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ABSTRACT

Mixture-of-Experts (MoE) has become a cornerstone in recent state-of-the-art large
language models (LLMs). Traditionally, MoE relies on Softmax as the router
score function to aggregate expert output, a designed choice that has persisted from
the earliest MoE models to modern LLMs, and is now widely regarded as standard
practice. However, the necessity of using Softmax to project router weights into
a probability simplex remains an unchallenged assumption rather than a princi-
pled design choice. In this work, we first revisit the classical Nadaraya–Watson
regression and observe that MoE shares the same mathematical formulation as
Nadaraya–Watson regression. Furthermore, we show that both feed-forward neural
network (FFN) and MoE can be interpreted as a special case of Nadaraya–Watson
regression, where the kernel function corresponds to the input neurons of the
output layer. Motivated by these insights, we propose the zero-additional-cost
Kernel Inspired Router with Normalization (KERN), an FFN-style router func-
tion, as an alternative to Softmax. We demonstrate that this router generalizes
both Sigmoid- and Softmax-based routers. Based on empirical observations and
established practices in FFN implementation, we recommend the use of ReLU
activation and ℓ2-normalization in KERN router function. Comprehensive
experiments in MoE and LLM validate the effectiveness of the proposed FFN-style
router function KERN.

1 INTRODUCTION

Recent years have witnessed remarkable progress in Large Language Models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Touvron et al., 2023), driven primarily by the exponential growth of
training data and model parameters. With the mixture of experts (MoE), there is great progress
in language modeling (Fedus et al., 2022; Puigcerver et al., 2024; Jiang et al., 2024; Meta, 2025;
Liu et al., 2024a; Team et al., 2025) and computer vision (Riquelme et al., 2021; Lin et al., 2024b).
The MoE architecture (Jacobs et al., 1991; Shazeer et al., 2017; Roller et al., 2021) has emerged as
an efficient alternative that allows parameter scaling while maintaining manageable computational
requirements. The successful integration of MoE with Transformer architectures (Vaswani et al.,
2017) has led to the development of exceptionally large yet efficient language models (Dai et al.,
2024; Jiang et al., 2024; Shen et al., 2024; Wei et al., 2024), demonstrating the tremendous potential
of this approach.

A critical and widely adopted design choice in modern MoE architectures is the use of the Softmax
function as the core routing mechanism. This approach, prominently featured in large-scale mod-
els (Lepikhin et al., 2021; Jiang et al., 2024; Liu et al., 2024a; Team et al., 2025), has effectively
become the de facto standard for state-of-the-art systems. The function Softmax naturally induces
a probability distribution on the available experts. This property ensures that the routing weights
for each token sum to one, promoting a balanced and interpretable allocation. However, despite
its prevalence and intuitive appeal, the theoretical justification for its exclusive dominance remains
somewhat unclear. Recently, Sigmoid has been proven to be a better router function (Nguyen et al.,
2024a), which is also investigated and adopted as an alternative router score function by DeepSeek
(Dai et al., 2024; Liu et al., 2024a). Their findings suggest that a Sigmoid-based routing function
performs effectively in MoE.
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In this work, we revisit the fundamental design principles of MoE routing by re-examining it through
the statistical lens of the Nadaraya-Watson regression estimator (Nadaraya, 1964; Watson, 1964).
We propose a novel interpretation: the router’s output for a given input token can be viewed as a set
of dynamic kernel weights assigned to each expert. Each expert, in turn, acts as a value function,
producing an aggregated output. This perspective is further reinforced by the architectural parallels
within the Transformer (Vaswani et al., 2017). We posit that the router’s computation is analogous to
the first linear layer of a standard feed-forward network (FFN), which projects the input into a higher-
dimensional space and can be interpreted as calculating a set of unnormalized scores or weights.
The experts subsequently play the role of the second FFN layer, which operates on these weighted
features to produce the final values (Geva et al., 2020). Inspired by structural similarities between
MoE, Nadaraya-Watson regression, and FFN, we introduce a new class of simple yet effective router
functions for MoE. Our primary proposed method defines an FFN-style router function, which
generalizes both Softmax- and Sigmoid-based router functions. To align well with the practical and
widely recognized FFN setups, we adopt the ReLU activation and a computationally lightweight
ℓ2-normalization in the router function. This modification ensures that the magnitude of the MoE
output is invariant with the number of experts, leading to more balanced expert participation and
improved training stability without enforcing a probabilistic simplex constraint. Our key contributions
are summarized as follows:

• A Novel Perspective: We reframe the MoE layer through the lens of the Nadaraya-Watson
regression, interpreting it as a generalized FFN, providing a more flexible and principled
view of expert aggregation.

• KERN Router Function: Motivated by the perspective of structure similarity, we pro-
pose Kernel Inspired Router with Normalization (KERN), a new family of simple yet
effective FFN-style router functions. By introducing widely adopted ReLU activation and
ℓ2-normalization, KERN promotes balanced expert utilization and stable training without
the constraints or computational profile of Softmax, and crucially, without introducing any
additional parameters or significant overhead.

• Extensive Empirical Validation: We conduct a comprehensive evaluation of KERN across
a wide range of experimental setups, including varying model scales, sequence lengths,
training dataset sizes and domains, and sparsity coefficients.

2 RELATED WORK

Large Language Models. With the inspiration of the language model scaling law (Kaplan et al.,
2020), LLMs (Touvron et al., 2023; Achiam et al., 2023; Jiang et al., 2024; Liu et al., 2024a; Yang
et al., 2025; Team et al., 2025; Comanici et al., 2025) have shown remarkable capabilities in a
wide range of open-ended tasks, marking significant progress toward achieving general artificial
intelligence. With the Transformer architecture (Vaswani et al., 2017), LLMs achieve significant
performance in various areas, including reasoning (Achiam et al., 2023; Liu et al., 2024a; Team
et al., 2025), language-visual model (Liu et al., 2023a; Jin et al., 2024a; Riquelme et al., 2021),
language-audio (Yang et al., 2023; Rouditchenko et al., 2025) and so on.

Mixture-of-Experts. The MoE (Jacobs et al., 1991) is proposed to reduce the active parameters and
aggregate the outputs of several models to reduce the training cost and empower expressiveness. With
the development of LLMs, the MoE becomes increasingly attractive and dominant in applications
of large-scale tasks (Achiam et al., 2023; Meta, 2025), where they must balance the load of experts
(Lewis et al., 2021; Roller et al., 2021; Dai et al., 2024). The MoE originally presents its ability in
the machine translation tasks (Shazeer et al., 2017). Later, Gshard (Lepikhin et al., 2021) proposes
a more efficient implementation on parallel devices. To further improve the efficiency, Switch
Transformer (Fedus et al., 2022) alternatively uses a single expert for one token prediction. Recently,
a zero-cost expert (Jin et al., 2024b) is introduced, where the expert does not involve computation via
skip connections. We notice that most of these works utilize Softmax as the router function.

Feed-Forward Network. FFN represents the standard neural network architecture, with origins
tracing back to the early development of deep learning. Numerous studies have examined different
activation functions and normalization techniques to enhance their expressiveness and training
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stability (Householder, 1941; Fukushima, 1980; 2007; Hendrycks & Gimpel, 2016). More recently,
research has shifted toward understanding the role of FFNs within Transformer models, where they
are often interpreted as a form of static memory, in contrast to the dynamic memory provided by
attention mechanisms. From this perspective, Transformers can be viewed as integrating both static
and dynamic memory, each contributing distinct modes of information processing (Liu et al., 2023b;
Zhong et al., 2025).

3 METHOD

In this section, we first introduce the well-known Nadaraya–Watson regression and then compare its
mathematical formulation with that of MoE. Motivated by their structural similarity, we reinterpret
the MoE as a large FNN. Inspired by the new perspective of interpretation and the well-recognized
FFN setups, we design an FFN-style router function of MoE, namely, KERN, which is equipped
with ReLU activation and ℓ2-normalization. We also analyze the relationships and advantages of
KERN, compared to widely recognized Softmax and Sigmoid router functions.

3.1 NADARAYA-WATSON REGRESSION

The Nadaraya-Watson estimator predicts the output y for an input x by assigning weights to training
samples {(xi,yi)}Ni=1 according to their similarity to x:

fNW(x) =

N∑
i=1

K(x,xi)∑N
j=1 K(x,xj)

yi (1)

where K(·, ·) is a kernel function measuring the similarity between two points. The most widely used
choice is the Gaussian kernel formulated as K(u,v) = exp(−∥u− v∥2/2σ2), where the bandwidth
σ (standard deviation of the Gaussian distribution) controls the smoothness of the estimator.

In practice, the bandwidth σ is typically unknown and treated as a hyperparameter. A more flexible
approach is to regard σ as a trainable parameter to be optimized. Equivalently, we define a param-
eterized kernel as K(u,v;w) = exp(−w∥u − v∥2/2), where w > 0 is a learnable weight. The
corresponding estimator becomes

fNW(x;w) =

N∑
i=1

K(x,xi;w)∑N
j=1 K(x,xj ;w)

yi. (2)

This parametric formulation allows the model to adapt the kernel bandwidth during training, improv-
ing flexibility and performance in practice. Moreover, the idea naturally extends beyond Gaussian
kernels that one can generalize to a learnable kernel of the form K(u,v;w), parameterized by a
vector w.

3.2 FFN AS PARAMETRIC NADARAYA-WATSON REGRESSION

The output layer of a standard FNN admits

FFN(x) =

h∑
i=1

ϕ (LN (⟨wi,Φ(x)⟩))︸ ︷︷ ︸
Adaptive kernel weight

· vi︸︷︷︸
Value

, (3)

where ϕ is the activation function in the FFN, Φ(x) denotes the hidden representation input to
the output layer, and V = [v1, . . . ,vh] are the output-layer weights. Here, LN(·) denotes layer
normalization.

Comparing Equation (3) with the adaptive Nadaraya-Watson estimator in Equation (2), we see that
the FFN implicitly defines a parameterized FFN-style kernel function

K(x, {wi, bi}) = ϕ (⟨wi,Φ(x)⟩) , (4)

where the normalization is applied after the kernel function, the role of the labels yi is played by
the value vectors vi, and Φ is a transformation function. In this analogy, the normalization step in

3
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Equation (2) corresponds to ℓ1-normalization LN (x) = x
∥x∥1

. This observation motivates a natural
generalization of replacing the normalization LN (·) in Nadaraya-Watson regression with a more
commonly used ℓ2-normalization in FFN. This perspective provides a mathematical interpretation of
the FFN as a special instantiation of parametric Nadaraya-Watson regression.

3.3 MIXTURE-OF-EXPERTS AS PARAMETRIC NADARAYA-WATSON REGRESSION

The MoE model combines multiple expert networks {Em(x)}Mm=1 through a router g(x):

MoE(x) =
M∑

m=1

gm(x)Em(x), (5)

where the router g(x) = [g1(x), . . . , gM (x)] admits Softmax outputs:

gm(x) =
exp(⟨wm,x⟩)∑M
j=1 exp(⟨wj ,x⟩)

.

The structure in Equation (5) closely resembles Nadaraya-Watson regression in Equation (2) that
the router weight gm(x) can be viewed as a kernel function K(x,wm), while each expert output
Em(x) corresponds to an observation ym being aggregated. Recall from the previous section that we
generalized the kernel function to the FFN-style form given in Equation (4). Under this perspective,
the MoE in Equation (5) can be interpreted and designed as a large network that aggregates expert
networks {Em(x)}Mm=1 via such an FFN-style kernel function given by:

gm(x) = ϕ (LN (⟨wm,Φ(x)⟩)) . (6)

3.4 KERN ROUTER FUNCTION

Let Φ(x) ∈ Rd denote the representation that feeds the router. We introduce a novel router function
defined in Equation (6), namely, the kernel-inspired router with normalization (KERN), that instan-
tiates the FFN-style router with a linear projection followed by (i) ℓ2-normalization, (ii) a ReLU
activation, and (iii) an optimal learnable global scaler:

s(x) = WsΦ(x) + bs,

s̄(x) =
s(x)

∥s(x)∥2 + ε
,

r(x) = ReLU(s̄(x)),

ĝ(x) = γ · r(x),

(7)

where Ws ∈ RM×d and bs ∈ RM are the router parameters, ε is a small constant that guards against
division by zero, and γ is a learnable scalar initialized to 1. The normalization step keeps the scale of
the logits invariant to the number of experts M , while the ReLU activation preserves sparsity without
resorting to exponential functions. We further discussed the effect of ReLU in Appendix J. During
inference and training, we retain only the top-k routed experts:

Tk(x) = TopKIndices(ĝ(x), k) , (8)
gm(x) = ĝm(x)1[m ∈ Tk(x)] , (9)

MoEKERN(x) =

M∑
m=1

gm(x)Em(x). (10)

Because KERN does not project the router outputs onto the probability simplex, we do not perform
an additional ℓ1 rescaling; the magnitude of gm(x) is instead controlled by the global scale γ and the
ℓ2 constraint. This simple construction matches the inductive biases of standard FFNs while avoiding
the gradient saturation issues of exponential routers.

Comparisons to existing router functions. From this viewpoint, the standard MoE with a Softmax
router corresponds to an FFN-style router where ℓ1-normalization is applied through LN(·) and the
exponential function serves as the activation. Interestingly, recent work has shown that replacing the
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Softmax with a Sigmoid router yields improved performance. It also admits an FFN interpretation
that the router function reduces to a Sigmoid activation ϕ(·) without layer normalization. Hence, our
interpretation frames MoE routing as a general framework that encompasses the most widely adopted
router functions. However, under this formulation, the commonly used Softmax and Sigmoid routers
appear atypical when compared with standard FFN activations and layer normalization in deep
learning. This observation motivates us to explore and design the router function KERN, which is
more consistent with the classical FFN paradigm, as discussed in the next paragraph.

Practical setups for the FFN-style router function KERN. To better align with common practices
in deep learning, we propose adopting router functions that mirror typical FFN designs, namely
using a ReLU activation ϕ(·) combined with widely-adopted ℓ2-normalization LN(·). This choice
is motivated by the following observations. First, exponential-type activations are rarely used in
modern architectures, as they tend to be highly sensitive to input values, leading to rapid value
explosion and gradient vanishing. In contrast, ReLU-type activations, or even linear outputs without
nonlinearity, are far more common in practice, providing numerical stability and robustness during
training. Second, although all vector norms are mathematically equivalent in finite-dimensional
spaces, ℓ2-normalization remains the dominant choice in deep learning. Specifically, ℓ2-normalization
stabilizes the variance of vectors, ensuring scale consistency and stable computation regardless of
model size.

Advantages of the KERN router function. First, the gradient vanishing problem inherent in
Softmax and Sigmoid (exponential-type) router functions can be alleviated by adopting the proposed
FFN-style router (KERN) with appropriate activation functions. Prior studies have highlighted that
Softmax and Sigmoid activations often suffer from saturation, that small values push experts toward
near-inactivity, resulting in negligible gradient updates. Intuitively, if an expert stays at an almost-zero
routing weight, the vanishing gradient problem can trap it in this poor state, preventing meaningful
updates or improvements. In contrast, the proposed KERN reduces this risk. The gradients vanish
less severely, ensuring that even less active experts still receive updates, therefore, promoting better
expert utilization and training dynamics. Second, ℓ2-normalization in KERN preserves the variance
of the MoE output at a constant scale. Since experts are independently and properly initialized, we
may assume that the outputs of the M experts, {Em(x)}Mm=1, are independent and have bounded
norm (i.e., ∥Em(x)∥2 = O(1)). Under this assumption, the MoE with KERN at initialization
satisfies

E
[
∥MoEKERN(x)∥22

]
= E

∥∥∥∥∥
M∑

m=1

gm(x)Em(x)

∥∥∥∥∥
2

2


=

M∑
m=1

(gm(x))
2 E

[
∥Em(x)∥22

]
= O(1) ·

M∑
m=1

(gm(x))
2
= O(1).

The final equality holds for most commonly used activation functions ϕ (e.g., ReLU, LeakyReLU,
Tanh, GeLU) when applied within the proposed FFN-style router function, where KERN adopts
ReLU activation. This result demonstrates that ℓ2-normalization maintains the MoE output at
a constant scale, thereby ensuring stable network computations and training. Such stability is
consistent with the initialization principles commonly adopted in deep neural networks, e.g., Kaiming
initialization.

4 EXPERIMENT

Baseline. We compare the proposed KERN with the Dense model and MoE with other router
functions. To be specific, we evaluate KERN against a range of routers, including Softmax, Sigmoid,
and Tanh. For the MoE and Dense model, they have the same active parameters. Additionally, for
the MoE model, the ratio of active parameters and total parameters is 8, where there are 64 experts
in total and 8 active experts. We utilize more than 8 active experts, as recent works propose using a
larger number of active experts (Liu et al., 2024a; Team et al., 2025).
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Datasets. Our analysis involves training language models on the Arxiv and Books3 datasets, which
are frequently used benchmarks for evaluating model performance (Press et al., 2022). Moreover, we
train the model on the large-scale dataset FinWeb-Edu (Penedo et al., 2024; Lozhkov et al., 2024)
and evaluate on downstream datasets, including ARC (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2020), ScIQ (Welbl et al., 2017), and WinoGrande (Sakaguchi et al., 2021)

Experiment settings. Initially, we compare KERN with other baselines at training lengths 512
and 1024, using decoder-only Transformers (Brown et al., 2020) with model size 125M, whose
configuration is shown in Appendix D. Subsequently, we evaluate the performance of larger model
sizes, specifically 350M and 2.7 B. Finally, we analyze routers and MoE models by various active
experts while holding the active ratio fixed, and we examine the effect of sparsity.

4.1 COMPARISONS WITH BASELINES
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Figure 1: The performance of different methods on the Arxiv and Books3 dataset, with model
parameter 520M, activated parameter 125M, training lengths of 512 and 1024.

KERN achieves superior performance across different datasets. We validate our method on the
Arxiv and Books3 datasets in Figure 1. On Arxiv with training length 512, the Dense model (125M)
reaches losses of 2.3396 and 1.0925 at steps 5,000 and 50,000, respectively. The Softmax router
shows a higher initial loss (2.4586) but a better final loss (1.8781), suggesting a potentially slower
convergence rate but strong final performance. Our KERN method achieves the best results at both
checkpoints (2.3975 and 1.8291). A similar trend is observed on the Books3 dataset. The Dense
model records 4.1460 (step 5,000) and 3.4429 (step 50,000). The Softmax router achieves 4.3011 and
3.3882. Once again, KERN delivers the best performance, with losses of 4.2165 and 3.3080 at steps
5,000 and 50,000, respectively. Therefore, regardless of the training dataset, KERN consistently
achieves state-of-the-art performance.

KERN achieves superior performance across varying training lengths. We further evaluate
model performances among various router functions using a context length of 512 on the Books3
dataset. The baseline Dense model achieves a loss of 3.4429. Among these MoE routers, Sigmoid
(3.3206), Tanh (3.3388), and Softmax (3.3882) all outperform the Dense baseline. The proposed
KERN method achieves the best performance with a loss of 3.3080. When the context length is
increased to 1024, the performance ranking remains consistent: the Dense model attains a loss
of 3.2454, while Softmax, Tanh, and Sigmoid achieve 3.1714, 3.1224 and 3.1031, respectively.
Notably, KERN again achieves the lowest loss 3.0914, demonstrating its robustness across different
training lengths.
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Figure 2: The performance on training length 2048.

KERN achieves superior performance
with longer context lengths. The advan-
tage of KERN is further demonstrated at
a longer context length of 2048 in Figure
2. The baseline Dense model achieves
a loss of 3.1249. The Softmax router
shows an improvement with a loss of
3.0442, while Sigmoid (2.9635) and Tanh
(2.9868) perform better still. The proposed
KERN method achieves the best perfor-
mance overall, with a lowest loss of 2.9535.
These results confirm that KERN maintains its effectiveness and superiority as the training length
increases.

4.2 THE PERFORMANCE ON LARGE LANGUAGE MODELS
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Figure 3: The performance of different methods on the Books3 dataset, with active model size 350M
and 1.3B.

The performance gap provided by KERN is maintained for large models. For Figure 8, while
increasing the active model size from 125M to 1.3B parameters reduces the loss for all baseline
methods, KERN consistently achieves the best performance at every scale. At 350M parameters, its
loss of 3.2188 is lower than that of the comparable Softmax (3.2709) and Dense (3.3500) models.
This lead is extended at the 1.3B scale, where KERN’s loss of 3.1241 significantly outperforms the
Softmax (3.1814) and Dense (3.2219) results. This demonstrates that KERN is not only effective
but is particularly advantageous for training larger-scale models.

4.3 THE EFFECT OF GRANULARITY
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Figure 4: The performance of different methods on the Arxiv and Books3 dataset, with different
active expert numbers and the same active parameter number. The Softmax− 64− 8− 384 suggests
that the router function is Softmax, and there are 64 experts, 8 active experts, and each expert’s
intermediate size is 384.

KERN consistently outperforms Softmax across expert counts. Figure 4 provides compelling
evidence for the practical superiority of KERN. When evaluated against the standard Softmax
baseline, our method achieves higher performance regardless of the number of experts activated
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during inference—a parameter we varied from 4 to 32. This demonstrates the robustness of our
method irrespective of the specific capacity used during inference.

KERN achieves better performance than other routers with small granularity (e.g., more
experts, smaller expert size). As shown in Figure 7, with 256 experts, 8 active experts, and an
expert intermediate size is 96, the Softmax achieves 4.3139 loss at evaluation step 5K and 3.4150 loss
at evaluation step 50K. The Sigmoid and Tanh achieve 4.2924 loss and 4.2435 loss at the evaluation
step 5K, and Sigmoid and Tanh achieve 3.3302 loss and 3.3276 loss at the evaluation step 50K. The
KERN achieves the best performance 4.2294 loss at evaluation step 5K and 3.2962 loss at evaluation
step 50K. Therefore, KERN achieves better performance than other routers with small granularity.

4.4 THE EFFECT OF SPARSITY
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Figure 5: The performance of different methods on the Arxiv and Books3 dataset, with different total
expert numbers and the same active parameter number. The Softmax− 64− 8− 384 suggests that
the router function is Softmax, and there are 64 experts, 8 active experts, and each expert’s
intermediate size is 384.

KERN outperforms Softmax across all sparsity levels. As evidenced by Figure 5, KERN
achieves a lower loss than the Softmax baseline for every total number of experts tested (32 to 256)
on both the Books3 and Arxiv datasets. On Books3, KERN’s loss (3.3487, 3.3080, 3.2820, 3.2672)
is consistently superior to Softmax’s (3.3981, 3.3882, 3.3817, 3.3761). This trend holds on the Arxiv
dataset, where KERN’s results (1.8466, 1.8291, 1.8195, 1.8141) are consistently better than those of
Softmax (1.8835, 1.8781, 1.8738, 1.8754). This demonstrates that the performance gain of KERN
is robust to changes in model sparsity.
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Figure 6: The performance with 256 experts, 8 active
experts and each expert’s intermediate dimension is 384.

KERN achieves better performance
than other routers with large sparsity.
As shown in Figure 6, with 256 experts, 8
active experts, and an expert intermediate
size of 384, the Softmax achieves 4.3059
loss at evaluation step 5K and 3.3761 loss
at evaluation step 50K. The Sigmoid and
Tanh achieve 4.2924 loss and 4.2435 loss
at the evaluation step 5K, and Sigmoid and
Tanh achieve 3.2760 loss and 3.2972 loss
at the evaluation step 50K. The KERN
achieves the best performance 4.1926 loss
at evaluation step 5K and 3.2672 loss at evaluation step 50K. Therefore, KERN achieves better
performance than other routers with large sparsity.

4.5 THE PERFORMANCE ON LARGE-SCALE PRETRAIN DATASET

Downstream Evaluation. We evaluate performance on standard benchmarks, including ARC (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ScIQ (Welbl et al., 2017), and
WinoGrande (Sakaguchi et al., 2021), using the lm-evaluation-harness (Gao et al., 2024)
codebase. The evaluation metric is the accuracy. We train the model with 50K steps with training
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Table 1: Main language modeling results against different methods. All models are trained on the
same subset of the FineWeb-Edu dataset (Penedo et al., 2024; Lozhkov et al., 2024) with the GPT-2
tokenizer.

Model ARC-E ARC-C Hellaswag PIQA ScIQ Winograde Avg

520M (Active 125M) params
Dense 47.35 20.48 31.59 66.21 73.60 51.85 48.51

Softmax 49.49 20.39 34.81 69.42 75.50 49.64 49.88
Tanh 51.60 21.59 35.90 69.91 76.90 53.28 51.53

Sigmoid 51.89 20.99 37.11 70.78 78.50 51.54 51.80
KERN 53.32 21.67 37.12 70.89 77.80 52.01 52.14

1.7B (Active 350M) params
Dense 51.26 22.10 35.07 70.13 77.60 50.12 51.05

Softmax 51.94 22.78 37.65 70.13 79.70 52.57 52.46
Tanh 55.51 23.21 40.30 72.03 81.60 52.41 54.18

Sigmoid 56.61 23.81 40.78 72.74 80.40 53.99 54.72
KERN 56.48 24.40 40.68 73.61 82.00 53.59 55.13

6.9B (Active 1.3B) params
Dense 58.59 24.15 42.36 72.85 82.90 55.80 56.11

Softmax 59.51 23.55 42.29 73.18 84.70 55.72 56.49
Tanh 61.20 26.79 45.01 73.29 85.20 56.75 58.04

Sigmoid 62.33 27.47 45.52 74.43 84.70 56.83 58.55
KERN 61.20 27.90 45.95 75.19 84.90 58.17 58.88

length 1024 and training tokens 50B. The model sizes are 520M (active 125M), 1.7B (active 350M),
and 6.9B (active 1.3B). We display the zero-shot evaluation results of models here in Tables 1.

With the same active parameter, the KERN is always better than the routers, from small model
size (e.g., 125M active) to larger model size (e.g., 1.3B active). At a 520M model size (125M
active), KERN achieves an average performance of 52.14, surpassing Dense (48.51), Softmax
(49.88), Tanh (51.53), and Sigmoid (51.80). With a 1.7B model size (350M active), it scores 55.13,
outperforming Dense (51.05), Softmax (52.46), Tanh (54.18), and Sigmoid (54.72). Similarly, at
6.9B (1.3B active), it reaches 58.88, exceeding Dense (56.11), Softmax (56.49), Tanh (58.04), and
Sigmoid (58.55). Therefore, KERN is always better than the routers, from small model size to larger
model size.

With the same active parameters, the performance gap between KERN and Softmax is com-
parable to that between Softmax and Dense model. For a 520M model (125M active), the
performance gap between KERN and Softmax is 2.26, compared to the 1.37 gap between Softmax
and Dense. With a 1.7B model (350M active), the KERN-Softmax gap widens to 2.67, while the
Softmax-Dense gap is 0.61. At the 6.9B scale (1.3B active), the KERN-Softmax gap remains
significant at 2.39, vastly exceeding the 0.38 gap between Softmax and Dense. The MoE model
achieves a significant performance gain over the Dense model. Since KERN achieves an even larger
gain at zero additional cost, it should be a critical component for model sparsity.

5 CONCLUSION

In general, the use of the Softmax function has been the de facto standard for generating router
scores in MoE models. In this work, we challenge this convention by recasting MoE routing through
the novel lens of the Nadaraya-Watson estimator. Motivated by this perspective, we introduce the
novel KERN router function for MoE, an FFN-style kernel function with ReLU activation and
ℓ2-normalization. We extensively validate the efficacy of these functions through comprehensive
experiments across varying model scales, sequence lengths, and, most significantly, in large-scale
pre-training followed by downstream task evaluation. Our empirical results demonstrate that these
simpler alternatives are not only viable but often match or exceed the performance of Softmax-based
routing. We believe this work opens a new direction for router design and anticipate that KERN will
serve as a strong baseline and a potential substitute for Softmax in future MoE architectures.
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pp. 359–372, 1964.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao
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A ETHICS STATEMENT

This research work is fundamentally focused on the architectural and algorithmic enhancement of
the Mixture-of-Experts (MoE) model paradigm. Our primary contribution involves a novel integra-
tion of non-parametric kernel regression methods, specifically the Nadaraya-Watson estimator, to
re-formulate the gating mechanism traditionally governed by the Softmax function. This approach
replaces the standard Softmax-based probability distribution with a kernel-smoothed weighting
scheme based on the KERN between an input token and each expert’s representative vector. Conse-
quently, this research does not introduce any novel, domain-specific ethical claims or societal impacts
that diverge from the well-documented considerations already associated with large-scale language
models in general.

B REPRODUCIBILITY STATEMENT

A comprehensive elucidation of the proposed methodology is presented in Section 3, which details
the theoretical foundations and algorithmic structure of our approach. To ensure reproducibility and
facilitate further research, we have made our complete code implementation publicly available. This
code, which includes scripts for training, inference, and analysis, is comprehensively documented in
Appendix L. Furthermore, the complete set of hyperparameters, architectural details, and training
configurations for all models discussed in our experiments are provided in Appendix D.

C THE USAGE OF LLM

For this work, we mainly use the Large Language Model to aid or polish writing.

D MODEL CONFIGURATION

All experiments are conducted on 8 GPUs. The 125M and 350M model configuration is the following.

Table 2: Model Configurations.

125M 350M
Training sequence length 512 512

Batch size 32 × 8 32 × 8
Number of iterations 50k 50k

Dropout prob. 0.0 0.0
Attention dropout prob. 0.0 0.0

Attention head 12 16
Feature dimension 768 1024

Layer number 12 24
Optimizer Adam Adam

Optimizer parameter betas [0.9, 0.95] [0.9, 0.95]
Learning rate 6e− 4 3e− 4

Precision float16 float16
Total Expert Number 64 64

Active Expert Number 8 8

E TIME COST AND COMPUTATIONAL COST

Theoretically, the proposed method does not have additional cost. A central advantage of the
proposed gating mechanism is its computational parsimony. The core operation involves calculating
the L2-norm for each expert’s representation vector and for the input token’s projection. The primary
operation—division by the L2-norm—constitutes an element-wise operation. Therefore, when
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analyzed from a theoretical perspective, the proposed router introduces no substantive additional
time cost compared to the conventional Softmax-based approach, making it an efficient drop-in
replacement.

F PERFORMANCE WITH SMALL GRANULARITY
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Figure 7: The performance with 256 experts, 32 active experts and each expert’s intermediate
dimension is 96.

G THE TRAINING LOSS WITH DIFFERENT METHODS
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Figure 8: The performance of different methods on the Books3 dataset, with active model size 125M
and training length 512. There are 64 experts and 8 active experts.

The Dense model demonstrates a characteristically rapid initial learning phase, achieving a swift and
substantial reduction in loss during the early stages of training. This aggressive early convergence
suggests a highly efficient optimization landscape for simpler, parameter-dense architectures, allowing
them to quickly capitalize on low-hanging fruit within the dataset. However, this initial advantage
is not sustained over the long term. As the number of training steps increases, the Dense model’s
loss curve begins to exhibit signs of stagnation and ultimately plateaus at a higher value than its
MoE counterparts. This pattern indicates that while the Dense model is easier to converge to a
reasonable solution, it is ultimately constrained by its architectural limitations. The monolithic nature
of its parameters appears to create a lower performance ceiling, limiting its capacity to capture the
complex, nuanced patterns present in the data. In essence, it finds a good solution quickly but lacks
the expressive power to find a great one. In stark contrast, the MoE model, particularly the one
enhanced with the KERN technique, exhibits a profoundly different and more powerful learning
trajectory. While its initial loss reduction may be marginally less explosive than the Dense model’s,
it demonstrates remarkable consistency and resilience throughout the entire training process. The
KERN model does not merely converge; it continues to refine its performance, driving the loss to a
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significantly lower plateau. This sustained improvement underscores a superior capacity for learning
and generalization

H THE IMPORTANCE OF CONSIDERING ALL ROUTER LOGIT
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Figure 9: The performance of different methods on the Books3 dataset, with active model size 125M
and training length 512. KERN: use KERN before Top-K choice. KERN-After: use KERN after
Top-K choice. The result is the Loss(KERN-After)-Loss(KERN).

According to the caption in Figure 9, the result shown is the difference in loss (Loss(KERN-After) -
Loss(KERN)). Therefore, a positive value indicates that KERN has a lower loss and thus performs
better. Initially, the loss difference is negative, meaning KERN-After has a lower loss and performs
better in early training. As training progresses, the difference becomes positive, indicating that
KERN gradually achieves superior performance. This suggests that considering all router logits is
important for better final performance.

I THE EFFECT OF KERN INITIALIZATION
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Figure 10: The performance of different methods on the Books3 dataset, with active model size 125M
and training length 512. KERN: the initial scale is 1. KERN-Monte Carlo Initialization: the Monte
Carlo for the initialization, presented in Appendix L.

According to the caption in Figure 10, the result shown is the difference in loss (Loss(KERN-Monte
Carlo Initialization) - Loss(KERN)). Therefore, a positive value indicates that KERN has a lower
loss and thus performs better. Initially, the loss difference is negative, meaning KERN-Monte
Carlo Initialization has a lower loss and performs better in early training. As training progresses,
the difference becomes close to zero and slight positive, indicating that KERN gradually achieves
superior performance.
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Figure 11: The performance of different methods on the Books3 dataset, with model parameter
520M.

J THE EFFECT OF RELU IN KERN

We compare the performance between KERN-without-ReLU and KERN in Figure 11. When the ac-
tive expert number is less than half of the total number, the KERN achieves comparable performance
with the KERN-without-ReLU, as the select router weights are usually positive. However, when the
active expert number is higher (such as active all experts), the KERN will achieve significantly better
performance than KERN-without-ReLU.

Table 3: The validation loss of different methods, with training length 1024 and Books3 dataset.

Model 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K

8 of 64 Active Expert
Softmax 4.0230 3.6848 3.5494 3.4658 3.3979 3.3447 3.2704 3.2168 3.2007 3.1714
Sigmoid 3.9648 3.6256 3.4915 3.4027 3.3347 3.2830 3.2033 3.1498 3.1327 3.1031

Tanh 3.9729 3.6457 3.5121 3.4281 3.3580 3.3034 3.2264 3.1708 3.1529 3.1224
KERN-without-ReLU 3.9398 3.6178 3.4827 3.3975 3.3278 3.2727 3.1946 3.1397 3.1214 3.0914

KERN 3.9391 3.6180 3.4842 3.3959 3.3281 3.2725 3.1954 3.1396 3.1227 3.0925

64 of 64 Active Expert
Softmax 3.9875 3.6551 3.5127 3.4252 3.3539 3.2972 3.2191 3.1641 3.1470 3.1161
Sigmoid 3.9944 3.6420 3.4991 3.4085 3.3363 3.2818 3.2035 3.1480 3.1299 3.1003

Tanh 4.0086 3.6694 3.5321 3.4489 3.3801 3.3280 3.2491 3.1910 3.1730 3.1408
KERN-withour-ReLU 3.9695 3.6467 3.5045 3.4200 3.3508 3.2945 3.2139 3.1579 3.1385 3.1075

KERN 3.9513 3.6170 3.4788 3.3885 3.3199 3.2652 3.1861 3.1290 3.1081 3.0780

When the active expert number is the same as the total expert, the KERN achieves better performance
than KERN-without-ReLU and all other methods. We compare the performance between KERN-
without-ReLU, KERN, and other methods with all experts being active in Table 3. The KERN
achieves the best performance when the expert activation ratio is relatively high, such as 64 of 64
active experts.

K PERFORMANCE WITH DIFFERENT SEEDS

Table 4: The validation loss with three random seeds, with training length 512 and Books3 dataset

Model 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K

Dense Mean 4.3863 4.1056 4.0123 3.9179 3.8443 3.7893 3.7138 3.6584 3.6299 3.6030
Variance 0.1699 0.1455 0.1121 0.1207 0.1175 0.1032 0.0930 0.1203 0.1003 0.1132

Softmax Mean 4.3143 3.9502 3.8470 3.7472 3.6687 3.6068 3.5228 3.4569 3.4197 3.3873
Variance 0.0094 0.0196 0.0083 0.0136 0.0106 0.0086 0.0290 0.0213 0.0140 0.0050

Sigmoid Mean 4.2605 3.9019 3.7964 3.6945 3.6153 3.5507 3.4645 3.3957 3.3571 3.3236
Variance 0.0060 0.0210 0.0078 0.0149 0.0131 0.0053 0.0277 0.0222 0.0108 0.0041

Tanh Mean 4.2596 3.9078 3.8077 3.7063 3.6267 3.5615 3.4751 3.4058 3.3682 3.3351
Variance 0.0049 0.0173 0.0099 0.0105 0.0094 0.0111 0.0302 0.0204 0.0163 0.0050

KERN Mean 4.2281 3.8825 3.7819 3.6823 3.6031 3.5385 3.4520 3.3828 3.3446 3.3112
Variance 0.0082 0.0194 0.0079 0.0131 0.0120 0.0085 0.0282 0.0211 0.0120 0.0041
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Table 4 presents the performance comparison of five different model architectures (Dense, Softmax,
Sigmoid, Tanh, and KERN) across various training steps (from 5K to 50K) using three different
random seeds. The analysis reveals several key observations: All models demonstrate a consistent
pattern of performance improvement as training progresses from 5K to 50K steps. The loss values
decrease monotonically for all architectures, indicating successful learning convergence. The KERN
model consistently achieves the best performance across all training milestones, followed closely by
Sigmoid and Tanh architectures. The Dense model exhibits significantly higher variance compared
to other architectures, particularly in the early training stages (0.1699 variance at 5K steps). This
suggests that the Dense architecture is more sensitive to random seed initialization. In contrast, the
specialized activation functions (Softmax, Sigmoid, Tanh, and KERN) show much lower variance,
indicating more stable and consistent performance across different random seeds. At the final training
stage (50K steps), the KERN model achieves the best performance with a mean loss of 3.3112,
followed by Sigmoid (3.3236) and Tanh (3.3351). The Dense model performs the worst with a
mean loss of 3.6030, indicating that specialized activation functions provide substantial performance
benefits for this task. All models show the most rapid improvement during the initial training phases
(5K-20K steps), with the rate of improvement gradually slowing in later stages. This pattern suggests
that while additional training continues to provide benefits, the marginal gains diminish as the models
approach their performance limits on this dataset. The results demonstrate that careful selection of
activation functions and normalization techniques can significantly impact model stability and final
performance, with the KERN architecture emerging as the most robust and effective choice for this
particular task and dataset configuration.

L IMPLEMENTATION DETAILS

In this section, we present the implementation of the proposed KERN module in PyTorch.

from tqdm import tqdm
import numpy as np

import torch
import torch.nn as nn

def relu(x):
"""
Implements the Rectified Linear Unit (ReLU) activation function.

Args:
x: A NumPy array or a single numerical value.

Returns:
A NumPy array or a single numerical value with negative values replaced by zero.

"""
return np.maximum(0, x)

def monte_carlo_y_k(d, k, num_samples=100000):
samples = []

for _ in tqdm(range(num_samples)):
x = np.random.randn(d)
y = x / np.linalg.norm(x)
y = relu(y)
y_sorted = np.sort(y)[::-1]
y_k = y_sorted[:k]
samples.append(1 / (y_k**2).sum() ** 0.5)

return np.mean(samples)

class NormRouter(nn.Module):
def __init__(

self,
initial_method="one",
total_expert=64,
top_k=8,
eps=1e-8,

):
super().__init__()

if initial_method == "one":
self.scale_initial = 1
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elif initial_method == "monte_carlo":
self.scale_initial = monte_carlo_y_k(total_expert, top_k)

self.scale = nn.Parameter(torch.ones(1))
self.eps = eps
self.activation = nn.ReLU()

def forward(self, x):
norm_x = x.norm(2, dim=-1, keepdim=True)
x_normed = x / (norm_x + self.eps)
x_normed=self.activation(x_normed)

return self.scale * self.scale_initial * x_normed

21


	Introduction
	Related Work
	Method
	Nadaraya-Watson Regression
	FFN as Parametric Nadaraya-Watson Regression
	Mixture-of-Experts as Parametric Nadaraya-Watson Regression
	KERN Router Function

	Experiment
	Comparisons with Baselines
	The Performance on Large Language Models
	The Effect of Granularity
	The Effect of Sparsity
	The Performance on Large-Scale Pretrain Dataset

	Conclusion
	Ethics Statement
	Reproducibility Statement
	The Usage of LLM
	Model Configuration
	Time Cost and Computational Cost
	Performance with Small Granularity
	The Training Loss with Different Methods
	The Importance of Considering All Router Logit
	The Effect of KERN Initialization
	The Effect of ReLU in KERN
	Performance with Different Seeds
	Implementation Details

