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ABSTRACT

Symbolic regression is a key task in machine learning, aiming to discover math-
ematical expressions that best describe a dataset. While deep learning has in-
creased interest in using neural networks for symbolic regression, many existing
approaches rely on pre-trained models. These models require significant computa-
tional resources and struggle with regression tasks involving unseen functions and
variables. A pre-training-free paradigm is needed to better integrate with search-
based symbolic regression algorithms. To address these limitations, we propose a
novel framework for symbolic regression that integrates evolutionary feature con-
struction with a neural network, without the need for pre-training. Our approach
adaptively generates symbolic trees that align with the desired semantics in real-
time using a language model trained via online supervised learning, providing
effective building blocks for feature construction. To mitigate hallucinations from
the language model, we design a retrieval-augmented generation mechanism that
explicitly leverages searched symbolic expressions. Additionally, we introduce a
scale-invariant data augmentation technique that further improves the robustness
and generalization of the model. Experimental results demonstrate that our frame-
work achieves state-of-the-art accuracy across 25 regression algorithms and 120
regression tasks 1.

1 INTRODUCTION

Symbolic regression (SR) is a machine learning technique that searches the space of symbolic ex-
pressions to identify models that best fit a dataset (Sun et al., 2023; Fong et al., 2023). Unlike
traditional regression methods, which assume a fixed model structure, SR automatically determines
both the structure and parameters of the model. This flexibility allows SR to achieve both high ac-
curacy and interpretability, making it especially valuable in fields such as physics (Udrescu et al.,
2020), biology (Brunton et al., 2016), and finance (Liu & Guo, 2023), where uncovering transparent,
understandable models is crucial for scientific discovery and informed decision-making.

In this paper, we focus on an automated feature construction approach to SR (Cava et al., 2019). The
key idea is to generate a set of symbolic trees/features, Φ = {ϕ1, . . . , ϕm}, from a dataset (X,Y ) to
enhance the performance of an interpretable modelM, such as linear regression (Cava et al., 2019;
Zhang et al., 2023a). The objective is to minimize the loss function L(Φ;X,Y ), defined as:

L(Φ;X,Y ) =
1

N

N∑
i=1

ℓ (M (ϕ1(Xi), . . . , ϕm(Xi)) , Yi) , (1)

where N represents the number of instances, and Xi and Yi represent the features and label for the
i-th instance in the training data. By decomposing the SR task into the discovery of feature sets,
this approach reduces the complexity of the problem. Even if each feature ϕ is weakly correlated
with the target Y , the model can still perform well as long as the features collectively complement
each other in predicting the target. This symbolic regression paradigm is particularly effective for
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complex real-world problems, where the complexity of the underlying system cannot be captured
by a simple equation.

Traditional SR methods, predominantly based on genetic programming (GP) (Banzhaf et al., 1998),
perform gradient-free searches within the symbolic space (Jiang & Xue, 2024). While effective at
exploration, these methods often lack search effectiveness due to limited guidance from accumulated
knowledge during the evolutionary process. Recent advances in deep learning for SR (Biggio et al.,
2021; Kamienny et al., 2022) aim to address these inefficiencies by leveraging knowledge more
effectively.

Deep learning-based SR typically follows three primary paradigms: pre-trained language mod-
els (Biggio et al., 2021; Kamienny et al., 2022), reinforcement learning (Landajuela et al., 2021),
and sparse supervised learning (Sahoo et al., 2018). Sparse supervised learning does not gener-
ate symbolic models directly; instead, it relies on heuristic pruning and neural architecture search
to sparsify the network so that it can be converted into symbolic expressions (Li et al., 2024). In
contrast, pre-trained language models and reinforcement learning can generate symbolic models di-
rectly. However, pre-trained language models require prior assumptions about the problem space,
limiting their generalizability to novel tasks involving unseen functions and features. Additionally,
identifying an optimal set of features for modeling complex real-world systems is time-consuming,
making it impractical to generate many pairs of symbolic models and their outputs for pre-training.
While reinforcement learning with a language model offers task adaptability (Landajuela et al.,
2022), its low sample efficiency remains a significant drawback. Therefore, it is desirable to explore
supervised learning methods that do not rely on pre-training for SR to overcome these challenges.

To develop an effective and efficient neural network for SR, we propose a novel neural network-
based symbolic regression framework inspired by geometric semantic genetic programming
(GSGP) (Moraglio et al., 2012). As illustrated in Figure 1, the core idea is to use a neural net-
work to dynamically predict the best feature ϕ to replace an existing feature in the current set
Φ = {ϕ1, . . . , ϕm}, with the goal of filling the gap in the residual R, referred to as the desired
semantics in this paper. Throughout the evolutionary process, the relationship between the seman-
tics/outputs of each symbolic tree ϕ(X) and its symbolic representation ϕ is captured and stored in
a neural semantic library, which is continuously updated in an online fashion.

One challenge with neural semantic libraries is that language models may generate features ϕ that
are grammatically correct but irrelevant to the desired semantics R. In the language model domain,
this is known as hallucination (Sun et al., 2024). To mitigate this, we propose a retrieval-augmented
generation technique to reduce hallucination and generate symbolic trees that better align with the
desired semantics. In summary, the key contributions of this paper are as follows:

• We propose a semantic descent algorithm to optimize symbolic models using a neural net-
work with online supervised learning. The neural network continuously learns to generate
symbolic trees that precisely capture the desired semantics, pushing the boundaries of deep
symbolic regression to handle complex problems.

• To reduce hallucination in language models, we develop a retrieval-augmented generation
mechanism. This technique makes the generated symbolic models are not only grammati-
cally correct but also better aligned with the desired semantics, resulting in more accurate
predictions.

• To better capture the relationship between desired semantics and retrieved symbolic ex-
pressions, we propose a masked contrastive loss, which more accurately generates sym-
bolic trees by aligning the embeddings of desired semantics with those of the retrieved
expressions.

• We propose a data augmentation and double query strategy to fully exploit the scale-
invariant properties of feature construction-based symbolic regression, further improving
the effectiveness of generated symbolic expressions.

2 RELATED WORK

In the domain of neural symbolic regression, a key advantage of pre-trained models is that, once
pre-trained (Biggio et al., 2021; Kamienny et al., 2022), models can be reused for similar tasks
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Figure 1: Comparison of the evolutionary algorithm and retrieval-augmented neural semantic library
for feature construction-based symbolic regression.

without further optimization. These models are designed to solve a distribution of tasks through
mechanisms such as invariance encoding (Holt et al., 2023), contrastive learning (Li et al., 2022),
or conditional constraints (Bendinelli et al., 2023) to capture relationships among different SR tasks
within a problem space. However, these methods may struggle with tasks beyond the scope of
the pre-training data, particularly when encountering different function sets or more variables than
those seen during training (Shojaee et al., 2024a; Meidani et al., 2024). Fine-tuning could alleviate
the misalignment between training and target tasks, through approaches like reinforcement learn-
ing (Holt et al., 2023) or using imitation learning to learn successful mutations (Kamienny et al.,
2023). However, fine-tuning large pre-trained language models can be challenging. Thus, exploring
how online learning techniques can be applied exclusively to enhance SR remains a promising and
underexplored direction.

Reinforcement learning (RL), on the other hand, learns the probability distribution of promising
symbolic models (Landajuela et al., 2021; Xu et al., 2024) by interacting with the environment, al-
lowing it to adapt to different function sets for various tasks. However, deep symbolic optimization
via RL often suffers from low sample efficiency, requiring integration with GP (Mundhenk et al.,
2021) or Monte Carlo Tree Search (MCTS) (Xu et al., 2024) techniques to improve performance.
Furthermore, RL typically simplifies feedback to a scalar reward, such as mean squared error (Lan-
dajuela et al., 2021), which limits the richness of information provided during the search process. A
more effective approach would involve using a loss vector rather than a scalar loss to provide richer
feedback and enhance overall search effectiveness.

Sparse supervised learning methods, such as deep equation learners (Sahoo et al., 2018) and efficient
symbolic policy learning (Guo et al., 2024), aim to derive interpretable symbolic models by regular-
izing neural networks (Zhang et al., 2023c). However, since the L0 norm is non-differentiable, these
techniques often rely on heuristic pruning approaches to convert neural networks into interpretable
expressions. Additionally, they typically require neural architecture search methods to identify suit-
able architectures before gradient-based training (Li et al., 2024).

Evolutionary symbolic regression is primarily based on the GP framework, which automatically
discovers symbolic models without predefined structures to fit the training data (Fong et al., 2023).
Recently, semantic GP has gained substantial attention (Moraglio et al., 2012; Zhang et al., 2023b).
Unlike traditional GP, which operates in the syntactic/symbolic space, semantic GP works in the
semantic/output space. By focusing on semantic space, solution generation operators can ensure
that the newly generated solutions have more predictable behavior, such as guaranteed loss reduc-
tion—something conventional GP operators often lack. A key challenge in semantic GP is gener-
ating GP trees that satisfy the desired semantics (Moraglio et al., 2012). A common strategy is to
build a semantic library that stores evaluated GP trees (Pawlak et al., 2014). In semantic mutation,
this library is searched for trees that closely match the target semantics, and the best-matching tree
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Algorithm 1 Semantic Descent
1: Input: Features Φ = {ϕ1, . . . , ϕm}, semantics library L, neural network model N , current semantics

Φ(X), target Y , neural generation probability Pneural
2: Output: Updated features Φ
3: O ← Random permutation of {1, 2, . . . ,m} ▷ Shuffle tree indices
4: for each i ∈ O do
5: ϕ̃i(X)← ϕi(X)−µi

σi
▷ Normalized feature

6: Φ(X)temp ← Φ(X)− βiϕ̃i(X)
7: R← Y − Φ(X)temp ▷ Compute residual R
8: if rand() < Pneural then
9: ϕi ← N (R,L) ▷ Generate new tree using neural model

10: Φ(X)← Φ(X)temp

11: continue ▷ Proceed to next tree
12: end if
13: ϕnew ← ExactRetrieval(R, ϕi,L)
14: ϕi,Φ(X)← ExactReplacement(ϕnew, ϕnew(X),Φ(X),Φ(X)temp,R, Y )
15: end for

is selected. However, this approach relies solely on existing building blocks without leveraging his-
torical knowledge to create new ones. To address this issue, it is crucial to incorporate deep learning
techniques to learn from the evolutionary learning process and generate better symbolic models that
align with the desired semantics.

3 ALGORITHM

The proposed method is based on an evolutionary algorithm framework, encompassing solution ini-
tialization, generation, evaluation, selection, and archive maintenance. This work primarily focuses
on the solution generation phase, introducing a neural semantic library for solution generation, de-
signed to explicitly retain and apply knowledge throughout the evolutionary process. Solution gen-
eration consists of two primary components: semantic descent and retrieval-augmented generation.

3.1 SEMANTIC DESCENT

In this work, we propose Semantic Descent (SD), an iterative optimization procedure designed to
improve model performance by selectively replacing suboptimal features. Unlike methods such
as geometric semantic GP (Moraglio et al., 2012) or gradient boosting (Feng et al., 2018), which
incrementally add new features to minimize error, SD focuses on replacing existing trees in the
model with more informative ones. This approach helps maintain a compact model structure while
continuously improving accuracy.

At each iteration, a tree ϕi is randomly selected from the set of trees {ϕ1, . . . , ϕm} that define the
semantics/outputs of the model Φ(X) = β1ϕ1(X) + · · · + βmϕm(X) + α, where β represents
the coefficients and α is the intercept. The contribution of ϕi is temporarily removed, resulting in
temporary semantics Φtemp(X) = Φ(X)− βiϕi(X). The residual R = Y −Φtemp(X) of the model
is then computed, where Y is the target output. The residual R represents the difference between
the prediction and the target.

As shown in Algorithm 1, the core idea of SD is to fill the gap in the residual R by replacing the
current tree ϕi with a better alternative, either generated by a neural model N (line 9) or retrieved
from a semantic library L (line 13). The semantic library L stores all previously evaluated symbolic
trees and subtrees ψ along with their semantics/outputs ψ(X). The neural model N learns the
mapping between the semantics ψ(X) and the corresponding symbolic tree ψ. This enables the
neural networkN to construct a new feature ϕnew usingR as input, thereby generating a new feature
to reduce the model’s error.

The probability of generating new trees using the neural network is Pneural, detailed in Section 3.2.
The probability of retrieving a tree from the semantic library is 1 − Pneural. The key idea of exact
retrieval is to search the library for the tree that most closely matches the desired semantics, i.e.,
the residual R, as detailed in Appendix C. Since the linear regression model automatically adjusts
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feature magnitudes and intercepts, the residual R is normalized using the L2 norm before being
used as input for retrieval or neural generation, i.e., R ← R−R̄

||R||2 . The replacement process is re-
peated iteratively until all trees ϕ within the solution Φ have been traversed. By focusing on feature
replacement instead of addition, SD enables efficient model refinement while maintaining a fixed
feature set, allowing for both interpretability and performance improvements.

3.2 RETRIEVAL-AUGMENTED GENERATION

To learn the mapping between symbolic trees, ϕ, and their corresponding semantics, ϕ(X), the pro-
cess involves three steps: First, the trees and semantics are collected from the evolutionary process
(Section 3.2.2). Next, they are converted into training data using specially designed encoding rules
(Section 3.2.1). Finally, a neural network is trained on the collected data (Section 3.2.3), using
cross-entropy loss and masked contrastive loss (Section 3.2.4).

3.2.1 DATA COLLECTION AND NETWORK TRAINING

The semantic library L is dynamically constructed during the evolutionary process. During solution
evaluation, each subtree ψ and its corresponding semantics ψ(X) are stored in a first-in-first-out
queue Q with an upper limit of 10,000 entries for training the neural network and future retrieval.
To facilitate efficient retrieval, a k-dimensional tree (k-d tree) is constructed using the semantics
stored in Q at the end of each generation in the evolutionary process, reducing query complexity
to O(log(N)), where N is the number of stored trees. The neural network is also trained at the
end of each generation. To prevent unnecessary training, an internal validation set monitors per-
formance degradation. If the validation loss does not increase, network training is skipped for that
generation to save computational resources. Nevertheless, the retrieval library is updated even when
network training is bypassed, ensuring that knowledge base is continuously updated throughout the
evolutionary process.

3.2.2 ENCODING AND DECODING RULES FOR SYMBOLIC TREES

To generate valid expressions without requiring an explicit end token, we designed a specialized
encoding and decoding scheme. Symbolic trees are encoded using a level-order traversal method,
specifically breadth-first search, to convert the tree into a linear sequence. To maintain interpretabil-
ity, the number of functions in the symbolic tree is capped at nF . Given this limit and the maximum
number of children any function can have, αmax, the maximum number of terminal nodes is:

nT = 1 + (nF × (αmax − 1)). (2)

Given nF and nT , the neural network outputs a fixed-length sequence with the first nF tokens de-
coded as functions or terminals,while the remaining nT tokens are restricted to terminals by setting
function probabilities to zero during decoding. This formulation reframes the symbolic tree genera-
tion task as a multi-class classification problem. Detailed pseudocode for the encoding and decoding
processes is provided in Appendix E.

3.2.3 OVERALL ARCHITECTURE FOR RETRIEVAL-AUGMENTED GENERATION

As shown in Figure 2, the neural architecture consists of two main components: a Multilayer Per-
ceptron (MLP) and a Transformer model. Their relationship is defined as:

O ∈ RB×L×S = Transformer Decoder
(

Transformer Encoder(ϕ̂)⊕MLP(R)
)
·WT . (3)

Each of the two components plays a distinct and complementary role in generating a symbolic tree
ϕ based on the desired semantics R. The MLP transforms raw semantics into a meaningful feature
representation that can guide the generation of the symbolic tree. On the other hand, the Transformer
encoder processes the nearest symbolic tree ϕ̂, retrieved from the semantics library L, which serves
as a prompt to reduce hallucination. The outputs of the MLP and Transformer are concatenated and
then passed through a Transformer decoder to generate a sequence of L tokens. W ∈ RS×D is a
linear layer that projects the output of the Transformer decoder HDecoder ∈ RB×L×D into the symbol
space O ∈ RB×L×S , where S is the number of unique symbols. These tokens are subsequently
decoded into a valid symbolic tree.
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Figure 2: Neural network architecture for symbolic tree generation.

Intention Encoding: The desired semantics R ∈ RB×N is processed through an MLP to produce
a feature matrix FMLP ∈ RB×K , where K is the dimensionality of the hidden layer. The MLP
consists of NL layers, and at each layer i, the transformation is defined as:

xi+1 = Dropouti (SiLUi (BNi (Wi · xi + bi))) + xi, (4)

where xi ∈ RB×K is the input to the i-th layer, Wi ∈ RK×K is the weight matrix, bi ∈ RK is the
bias vector, BNi denotes the batch normalization layer, SiLUi is the Sigmoid Linear Unit activation
function (Elfwing et al., 2018), and Dropouti is the dropout layer with a specified dropout rate. This
MLP layer results in a feature matrix FMLP ∈ RB×K , which is then passed through a linear layer to
match the dimensionality from K to D, yielding Fmapped

MLP ∈ RB×D, where D is the dimensionality
of the Transformer-encoded representation.

Retrieval-Augmented Encoding: For the desired semantics R, a KD-Tree is used to retrieve the
nearest symbolic tree ϕ̂ from the semantic library L, based on Euclidean distance and subject to
the constraint that the tree contains no more than nF nodes. The retrieved tree ϕ̂ is then processed
through an embedding layer to generate Vϕ̂ ∈ RB×L×E , where L is the sequence length of the tree
encoding and E is the dimensionality of the embedding space. The embedding layer consists of an
embedding matrix E ∈ RS×E . The embedded representation Vϕ̂ is then encoded using the Trans-
former model to produce a symbolic model embedding HTransformer ∈ RB×L×D. The Transformer
encoder applies self-attention and feedforward layers with residual connections as follows:

HSelf-Attn = LayerNorm
(
Vϕ̂ + SelfAttention

(
Vϕ̂

))
∈ RB×L×K ,

HTransformer = LayerNorm (HSelf-Attn + FeedForward (HSelf-Attn)) ∈ RB×L×D.
(5)

Decoding: The combined feature representation HCombined = Fmapped
MLP ⊕HTransformer ∈ RB×(L+1)×D

is fed into a Transformer decoder to generate the contextual embeddings HDecoder ∈ RB×L×D. The
decoding process is performed auto-regressively, utilizing a greedy decoding strategy.

3.2.4 LOSS FUNCTION

Masked Contrastive Loss: The intention encoding should ideally learn useful knowledge not only
from target expressions ϕ but also from the retrieved symbolic expressions ϕ̂. In parallel, the
retrieval-augmented encoding should be aware of the semantics of the nearest symbolic expres-
sions. To fulfill these objectives, we propose a contrastive loss that aligns the embeddings from both
the intention encoding and the retrieval-augmented encoding components.

Given the nearest semantics ϕ̂(X) ∈ RB×N , it is processed through a MLP to generate a feature ma-
trix of nearest semantics Fnearest ∈ RB×K . Simultaneously, the embedding of the symbolic model
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HTransformer ∈ RB×L×D is averaged along the sequence length dimension to produce the averaged
embedding Havg ∈ RB×D. Then, the InfoNCE loss (Oord et al., 2018), a popular objective in
contrastive learning, is employed to maximize the similarity between the nearest semantics feature
matrix Fnearest and the averaged symbolic embeddings Havg, while minimizing similarity with neg-
ative samples from the same batch. To alleviate false negatives, i.e., when two samples in a batch
are semantically similar, the InfoNCE loss is masked by a mask matrix mask. The mask matrix is
designed such that non-diagonal elements with an absolute cosine similarity greater than 0.99 are
marked as false (indicating false negatives), while all other entries are marked as true. The masked
InfoNCE loss is formally defined as:

LInfoNCE = − 1

B

B∑
i=1

log
exp (sim(Fnearest[i],Havg[i])/τ)∑B

j=1 exp (sim(Fnearest[i],Havg[j]) ·mask/τ)
, (6)

where sim(·, ·) denotes cosine similarity, and τ is a temperature parameter controlling the sharpness
of the softmax function. This contrastive loss ensures that the nearest semantics are closely aligned
with their corresponding symbolic representations in the embedding space, while differentiating
them from unrelated samples.

Cross-Entropy Loss: The model is also trained using cross-entropy loss over the sequence of L
symbols. Let oitrue ∈ RS denote the one-hot encoded ground truth for the i-th position, and oipred ∈
RS denote the predicted probability distribution at that position. Formally, the cross-entropy loss for
each sequence is defined as Lcross-entropy = −

∑L
i=1 o

i
true · log(oipred). The final loss L is a weighted

sum of the cross-entropy loss and the contrastive loss:

L = Lcross-entropy + λ · LInfoNCE, (7)

where λ is a hyperparameter that balances the contributions of the two losses.

3.3 DATA AUGMENTATION AND DOUBLE QUERY

In linear regression, the sign of coefficients is automatically adjusted, so the sign of the semantics is
not crucial. However, the training data may only include one side of a training pair (ψ,ψ(X)), with-
out considering its opposite, (ψ,−ψ(X)). Consequently, when the desired semantics is−ψ(X), the
model may fail to generate the correct symbolic tree ψ. To address this issue, we augment the train-
ing data by including both (ψ,ψ(X)) and (ψ,−ψ(X)) pairs:

T ← T ∪ {(ψ,−ψ(X)) | (ψ,ψ(X)) ∈ T }. (8)

During decoding, bothR and−R are used to query the neural network, generating candidate trees ϕ
and ϕ′. The tree with the highest probability is selected as the final symbolic model. This technique,
referred to as double query (DQ), allows the model to generate symbolic trees with sign-insensitive
semantics, thereby improving the effectiveness of neural generation.

4 EXPERIMENTS

This section is divided into two parts. The first part evaluates the effectiveness of the proposed
components in improving the prediction accuracy of the neural semantic library. The second part
investigates the performance of integrating the SR method with the retrieval-augmented neural se-
mantic library. It compares this integrated approach to state-of-the-art SR methods.

4.1 EXPERIMENTAL RESULTS OF NEURAL SEMANTIC LIBRARY

Experimental Settings: To evaluate the effectiveness of the proposed techniques in enhancing the
learning capabilities of the neural semantic library, we conduct the first experiment on synthetic
data. The objective is to evaluate how various components contribute to the learning effectiveness of
the neural semantic library. In this experiment, 10 variables and 50 training instances are randomly
drawn from a Gaussian distribution N (0, 100). Then, a total of 10000 symbolic expressions with
random heights h ∈ [0, 5] are generated using the grow method (Banzhaf et al., 1998) from GP and
evaluated on the randomly generated data. The maximum number of functions nF is set to 5, and
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expressions exceeding this limit are filtered out. To avoid redundancy, only one semantically equiv-
alent GP tree is retained, ensuring no symbolic expressions overlap between training and test sets.
This setup ensures that the final metric reflects the ability of the neural network to learn patterns and
generalize to unseen data, rather than simply fitting to previously seen examples. A total of 80% of
the symbolic models are used for training, while the remaining 20% are reserved for testing. The
evaluation metric is the edit distance (Matsubara et al., 2022; Bertschinger et al., 2023) between
the generated symbolic tree and the ground truth, where a smaller distance indicates that the neural
semantic library generates more effective building blocks, significantly aiding the evolutionary al-
gorithm in finding optimal solutions. Each experiment is run 5 times to ensure stable and reliable
results.

Parameter Settings: For the neural network, the dropout rate is set to 0.1. The MLP consists of 3
layers, while both the encoder and decoder Transformers have 1 layer each. The hidden layer size
is set to 64 neurons. A learning rate of 0.01 and a batch size of 64 are used. Early stopping with
a patience of 5 epochs is employed to prevent overfitting. The weight of contrastive loss λ is set to
0.05.

Experimental Results (Edit Distance): The experimental results for edit distance on the test set
are presented in Figure 3. First, comparing neural generation with simple retrieval from the library
(W/O NN), neural generation performs better by a large margin, indicating the effectiveness of us-
ing a neural network for symbolic tree generation. As for the ablation results of components, the
results show that including all components achieves the lowest median edit distance, indicating that
the combination of all proposed techniques provides the best overall performance. Among the com-
ponents, the RAG technique has the most significant impact, highlighting that external knowledge
from the semantic library significantly improves the neural network’s ability to generate relevant
symbolic trees. Data augmentation (DA) also plays a crucial role, ranking as the second most im-
portant component. Without DA, the model struggles to handle the scale-invariant nature of feature
construction, leading to worse performance. The compact boxplots reflect the consistency and relia-
bility of these components. Dropout has a moderate positive effect, indicating that overfitting control
techniques are helpful for training the neural semantic library. Similarly, contrastive learning (CL)
shows a moderate impact, confirming the effectiveness of using contrastive loss to align the intention
encoding with retrieval augmentation encoding components. Finally, DQ also improves effective-
ness, showing that even simply generating multiple solutions during inference can lead to better
solutions, which aligns with findings from large language models (Wang et al., 2023). The impact
of DQ becomes more pronounced in the absence of DA, suggesting that DA partially compensates
for the lack of DQ.

Experimental Results (Running Time): The running time comparisons in Figure 4 demonstrate
that RAG moderately increases the overall running time. However, one advantage of incorporating
RAG into the component is that new trees can be seamlessly added to the retrieval library to improve
accuracy without requiring model fine-tuning, making the algorithm efficient for application in an
online learning setting. For DA and DQ, removing these components reduces the running time from
44 seconds to 35 and 29 seconds, respectively, indicating that they do introduce some computational
overhead. However, given the accuracy improvements they provide, the increase in computational
time is acceptable. Although removing both DA and DQ significantly reduces computational cost,
the substantial loss of edit distance from 3.82 to 4.35 outweighs the benefit of faster execution.

Examples of Generated Trees: Table 1 provides examples of symbolic trees generated by the neu-
ral network with and without retrieval augmentation, along with the retrieved trees. The results
demonstrate that the retrieved trees share certain similarities with the ground truth, such as variable
usage. These results validate that providing the retrieval tree as a prompt helps the neural network
generate more relevant trees, reducing hallucination compared to relying solely on the desired se-
mantics.

4.2 EXPERIMENTS OF RAG-SR

Datasets: In this study, we primarily focus on 120 black-box datasets from the PMLB bench-
mark (Olson et al., 2017), which are particularly challenging for pre-training methods (Kamienny
et al., 2022) due to the potential absence of simple symbolic expressions to model these datasets.
The results on the 119 Feynman and 14 Strogatz datasets are presented in Appendix L.2.
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Table 1: Examples of symbolic trees generated by the retrieval-augmented neural network, simple
neural network, retrieval library, and ground truth.

RAG-NN Generated Tree (Distance) Simple NN Generated Tree (Distance)

Sin(Sin(ARG3)) (0) Cos(Cos(Cos(ARG9))) (4)
AQ(ARG7, ARG8) (0) Log(Max(ARG7, ARG7)) (3)
Max(ARG1, ARG8) (0) Subtract(ARG1, ARG1) (2)
Sqrt(Sqrt(ARG2)) (0) Log(Log(ARG2)) (2)

Subtract(ARG6, ARG7) (0) Max(ARG7, ARG7) (2)

Retrieval Tree (Distance) Ground Truth Tree

Sin(ARG3) (1) Sin(Sin(ARG3))
Log(Neg(Max(AQ(ARG8, ARG0), AQ(ARG7, ARG8)))) (6) AQ(ARG7, ARG8)

Max(add(Abs(Sin(Cos(ARG6))), ARG8), ARG1) (6) Max(ARG1, ARG8)
Square(Log(ARG2)) (2) Sqrt(Sqrt(ARG2))

Subtract(ARG7, ARG6) (2) Subtract(ARG6, ARG7)
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Figure 3: Ablation study of components based on
edit distance on the test set.
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Figure 4: Ablation study of components with re-
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Evaluation Protocol: The evaluation follows the established procedures of state-of-the-art symbolic
regression benchmarks (La Cava et al., 2021). Specifically, each dataset is split into training and
testing sets with a 75:25 ratio, and experiments are repeated 10 times for robustness. The R2 score
on the test set is used as the evaluation metric. To better handle categorical variables, we use a target
encoder (Micci-Barreca, 2001). Furthermore, to prevent any single feature from disproportionately
influencing the semantics, all input features are normalized using min-max scaling (Raymond et al.,
2020).

Parameter Settings: For GP, we follow conventional parameter settings: a population size of 200
and a maximum of 100 generations. Each solution consists of 10 trees, representing 10 features.
The probability of using neural generation, Pneural, is set to 0.1.

Experimental Results (Accuracy): The experimental results on SRBench are presented in Figure 5.
The proposed method, RAG-SR, outperforms all state-of-the-art symbolic regression and machine
learning techniques in terms of R2 scores. Notably, it surpasses the TPSR method (Shojaee et al.,
2024a), which combines MCTS with a pre-trained end-to-end Transformer (Kamienny et al., 2022).
The improvement is statistically significant, as confirmed by the Wilcoxon signed-rank test with
Benjamini-Hochberg correction, shown in Figure 6. This indicates the effectiveness of using a purely
online training language model for learning symbolic expressions. Compared to SBP-GP (Pawlak
et al., 2014), which is a purely retrieval-based geometric semantic GP that does not use a neural
network, the significant advantage of RAG-SR demonstrates the effectiveness of using a neural
network to dynamically generate symbolic models.

Experimental Results (Complexity): The model complexity of RAG-SR follows the definition of
SRBench, where the final model is converted into a SymPy-compatible expression, and the number
of nodes in the symbolic tree is counted as a measure of complexity. As shown in Figure 5, RAG-SR
produces models that are an order of magnitude smaller in size compared to PS-Tree (Zhang et al.,
2022), which is a piecewise SR method that ranks second in R2 scores in Figure 5. The Pareto
front of test R2 scores and model size rank is shown in Figure 7, where RAG-SR appears on the
first Pareto front, indicating that RAG-SR achieves a good balance between accuracy and model
complexity.

Experimental Results (Training Time): The training time of RAG-SR is comparable to that of
FEAT, a standard feature-construction-based SR method (Cava et al., 2019), suggesting that the
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Figure 5: R2 scores, model sizes, and training time of 25 algorithms on 120 regression problems.
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Figure 7: Pareto front of the rank of test R2

scores and model size for different algorithms.

computational cost of learning a neural semantic library is within an acceptable range. However,
compared to TPSR, which directly leverages a pre-trained model to guide SR without requiring
fine-tuning, RAG-SR is an order of magnitude slower. This discrepancy is partly due to the fact
that, in the current implementation, all neural networks in RAG-SR are trained on a CPU due to
limited computational resources. Training the neural networks on a GPU could potentially reduce
the computational time of RAG-SR.

5 CONCLUSIONS

In this paper, we propose a novel feature construction-based SR method with a retrieval-augmented
neural semantic library. Ablation studies confirm that the retrieval augmentation mechanism effec-
tively mitigates the issue of hallucination, enabling the generation of more accurate symbolic trees
that align with the desired symbolic trees. Furthermore, data augmentation and double query tech-
niques effectively improve the neural network’s ability to generate symbolic trees that account for the
scale-invariant characteristics of feature construction-based SR. Experimental results on large-scale
symbolic regression benchmarks demonstrate that RAG-SR significantly outperforms state-of-the-
art SR techniques, including those guided by pre-trained language models. For future directions,
introducing constraints on model complexity may help reduce the risk of overfitting, particularly
with datasets that contain noise or limited samples, presenting a promising direction for future re-
search.
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A ALGORITHM WORKFLOW

The algorithm workflow, shown in Figure 8, includes the following steps:

• Solution Initialization: The population is initialized using random symbolic trees gener-
ated through ramped half-and-half methods (Banzhaf et al., 1998). In this approach, half
of the GP trees are initialized with random depths, while the other half are initialized at the
maximum initial depth. Each solution contains m symbolic trees, with each tree represent-
ing a unique feature.

• Solution Evaluation: Features {ϕ1(X), . . . , ϕm(X)} are constructed from the symbolic
trees Φ = {ϕ1, . . . , ϕm} and the training data X . These features are evaluated via ridge
regression using efficient leave-one-out cross-validation to compute the loss L(Φ(X)).

• Semantic Library Construction: To reduce the dimensionality of inputs to the neural
network and optimize memory usage, a subset of hard instances is selected every 10 gen-
erations. Specifically, all training instances Xi ∈ X are ranked by the median loss across
all solutions, i.e., Median(L(Φ(Xi)) | Φ ∈ P ), and the top k = 50 instances, ranked
in descending order, are chosen. The instances are further sorted by their corresponding
training labels Yi. Consequently, the positions of some hard instances remain unchanged
after instance selection, which may facilitate the continuous training of the neural network.
The semantics of these selected instances are stored in a retrieval library, which is used for
training the neural semantic library and for exact retrieval. It is important to note that in-
stance selection is solely for semantic library construction and semantic descent. Solution
evaluation is conducted on the entire training dataset.

– Retrieval Library: Symbolic trees and their corresponding semantics are stored in a
first-in-first-out queue Q , which can hold up to 10,000 symbolic trees. A KD-Tree is
used for efficient retrieval, reducing the search complexity from O(N) to O(log(N)).
For neural network training, a subset of symbolic trees from Q, where function nodes
are fewer than or equal to five, is used to construct a separate KD-Tree for rapid
retrieval of eligible trees.

– Neural Semantic Library: The neural network is trained using pairs of symbolic
trees and their corresponding semantics from the retrieval library. The architecture,
described in Section 3.2, combines a multi-layer perceptron with a Transformer to
process desired semantics with retrieved symbolic trees.

• Solution Selection: Lexicase selection (Helmuth et al., 2014) is used to identify promising
solutions based on their objective values. Solutions are iteratively eliminated by applying
randomly constructed criteria. In each round, a random instance i ∈ [0, N ] is selected, and
solutions with losses greater than the median absolute deviation are eliminated (La Cava
et al., 2019). This elimination process continues until only one solution remains, which is
then selected as the promising solution. For a population of P solutions, P solutions are
selected by iteratively applying these steps.

• Solution Generation: New solutions are generated based on the selected promising so-
lutions using a memetic algorithm framework. First, semantic descent performs a local
search to improve a solution, followed by evolutionary search to explore the search space
and mitigate the risk of local optima:

– Semantic Descent: As detailed in Section 3.1, the residual R is used to query the
neural semantic library or the retrieval library to either generate or retrieve GP trees.
The neural generation process is described in Section 3.2. For retrieving GP trees,
Appendix C explains the strategy to retrieve relevant GP trees from the library based
on desired semantics. Since the retrieved features have already been evaluated, the
loss reduction can be easily calculated after replacement, as explained in Appendix D.
If replacing the tree does not reduce the loss, the current round of replacement is
skipped.

– Evolutionary Search: New symbolic trees are generated using genetic programming
operators such as random subtree crossover and mutation (Banzhaf et al., 1998). For
m symbolic trees, the crossover and mutation operators are appliedm times with their
respective probabilities to ensure sufficient exploration of the search space.
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Figure 8: Workflow of neural semantic library-based symbolic regression.

• Archive Maintenance: The historically best-performing solution is stored in an archive
for making predictions on unseen data.

The processes of solution evaluation, library construction, solution selection, solution generation
and archive maintenance are repeated until the stopping criteria are met.

B LIBRARY UPDATE

The library is updated at the end of each generation during the evolutionary process. As detailed
in Algorithm 2, the library is managed using two first-in-first-out queues, T and S, which store
the most recent 10,000 trees and their corresponding semantics, respectively. The semantics ψ(X)
are first normalized to ψnorm(X) to ensure that retrieval is insensitive to scale. This normalization is
necessary because the linear regression algorithm can automatically determine the scaling coefficient
β for each constructed feature. Subsequently, all GP trees are appended to the queue T , while their
corresponding semantics are appended to the queue S and stored in a hash setHseen.

To control memory usage, the hash set prevents duplicate GP trees from being added to the library.
When the queues T and S reach their maximum limit Tmax, the oldest entries are removed, as
illustrated in Line 21.

For computational efficiency, the semantics of each subtree ψ(X) are precomputed during the solu-
tion evaluation phase. Consequently, during the library update phase, it is unnecessary to recompute
the semantics of each tree ψ based on the data X . This precomputation ensures that the library
update process is computationally efficient.

Additionally, for efficient querying in exact retrieval, a KD-Tree is constructed at the end of the
library update. To efficiently retrieve symbolic expressions that meet the function node limits of
neural generation, another KD-Tree is constructed based on symbolic expressions with a maximum
of nF function nodes. More details on the construction of this KD-Tree for neural generation are
provided in Appendix F. Together, the two queues, T and S, along with the two KD-Trees, form the
semantic library L.

C EXACT RETRIEVAL OF THE SYMBOLIC TREE

Exact retrieval is directly using symbolic trees from the retrieval library that align with the desired
semantics R, complementing neural generation. This occurs with a probability of 1 − Pneural, as
described in Algorithm 1. In this process, the desired semantics R are used to retrieve the top
κ = 10 symbolic trees with the smallest distances to R, as shown in Algorithm 3. These κ trees
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Algorithm 2 Library Update
1: Input: Population of individuals P , tree queue T , semantics queue S, hash set of seen semantics
Hseen, maximum tree limit Tmax

2: Output: Updated tree queue T and semantics queue S
3: for each individual Φ ∈ P do
4: for each pair (ψ(X), ψ), where ψ is a GP tree/subtree in Φ and ψ(X) is its corresponding

semantics do
5: if ∥ψ(X)∥ = 0 then
6: Continue ▷ Skip semantics with zero norm
7: end if
8: ψnorm(X)← ψ(X)

∥ψ(X)∥ ▷ Normalize semantics
9: if ψnorm(X) contains NaN or∞ then

10: Continue ▷ Skip invalid trees
11: end if
12: if ψnorm(X) ∈ Hseen then
13: Continue ▷ Skip already seen semantics
14: end if
15: T ← T ∪ {ψ} ▷ Add tree to queue
16: S ← S ∪ {ψnorm(X)} ▷ Add semantics to queue
17: Hseen ← Hseen ∪ {ψnorm(X)} ▷ Update hash set of seen semantics
18: end for
19: end for
20: if |T | > Tmax then ▷ Retain only the most recent Tmax entries
21: T ← T [−Tmax :]
22: S ← S[−Tmax :]
23: end if

Algorithm 3 Exact Retrieval
1: Input: Desired semantics R, current tree ϕi, semantic library L, maximum retrieval count
κ = 10

2: Output: Proposed tree ϕnew
3: Lκ ← Top-κ

(
L, distance(L, R)

)
▷ Retrieve top κ trees with smallest distances to R

4: Lκ ← Sort(Lκ, distance(Lκ, R)) ▷ Sort by increasing distance to R
5: ϕnew ← None ▷ Initialize proposed tree
6: for each tree ϕ ∈ Lκ do
7: if size(ϕ) ≤ size(ϕi) then
8: ϕnew ← ϕ ▷ Select the first valid tree
9: Break ▷ Stop further iteration

10: end if
11: end for
12: if ϕnew = None then
13: Return Skip ▷ Skip generation if no valid tree is found
14: else
15: Return ϕnew ▷ Return the proposed tree
16: end if

are then ranked based on their distance to the desired semantics R, and the first tree with the same
or fewer nodes than the current tree ϕi is selected as the proposed tree ϕnew. This size constraint
encourages the generation of simpler, more interpretable symbolic expressions. If no such tree is
found, the current round of retrieval-augmented generation is skipped.

D EXACT REPLACEMENT

Exact replacement is a mechanism that replaces features in a solution with more effective features
stored in the retrieval library. Since both the features ϕ and their associated semantics ϕ(X) are
stored in the retrieval library L, it is straightforward to determine the optimal scaling factor during
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Algorithm 4 Exact Replacement
1: Input: New proposed tree ϕnew, current semantics Φ(X), proposed updated semantics ϕnew(X), temporary

semantics Φ(X)temp, residual R, target values y
2: Output: Updated tree ϕi, updated semantics Φ(X)
3: if ϕnew = ∅ then
4: continue ▷ No suitable replacement found
5: end if
6: if Φ(X)

∥Φ(X)∥2
= ϕnew(X)

∥ϕnew(X)∥2
then

7: continue ▷ Identical semantics; skip replacement
8: end if
9: β ← (ϕnew(X)−ϕ̄new(X))·(R−R̄)

(ϕnew(X)−ϕ̄new(X))2
▷ Compute scaling factor

10: α← R̄− β · ϕ̄new(X) ▷ Compute bias term
11: Φ(X)trial ← Φ(X)temp + β · ϕnew(X) + α ▷ Propose updated semantics
12: MSEtrial ← 1

|X|
∑

j∈X(Φ(Xj)
trial − yj)

2

13: MSEcurrent ← 1
|X|

∑
j∈X(Φ(Xj)− yj)

2

14: if MSEtrial ≤ MSEcurrent then
15: ϕi ← ϕnew ▷ Accept replacement
16: Φ(X)← Φ(X)trial

17: end if

the replacement process and calculate the new residual after the replacement. The detailed logic
is presented in Algorithm 4. Specifically, Lines 9 and 10 describe how to compute the scaling
coefficient β and bias term α, respectively, based on the semantics of the newly proposed feature,
ϕnew(X), and the desired semantics, R. The algorithm then calculates and compares the error before
and after the replacement, denoted by MSEcurrent and MSEtrial, respectively. As shown in Line 15, if
the error decreases after the replacement, the new feature is accepted, and the semantics are updated.
Otherwise, the original feature is retained.

E TRAVERSAL ALGORITHM

Prediction to Symbolic Tree The output format of the neural network consists of a sequence of nF+
nT elements, where the first nF elements represent functions or terminals, and the remaining nT
elements represent terminals. For example, the output could be [mul, abs, add, x1, x2, x3], which
corresponds to the mathematical expression mul(abs(x1), add(x2, x3)), a pre-order traversal of a
symbolic tree. Thus, to decode the output, a conversion from level-order traversal to pre-order
traversal is required, as described in Algorithm 5. Since the neural network does not use an explicit
end token, some terminal elements may remain unused after decoding and are discarded. As shown
in line 5, a tracking variable τ is used to monitor whether a full symbolic tree has been formed. Once
a complete tree is generated, the decoding process stops, and any remaining tokens are discarded.
Additionally, during decoding, if a constant placeholder is predicted (line 18), a random constant is
sampled from the uniform distribution U [−1, 1]. This delegates the task of constant tuning to the
evolutionary algorithm rather than relying on the neural network to predict the constant accurately.

Symbolic Tree to Training Target For training data, symbolic expressions such as
mul(abs(x1), add(x2, x3)) are represented as [mul, abs, x1, add, x2, x3]. However, to serve as
proper training labels, this representation must be reordered to reflect a level-order traversal. The
algorithm for converting a list of pre-order traversals into level-order representations is detailed in
Algorithm 6. The key idea is to collect the required number of child nodes at each level (line 9) and
then recursively process these child nodes to obtain subtrees in pre-order traversal (line 13). Finally,
the subtrees are assembled into an integral tree in pre-order traversal (line 17).

F NEURAL NETWORK TRAINING DETAILS

F.1 PARAMETER SETTINGS

To encourage the neural network to escape local optima, we employ cosine annealing with warm
restarts (Loshchilov & Hutter, 2017). Additionally, the Adam optimizer with decoupled weight
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Algorithm 5 Level Order Traversal to Preorder Traversal
1: procedure LEVELORDERTRAVERSAL(N ) ▷ N is the list of node names
2: τ ← 0 ▷ Initialize tracking variable τ
3: S ← ∅ ▷ Initialize an empty list S
4: for each ni ∈ N do ▷ Iterate over each node ni in N
5: if τ = 0 then ▷ Exit loop if a complete tree has been formed
6: break
7: end if
8: if ni ∈ F then ▷ Check if ni is a function in F
9: f ← F [ni]

10: α← arity(f) ▷ Get the arity α of function f
11: τ ← τ − 1
12: τ ← τ + α
13: S ← S ∪ {f} ▷ Append f to list S
14: else if ni ∈ T then ▷ Check if ni is a terminal in T
15: τ ← τ − 1
16: t← T [ni]
17: if t is a constant then
18: t← U [−1, 1]
19: end if
20: S ← S ∪ {t} ▷ Append t to list S
21: end if
22: end for
23: return S ▷ Return the final list S representing the tree
24: end procedure

Algorithm 6 Preorder Traversal to Level Order Traversal
1: procedure PREORDERTRAVERSAL(N )
2: if N = ∅ then ▷ Return an empty list if no nodes are left
3: return ∅
4: end if
5: nroot ← pop(N , 0) ▷ Get the first node
6: if nroot is a Primitive then ▷ Check if the root is a function
7: A ← ∅ ▷ Initialize argument list
8: R ← ∅ ▷ Initialize root argument list
9: for i← 1 to arity(nroot) do ▷ Collect the function’s arguments

10: ni ← pop(N , 0)
11: R ← R∪ {ni}
12: end for
13: for each ni ∈ R do ▷ Reorder arguments recursively
14: Ni ← PreorderTraversal({ni} ∪ N )
15: A ← A∪Ni
16: end for
17: return {nroot} ∪ A ▷ Return the function followed by its subtrees
18: else
19: return {nroot} ▷ Return the terminal as is
20: end if
21: end procedure

decay (Loshchilov & Hutter, 2019) is used to mitigate overfitting, with a weight decay parameter
of 10−4. For the MLP initialization, we apply Kaiming initialization (He et al., 2015) to ensure
appropriate scaling of the weights. The number of training epochs is set to 1000.
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Table 2: Functions and Corresponding Expressions
Primitive Expression

Add a+ b
Subtract a− b

Mul a · b
AQ a√

1+b2

Sqrt
√
a

Log log(|a|+ 1)
Abs |a|

Square a2

Max max(a, b)
Min min(a, b)
Neg −a
Sin sin(π × a)
Cos cos(π × a)

F.2 TRAINING PROCEDURE

The pseudocode for training the neural network is provided in Algorithm 7. First, the data is split
into training and validation sets, as shown in Line 2. The data consists of pairs of semantics and GP
trees from the library L, excluding GP trees that exceed the limit on the number of function nodes.
Xtrain represents the semantics of GP trees, and ytrain represents the nodes of GP trees correspond-
ing to the semantics in Xtrain. Similarly, Xval and yval are the corresponding validation data with
analogous meanings. Next, the data is augmented using the data augmentation strategy introduced
in Section 3.3. Subsequently, retrieval trees are prepared for each instance in both the training and
validation data.

To avoid trivializing the training task as a simple retrieval task, the KD-Tree is initially constructed
using only the training set, as shown in Line 4. When preparing the training data in Line 4, the
second-nearest tree is selected as the nearest GP tree to form the sets of retrieved trees, Ntrain, since
the nearest tree corresponds to the GP tree itself. For the validation set, as the KD-Tree includes only
the training set in Line 5, the nearest GP tree is used as the retrieved tree to form the set Nval. After
retrieving the required samples, the KD-Tree is reconstructed using a combination of the training
and validation sets, as shown in Line 7.

To save computational resources during training of the neural semantics library, we employ three
strategies. First, the neural network is continuously trained during the evolution process. Second,
at the beginning of training, as shown in Line 9, the validation loss is checked to determine if the
current validation set loss, Lcurrent

val , is smaller than the previous validation set loss, Lprev
val . If the

validation loss does not degrade, training is skipped to save computational resources. Notably, the
construction of the KD-Tree precedes this step, ensuring that the retrieval mechanism can always
access the latest information without requiring updates to the neural network. This is a key advantage
of RAG-based neural generation. Lastly, the neural network tracks the validation loss throughout the
training process. If the validation loss does not improve over τ iterations, the algorithm performs
early stopping to conserve computational resources. These three mechanisms collectively ensure
that RAG-SR is an efficient SR algorithm.

G DETAILS OF GENETIC PROGRAMMING PARAMETERS

The crossover and mutation rates for GP are set to 0.9 and 0.1, respectively. The depth limit of GP
trees is set to 10. The function set used in GP is listed in Table 2. To prevent division by zero errors,
the division operator is replaced with the analytical quotient operator (Ni et al., 2012). Random
constants are drawn from a uniform distribution, U [−1, 1].
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Algorithm 7 Training NN
1: Input: Training data Dtrain, batch size B, epochs T , learning rate η, validation split α, patience
τ , last validation loss Lprev

val
2: (Xtrain,Xval,ytrain,yval)← SplitData(Dtrain, α)
3: (Xtrain,Xval,ytrain,yval)← AugmentData(Xtrain,Xval,ytrain,yval)
4: (Ntrain,Xtrain,ytrain)← RetrieveTrees(Xtrain,ytrain)
5: K ← BuildKDTree(Xtrain,ytrain) ▷ K is the KD-Tree
6: (Nval,Xval,yval)← PrepareValidationSet(K,Xval,yval)
7: K ← BuildKDTree(Xtrain ∪Xval,ytrain ∪ yval) ▷ Reconstruct KD-Tree using full data
8: Lcurrent

val ← CalculateValidationLoss(Xval,yval,Nval)
9: if Lcurrent

val < Lprev
val then

10: return ▷ Skip training if validation loss improves
11: end if
12: Lbest

val ←∞ ▷ Initialize best validation loss
13: Cpatience ← 0 ▷ Initialize patience counter
14: for t = 1 to T do ▷ Train using augmented data and retrieved data
15: TrainBatch(Xtrain,ytrain,Ntrain)
16: Lval ← CalculateValidationLoss(Xval,yval,Nval)
17: if Lval < Lbest

val then
18: Lbest

val ← Lval ▷ Update best validation loss
19: Cpatience ← 0 ▷ Reset patience counter
20: else
21: Cpatience ← Cpatience + 1 ▷ Increment patience counter
22: end if
23: if Cpatience > τ then
24: Break ▷ Early stopping
25: end if
26: end for
27: return

H EFFECT OF CONTRASTIVE LEARNING

The contrastive learning mechanism is designed to capture relationships between samples within
each batch. To evaluate its effectiveness in enhancing representation learning, we present the pair-
wise correlation between the encodings of MLP in Figure 9. The first two figures show the corre-
lation of the encoded desired semantics Fmapped

MLP for 16 randomly selected test instances, with and
without contrastive learning, respectively. The third figure shows the raw correlation between de-
sired semantics, while the fourth figure presents the absolute correlation, which is a more appropriate
metric for feature construction-based symbolic regression techniques. The results indicate that con-
trastive learning successfully captures two desired semantics with opposite signs that are highly
correlated and represent the same symbolic expression. In contrast, without contrastive learning,
the neural network lacks this knowledge and may generate significantly different trees when queried
with an opposite sign, as it fails to recognize their equivalence. These results highlight the benefit of
using contrastive learning to jointly train the intention encoding and retrieval augmentation encoding
components.

I SENSITIVITY OF THE WEIGHT OF CONTRASTIVE LOSS

In this section, we analyze the sensitivity of the contrastive loss weight λ in RAG-NN. Specifically,
we evaluate five different λ values: 0.01, 0.025, 0.05, 0.1, and 0.2. The impact of varying λ on
the edit distance of the test set is shown in Figure 10. The results demonstrate that the weight
of the contrastive loss significantly influences accuracy. While the contrastive loss can improve
performance, the weight λmust be carefully tuned using cross-validation. Otherwise, the contrastive
loss may fail to achieve optimal performance. Regarding training time, the effect of different λ
values on runtime is presented in Figure 11. Overall, the runtime remains stable across different λ
values. Therefore, when tuning λ, accuracy should be the primary consideration.
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Figure 9: Effect of contrastive learning on pairwise correlation of MLP encodings.

J DIFFERENT NUMBER OF VARIABLES

The effect of the proposed components in the neural semantic library may vary with the number
of variables. In this paper, we study the impact of the number of variables on the results. The
experiments in Section 4.1 are conducted with a variable count of 10. For comparison, additional
experiments with variable counts of {15, 20, 25, 30, 50} are also performed. Since more variables
mean more possible symbolic expressions, the number of symbolic expressions sampled is scaled
by the ratio between the number of variables and 10. The results show that the conclusions of the
ablation studies in Section 4.1 remain consistent across different numbers of variables. Specifically,
both RAG and DA are important contributors to the effectiveness of the neural semantic library.
Interestingly, the impact of RAG becomes more significant as the number of variables increases.
A possible reason for this trend is that the data might be imbalanced, with some variables being
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Figure 15: Ablation study of components with
respect to running time (15 variables).

underrepresented. In such cases, the retrieval process can extract the relevant variables, even if they
represent only a small portion of the data. Therefore, the RAG technique becomes increasingly
important as the number of variables increases. More analysis of why RAG could be more effective
in high-dimensional scenarios is provided in Appendix K.

To better visualize how the number of variables influences the effectiveness of the neural semantic
library, we present the change in edit distance with respect to the number of variables in Figure 12
and the running time with respect to the number of variables in Figure 13. The results indicate that
the model can maintain a stable level of prediction accuracy with different number of variables. This
indicates that the proposed method demonstrates good scalability for tasks with varying numbers of
variables. In comparison, the end-to-end Transformer for symbolic regression (Kamienny et al.,
2022) can only be used to train tasks with up to 10 variables. Regarding training time, an increase in
the number of variables does lead to a longer training time; however, the increase is modest. These
results demonstrate that the neural semantic library is also efficient for tasks with different numbers
of variables.
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Figure 16: Ablation study of components based
on edit distance on the test set (20 variables).
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Figure 17: Ablation study of components with
respect to running time (20 variables).
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Figure 18: Ablation study of components based
on edit distance on the test set (25 variables).
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Figure 19: Ablation study of components with
respect to running time (25 variables).
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Figure 20: Ablation study of components based
on edit distance on the test set (30 variables).

All

W/
O C

L

W/
O D

Q

W/
O D

rop
ou
t

W/
O D

A

W/
O D

A+
DQ

W/
O R
AG

0

50

100

150

M
ed
ia
n 
Ru

nn
in
g 
Ti
m
e 
(s
)

134.69 128.30

92.60

129.21 121.96
92.72

127.40

Median Running Time by Configuration

Figure 21: Ablation study of components with
respect to running time (30 variables).
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Figure 22: Ablation study of components based
on edit distance on the test set (50 variables).
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Figure 23: Ablation study of components with
respect to running time (50 variables).
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Figure 24: Distribution of terminals with 10 vari-
ables.
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Figure 25: Distribution of terminals with 10 vari-
ables and an imbalance ratio of 0.25.
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Figure 27: Performance improvement using
retrieval-augmented generation across different
imbalance ratios.

K RETRIEVAL AUGMENTATION FOR IMBALANCED DATA

In Appendix J, RAG has been shown to be particularly beneficial when handling a large number
of variables. One potential explanation is the increased data imbalance as the number of variables
grows. Specifically, the frequency distribution of variables at position 3 (starting from 0) for 10
and 50 variables is depicted in Figure 24 and Figure 28, respectively. With 10 variables, the most
frequent variable appears 49 times and the least frequent appears 37 times, showing a relatively
balanced distribution. However, for 50 variables, the most frequent variable appears 26 times while
the least frequent variable appears only 7 times, indicating a significant imbalance. This confirms
that larger variable sets lead to more imbalanced data distributions.

To validate the effectiveness of the RAG mechanism in handling imbalanced data, we randomly
subsample half of the terminals with varying ratios to create imbalanced data for the case of 10 vari-
ables. For training data with selected terminals at position 3, subsampling retained the data with a
probability equal to the subsampling ratio s. The subsampling ratios are [0.25, 0.5, 0.75]. Figure 25
shows the distribution after subsampling with a ratio of 0.25. The experimental results are shown
in Figure 26 and Figure 27. As shown in Figure 26, the edit distance worsens as the subsampling
ratio increases, confirming that imbalanced training data negatively impacts performance. The re-
sults in Figure 27 demonstrate that the performance improvement from using RAG becomes more
pronounced as the subsampling ratio increases. This indicates that RAG effectively mitigates the
issues associated with imbalanced data, explaining why its impact is more significant when dealing
with larger numbers of variables.

L FURTHER ANALYSIS ON THE SYMBOLIC REGRESSION BENCHMARK

L.1 COMPARISON ON LOW-DIMENSIONAL BLACK-BOX DATASETS

In the domain of deep symbolic regression, low-dimensional subsets of black-box datasets are
widely used as evaluation criteria. Specifically, we select all datasets from the PMLB benchmark
with 10 or fewer variables and no categorical features (Kamienny et al., 2022; Shojaee et al., 2024a;
Meidani et al., 2024). Figure 29 shows the results under these criteria. Compared to Figure 5, the rel-
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Figure 28: Distribution of functions and terminals in the case of 50 variables.
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Figure 29: R2 scores, model sizes, and training time of 25 algorithms on low-dimensional black-box
regression problems.

ative rankings of the algorithms remain largely unchanged. Therefore, the conclusions in Section 4.2
remain valid in this case.

L.2 COMPARISON ON FEYNMAN AND STROGATZ DATASETS

Experimental Settings The Feynman and Strogatz datasets are widely used synthetic benchmarks
for symbolic regression. AI-Feynman consists of 119 datasets, while Strogatz contains 14 datasets.
For RAG-SR, we employ a function set relevant to the physics domain, including the operations
+,−, ∗, /, sin, cos. The division operator is implemented as a protected division to handle edge
cases, capping extremely small positive and negative denominators at 10−10 and −10−10, respec-
tively. The training protocol follows the SRBench standard. All baseline algorithms use 10,000
subsampled training instances from the AI-Feynman datasets (La Cava et al., 2021). However, our
method subsamples only 500 instances from the Feynman datasets to reduce computational costs.
No noise is added to the labels. For the Strogatz datasets, we use all available training instances.
Following the definition in SRBench (La Cava et al., 2021), accuracy is defined as 1 if the R2 value
exceeds 0.999, and 0 otherwise.

Experimental Results The experimental results on the Feynman datasets are shown in Figure 30.
Algorithms are ranked based on their test R2 scores on the Strogatz datasets. As shown, RAG-
SR achieves the highest test R2 scores on the Strogatz datasets, demonstrating the strong learning
capability of the proposed method. On the Feynman datasets, RAG-SR ranks second, trailing only
MRGP (Arnaldo et al., 2014). However, the model size of MRGP is more than an order of magnitude
larger than RAG-SR, while RAG-SR achieves a good balance. In comparison to deep learning-based
symbolic regression methods such as TPSR (Shojaee et al., 2024a) and SNIP (Meidani et al., 2024),
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Figure 30: R2 scores, model sizes, and training time of 17 algorithms on 119 Feynman and 14
Strogatz datasets.

RAG-SR outperforms them by a large margin, further validating the effectiveness of leveraging a
neural semantic library in symbolic regression.

M PARAMETER SENSITIVITY ANALYSIS

M.1 INFLUENCE OF PNEURAL

Pneural controls the rate at which the neural semantic library is used to generate new individuals. In
this section, we analyze the influence of Pneural after evaluating 2000 solutions. Each probability
value of Pneural was tested on 120 black-box datasets, with each experiment repeated 30 times to
ensure stability. The results, shown in Figure 31, demonstrate that the test R2 scores gradually
improve as the probability of using the neural semantic library increases. Since neural generation is
more time-consuming than retrieval, the default value of 0.1, which corresponds to applying neural
generation to one out of ten GP trees in each solution during replacement, is a reasonable choice
that provides a good balance between accuracy and efficiency. Nonetheless, in cases where a GPU
is available to provide faster inference, a higher value of Pneural can yield better results.

M.2 INFLUENCE OF NUMBER OF TREES

The number of trees determines the number of constructed features in each solution. RAG-SR fol-
lows conventions in the evolutionary feature construction literature, using 10 trees as the default
parameter. In this section, we compare three configurations for the number of trees in each solu-
tion: 5, 10, and 15. To ensure stability, each configuration was tested on 120 black-box datasets,
with each experiment repeated 30 times. The results after evaluating 2000 solutions are shown in
Figure 32. The results indicate a substantial performance gap between using 10 trees and using 5
trees. Several factors may contribute to this improvement. First, a larger number of GP trees in each
solution provides more candidates to be stored in the library, allowing neural generation and exact
retrieval to identify better GP trees. Additionally, having more trees in each solution enables the
base learner to more flexibly select appropriate features for making predictions, which may further
enhance performance. However, increasing the number of trees also leads to an increase in model
size and evaluation time for each solution, as shown in Figure 33 and Figure 34. Therefore, setting
the number of trees to 10 strikes a good balance between accuracy, model size, and training time.
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N RELATED WORK

N.1 RAG FOR CODE GENERATION

The Retrieval-Augmented Generation (RAG) technique has been widely used in the domain of code
generation to enhance accuracy by retrieving code from open-source databases (Parvez et al., 2021;
Wang et al., 2024). Similarly, RAG has also been applied to code transformation tasks, demonstrat-
ing improved performance compared to zero-shot code translation (Bhattarai et al., 2024). These
RAG-based techniques typically rely on existing repositories (Parvez et al., 2021). In this paper,
we demonstrate that RAG is not restricted to pre-existing code repositories but can also be applied
to code generated by evolutionary algorithms. Furthermore, we show that data augmentation can
improve prediction accuracy when using RAG in conjunction with neural networks for symbolic
expression generation. This suggests that, for code generation, employing synonym replacement or
paraphrasing models to augment code summaries could further enhance the efficiency of RAG-based
systems.

N.2 VQ-VAE FOR CODE GENERATION

In the program synthesis domain, Vector Quantized-Variational Autoencoder (VQ-VAE) (Van
Den Oord et al., 2017) has been employed to learn discrete representations from input-output pairs,
enabling the capture of high-level concepts (Hong et al., 2021). Both VQ-VAE and RAG leverage
continuous semantics to retrieve discrete information for code generation. However, VQ-VAE uti-
lizes an autoencoder to learn high-level conceptual representations from data, whereas RAG directly
retrieves relevant information from a database. Compared to VQ-VAE, the RAG technique offers
greater interpretability for end-users by allowing inspection of the retrieved information. Moreover,
RAG provides an efficient mechanism to update knowledge without requiring retraining of the neu-
ral network. Although there are many differences between VQ-VAE and RAG, these techniques
are not mutually exclusive. Integrating them in the context of neural symbolic regression presents a
promising avenue for future research.
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Table 3: Examples of symbolic trees generated by the retrieval-augmented neural network when the
ground truth exceeds the generation limit.

RAG-NN Generated Tree (Distance) Ground Truth Tree

Log(Log(Log(ARG1))) (3) Abs(Log(Neg(Abs(Log(Log(ARG1))))))
Cos(Sin(Cos(ARG5))) (3) Log(Abs(Cos(Sin(Sqrt(Cos(ARG5))))))
Log(Abs(Log(ARG7))) (3) Log(Abs(Sqrt(Abs(Sqrt(Log(ARG7))))))

Sin(Square(Sin(ARG8))) (3) Neg(Cos(Abs(Sin(Square(Sin(ARG8))))))
Log(Cos(ARG8)) (4) Cos(Log(Sin(Cos(Log(Cos(ARG8))))))
Sqrt(Sqrt(ARG4)) (4) Sin(Log(Log(Sqrt(Log(Sqrt(ARG4))))))
Log(Sin(ARG1)) (4) Log(Neg(Cos(Sqrt(Sqrt(Sin(ARG1))))))

Log(Cos(Log(ARG5))) (4) Cos(Log(Neg(Sqrt(Cos(Neg(ARG5))))))
Log(Square(Log(ARG5))) (4) Log(Square(Log(Neg(Log(AQ(ARG7, ARG5))))))

Sqrt(Sqrt(ARG2)) (4) Sqrt(Neg(Abs(Sqrt(Sqrt(Square(ARG2))))))

N.3 LARGE LANGUAGE MODELS FOR SYMBOLIC REGRESSION

Recently, large language models (LLMs) have been increasingly applied to symbolic regression
tasks. These approaches often involve leveraging historical programs (Shojaee et al., 2024b) or
extracting patterns from historical programs (Grayeli et al., 2024) to guide LLM-based symbolic
regression through prompt engineering. By instructing LLMs to learn from high-quality historical
programs (Shojaee et al., 2024b) while avoiding low-quality ones (Grayeli et al., 2024), these meth-
ods aim to leverage LLMs to implement effective SR systems. However, using the MSE score as the
criterion for crafting prompts can be misleading. Some expressions with higher MSE scores may
still serve as valuable building blocks. From the perspective of the semantic space, the most useful
expression for a candidate solution is not necessarily the one with the lowest MSE but the one that
effectively fills the residual gap. This insight highlights the need for a fine-grained retrieval aug-
mentation strategy that focuses on the semantics of each promising solution when crafting prompts.
Thus, this paper builds a library of GP trees on semantics and retrieves from this library to guide the
language model in generating useful expressions for each promising solution.

O OUT-OF-LIMIT GENERATION

The neural retrieval library is trained on symbolic expressions with heights ranging between [0, 5].
However, in an SR task, the ground truth expression may exceed the generation limit of the neural
model. In this section, we evaluate the performance of the neural retrieval library when the ground
truth surpasses this limit. Specifically, we generate GP trees with a height of 6 and compare the
outputs of RAG-NN with the ground truth, as shown in Table 3. The results indicate that even when
the ground truth exceeds the neural generation limit, the neural model can still generate meaningful
sub-expressions that assist GP in discovering better GP trees.
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