: use KERN after
Top-K choice. The result is the Loss(KERN-After)-Loss(KERN).

According to the caption in Figure 9, the result shown is the difference in loss (Loss(KERN-After) -
Loss(KERN)). Therefore, a positive value indicates that KERN has a lower loss and thus performs
better. Initially, the loss difference is negative, meaning KERN-After has a lower loss and performs
better in early training. As training progresses, the difference becomes positive, indicating that
KERN gradually achieves superior performance. This suggests that considering all router logits is
important for better final performance.

I THE EFFECT OF KERN INITIALIZATION

0 10000 20000 30000 40000 50000
Training Step

0.10

0.08

0.06

0.04

0.02

0.00

Tr
ai

ni
ng

 L
os

s

Training Loss GAP (Length 512, Books3)

Loss(KERN-Monte Carlo Initialization)-Loss(KERN)

Figure 10: The performance of different methods on the Books3 dataset, with active model size 125M
and training length 512. KERN: the initial scale is 1. KERN-Monte Carlo Initialization: the Monte
Carlo for the initialization, presented in Appendix L.

According to the caption in Figure 10, the result shown is the difference in loss (Loss(KERN-Monte
Carlo Initialization) - Loss(KERN)). Therefore, a positive value indicates that KERN has a lower
loss and thus performs better. Initially, the loss difference is negative, meaning KERN-Monte
Carlo Initialization has a lower loss and performs better in early training. As training progresses,
the difference becomes close to zero and slight positive, indicating that KERN gradually achieves
superior performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000 50000
Training Step

0.010

0.005

0.000

0.005

0.010

Tr
ai

ni
ng

 L
os

s

Training Loss GAP (Length 1024, Books3, 8 of 64 Active Experts)
Loss(KERN-without-ReLU)-Loss(KERN)

0 10000 20000 30000 40000 50000
Training Step

0.08

0.06

0.04

0.02

0.00

0.02

Tr
ai

ni
ng

 L
os

s

Training Loss GAP (Length 1024, Books3, 64 of 64 Active Experts)

Loss(KERN-without-ReLU)-Loss(KERN)

Figure 11: The performance of different methods on the Books3 dataset, with model parameter
520M.

J THE EFFECT OF RELU IN KERN

We compare the performance between KERN-without-ReLU and KERN in Figure 11. When the ac-
tive expert number is less than half of the total number, the KERN achieves comparable performance
with the KERN-without-ReLU, as the select router weights are usually positive. However, when the
active expert number is higher (such as active all experts), the KERN will achieve significantly better
performance than KERN-without-ReLU.

Table 3: The validation loss of different methods, with training length 1024 and Books3 dataset.

Model 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K

8 of 64 Active Expert
Softmax 4.0230 3.6848 3.5494 3.4658 3.3979 3.3447 3.2704 3.2168 3.2007 3.1714
Sigmoid 3.9648 3.6256 3.4915 3.4027 3.3347 3.2830 3.2033 3.1498 3.1327 3.1031

Tanh 3.9729 3.6457 3.5121 3.4281 3.3580 3.3034 3.2264 3.1708 3.1529 3.1224
KERN-without-ReLU 3.9398 3.6178 3.4827 3.3975 3.3278 3.2727 3.1946 3.1397 3.1214 3.0914

KERN 3.9391 3.6180 3.4842 3.3959 3.3281 3.2725 3.1954 3.1396 3.1227 3.0925

64 of 64 Active Expert
Softmax 3.9875 3.6551 3.5127 3.4252 3.3539 3.2972 3.2191 3.1641 3.1470 3.1161
Sigmoid 3.9944 3.6420 3.4991 3.4085 3.3363 3.2818 3.2035 3.1480 3.1299 3.1003

Tanh 4.0086 3.6694 3.5321 3.4489 3.3801 3.3280 3.2491 3.1910 3.1730 3.1408
KERN-withour-ReLU 3.9695 3.6467 3.5045 3.4200 3.3508 3.2945 3.2139 3.1579 3.1385 3.1075

KERN 3.9513 3.6170 3.4788 3.3885 3.3199 3.2652 3.1861 3.1290 3.1081 3.0780

When the active expert number is the same as the total expert, the KERN achieves better performance
than KERN-without-ReLU and all other methods. We compare the performance between KERN-
without-ReLU, KERN, and other methods with all experts being active in Table 3. The KERN
achieves the best performance when the expert activation ratio is relatively high, such as 64 of 64
active experts.

K PERFORMANCE WITH DIFFERENT SEEDS

Table 4: The validation loss with three random seeds, with training length 512 and Books3 dataset

Model 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K

Dense Mean 4.3863 4.1056 4.0123 3.9179 3.8443 3.7893 3.7138 3.6584 3.6299 3.6030
Variance 0.1699 0.1455 0.1121 0.1207 0.1175 0.1032 0.0930 0.1203 0.1003 0.1132

Softmax Mean 4.3143 3.9502 3.8470 3.7472 3.6687 3.6068 3.5228 3.4569 3.4197 3.3873
Variance 0.0094 0.0196 0.0083 0.0136 0.0106 0.0086 0.0290 0.0213 0.0140 0.0050

Sigmoid Mean 4.2605 3.9019 3.7964 3.6945 3.6153 3.5507 3.4645 3.3957 3.3571 3.3236
Variance 0.0060 0.0210 0.0078 0.0149 0.0131 0.0053 0.0277 0.0222 0.0108 0.0041

Tanh Mean 4.2596 3.9078 3.8077 3.7063 3.6267 3.5615 3.4751 3.4058 3.3682 3.3351
Variance 0.0049 0.0173 0.0099 0.0105 0.0094 0.0111 0.0302 0.0204 0.0163 0.0050

KERN Mean 4.2281 3.8825 3.7819 3.6823 3.6031 3.5385 3.4520 3.3828 3.3446 3.3112
Variance 0.0082 0.0194 0.0079 0.0131 0.0120 0.0085 0.0282 0.0211 0.0120 0.0041

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4 presents the performance comparison of five different model architectures (Dense, Softmax,
Sigmoid, Tanh, and KERN) across various training steps (from 5K to 50K) using three different
random seeds. The analysis reveals several key observations: All models demonstrate a consistent
pattern of performance improvement as training progresses from 5K to 50K steps. The loss values
decrease monotonically for all architectures, indicating successful learning convergence. The KERN
model consistently achieves the best performance across all training milestones, followed closely by
Sigmoid and Tanh architectures. The Dense model exhibits significantly higher variance compared
to other architectures, particularly in the early training stages (0.1699 variance at 5K steps). This
suggests that the Dense architecture is more sensitive to random seed initialization. In contrast, the
specialized activation functions (Softmax, Sigmoid, Tanh, and KERN) show much lower variance,
indicating more stable and consistent performance across different random seeds. At the final training
stage (50K steps), the KERN model achieves the best performance with a mean loss of 3.3112,
followed by Sigmoid (3.3236) and Tanh (3.3351). The Dense model performs the worst with a
mean loss of 3.6030, indicating that specialized activation functions provide substantial performance
benefits for this task. All models show the most rapid improvement during the initial training phases
(5K-20K steps), with the rate of improvement gradually slowing in later stages. This pattern suggests
that while additional training continues to provide benefits, the marginal gains diminish as the models
approach their performance limits on this dataset. The results demonstrate that careful selection of
activation functions and normalization techniques can significantly impact model stability and final
performance, with the KERN architecture emerging as the most robust and effective choice for this
particular task and dataset configuration.

L IMPLEMENTATION DETAILS

In this section, we present the implementation of the proposed KERN module in PyTorch.

from tqdm import tqdm
import numpy as np

import torch
import torch.nn as nn

def relu(x):
"""
Implements the Rectified Linear Unit (ReLU) activation function.

Args:
x: A NumPy array or a single numerical value.

Returns:
A NumPy array or a single numerical value with negative values replaced by zero.

"""
return np.maximum(0, x)

def monte_carlo_y_k(d, k, num_samples=100000):
samples = []

for _ in tqdm(range(num_samples)):
x = np.random.randn(d)
y = x / np.linalg.norm(x)
y = relu(y)
y_sorted = np.sort(y)[::-1]
y_k = y_sorted[:k]
samples.append(1 / (y_k**2).sum() ** 0.5)

return np.mean(samples)

class NormRouter(nn.Module):
def __init__(

self,
initial_method="one",
total_expert=64,
top_k=8,
eps=1e-8,

):
super().__init__()

if initial_method == "one":
self.scale_initial = 1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

elif initial_method == "monte_carlo":
self.scale_initial = monte_carlo_y_k(total_expert, top_k)

self.scale = nn.Parameter(torch.ones(1))
self.eps = eps
self.activation = nn.ReLU()

def forward(self, x):
norm_x = x.norm(2, dim=-1, keepdim=True)
x_normed = x / (norm_x + self.eps)
x_normed=self.activation(x_normed)

return self.scale * self.scale_initial * x_normed

21

	Introduction
	Related Work
	Method
	Nadaraya-Watson Regression
	FFN as Parametric Nadaraya-Watson Regression
	Mixture-of-Experts as Parametric Nadaraya-Watson Regression
	KERN Router Function

	Experiment
	Comparisons with Baselines
	The Performance on Large Language Models
	The Effect of Granularity
	The Effect of Sparsity
	The Performance on Large-Scale Pretrain Dataset

	Conclusion
	Ethics Statement
	Reproducibility Statement
	The Usage of LLM
	Model Configuration
	Time Cost and Computational Cost
	Performance with Small Granularity
	The Training Loss with Different Methods
	The Importance of Considering All Router Logit
	The Effect of KERN Initialization
	The Effect of ReLU in KERN
	Performance with Different Seeds
	Implementation Details

