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ABSTRACT

Deep neural networks have achieved remarkable performance in many areas, in-
cluding image-related classification tasks. However, various studies have shown
that they are vulnerable to adversarial examples – images that are carefully crafted
to fool well-trained deep neural networks by introducing imperceptible pertur-
bations to the original images. To better understand the inherent characteris-
tics of adversarial attacks, we study the features of three common attack fami-
lies: gradient-based, score-based, and decision-based. In this paper, we demon-
strate that given adversarial examples, attacks from different families can be suc-
cessfully identified with a simple model. To investigate the reason behind it,
we further study the perturbation patterns of different attacks with carefully de-
signed experiments. Experimental results on CIFAR10 and Tiny ImageNet con-
firm the differences of attacks in distortion patterns. The code will be available at
https://github.com/reveng-adv/RevEng.

1 INTRODUCTION

Well-trained deep neural networks are capable of achieving outstanding performance in image-
related classification tasks. However, various studies have shown that they may not be fully reliable
and can be fooled by adversarial examples – images that are carefully crafted to fool such deep
neural networks by introducing imperceptible perturbation to the original images (Szegedy et al.,
2013; Goodfellow et al., 2014; Carlini & Wagner, 2017). This raises serious security concerns for
the AI community. Many works have been done to study and defend against adversarial attacks. In
particular, adversarial detection methods have been proposed to determine whether an input image
is an adversarial example or not. Moreover, it is helpful for the defender if reverse engineering can
be done to reveal more information about the attacks based on the detected adversarial examples.
For example, there are three main attack families, gradient-based, score-based, and decision-based,
which rely on the gradient, predicted score and predicted label of the victim model respectively to
perform attacks. Based on the detected adversarial examples, if the defender can tell what type of at-
tack is used, the defender will know what information has been leaked to the attacker. Consequently,
the defender can modify the model accordingly to prevent further attacks.

Some works have been done to study the reverse engineering of adversarial attacks: Pang et al.
(2020) proposed the query of interest (QOI) estimation model to infer the adversary’s target class
by model queries in black-box settings. Goebel et al. (2021) estimated adversarial setup from image
sample for gradient-based attacks FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017).
Gong et al. (2022) proposed a general formulation of the reverse engineering of deceptions problem
that is able to estimate adversarial perturbations and provided the feasibility of inferring the intention
of an adversary. In this paper, we find that adversarial attacks can be naturally identified by a simple
VGG16-based model given adversarial examples. We focus on studying the features of each attack
type to investigate where the differences of adversarial attacks come from.

We present our work in two aspects: (1) Given an adversarial image, use an image classifier to
determine which attack family it belongs to (gradient-based, score-based, or decision-based). (2) We
further study the features of different attacks and explore the reasons behind the good performance
of the attack family classifier.
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2 PRELIMINARIES

Notations We consider an image classifier f(·) as the victim model of adversarial attacks. The
input to the classifier is x0 ∈ [0, 1]w,h,c, a c-channel image sample with width w and height h. We
denote f(x0) as the output vector and c(x0) = argmaxi f(x0) as the predicted label. The true
label associated with x0 is denoted as y, and the adversarial example generated from x0 is denoted
as x∗.

Adversarial Examples An adversarial example x∗ and the original image x0 are visually indis-
tinguishable, but the predicted label of x∗ is different from that of x0. That is, D(x0,x

∗) is very
small in some distance metric D, while c(x∗) ̸= c(x0). Taking Figure 1 as an example, humans will
recognize that the two images are of the same horse. However, the image on the right is generated
by adding imperceptible perturbations to the original image on the left, which causes a particular
classifier to classify it as a cat. Existing methods use ℓp metrics to evaluate the distance between
adversarial and original samples. In this paper, we focus on ℓ2 and ℓ∞, the most commonly used
metrics in adversarial attacks.

Figure 1: An adversarial example generated by Boundary attack: introducing adversarial perturba-
tions to the horse image causes a classifier to label it as a cat.

Datasets and Victim Models We use CIFAR10 (Krizhevsky et al., 2009), a natural image dataset,
which contains 50, 000 training images and 10, 000 testing images in ten different classes of resolu-
tion 32×32. Another dataset we use is Tiny Imagenet (Deng et al., 2009), which has 200 classes, and
each class has 500 training images, 50 testing images. The resolution of the images is 64× 64. For
CIFAR-10, the victim model is VGG-16 with batch normalization (Simonyan & Zisserman, 2014),
of which accuracy is 93.34%. For Tiny ImageNet, the victim model architecture is ResNet18 (He
et al., 2016) with 68.64% accuracy.

Table 1: Attacks of different metrics (ℓ2 and ℓ∞) from different families.

ℓ2 ℓ∞
gradient-based C&W PGD

score-based ZOO Square
decision-based Boundary HopSkipJump

Adversarial Attacks Different attack methods have been proposed to generate adversarial exam-
ples based on the original images and the victim model. Adversarial attacks can be classified into
two categories according to their goals: untargeted and targeted. Untargeted attacks are successful
as long as the adversarial example is mis-classified. Targeted attacks, instead, are successful only
when the adversarial example is classified into a target class. Take Figure 1 as an example, the untar-
geted attack is successful if the right-side image is not classified as a horse, while the targeted attack
is successful only when it is predicted as a cat if the target class is cat. In this paper, all experiments
are done with untargeted attacks.

Existing attack methods can be divided into three categories depending on the information required:
gradient-based, score-based, and decision-based. The gradient-based attack is also known as white-
box attack, in which all information of the victim model is revealed to the attacker so that the
attackers can calculate gradients with the revealed information. Popular gradient-based attacks are
FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2017) and C&W (Carlini & Wagner, 2017).
If an attack only has access to the predicted score of the victim model, it is a score-based attack,
also known as a soft-label black-box setting. Popular score-based attacks include ZOO (Chen et al.,
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2017), NES (Ilyas et al., 2018) and SQUARE (Andriushchenko et al., 2020). In practical scenarios,
the attacker only has access to the predicted labels of the model. Attacks work under this setting are
called decision-based attacks, which include BOUNDARY (Brendel et al., 2017), Sign-OPT (Cheng
et al., 2019) and HopSkipJump (HSJ) (Chen et al., 2020). Table 1 lists six representative attacks
under different settings in ℓ2 or ℓ∞ metrics. In this paper, we conduct experiments with these attacks
and study their properties.

Perturbation Visualization Perturbations are the difference between the adversarial example and
the corresponding original image, showing how the original image is modified. Since perturbations
are imperceptible, we amplify the perturbation by 100 times for visualization purposes. Another
visualization way is to scale the perturbations to [0, 1] range, then visualize them. Amplified pertur-
bations tend to reveal the pattern when perturbation values are closer to each other, while the scaled
perturbations work better when the perturbation values are relatively different. In this paper, we use
amplified perturbation visualization for consistency.

3 REVERSE ENGINEERING OF ADVERSARIAL ATTACKS

Most current reverse engineering methods focus on specific attack methods. In this section, we
study if attack family (gradient-based, score-based, or decision-based) can be identified based on
adversarial examples. Success detection of attack family can help defender figure out what level of
information has been leaked to the attackers as different attack-family relies on different levels of
information.

3.1 EXPERIMENTS: CLASSIFYING ATTACK FAMILIES

We generate adversarial examples of each attack family and two metrics (ℓ2 and ℓ∞) using attacks
in Table 1 with datasets and victim models mentioned in section 2. The perturbation upper bound is
0.03 for different ℓ∞ attacks on CIFAR10 and Tiny ImageNet. For the ℓ2 attacks, the perturbation
upper bounds are 1.00 and 5.00 on CIFAR10 and Tiny ImageNet respectively. With the generated
adversarial examples, we perform the following experiments: (1) classifying attack families in ℓ2
metric; (2) classifying attack families in ℓ∞ metric; (3) and classifying attack families with adver-
sarial examples of both ℓ2 and ℓ∞ metrics. A classifier with VGG16 architecture is trained to do
multi-class classification to identify the attack family based on adversarial examples. The same ar-
chitecture is used for both CIFAR10 and Tiny ImageNet in all the following experiments except in
Experiment D, where the task is six-class classification and the last layer has six neurons instead of
three.

Experiment A: For ℓ2-norm based attacks, we choose C&W (gradient-based), ZOO (score-based),
and BOUNDARY (decision-based) as representatives of each attack family. If all three attacks can
successfully fool the victim model by modifying the same original image under the perturbation
bound, we keep the corresponding adversarial examples and split them into training and test sets for
the attack family classification task. These adversarial examples are called successful adversarial
examples across three attacks.

Experiment B: For ℓ∞-norm based attacks, we choose PGD (gradient-based), SQUARE (score-
based) and HopSkipJump (decision-based) as representative attacks. A similar procedure is applied
as in Experiment A to obtain the training and test sets for the attack family classification task.

Experiment C: Adversarial examples in Experiment A and B are merged together into three classes,
so that each class contains adversarial examples generated by attacks from the same attack family but
different norm metrics. Similarly, we only keep successful adversarial examples across six attacks.
Gradient-based class includes adversarial examples generated by C&W(ℓ2) and PGD(ℓ∞). Score-
based class includes ZOO(ℓ2) and SQUARE(ℓ∞). Decision-based class includes BOUNDARY(ℓ2)
and HopSkipJump(ℓ∞). The classification task is to do three-class classification, identifying the
attack family given an adversarial example.

Experiment D: To investigate if there are not just differences between attack families but also differ-
ences between attack methods, this experiment uses the same data as in Experiment C, but performs
six-class classification to identify specific attacks not attack families.
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Table 2: Testing accuracy of attack family classification task (Experiments A, B, C) and attack
method classification task (Experiment D) on CIFAR10 and Tiny ImageNet.

CIFAR10 Tiny ImageNet
Experiment A 80.81% 81.08%
Experiment B 95.51% 96.96%
Experiment C 85.58% 85.77%
Experiment D 76.30% 73.84%

The first three rows (Experiments A, B, C) in Table 2 show the attack family classification accuracies
on CIFAR10 and Tiny ImageNet datasets. The last row (Experiment D) shows the attack method
classification accuracy. The first three experiments achieve high accuracies on different datasets,
which suggests that attack families modify the image in different ways and machines can learn the
pattern based on adversarial examples, although adversarial examples are indistinguishable from the
original images to humans. The testing accuracies are not bad for Experiment D, which implies
that attacks of the same family have different patterns as well. This brings out one question: what
patterns does the classification model learn to identify the attack family and attack method?

4 EXPLORING CHARACTERISTICS OF ATTACK FAMILIES

Although adversarial examples from different attack families appear to be indistinguishable from
each other, machines can learn and classify them with some subtle signatures. Since the differences
of adversarial attacks are embedded in the perturbations, we propose to study why attack families
can be easily identified by studying the perturbation patterns of different attacks.

4.1 ℓ2 ATTACKS

Different ℓ2 attacks modify the original images in different ways, resulting in different perturbation
patterns. Figure 2 shows adversarial examples and amplified perturbations from C&W, ZOO, and
Boundary from left to right. It is obvious that the perturbations of the three attacks are different.
The perturbations of C&W attack seem to focus on the location of the object. ZOO introduces
large perturbations for some pixels. The perturbations of the Boundary attack are relatively smaller
and all over the place. See more examples in Appendix A.1. In the following sections, we study
the characteristics of C&W, ZOO, and Boundary and discuss why they generate perturbations of
different patterns.

Figure 2: From left to right, the first row shows the adversarial image generated by C&W, ZOO and
Boundary, and the second row shows the corresponding amplified perturbations. Though adversarial
examples are indistinguishable, the perturbations show different patterns: C&W’s perturbations fo-
cus on the horse in the image; ZOO introduces scattered bright per-pixel perturbations; Boundary’s
perturbations are more uniform across the image.
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4.1.1 C&W ATTACK

C&W attack is one of the strongest gradient-based attacks to date. It can perform targeted and
untargeted attacks with ℓ2 or ℓ∞ metric. Although ℓ∞ norm is feasible, ℓ2 norm is widely used in
C&W attack and can be formulated as the following regularized optimization problem:

x∗ = argmin
x∈[0,1]n

{∥x− x0∥22 + cg(x)}.

The first term ∥x − x0∥22 enforces a small distortion to the original input x0 and the second term
g(x) is a loss function that measures how successful the attack is. The parameter c > 0 controls the
trade-off between distortion and attack success.

Compared to the other two attacks, it seems that the perturbations of C&W concentrate on the object,
see Figure 2. To verify if this observation is true, we draw a bounding box of the object in the image
and compute the proportion of ℓ2 perturbations inside the box for all three attacks.

Take Figure 3 as an example, the proportion of perturbation inside the bounding box for C&W is
96.40%, while for ZOO and Boundary the proportions are 69.25% and 79.51% respectively.

Figure 3: The proportion of perturbations inside the bounding box for C&W, ZOO, and Boundary
are 96.40%, 69.25%, and 79.51% respectively.

To verify if the pattern is true for most cases, we randomly sample five images from each class
of the CIFAR10 dataset and draw bounding boxes for all 50 images to calculate the proportions
of perturbations inside bounding boxes. The proportion is calculated per sampled image for each
attack. Figure 4 shows the histograms of in-box perturbation proportion for each attack. It is obvious
that C&W has the most left-skewed distribution, indicating that C&W focuses on perturbing the
main object in the image.

Figure 4: In-box perturbation proportion histograms for C&W, ZOO, and Boundary. C&W’s distri-
bution is most left-skewed, indicating C&W focuses on attacking the main object.
There are two reasons that might explain why C&W attacks the object: 1) C&W has access to the
true gradients; 2) C&W method starts from the original image. Gradients w.r.t. the input indicate the
important areas in the input image and usually concentrate on the objects because the victim model
is trained to do object classification. Therefore, it is expected to see C&W focuses on modifying the
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object. Besides, the initial point of the optimization process is the original image, which excludes
the possibility of unnecessary perturbations outside the object area.

To support the above hypothesis, we compare C&W with its two variants: estimated-gradient C&W
and random-start C&W. Instead of using true gradients, estimated-gradient C&W uses gradients es-
timated by Natural Evolution Strategy (Wierstra et al., 2014), which was also used by Ilyas et al.
(2018) to do score-based attack. Random-start C&W starts the attack process with a random adver-
sarial point instead of the original image. The random adversarial point is a random noise image that
is not classified into the class of the original image. The point is already mis-classified but not close
to the original image. We generate adversarial images with the original C&W and its two variants,
then train a VGG16-based model to classify the three types of adversarial images. The classifica-
tion accuracy reaches 96.03%, indicating that the three types of adversarial attacks are significantly
different. Therefore, both gradients and random start affect the patterns of the C&W perturbations.

Figure 5 lists the adversarial examples and perturbations of C&W, estimated-gradient C&W, and
random-start C&W from left to right. The perturbations of estimated-gradient C&W still roughly
focus on the object area but are less accurate compared to those of the original C&W. Also, the
overall perturbations are larger: with estimated gradients, it cannot converge to the same level as
C&W, resulting in a larger distortion level. With a random adversarial start, C&W gets more noise
in the background, even though many perturbations are in the object area. In conclusion, C&W’s
perturbations focusing on the object area comes from two factors: starting from original images and
true gradients. See more examples in Appendix A.2.

Figure 5: From left to right, a cat image is attacked by C&W, estimated-gradient C&W and random-
start C&W. Even though the perturbations of estimated-gradient C&W and random-start C&W also
roughly focus on the object area, it is not as obvious as in the perturbations of the original C&W.

4.1.2 ZOO ATTACK

Zeroth Order Optimization Based Attack (ZOO) uses the finite difference method to approximate
the gradients of the loss with respect to the input. The objective function is the same as that of C&W
attack but using coordinate descent with estimated gradient:

∂f

∂xi
≈ f(x+ hei)− f(x− hei)

2h
,

where h is a small constant, ei is a standard basis vector with a single nonzero entry with value 1 as
the i-th element, and i ranges from 1 to the dimension of input. That is, ZOO is another variant of
C&W but with estimated gradient and coordinate descent.

From Figure 2, we can see that ZOO’s perturbations are made of a few bright pixels, which is ex-
pected as it uses coordinate descent to iteratively optimize each coordinate. Unlike gradient descent
updating all coordinates at once, coordinate descent updates the coordinates by mini-batch. The
nature of coordinate descent can lead to ZOO’s perturbation pattern. To show the effect of coor-
dinate descent on perturbation patterns, we compare ZOO with the estimated-gradient C&W. The
difference between them is the optimization method: ZOO uses coordinate descent while estimated-
gradient C&W uses gradient descent, but both methods need to estimate the gradient. A VGG16-
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based binary classifier achieves 97.62% accuracy in classifying the adversarial examples generated
by the two methods, implying that different optimization methods will result in different perturba-
tion patterns. Figure 6 shows the adversarial examples and amplified perturbations of ZOO and
estimated-gradient C&W from left to right, more examples are available in Appendix A.3. Com-
pared to the estimated-gradient C&W, ZOO has more spread perturbations because of the optimiza-
tion method. In section 4.1.1, we verified that the estimated gradient makes the perturbations larger
and less accurate by comparing estimated-gradient C&W with the original C&W. This also helps
explain why the perturbations of ZOO are so prominent and scattered. Therefore, coordinate de-
scent and the estimated gradient together lead to ZOO’s prominent scattered pixel-level perturbation
pattern.

Figure 6: From left to right, an automobile image is attacked by ZOO and estimated-gradient C&W.
The first row contains adversarial examples and the second row contains amplified perturbations.
ZOO’s amplified perturbations are more spread due to coordinate descent.

4.1.3 BOUNDARY ATTACK

Boundary attack starts with a random adversarial point from a different class, then seeks to minimize
the perturbations by randomly walking on the boundary of two classes while remaining adversarial.
Compared to C&W, Boundary attack does not start from the original image and has no access to the
gradient information.

From Figure 2, we noticed that Boundary attack’s perturbations are spread across the entire image
compared to C&W and ZOO. In fact, we verified in section 4.1.1 that starting from an adversarial
point instead of the original image will make the perturbations more spread, and the gradient infor-
mation is the key to an accurate attack on the object. This explanation applies to the perturbation
patterns of Boundary attack as well. Figure 7 shows adversarial examples and perturbations of C&W,
random-start C&W and Boundary from left to right, more examples are available in Appendix A.4.
Compared to C&W, the other two attacks show noisy and spread perturbations, even though random-
start C&W has most perturbations focused on the frog area. Besides, unlike random-start C&W,
Boundary’s updating procedure relies on random walk instead of gradients, which draws random
perturbation from a proposal distribution at each iteration. Hence, Boundary’s perturbations are
more blurry than the random-start C&W. A VGG16-based three-class model achieves 88.12% ac-
curacy in classifying the three attacks, indicating that the differences are obvious and easy to detect.
Therefore, both random adversarial start and lack of gradient information contribute to Boundary’s
specific perturbation patterns.

4.2 ℓ∞ ATTACKS

ℓ∞ attacks in different attack families show different perturbation patterns as well. In this section,
we study the ℓ∞-norm veriosn of PGD (gradient-based), Square (score-based) and HopSkipJump
(decision-based). In our experiments, perturbations are bounded by 0.03. Figure 8 shows adversarial
examples and perturbation patterns of PGD, Square and HopSkipJump (HSJ) from left to right. The
perturbations of Square consist of vertical strips covered by square-shaped regions. Both PGD and
HSJ have clutter perturbation patterns, but the perturbations of HSJ are darker. See more examples
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Figure 7: A frog image is attacked by C&W, random-start C&W and Boundary in turn. From
left to right, the perturbations are getting noisier and the frog outline is blurring. It indicates both
random start and random walk iteration without gradient information contribute to Boundary’s noisy
perturbations.

in Appendix A.5. In the following sections, we discuss the characteristics of Square first and then
compare PGD and HSJ.

Figure 8: From left to right, the same horse image is attacked by PGD, Square and HopSkipJump
as in the ℓ2 example. It’s noticed that PGD and HSJ have cluttered perturbation patterns, but HSJ
is darker due to smaller perturbations. Square’s perturbations consist of vertical strips covered by
square-shaped regions.

4.2.1 SQUARE ATTACK

The Square attack is score-based, but unlike other score-based attacks, such as ZOO or NES, it
does not estimate the gradients when generating adversarial examples. Instead, it adopts an iterative
randomized search scheme: at each iteration, a local square update is chosen at random locations and
projected to the input space, then this update is added to the current iteration if the objective function
improves. This explains the square-shaped regions in the perturbation pattern. As for initialization,
Square uses vertical stripes of width 1, where the color of each stripe is randomly and uniformly
sampled. In some cases, it takes many iterations to generate a successful adversarial example, so the
stripes are nearly covered by squares.

4.2.2 PGD AND HOPSKIPJUMP ATTACK

Projected-Gradient Descent Attack (PGD) crafts adversarial examples by solving the constraint op-
timization problem iteratively with projected gradient descent, widely used with l∞ norm. It can be
formulated as

x∗ = argmax
∥x−x∗∥∞<ϵ

L(θ,x, y),
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(a) (b)

Figure 9: (a) Histogram of perturbation values of PGD and HSJ. PGD has a bar-plot-like perturbation
distribution because it uses fixed step size to do updates, while HSJ has a normal-like perturbation
distribution. (b) Histogram of In-box significant perturbation proportion of PGD and HSJ. HSJ’s
distribution is more left-skewed than PGD, indicating it has more significant perturbations in the
object area.

where L is the loss function used to train the victim model, θ is fixed model parameter, (x, y) is
input pair of the original image and label. It uses a multi-step iteration scheme: at each iteration take
a small step α according to the sign of the gradient and clip the result to the ϵ-ball of the original
input:

xt+1 = Πϵ{xt + α ∗ sign (∇xL(θ, x, y))}.

HopSkipJump attack finds optimal adversarial example by iterative procedure and gradient estimate.
Like Boundary, it starts from an adversarial point of a different class. For each iteration, it first
moves towards the boundary of the two classes (true class vs. a wrong class) through binary search,
then updates the step size along the estimated gradient direction through geometric progression until
perturbation is successful, and lastly projects the perturbed sample back to the boundary again.

Though PGD and HSJ belong to different attack families, both have cluttered perturbations, except
that the perturbations of HSJ are dimmer due to smaller perturbations. Though both methods are
ℓ∞-norm based and bounded by 0.03, HSJ has perturbations of different scale ranging from −0.03
to 0.03, while PGD has more extremely perturbed pixels with a perturbation value of 0.03. From
Figure 9a, we can see that the histograms of the perturbations of PGD and HSJ are very different.
The histogram of PGD perturbations is like a bar plot because it updates depending on the sign of
the gradients with a fixed step-size α, which explains the discrete bars in the distribution of PGD’s
perturbations. While HSJ does not use a fixed step size to do updates, so does not have such a pattern.
We also test if the perturbations of PGD and HSJ focus on the object area. The same bounding box
method in section 4.1.1 is used to calculate the proportion of significant perturbations inside the box
for both attacks. A significant perturbation is defined as a perturbation whose absolute value is in the
top 10%. In Figure 9b, we can see the in-box significant perturbation proportion histogram. HSJ’s
distribution is more left-skewed than PGD’s, the average in-box significant perturbation proportions
of PGD and HSJ are 50.37% and 60.38% respectively. Therefore, even though PGD has access to
the true gradient information, HSJ has more significant perturbations in the object area.

5 CONCLUDING REMARKS

Our findings demonstrate that attack methods from different attack families (gradient-based, score-
based, decision-based) possess different characteristics. Given adversarial examples, such character-
istics can be learned by the machine to identify which attack family they belong to. Further studies
show that even attacks from the same family can be different. We systematically study the properties
of the perturbation patterns of different attacks and explore where their differences come from. We
hope that our work can shade lights on deeper understanding of adversarial attacks and help with
reverse engineering of adversarial attacks.
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A APPENDIX

This appendix provides more illustrative examples and details of those classification experiments in
Section 4.

A.1 ADDITIONAL EXAMPLES IN SECTION 4.1

Figure 10 shows additional adversarial samples and amplified perturbations for C&W, ZOO and
Boundary, and each subfigure displays C&W, ZOO and Boundary from left to right.

(a) Horse (b) Deer

(c) Bird (d) Frog

(e) Airplane (f) Truck

Figure 10: Additional visualization examples for C&W, ZOO and Boundary are displayed in each
subfigure from left to right, sampled from CIFAR10 dataset.

A.2 SUPPLEMENTARY EXAMPLES AND EXPERIMENT IN SECTION 4.1.1

In Section 4.1.1, we proposed that the plausible reasons for C&W attacking the main object are true
gradients and starting the attack process from the original image. To verify the idea, we generate
adversarial images based on two variants of C&W: the estimated-gradient C&W uses estimated
gradients from NES instead of the true gradients, and random-start C&W generates adversarial
images starting from a random adversarial image instead of the original image. More examples are
displayed in Figure 11.

Select those images that have been successfully attacked by all three attacks and split them into
training and test sets of size 1764 and 756 respectively. Train a VGG16-based classifier to evaluate

11
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(a) Cat (b) Bird

(c) Horse (d) Deer

(e) Automobile (f) Truck

Figure 11: Each subfigure displays adversarial images and perturbations of C&W, estimated-
gradient C&W, random-start C&W from left to right, sampled from CIFAR10 dataset.

whether there’s a difference among them. Accuracy reaches 96.03%. Table 3 records the confu-
sion matrix of this classification task, we can see that both variants can be easily distinguished from
C&W. This result further explains that the true gradients and original start affect C&W’s perfor-
mance.

Table 3: Confusion Matrix for C&W, estimated-gradient C&W and random-start C&W

Predicted
C&W estimated-gradient C&W random-start C&W

A
ct

ua
l C&W 247 0 5

estimated-gradient C&W 2 249 1
random-start C&W 22 0 230

A.3 SUPPLEMENTARY EXAMPLES AND EXPERIMENT IN SECTION 4.1.2

ZOO is another variant of C&W with estimated gradients and coordinate descent. In Section 4.1.2,
to evaluate the optimization method’s effect on perturbation patterns, we compare ZOO with
estimated-gradient C&W, more examples are displayed in Figure 12. Select those images that have
been successfully attacked by ZOO and estimated-gradient C&W and split them into training and
test sets of size 2013 and 863 respectively. Table 4 records the confusion matrix of the classification

12
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(a) Automobile (b) Ship

(c) Bird (d) Cat

(e) Dog (f) Horse

Figure 12: Additional visualization examples for ZOO and estimated-gradient C&W are displayed
in each subfigure from left to right, sampled from CIFAR10 dataset.

result. The two attacks are separated by a classifier with high accuracy, which shows that there’s an
obvious effect when using different optimization methods.

Table 4: Confusion Matrix for ZOO and estimated-gradient C&W

Predicted
ZOO estimated-gradient C&W

A
ct

ua
l ZOO 825 38

estimated-gradient C&W 3 860

A.4 SUPPLEMENTARY EXAMPLES AND EXPERIMENT IN SECTION 4.1.3

Boundary attack starts with a random adversarial image and uses random walk for each update. In
Section 4.1.3, we study the effect of random start and lack of gradient information by comparing
C&W, random-start C&W and Boundary, more examples are displayed in Figure 13:

Select those images that have been successfully attacked by all three attacks and split them into
training and test sets of size 3645 and 1566 respectively. Table 5 records the confusion matrix. The

13
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(a) Automobile (b) Ship

(c) Truck (d) Airplane

(e) Frog (f) Bird

Figure 13: Additional visualization examples for C&W, random-start C&W and Boundary are dis-
played in each subfigure from left to right, sampled from CIFAR10 dataset.

three attacks can be classified by a machine with high accuracy, indicating there’s an obvious pattern
among the attacks. This classification result proves that Boundary’s blurry perturbations are caused
by random start and random walk without gradient information.

Table 5: Confusion Matrix for C&W, random-start C&W and Boundary

Predicted
C&W random-start C&W Boundary

A
ct

ua
l C&W 477 5 40

random-start C&W 13 500 19
Boundary 115 4 403

A.5 ADDITIONAL EXAMPLES IN SECTION 4.2

Figure 14 shows additional adversarial samples and amplified perturbations. Each subfigure displays
PGD, Square and HopSkipJump from left to right.
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(a) Horse (b) Bird

(c) Dog (d) Airplane

(e) Ship (f) Automobile

Figure 14: Additional visualization examples for PGD, Square and HopSkipJump are displayed in
each subfigure from left to right, sampled from CIFAR10 dataset.
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