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ABSTRACT

Modern deep learning heavily relies on adaptive optimization methods like Adam
and its variants, celebrated for their robustness against model scale and ease of
hyperparameter tuning. However, the gradient statistics employed by these methods
often do not leverage sufficient gradient covariance information, leading to subop-
timal updates in certain directions of the parameter space and potentially slower
convergence. In this work, we keep track of such covariance statistics in the form
of a structured preconditioner matrix. Unlike other works, our approach does not
apply direct approximations to estimate this matrix. We instead implement an in-
vertible transformation that maps the preconditioner matrix into a new space where
it becomes approximately diagonal. This enables a diagonal approximation of the
preconditioner matrix in the transformed space, offering several computational
advantages. Empirical results show that our approach can substantially enhance
the convergence speed of modern adaptive optimizers. Notably, for large language
models like LLaMA, we can achieve a 2x speedup in sample efficiency compared
to Adam. In addition, our method can also be integrated with memory-efficient
optimizers like Adafactor to manage computational overhead.

1. INTRODUCTION

In the realm of deep learning optimization, finding efficient and reliable solutions to complex problems
has become a central challenge. As model scales and datasets continue to expand, such optimization
problems usually demand extensive training time and substantial computational resources to achieve
state-of-the-art performances.

Standard first-order methods, such as stochastic gradient descent (SGD) and its variants, have
emerged as canonical tools for training large-scale deep networks. These methods are straightforward
to implement using modern automatic differentiation frameworks and are easily adaptable to non-
conventional training setups (Konečnỳ et al., 2016; Li et al., 2020; Finn et al., 2017). However,
despite their strong theoretical grounding (Şimşekli et al., 2019; Zhou et al., 2020; Smith et al., 2021;
Tian et al., 2023), first-order methods typically require meticulous tuning of hyperparameters to
ensure the optimization process can converge to the desired local optima. In practice, these methods
often struggle when navigating highly non-convex loss surfaces, a common characteristic of deep
learning models. Pathological features like saddle points, flat regions, and sharp valleys in the loss
landscape can significantly hinder convergence, leading to inefficient training.

To tackle these challenges, optimization techniques have evolved to incorporate curvature geometry
or second-order information, providing more adaptive and efficient updates. A classic family of such
algorithms is preconditioned gradient methods, in which the gradient is premultiplied by a matrix
called a preconditioner before each optimization step. Classic algorithms in this family include
Newton methods (Bonnans et al., 2006) and Natural Gradient (Martens, 2020), which employ the
inverses of local Hessian and Fisher Information Matrix as preconditioners, respectively. Although
preconditioning methods typically exhibit much faster convergence than first-order approaches, their
practical application is limited by the size of most real-world problems, as they demand quadratic
storage and cubic computation time for each gradient update (Fletcher, 2000; Bonnans et al., 2006).

In addition to preconditioning, adaptive moment estimation is another line of work that has been
highly influential in deep learning optimization. These methods, including AdaGrad (Duchi et al.,
2011), Adam (Kingma & Ba, 2014), AMSGrad (Reddi et al., 2019), and Adafactor (Shazeer & Stern,
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2018) dynamically adapt the learning rate of each parameter throughout the optimization process by
leveraging cumulative second-order gradient statistics. While their theoretical foundations are not
yet fully explored, these algorithms have demonstrated more robust empirical results than SGD in
various domains and often exhibit better convergence behaviors in practice (Loshchilov & Hutter,
2017; Zhang et al., 2020).

Our approach. In this work, we explore adaptive moment-based algorithms from the perspective
of preconditioning methods. We are driven by the understanding that the second-moment estimates
in these algorithms can be derived from the diagonal approximation of a structured preconditioner.
We propose to improve this approximation by applying an invertible transformation that maps the
preconditioner into a new space where it becomes approximately diagonal. In this transformed space,
the diagonal elements of the preconditioner can be accumulated to estimate second-order statistics
better. Since the transformation is invertible, we can formulate the update on the original parameter
space by doing a simple projection back.

Our key contributions are outlined as follows:

1. Our approach is designed to be both straightforward and versatile, facilitating easy integration into
existing adaptive moment-based optimizers such as Adam, AMSGrad, Adafactor, and variants.

2. We establish a convergence guarantee for the general framework without requiring typical strong
assumptions. This guarantee is significant because it is broadly applicable to a wide range of adaptive
optimizers, ensuring reliable performances in diverse scenarios.

3. Empirical results show that our proposed methods can substantially enhance the convergence
speed and efficiency of adaptive moment-based optimization baselines. Particularly in pretraining
large-scale models like LLaMA, our approach can achieve a speedup of 1.5x to 2x compared to the
Adam, but with manageable computational overhead.

Notations: For any matrices A,B of size m× n, we use
√
A for element-wise square root, A2 for

element-wise square, and A/B for element-wise division. The symbol A⊤ stands for the transpose
matrix, ⟨A,B⟩ = trace(A⊤B) represents the inner products of matrices, and A⊗B is the Kronecker
product. Let diag(.) denote the diagonal matrix, and vec(.) denote the vectorization of a matrix. We
write [t] = {1, . . . , t} as the first t positive integers.

2. PRELIMINARIES AND BACKGROUND

We consider an unconstrained, continuous optimization problem minW∈Rd L(W;X), with X de-
notes observations, L : Rd → R is a proper differentiable and lower bounded objective function.

2.1. PRECONDITIONED GRADIENT DESCENT

The iterative scheme of preconditioned gradient descent can be expressed as follows:

Wt+1 = Wt − ηtC(t)∇L(Wt;X), (1)

where the matrix C(t) is referred to as preconditioner. When C(t) is set to the identity matrix, the
update above simplifies to ordinary gradient descent. To capture curvature informativeness, systematic
designs of C(t) have been developed using local numerical approximations. Classic algorithms in this
category, including Newton methods and Natural Gradient, utilize the inverse of Hessian and Fisher
Information Matrix, respectively, as preconditioners. These methods offer a built-in mechanism for
curvature awareness, promoting larger updates in directions associated with small Hessian eigenvalues
to swiftly navigate flat regions while limiting movement in directions with large Hessian eigenvalues
to avoid sharp valleys. However, for large-scale models, further approximations to the preconditioners
are necessary to ensure their practicality. Various techniques have been proposed for this purpose,
such as Quasi-Newton methods (Fletcher, 2000), Gaussian-Newton estimators (Botev et al., 2017;
Martens, 2020; Liu et al., 2023), K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016).
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2.2. ADAPTIVE MOMENT ESTIMATION

These methods, such as AdaGrad, Adam, AMSGrad dynamically adjust learning rates for each
parameter by incorporating a form of gradient-based statistics. Specifically with Adam, it estimates
both first and second-order moments by maintaining exponential moving averages (EMA) on the
mean and uncentered variance of gradient information across iterations. The update rules are:

Mt = β̂1tMt−1 + (1− β̂1t)∇L(Wt;X) ≜ EMA
τ∈[t]

[∇L(Wτ ;X)]

Vt = β̂2tVt−1 + (1− β̂2t)∇L(Wt;X)2 ≜ EMA
τ∈[t]

[
∇L(Wτ ;X)2

]
Wt+1 = Wt − ηt

Mt√
Vt + ϵ

where β̂1t, β̂2t are the decay moment coefficients, ϵ is the smoothing tolerance constant to avoid
numerical instability. In principle, the first moment amplifies the gradient in directions that are
consistently the same sign and dampens the gradient in directions that are reversing sign. Meanwhile,
the second moment captures the curvature by adjusting the step size based on gradient magnitude:
smaller steps in steep-gradient regions to avoid overshooting and larger steps in shallow-gradient
regions for faster convergence.

2.3. ADAPTIVE MOMENT ESTIMATION VIA DIAGONAL PRECONDITIONING APPROXIMATION

We examine the matrix case where W represents a weight parameter with dimensions m× n. Let
Gt denote the gradient of loss function∇L(Wt;X) at iteration t. We analyze a preconditioner Ct

exploiting the second-order moment of accumulated gradients in the following inverse form:

Ct =
[
Ep(X)[vec(Gt)vec(Gt)

⊤] + ϵImn

]−1/2
(2)

We have Ct as a positive definite matrix of size mn×mn, which is quadratic to the size of model
parameter W. An analytical formulation of this quality is often intractable in practice. However,
under the assumption of stationary gradient distribution, we can approximate the expectation by
leveraging minibatch sampling in conjunction with the exponential moving average technique. We
then obtain an empirical preconditioner defined by:

Ct =

[
EMA
τ∈[t]

[
vec(Gτ )vec(Gτ )

⊤]+ ϵImn

]−1/2

, (3)

where Gτ := 1
|Bτ |

∑
X∈Bτ

∇L(Wτ ;X) is the minibatch gradient at training step τ . This empirical
preconditioner closely resembles the full matrix version of AdaGrad (Duchi et al., 2011), but instead
of using a cumulative sum, we apply an exponential moving average (EMA).

Directly calculating and storing the matrix Ct is computationally expensive, particularly with modern
network architectures, since it requires inverting a very large matrix. A practical way to alleviate this
bottleneck is by using diagonal approximation:

C
(d)
t =

[
EMA
τ∈[t]

diag
(
vec(Gτ )vec(Gτ )

⊤)+ ϵImn

]−1/2

=

[
EMA
τ∈[t]

diag
(
vec(G2

τ ) + ϵ
)]−1/2

(4)

= diag−1/2

(
EMA
τ∈[t]

[
vec(G2

τ ) + ϵ
])

.

The diagonal preconditioner C(d)
t represents the inverse root square of the second-order gradient

accumulator, which is widely adopted as the adaptive moment estimation in optimizers such as Ada-
Grad, RMSprop, Adam, and variants. Implementing this diagonal approximation offers advantages
in both computational efficiency and memory usage. Amari et al. (2019) also demonstrate that the
off-diagonal components of Ct are smaller than the diagonal components by a factor of 1/

√
N , where

N is the number of elements in the matrix. This insight contributes to understanding the practical
success of optimizers like AdaGrad, Adam, and others. However, by omitting the off-diagonal
elements, the algorithm does not incorporate gradient correlations, which can be particularly useful
in accelerating optimization (Martens & Grosse, 2015; Gupta et al., 2018; Liu et al., 2023).
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Algorithm 1 AdaDiag and AdaDiag++ for matrix parameter W of size m× n, m ≤ n

Inputs: moment coefficients β1, β2, smoothing term ϵ = 10−8, regularization constant λ
Initialization: weight parameters W0 ∈ Rm×n, initial moments M0,V0 ← 0
repeat
t← t+ 1
Gt = ∇L(Wt;Bt)
if t mod T = 0 then
Pt, _, Q⊤

t = torch.linalg.svd(Gt, full_matrices=True)
else
Pt,Q

⊤
t ← Pt−1,Q

⊤
t−1

end if
G̃t = P⊤

t Gt G̃t = P⊤
t GtQt

Mt = β̂1tMt−1 + (1− β̂1t)G̃t

Vt = β̂2tVt−1 + (1− β̂2t)G̃
2

t

Wt+1 = Wt − ηt
(
Pt

Mt√
Vt + ϵ

+ λWt

)
Wt+1 = Wt − ηt

(
Pt

Mt√
Vt + ϵ

Q⊤
t + λWt

)
until stopping criterion is met
return optimized parameter Wt

3. PRECONDITIONER DIAGONALIZATION WITH GRADIENT PROJECTION

To leverage the off-diagonal components of the preconditioner matrix, one can implement structural
approximations, like Gaussian-Newton estimators (Botev et al., 2017; Martens, 2020; Liu et al., 2023),
or Kronecker factorization (Martens & Grosse, 2015; Gupta et al., 2018). In this section, we approach
the problem from a different perspective of preconditioner diagonalization. Specifically, we will
rationalize the diagonal approximation assumption by applying an implicit orthogonal transformation
on the preconditioner matrix Ct. Intuitively, this technique will rotate the gradients to align with
coordinate axes partially, ultimately causing the matrix Ct to become approximately diagonal.
Moreover, we will show that this transformation is invertible via a network reparameterization,
leading to a simple update on the original parameter space.

Recall Gτ is a matrix of size m× n, with m ≤ n. Define C(Gτ ) ≜ vec(Gτ )vec(Gτ )
⊤, then:

Ct =

[
EMA
τ∈[t]

[C(Gτ )] + ϵImn

]−1/2

. (5)

Let’s start by drawing some intuitions through the diagonalization of matrix C(Gτ ). Given the special
formula of C(Gτ ), we can perform a straightforward approach using Singular Value Decomposition
(SVD) on the gradient Gτ . Suppose we have:

Gτ = PτΣτQ
⊤
τ

in which Pτ ,Qτ are orthogonal matrices of size m×m,n× n, respectively, and Στ is a diagonal
matrix of size m× n. Substituting this representation into C(Gτ ) gives us:

C(Gτ ) = vec(PτΣτQ
⊤
τ )vec(PτΣτQ

⊤
τ )

⊤ = (Qτ ⊗Pτ )vec(Στ )vec(Στ )
⊤(Qτ ⊗Pτ )

⊤ (6)

Since Στ is a diagonal matrix, we have vec(Στ )vec(Στ )
⊤ is almost diagonal (off-diagonal elements

are mostly zero). Moreover, the matrix Qτ ⊗Pτ satisfies (Qτ ⊗Pτ )(Qτ ⊗Pτ )
⊤ = (QτQ

⊤
τ )⊗

(PτP
⊤
τ ) = Imn, therefore we can consider Qτ ⊗Pτ as an orthogonal diagonalizing matrix with:

(Qτ ⊗Pτ )
−1C(Gτ )(Qτ ⊗Pτ ) = vec(Στ )vec(Στ )

⊤.

Alternatively, the diagonalization process above can be equivalently derived from C(G̃τ ), with
G̃τ ≜ P⊤

τ GτQτ = Στ . This rotation aligns the gradient G̃t with coordinate axes and consequently
induces a roughly diagonal structure on C(G̃τ ).
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Figure 1: Histograms of off-diagonal elements C(Gτ ) (original) and C(G̃τ ) (two-sided projection),
corresponding to the two first layers of ResNet50 trained on ImageNet1k. In this experiment, we set
the frequency T = 500 and plot histograms at iterations with and without SVD applied.

3.1. PERIODIC PROJECTION ONTO GRADIENT SUBSPACES

The analysis presented above applies only to the iteration in which the SVD is implemented. However,
it is impractical to utilize SVD at every iteration of the training procedure due to computational
overhead. Fortunately, there are recent works on low-rank gradient projection (Gur-Ari et al., 2018;
Gooneratne et al., 2020; Zhao et al., 2024; Liang et al., 2024) indicating that the optimization process
usually acts on low-dimensional subspaces. GaLore (Zhao et al., 2024) exploits this concept by
showing that the training trajectory can be divided into continual subspaces, from which the gradients
within each subspace can be governed by a common spanning basis. GaLore deployed this idea by
periodically applying SVD on the gradients to extract projection matrices. Mathematically, during
each period of length T , say [κT, (κ+ 1)T ], the gradient Gτ can be represented via SVD as:

Gτ ≈ PκΣτQ
⊤
κ ∀τ ∈ [κT, (κ+ 1)T ]

where Pκ, _,Q⊤
κ ← SVD(GκT ) are kept the same throughout the period.

We can adapt this assumption to our framework. In this way, we can expect that our projected
gradients in each period are still approximately diagonal, namely:

G̃τ ≜ P⊤
κGτQκ ≈ (P⊤

κPκ)Στ (Q
⊤
κQκ) = Στ .

As a result, we can achieve a desired diagonal structure on C(G̃τ ),∀τ ∈ [κT, (κ+ 1)T ].

Why the full matrices Pκ,Qκ matter: connection and difference with Galore. It is essential
to note that, since GaLore’s focus is on memory efficiency, they just implemented truncated SVD
to capture the top-K representation of the gradient matrices. This assumption is reasonable when
considering that gradients are low-rank matrices. However, using truncated SVD involves careful
tweaking of the K values and more importantly, the gradient projection step has to be executed on
the smaller dimension of the matrix.1 On the other hand, our framework would require sophisticated

1Let’s omit subscripts τ, κ for simplicity. Consider Gm×n ≈ Pm×KΣK×KQ⊤
n×K as the truncated SVD of

gradient matrix Gm×n with m ≤ n. The GaLore algorithm performs a gradient projection as G̃ = P⊤
m×KG,

which maps n vectors of size m from G onto the subspace spanned by K vectors of size m from Pm×K . Since
K ≤ m ≤ n, this operator is more effective than projecting in larger dimensions, i.e. G̃ = GQn×K .

5
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modifications in GaLore, of which Pκ,Qκ need to be the full matrices or K is at least the effective
rank. This guarantees that Pκ,Qκ can form complete bases for the rows and columns of the gradient
matrices in each period. To make the algorithm effortless, we propose to adopt the full matrices
instead of tunning effective rank K.

One-sided projection. Instead of using two-sided projection as described so far, we can opt for a
simpler version involving just one-sided projection, namely G̃τ ≜ P⊤

τ Gτ = ΣτQ
⊤
τ , then we have:

C(G̃τ ) ≜ vec(G̃τ )vec(G̃τ )
⊤ = vec(ΣτQ

⊤
τ )vec(ΣτQ

⊤
τ )

⊤

= (Qτ ⊗ Im)vec(Στ )vec(Στ )
⊤(Qτ ⊗ Im)⊤. (7)

Gradient at Iter 1000 Gradient at Iter 1400

Projected Gradient at Iter 1000 Projected Gradient at Iter 1400
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Figure 2: Sparsity of one-sided projection.

The projected gradient G̃τ = ΣτQ
⊤
τ inherently

exhibits a sparse structure as illustrated in Figure 2.
This is because Στ is a diagonal matrix and the
smallest singular values on the diagonal will zero
out the magnitude of corresponding rows on Qτ .
In Figure 1 and 9, we further show the histograms
of off-diagonal elements of C(Gτ ) and C(G̃τ )
(both two-sided and one-sided), corresponding to
the two first layers of ResNet50 trained on Im-
ageNet1k. We can observe notable differences
in sparsity patterns of off-diagonal elements of
C(G̃τ ) compared to the original C(Gτ ) over it-
erations. The matrix C(G̃τ ) is roughly diagonal,
enabling a more accurate diagonal approximation
for the preconditioner matrix C̃t.

3.2. GRADIENT PROJECTION IMPLIES NETWORK REPARAMETERIZATION

In the previous sections, we demonstrated that we can rotate the gradients Gτ to G̃τ in such a way
that the matrix C(G̃τ ) is approximately diagonal. Consequently, it induces a diagonal approximation
of C̃t as follows:

C̃
(d)

t =

[
EMA
τ∈[t]

diag
[
vec(G̃τ )vec(G̃τ )

⊤
]
+ ϵImn

]−1/2

=

[
EMA
τ∈[t]

diag
[
vec(G̃

2

τ ) + ϵ
]]−1/2

(8)

= diag−1/2

[
EMA
τ∈[t]

[
vec(G̃

2

τ ) + ϵ
]]
,

This makes the preconditioned gradient at iteration t becomes:

C̃
(d)

t vec(G̃t) =
vec(G̃t)√

EMAτ∈[t]

[
vec(G̃

2

τ ) + ϵ
] (9)

However, this quantity cannot be directly applied to update the weight parameters, as the gradient
projection implicitly imposes a reparameterization on the weight space. In Figure 3, we illustrate
how the update in equation 9 can be utilized to learn a rotated network rather than the original one.
This rotated network introduces two auxiliary layers defined by Pκ,Q

⊤
κ , and reparameterizes the

original weight parameters as W̃ = P⊤
κWQκ. While this transformation does not alter the forward

pass of the original network, it does lead to a corresponding gradient, represented as:

∇
W̃
L(W̃;X) = P⊤

κ∇WL(W̃;X)Qκ =
same forward response

P⊤
κ∇WL(W;X)Qκ, (10)

6
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Figure 3: Illustration of network reparameterization induced by gradient projection.

which is equivalent to our two-sided gradient projection. Therefore, we can derive the preconditioned
gradient descent for the rotated network using the following update:

W̃t+1 = W̃t+1 − ηt
G̃t√

EMAτ∈[t]

[
G̃

2

τ + ϵ
] (11)

of which, we dropped the vectorization to ensure dimensional compatibility. Since Pκ and Qκ are
full-rank orthogonal matrices, the reparameterization is invertible and thus the update on the original
parameter can be obtained by a projection back step as:

Wt+1 = Wt+1 − ηtPκ
G̃t√

EMAτ∈[t]

[
G̃

2

τ + ϵ
]Q⊤

κ , t ∈ [κT, (κ+ 1)T ] (12)

3.3. FINAL ALGORITHM AND RELATED WORKS

We provide the details of our proposal in Algorithm 1, which encompasses both two-sided and one-
sided rotation versions. We also employ an exponential moving average of the projected gradients G̃
to derive the first-order moment estimation Mt. This accumulation is performed before applying
preconditioning. It should be noted that our implementation requires torch.linalg.svd(Gt,
full_matrices=True) to extract the full projection matrices Pt,Qt in each period. For Ada-
Diag++, we recommend implementing the first SVD step at the T ’th iteration of the training process
to avoid numerical issues.

Given the flexibility of our framework, we can adapt it for other adaptive optimizers like Adafactor.
In Appendix A, we provided variants of the algorithm tailored for Adafactor, along with empirical
results evaluating its performance.

In connection with other existing algorithms, several prior works on optimization are relevant to our
framework. George et al. (2018) and Liu et al. (2018) proposed utilizing the eigenbasis of the Fisher
Information Matrix to construct diagonal preconditioning approximations within the natural gradient
or online Laplace approximation families. Similarly, Anil et al. (2020) extends this idea by leveraging
the eigendecomposition of Shampoo’s preconditioners as a basis for the diagonal transformations.

Our method, in contrast, focuses on diagonalizing the preconditioner matrix within the generalized
family of adaptive moment-based optimization algorithms, which includes Adam and Adafactor
optimizers as specific cases. While primarily inspired by the critical idea of gradient projection in
GaLore, we explore the full-rank projection case and thus move beyond GaLore’s main focus on
memory efficiency. We also acknowledge the concurrent work by SOAP (Vyas et al., 2024), which
obtains the projection matrices Pt and Qt by performing eigendecomposition on the accumulators
of GtG

⊤
t and G⊤

t Gt (referred to as Shampoo’s preconditioners), respectively. Essentially, the
eigenvector matrix retrieved from the eigendecomposition of GtG

⊤
t (and G⊤

t Gt) corresponds to
the left (and right) singular matrix of Gt. Our proposal is therefore effectively equivalent to SOAP
without accumulations, resulting in enhanced memory efficiency. From a practical standpoint, our
algorithms can substantially outperform Adam with only a manageable overhead.

7
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4. CONVERGENCE ANALYSIS

In comparison to optimizers such as AdaGrad, Adam, and variants, the algorithm 1 introduces addi-
tional projection matrices {Pt,Qt}, resulting in complex interactions between the model parameter
Wt and optimization states St = {Mt,Vt}. It is important to note that the second-order momentum
Vt is the key factor in our framework. Without this quantity, the proposed algorithm would degenerate
to the standard gradient descent with momentum, eliminating any potential improvements. This
implies that the algorithms cannot be reduced to a simpler form for analyzing convergence guarantees.
Moreover, applying SVD periodically to produce projection matrices also causes intricate behaviors
in the dynamic subspace of optimization trajectory. It is unclear whether the momentum estimates
accumulated across previous subspaces would be consistent with each other and advantageous for
updates conducted in subsequent subspaces.

Inspired by the recent work on Online Subspace Descent (Liang et al., 2024), we leverage the
Hamiltonian descent framework to tackle these challenges. Essentially, this framework investigates
continuous-time ODE forms of optimizers in the limit of infinitesimal step size. In this setting, the
optimizers will minimize an associated Hamiltonian functionH(.), which is an augmented version of
the original objective L(.). For example, we can derive continuous-time form for Adam optimizer as:

d

dt
Wt = −Mt/(

√
Vt + ϵ),

d

dt
Mt = Gt −Mt,

d

dt
Vt = G2

t −Vt,

which yields a Hamiltonian functions defined by: H(W,M,V) = L(W)+
1

2

〈
M/(
√
V + ϵ),M

〉
.

Proposition 1. Using this general approach, we formulate continuous-time forms for AdaDiag and
AdaDiag++ as follows:

(AdaDiag) :
d

dt
Wt = −Pt

Mt√
Vt + ϵ

,
d

dt
Mt = P⊤

t Gt −Mt,
d

dt
Vt = (P⊤

t Gt)
2 −Vt

(AdaDiag++) :
d

dt
Wt = −Pt

Mt√
Vt + ϵ

Q⊤
t ,

d

dt
Mt = P⊤

t GtQt−Mt,
d

dt
Vt = (P⊤

t GtQt)
2−Vt

Both yield the same Hamiltonian function: H(W,M,V) = L(W) +
1

2

〈
M/(
√
V + ϵ),M

〉
.

Convergence to Local Optima. The key properties is that the function H(.) is monotoni-

cally non-decreasing along its ODE trajectory, namely
d

dt
H(Wt,St) ≤ 0,∀t. By LaSalle’s

Invariance principle, the set of accumulation points (Wt,St) must be contained in I, where

I = {the union of complete trajectories satisfying
d

dt
H(Wt,St) = 0}. The points in limit set

I should satisfy P⊤
t ∇L(Wt) ≡ 0 for AdaDiag or P⊤

t ∇L(Wt)Qt ≡ 0 for AdaDiag++, respectively.
Since Pt,Qt are full-rank orthogonal matrices, we must have∇L(Wt) ≡ 0, which indicates that all
trajectories will converge to local optimal points. Detailed analysis is provided in Appendix B.

5. EXPERIMENTS

In this section, we conduct several experiments on image classification and language modeling tasks
to verify the efficiency of our algorithm. We will also demonstrate that our general framework can be
effectively applied to enhance adaptive moment-based optimizers such as AdamW and Adafactor.

5.1. IMAGE CLASSIFICATION

We first evaluated the optimization algorithms, including AdamW, AdaDiag, and AdaDiag++, by
pretraining the ImageNet1k dataset from scratch using ResNets and Vision Transformers (ViTs)
architectures. The images underwent Inception-style cropping (Szegedy et al., 2016) and random
horizontal flipping during pre-processing. We trained ResNet50 for 90 epochs with a batch size
of 1024, utilizing a cosine learning rate decay scheduler. For ViTs, we conducted training over
300 epochs with a batch size of 4096, using a learning rate schedule that included a 10,000-step

8
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Figure 4: Top-1 Accuracy of optimizers in pretraining ResNet50, ViT-B/32, and ViT-S/16 from
scratch on the ImageNet1k. For better ViT’s visualization, we crop the learning curve up to epoch 80.

Table 1: Comparison of Adam and AdaDiag on pre-training ResNets and ViTs architectures with
ImageNet1k dataset. Top-1 accuracy on the validation set is reported.

Models ResNet50 ViT-S/16 ViT-B/32
Adam (Kingma & Ba, 2014) 75.61 78.35 72.20
AdaDiag (ours) 75.85 79.18 73.39
AdaDiag++ (ours) 75.86 79.14 73.24

warmup followed by linear decay. Additionally, we employed strong data augmentations, such as
RandAugment (2,15) (Cubuk et al., 2019) and mixup (0.5) (Zhang et al., 2017), to further improve
the performance of the ViTs. For hyperparameters settings, such as learning rate (lr), weight decay
(λ), and dropout rate (dr), we opted for recommended configurations from prior research and left
them in Appendix C.

As shown in Figure 4, AdaDiag and AdaDiag++ exhibit substantial improvements in convergence
speed compared to the baseline AdamW. For the ViT-B/32 and ViT-S/16 models, we focus on the
first third of the training phase so that we can observe notable accelerations across the three models.
For the full performances, we refer to the results in Figure 8 in Appendix D. The final results at
convergence are provided in Table 1. By more accurate approximations of the preconditioner matrix,
we expect that AdaDiag++ can navigate the complex curvature more efficiently and thus provide better
convergence properties, even compared to AdaDiag. The results appear to support this argument. It’s
important to mention that these two algorithms would perform similarly after converging at some
point. We hypothesize that the optimization trajectory will eventually converge to a stable region
where the gradients reside in a very low-dimensional subspace. The precondition approximations, at
this stage, become less critical as the optimization process focuses on fine-tuning within this reduced
space.

5.2. LANGUAGE MODELING

We apply the algorithms to pre-train LLaMA-based large language model, with RMSNorm and
SwiGLU activations (Zhang & Sennrich, 2019; Shazeer, 2020; Touvron et al., 2023), on the C4
dataset (Raffel et al., 2020). We measured the perplexity of the models on the validation set
throughout training to assess convergence properties and final model performance. Specifically, we
trained LLaMA models of sizes 60M, 130M, and 350M for 10K, 20K, and 60K steps, respectively.
The learning rate schedule included a warmup phase during the first 10% of the training steps,
followed by cosine annealing that decayed the learning rate to 10% of its initial value. All models
used a maximum sequence length of 256 and a batch size of 512.

The results are provided in Figure 5 and Table 2. Our optimizer AdaDiag consistently outperforms
Adam on various sizes of LLaMA models. In particular, AdaDiag can achieve 1.8x-2x speed-up
compared to Adam, achieving the same perplexity with half fewer steps. Because of resource
constraints, we were unable to conduct experiments with billion-parameter models. However, we are
confident that similar results can be reliably achieved with larger-scale models.
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Figure 5: Training progression for pre-training LLaMA models on C4 dataset.
Table 2: Comparison of Adam and AdaDiag on pre-training LLaMA models with the C4 dataset.
Validation perplexity is reported for models with 60/130/350 Million parameters trained for 1.1/2.2/6.4
Billion training tokens.

Optimizer Validation Perplexity
60M / 1.1B 130M / 2.2B 350M / 6.4B

Adam (Kingma & Ba, 2014) 31.12 24.55 18.79
AdaDiag (ours) 28.71 22.40 16.91

5.3. IMPROVING COMPUTATIONAL AND MEMORY EFFICIENCY

Although our proposal can greatly enhance the performance, it comes with an inevitable trade-off
in algorithmic complexity. While the total computational overhead induced by periodic SVD is
negligible (less than 10%), the memory usage caused by the full-rank projection may limit the
applicability of the algorithms. To address this challenge, we propose to apply the general framework
to memory-efficiency optimization methods such as Adafactor (Shazeer & Stern, 2018). This
optimizer employs a rank-1 parameterization to the second-order moment and thus offers a sublinear
memory cost. In Table 3, we provide an analysis of the complexity of these algorithms.

Table 3: Memory requirements for different optimizers, with weight parameter of size m×n,m ≤ n.

Optimizers Adam AdaDiag AdaDiag++ Adafactor AdafacDiag

w/ m. w/o m. w/ m. w/o m.

Weights mn mn mn mn mn mn mn
Gradient mn mn mn mn mn mn mn
Optim. States 2mn m2 + 2mn (m + n)2 mn + m + n m + n m2 + mn + m + n m2 + m + n

Adafactor with momentum (w/ m.) has demonstrated results comparable to Adam on various
tasks (Shazeer & Stern, 2018; Chen et al., 2024). Hence, the AdafacDiag integration could poten-
tially surpass Adam’s performance while maintaining a similar complexity. We conducted several
experiments to validate this hypothesis, with the results presented in Appendix A.

6. DISCUSSION

In this work, we proposed an efficient approach to improve adaptive moment-based optimizers by
introducing a preconditioner diagonalization strategy. By leveraging an invertible transformation,
we were able to enhance the reliability of the diagonal approximation used for the preconditioner
matrix, resulting in a more effective estimation of second-order statistics. Our empirical evaluations
demonstrated significant improvements in both convergence speed and final model performance
across several standard tasks. Furthermore, our work also underscores the significance of employing
structural preconditioning techniques to improve existing adaptive learning rate optimizers. Devising
new preconditioners or exploring network reparameterization present promising approaches to this
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problem. In addition, it is vital to establish theoretically sound frameworks to better understand
adaptive moment-based optimizers in dynamic subspaces. This would enable us to identify the
optimal subspace where the moment estimates can be applied most effectively.
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A. ADAFACTOR OPTIMIZER

Algorithm 2 Adafactor for matrix parameter W of size m× n, m ≤ n.

Inputs: moment decay coefficients β1, β2, smoothing term ϵ = 10−30, regularization constant λ
Initialization: weight parameters W0 ∈ Rm×n, initial moments M0, r0, s0 ← 0
repeat
t← t+ 1
Gt = ∇L(Wt;Bt)
rt = β̂2trt−1 + (1− β̂2t)

[
(Gt)

2 + ϵ
]
1n

st = β̂2tst−1 + (1− β̂2t)
[
(G⊤

t )
2 + ϵ

]
1m

Vt = rts
⊤
t /(1

⊤
mrt)

Mt = β̂1tMt−1 + (1− β̂1t)clip
(
Gt/

(√
Vt

))
Wt+1 = Wt − ηt (Mt + λWt)

until stopping criterion is met
return optimized parameter Wt

Algorithm 3 AdafacDiag for matrix parameter W of size m× n, m ≤ n.

Inputs: moment decay coefficients β1, β2, smoothing term ϵ = 10−30, regularization constant λ
Initialization: weight parameters W0 ∈ Rm×n, initial moments M0, r0, s0 ← 0
repeat
t← t+ 1
Gt = ∇L(Wt;Bt)
if t mod T = 0 then
Pt, _, Q⊤

t = torch.linalg.svd(Gt, full_matrices=True)
else
Pt,Q

⊤
t ← Pt−1,Q

⊤
t−1

end if
G̃t = P⊤

t Gt

rt = β̂2trt−1 + (1− β̂2t)
[
(G̃t)

2 + ϵ
]
1n

st = β̂2tst−1 + (1− β̂2t)
[
(G̃

⊤
t )

2 + ϵ
]
1m

Vt = rts
⊤
t /(1

⊤
mrt)

Mt = β̂1tMt−1 + (1− β̂1t)clip
(
G̃t/

(√
Vt

))
Wt+1 = Wt − ηt (PtMt + λWt)

until stopping criterion is met
return optimized parameter Wt

Adafactor (Shazeer & Stern, 2018) proposed an efficient rank-1 parameterization for the second-order
momentum V, which is widely adopted in adaptive optimization methods like RMSprop, Adam, and
its variants. The factorization was derived by minimizing the total elementwise I-divergence subject
to componentwise non-negative constraints:

minimize
r∈Rm,s∈Rn

m∑
i=1

n∑
j=1

d(Vij , risj)

in which ri ≥ 0, sj ≥ 0 and d(p, q) = p log p
q − p+ q.

Solving this problem results in a closed-form solution denoted by r = V1n, s = V⊤1m/r
⊤1n.

Intuitively, Adafactor tracks the moving averages of the row and column sums of squared gradients
throughout iterations, yielding factored second-moment estimators rt and st. It then reconstructs
a low-rank parameterization of the second-order momentum using a normalized outer product
rts

⊤
t /(1

⊤
mrt). This method is computationally efficient and scalable, as it directly offers analytical

formulations without requiring further approximations.
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Figure 6: Top-1 Accuracy of optimizers in pre-training ResNet50, ViT-B/32, and ViT-S/16 from
scratch on the ImageNet1k.

Table 4: Comparison of Adam, Adafactor, and AdafacDiag on pre-training ResNets and ViTs
architectures with ImageNet1k dataset. Top-1 accuracy on the validation set is reported.

Models ResNet50 ViT-S/16 ViT-B/32
AdamW 75.61 78.35 72.20
Adafactor 75.37 77.14 71.42
AdafacDiag 75.68 78.45 72.54
AdafacDiag++ 75.60 78.56 72.78
Adafactor w/ momentum - 78.44 72.31
AdafacDiag w/ momentum - 78.90 73.24
AdafacDiag++ w/ momentum - 78.66 73.28

Incorporating Adafactor into our framework offers significant computational and memory efficiency
benefits. This can be evident in Table 3, from which AdafacDiag demonstrates lower complexity in
optimization states when compared to Adam. To further assess the effectiveness of this integration, we
carried out experiments similar to those described in the main text. As shown in Figure 6, AdafacDiag
(on ResNet50) and AdafacDiag with momentum (on ViTs) can outperform Adam by noticeable
margins. The experiments on LLaMA-based models using the C4 dataset also delivered consistent
results, presented in Figure 7 and Table 5. These advantages highlight the potential of utilizing these
algorithms in a wide range of real-world tasks, particularly in large-scale applications.
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Figure 7: Training progression of Adam and AdafacDiag for pre-training LLaMA models on C4
dataset.
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Table 5: Comparison of Adam and AdafacDiag on pre-training LLaMA models with the C4 dataset.
Validation perplexity is reported for models with 60/130 Million parameters trained for 1.1/2.2 Billion
training tokens.

Optimizer Validation Perplexity
60M / 1.1B 130M / 2.2B

Adam (Kingma & Ba, 2014) 31.12 24.55
AdafacDiag (ours) 31.43 22.82
AdafacDiag w/ momentum (ours) 28.91 22.54

B. HAMILTONIAN FUNCTION ANALYSES

We first formalize a unified view of adaptive moment-based optimizers in the update scheme as:

Wt+1 = Wt + ϕt(St) St = ψt(St−1,∇L(Wt)) (13)

where St is the optimization state, and ϕt, ψt are some mapping functions. One powerful approach
to studying the dynamic behavior of these optimizers is to examine their continuous-time ODE forms
in the limit of infinitesimal step size (Maddison et al., 2018; Gao et al., 2022; Chen et al., 2023). It
provides insights into the asymptotic convergence of the algorithms, abstracting away the choices of
step size, discretization, and accumulation errors.

We observe that the update 13 can be discretized from the following continuous-time form:

d

dt
Wt = ∂SH(Wt,St)− Φ(∂WH(Wt,St))

d

dt
St = −∂WH(Wt,St)−Ψ(∂SH(Wt,St))

(14)

whereH(.) is a Hamiltonian function that satisfies:

min
S
H(W,S) = L(W) ∀W,

meaning that minimizingH(W,S) will reduce to minimizing the original objective L(W). Addi-
tionally, Φ,Ψ are two monotonic mapping satisfying:

∥A∥2Φ = ⟨A,Φ(A)⟩ ≥ 0, ∥A∥2Ψ = ⟨A,Ψ(A)⟩ ≥ 0, ∀A

The key properties is thatH(W,S) is monotonically non-decreasing along the trajectory 14:

d

dt
H(Wt,St)

=

〈
∂WH(Wt,St),

d

dt
Wt

〉
+

〈
∂SH(Wt,St),

d

dt
St

〉
= −⟨∂WH(Wt,St),Φ(∂WH(Wt,St))⟩ − ⟨∂SH(Wt,St),Ψ(∂SH(Wt,St))⟩
= −∥∂WH(Wt,St)∥2Φ − ∥∂SH(Wt,St)∥2Ψ ≤ 0,

where we cancel out the cross terms ⟨∂WH(Wt,St), ∂SH(Wt,St)⟩ to get the second equation.

Let’s take Adam optimizer as a specific example, we have its ODE form represented as:

d

dt
Wt = −

Mt√
Vt + ϵ

,
d

dt
Mt = Gt −Mt,

d

dt
Vt = G2

t −Vt, (15)

of which the Hamiltonian function is defined by:

H(W,M,V) = L(W) +
1

2

〈
M√
V + ϵ

,M

〉
(16)
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We have the derivative:
d

dt
H(Wt,Mt,Vt)

=

〈
Gt,

d

dt
Wt

〉
+

〈
Mt√
Vt + ϵ

,
d

dt
Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , ddtVt

〉

=

〈
Gt,−

Mt√
Vt + ϵ

〉
+

〈
Mt√
Vt + ϵ

,Gt −Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 ,G2
t −Vt

〉

= −
〈

Mt√
Vt + ϵ

,Mt

〉
+

1

4

〈
M2

t(√
Vt + ϵ

)2 ,√Vt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 ,G2
t

〉

= −
〈

Mt√
Vt + ϵ

,Mt

〉
+

1

4

〈
Mt√
Vt + ϵ

⊙
√
Vt√

Vt + ϵ
,Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 ,G2
t

〉

≤ −1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 ,G2
t

〉
≤ 0.

A similar analysis can be applied to the AdaDiag and AdaDiag++. In AdaDiag’s case, we have the
continuous form:

d

dt
Wt = −Pt

Mt√
Vt + ϵ

,
d

dt
Mt = P⊤

t Gt −Mt,
d

dt
Vt = (P⊤

t Gt)
2 −Vt, (17)

yielding the Hamiltonian functionH(W,M,V) = L(W) +
1

2

〈
M√
V + ϵ

,M

〉
, for which:

d

dt
H(Wt,Mt,Vt)

=

〈
Gt,

d

dt
Wt

〉
+

〈
Mt√
Vt + ϵ

,
d

dt
Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , ddtVt

〉

=

〈
Gt,−Pt

Mt√
Vt + ϵ

〉
+

〈
Mt√
Vt + ϵ

,P⊤
t Gt −Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , (P⊤
t Gt)

2 −Vt

〉

= −
〈

Mt√
Vt + ϵ

,Mt

〉
+

1

4

〈
M2

t(√
Vt + ϵ

)2 ,√Vt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , (P⊤
t Gt)

2

〉

≤ −1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , (P⊤
t Gt)

2

〉
≤ 0.

This result implies that the points in the limit set:

I = {the union of complete trajectories satisfying
d

dt
H(Wt,Mt,Vt) = 0}

must satisfy P⊤
t Gt ≡ 0. Since Pt is a full-rank orthogonal matrix, we have Gt ≡ 0, indicating that

the optimization algorithm converges to a local optimum.

C. HYPERPARAMETER SETTINGS

For all optimizers, we used decay moment coefficients (β1, β2) = (0.9, 0.999) along with the bias-
correction steps, the smoothing constant ϵ = 10−8. Specifically with AdaDiag, AdaDiag++, we use
the SVD frequency T = 500, 200 for image and language tasks, respectively.

For image classification, we used (lr, λ) = (0.001, 0.1) and (0.0003, 0.1) for all ResNets and ViTs
experiments, respectively.

For language modeling, we tuned the learning rate over the set {0.003, 0.001, 0.0003, 0.0001} and
selected the optimal value based on validation perplexity. The specific settings are summarized in the
Table 6.
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Table 6: Training configuration for LLaMA models.

LLaMA models Tokens Training Steps Warmup Steps Learning Rate
60M 1.3B 10K 1K 0.003
130M 2.6B 20K 2K 0.001
350M 7.8B 60K 6K 0.001
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Figure 8: Top-1 Accuracy of optimizers in pre-training (to the end) ResNet50, ViT-B/32, and ViT-S/16
from scratch on the ImageNet1k.
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Figure 9: Histograms of off-diagonal elements C(Gτ ) (original) and C(G̃τ ) (one-sided projection,
AdaDiag), corresponding to the two first layers of ResNet50 trained on ImageNet1k. In this experi-
ment, we set the frequency T = 500 and plot histograms at iterations with and without SVD applied.
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Figure 10: Histograms of off-diagonal elements C(Gτ ) (original) and C(G̃τ ) (GaLore), correspond-
ing to the two first layers of ResNet50 trained on ImageNet1k. Compared to the full-rank case, the
low-rank GaLore projection (r = min{m,n}/2) does not exhibit a discernible sparsity structure in
the off-diagonal elements. GaLore even creates off-diagonal elements with larger magnitudes. Note
that the support was truncated for better visualization.

20


	Introduction
	Preliminaries and Background
	Preconditioned Gradient Descent
	Adaptive Moment Estimation
	Adaptive Moment Estimation via Diagonal Preconditioning Approximation

	Preconditioner Diagonalization with Gradient Projection
	Periodic Projection onto Gradient Subspaces
	Gradient Projection Implies Network Reparameterization
	Final Algorithm and Related Works

	Convergence Analysis
	Experiments
	Image Classification
	Language Modeling
	Improving computational and memory efficiency

	Discussion
	Adafactor optimizer
	Hamiltonian function analyses
	Hyperparameter Settings
	Additional Figures

