
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING ADAPTIVE MOMENT OPTIMIZATION
VIA PRECONDITIONER DIAGONALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern deep learning heavily relies on adaptive optimization methods like Adam
and its variants, celebrated for their robustness against model scale and ease of
hyperparameter tuning. However, the gradient statistics employed by these methods
often do not leverage sufficient gradient covariance information, leading to subop-
timal updates in certain directions of the parameter space and potentially slower
convergence. In this work, we keep track of such covariance statistics in the form
of a structured preconditioner matrix. Unlike other works, our approach does not
apply direct approximations to estimate this matrix. We instead implement an in-
vertible transformation that maps the preconditioner matrix into a new space where
it becomes approximately diagonal. This enables a diagonal approximation of the
preconditioner matrix in the transformed space, offering several computational
advantages. Empirical results show that our approach can substantially enhance
the convergence speed of modern adaptive optimizers. Notably, for large language
models like LLaMA, we can achieve a 2x speedup in sample efficiency compared
to Adam. In addition, our method can also be integrated with memory-efficient
optimizers like Adafactor to manage computational overhead.

1. INTRODUCTION

In the realm of deep learning optimization, finding efficient and reliable solutions to complex problems
has become a central challenge. As model scales and datasets continue to expand, such optimization
problems usually demand extensive training time and substantial computational resources to achieve
state-of-the-art performances.

Standard first-order methods, such as stochastic gradient descent (SGD) and its variants, have
emerged as canonical tools for training large-scale deep networks. These methods are straightforward
to implement using modern automatic differentiation frameworks and are easily adaptable to non-
conventional training setups (Konečnỳ et al., 2016; Li et al., 2020; Finn et al., 2017). However,
despite their strong theoretical grounding (Şimşekli et al., 2019; Zhou et al., 2020; Smith et al., 2021;
Tian et al., 2023), first-order methods typically require meticulous tuning of hyperparameters to
ensure the optimization process can converge to the desired local optima. In practice, these methods
often struggle when navigating highly non-convex loss surfaces, a common characteristic of deep
learning models. Pathological features like saddle points, flat regions, and sharp valleys in the loss
landscape can significantly hinder convergence, leading to inefficient training.

To tackle these challenges, optimization techniques have evolved to incorporate curvature geometry
or second-order information, providing more adaptive and efficient updates. A classic family of such
algorithms is preconditioned gradient methods, in which the gradient is premultiplied by a matrix
called a preconditioner before each optimization step. Classic algorithms in this family include
Newton methods (Bonnans et al., 2006) and Natural Gradient (Martens, 2020), which employ the
inverses of local Hessian and Fisher Information Matrix as preconditioners, respectively. Although
preconditioning methods typically exhibit much faster convergence than first-order approaches, their
practical application is limited by the size of most real-world problems, as they demand quadratic
storage and cubic computation time for each gradient update (Fletcher, 2000; Bonnans et al., 2006).

In addition to preconditioning, adaptive moment estimation is another line of work that has been
highly influential in deep learning optimization. These methods, including AdaGrad (Duchi et al.,
2011), Adam (Kingma & Ba, 2014), AMSGrad (Reddi et al., 2019), and Adafactor (Shazeer & Stern,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2018) dynamically adapt the learning rate of each parameter throughout the optimization process by
leveraging cumulative second-order gradient statistics. While their theoretical foundations are not
yet fully explored, these algorithms have demonstrated more robust empirical results than SGD in
various domains and often exhibit better convergence behaviors in practice (Loshchilov & Hutter,
2017; Zhang et al., 2020).

Our approach. In this work, we explore adaptive moment-based algorithms from the perspective
of preconditioning methods. We are driven by the understanding that the second-moment estimates
in these algorithms can be derived from the diagonal approximation of a structured preconditioner.
We propose to improve this approximation by applying an invertible transformation that maps the
preconditioner into a new space where it becomes approximately diagonal. In this transformed space,
the diagonal elements of the preconditioner can be accumulated to estimate second-order statistics
better. Since the transformation is invertible, we can formulate the update on the original parameter
space by doing a simple projection back.

Our key contributions are outlined as follows:

1. Our approach is designed to be both straightforward and versatile, facilitating easy integration into
existing adaptive moment-based optimizers such as Adam, AMSGrad, Adafactor, and variants.

2. We establish a convergence guarantee for the general framework without requiring typical strong
assumptions. This guarantee is significant because it is broadly applicable to a wide range of adaptive
optimizers, ensuring reliable performances in diverse scenarios.

3. Empirical results show that our proposed methods can substantially enhance the convergence
speed and efficiency of adaptive moment-based optimization baselines. Particularly in pretraining
large-scale models like LLaMA, our approach can achieve a speedup of 1.5x to 2x compared to the
Adam, but with manageable computational overhead.

Notations: For any matrices A,B of size m× n, we use
√
A for element-wise square root, A2 for

element-wise square, and A/B for element-wise division. The symbol A⊤ stands for the transpose
matrix, ⟨A,B⟩ = trace(A⊤B) represents the inner products of matrices, and A⊗B is the Kronecker
product. Let diag(.) denote the diagonal matrix, and vec(.) denote the vectorization of a matrix. We
write [t] = {1, . . . , t} as the first t positive integers.

2. PRELIMINARIES AND BACKGROUND

We consider an unconstrained, continuous optimization problem minW∈Rd L(W;X), with X de-
notes observations, L : Rd → R is a proper differentiable and lower bounded objective function.

2.1. PRECONDITIONED GRADIENT DESCENT

The iterative scheme of preconditioned gradient descent can be expressed as follows:

Wt+1 = Wt − ηtC(t)∇L(Wt;X), (1)

where the matrix C(t) is referred to as preconditioner. When C(t) is set to the identity matrix, the
update above simplifies to ordinary gradient descent. To capture curvature informativeness, systematic
designs of C(t) have been developed using local numerical approximations. Classic algorithms in this
category, including Newton methods and Natural Gradient, utilize the inverse of Hessian and Fisher
Information Matrix, respectively, as preconditioners. These methods offer a built-in mechanism for
curvature awareness, promoting larger updates in directions associated with small Hessian eigenvalues
to swiftly navigate flat regions while limiting movement in directions with large Hessian eigenvalues
to avoid sharp valleys. However, for large-scale models, further approximations to the preconditioners
are necessary to ensure their practicality. Various techniques have been proposed for this purpose,
such as Quasi-Newton methods (Fletcher, 2000), Gaussian-Newton estimators (Botev et al., 2017;
Martens, 2020; Liu et al., 2023), K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2. ADAPTIVE MOMENT ESTIMATION

These methods, such as AdaGrad, Adam, AMSGrad dynamically adjust learning rates for each
parameter by incorporating a form of gradient-based statistics. Specifically with Adam, it estimates
both first and second-order moments by maintaining exponential moving averages (EMA) on the
mean and uncentered variance of gradient information across iterations. The update rules are:

Mt = β̂1tMt−1 + (1− β̂1t)∇L(Wt;X) ≜ EMA
τ∈[t]

[∇L(Wτ ;X)]

Vt = β̂2tVt−1 + (1− β̂2t)∇L(Wt;X)2 ≜ EMA
τ∈[t]

[
∇L(Wτ ;X)2

]
Wt+1 = Wt − ηt

Mt√
Vt + ϵ

where β̂1t, β̂2t are the decay moment coefficients, ϵ is the smoothing tolerance constant to avoid
numerical instability. In principle, the first moment amplifies the gradient in directions that are
consistently the same sign and dampens the gradient in directions that are reversing sign. Meanwhile,
the second moment captures the curvature by adjusting the step size based on gradient magnitude:
smaller steps in steep-gradient regions to avoid overshooting and larger steps in shallow-gradient
regions for faster convergence.

2.3. ADAPTIVE MOMENT ESTIMATION VIA DIAGONAL PRECONDITIONING APPROXIMATION

We examine the matrix case where W represents a weight parameter with dimensions m× n. Let
Gt denote the gradient of loss function∇L(Wt;X) at iteration t. We analyze a preconditioner Ct

exploiting the second-order moment of accumulated gradients in the following inverse form:

Ct =
[
Ep(X)[vec(Gt)vec(Gt)

⊤] + ϵImn

]−1/2
(2)

We have Ct as a positive definite matrix of size mn×mn, which is quadratic to the size of model
parameter W. An analytical formulation of this quality is often intractable in practice. However,
under the assumption of stationary gradient distribution, we can approximate the expectation by
leveraging minibatch sampling in conjunction with the exponential moving average technique. We
then obtain an empirical preconditioner defined by:

Ct =

[
EMA
τ∈[t]

[
vec(Gτ)vec(Gτ)

⊤]+ ϵImn

]−1/2

, (3)

where Gτ := 1
|Bτ |

∑
X∈Bτ

∇L(Wτ ;X) is the minibatch gradient at training step τ . This empirical
preconditioner closely resembles the full matrix version of AdaGrad (Duchi et al., 2011), but instead
of using a cumulative sum, we apply an exponential moving average (EMA).

Directly calculating and storing the matrix Ct is computationally expensive, particularly with modern
network architectures, since it requires inverting a very large matrix. A practical way to alleviate this
bottleneck is by using diagonal approximation:

C
(d)
t =

[
EMA
τ∈[t]

diag
(
vec(Gτ)vec(Gτ)

⊤)+ ϵImn

]−1/2

=

[
EMA
τ∈[t]

diag
(
vec(G2

τ) + ϵ
)]−1/2

(4)

= diag−1/2

(
EMA
τ∈[t]

[
vec(G2

τ) + ϵ
])

.

The diagonal preconditioner C(d)
t represents the inverse root square of the second-order gradient

accumulator, which is widely adopted as the adaptive moment estimation in optimizers such as Ada-
Grad, RMSprop, Adam, and variants. Implementing this diagonal approximation offers advantages
in both computational efficiency and memory usage. Amari et al. (2019) also demonstrate that the
off-diagonal components of Ct are smaller than the diagonal components by a factor of 1/

√
N , where

N is the number of elements in the matrix. This insight contributes to understanding the practical
success of optimizers like AdaGrad, Adam, and others. However, by omitting the off-diagonal
elements, the algorithm does not incorporate gradient correlations, which can be particularly useful
in accelerating optimization (Martens & Grosse, 2015; Gupta et al., 2018; Liu et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 AdaDiag and AdaDiag++ for matrix parameter W of size m× n, m ≤ n

Inputs: moment coefficients β1, β2, smoothing term ϵ = 10−8, regularization constant λ
Initialization: weight parameters W0 ∈ Rm×n, initial moments M0,V0 ← 0
repeat
t← t+ 1
Gt = ∇L(Wt;Bt)
if t mod T = 0 then
Pt, _, Q⊤

t = torch.linalg.svd(Gt, full_matrices=True)
else
Pt,Q

⊤
t ← Pt−1,Q

⊤
t−1

end if
G̃t = P⊤

t Gt G̃t = P⊤
t GtQt

Mt = β̂1tMt−1 + (1− β̂1t)G̃t

Vt = β̂2tVt−1 + (1− β̂2t)G̃
2

t

Wt+1 = Wt − ηt
(
Pt

Mt√
Vt + ϵ

+ λWt

)
Wt+1 = Wt − ηt

(
Pt

Mt√
Vt + ϵ

Q⊤
t + λWt

)
until stopping criterion is met
return optimized parameter Wt

3. PRECONDITIONER DIAGONALIZATION WITH GRADIENT PROJECTION

To leverage the off-diagonal components of the preconditioner matrix, one can implement structural
approximations, like Gaussian-Newton estimators (Botev et al., 2017; Martens, 2020; Liu et al., 2023),
or Kronecker factorization (Martens & Grosse, 2015; Gupta et al., 2018). In this section, we approach
the problem from a different perspective of preconditioner diagonalization. Specifically, we will
rationalize the diagonal approximation assumption by applying an implicit orthogonal transformation
on the preconditioner matrix Ct. Intuitively, this technique will rotate the gradients to align with
coordinate axes partially, ultimately causing the matrix Ct to become approximately diagonal.
Moreover, we will show that this transformation is invertible via a network reparameterization,
leading to a simple update on the original parameter space.

Recall Gτ is a matrix of size m× n, with m ≤ n. Define C(Gτ) ≜ vec(Gτ)vec(Gτ)
⊤, then:

Ct =

[
EMA
τ∈[t]

[C(Gτ)] + ϵImn

]−1/2

. (5)

Let’s start by drawing some intuitions through the diagonalization of matrix C(Gτ). Given the special
formula of C(Gτ), we can perform a straightforward approach using Singular Value Decomposition
(SVD) on the gradient Gτ . Suppose we have:

Gτ = PτΣτQ
⊤
τ

in which Pτ ,Qτ are orthogonal matrices of size m×m,n× n, respectively, and Στ is a diagonal
matrix of size m× n. Substituting this representation into C(Gτ) gives us:

C(Gτ) = vec(PτΣτQ
⊤
τ)vec(PτΣτQ

⊤
τ)

⊤ = (Qτ ⊗Pτ)vec(Στ)vec(Στ)
⊤(Qτ ⊗Pτ)

⊤ (6)

Since Στ is a diagonal matrix, we have vec(Στ)vec(Στ)
⊤ is almost diagonal (off-diagonal elements

are mostly zero). Moreover, the matrix Qτ ⊗Pτ satisfies (Qτ ⊗Pτ)(Qτ ⊗Pτ)
⊤ = (QτQ

⊤
τ)⊗

(PτP
⊤
τ) = Imn, therefore we can consider Qτ ⊗Pτ as an orthogonal diagonalizing matrix with:

(Qτ ⊗Pτ)
−1C(Gτ)(Qτ ⊗Pτ) = vec(Στ)vec(Στ)

⊤.

Alternatively, the diagonalization process above can be equivalently derived from C(G̃τ), with
G̃τ ≜ P⊤

τ GτQτ = Στ . This rotation aligns the gradient G̃t with coordinate axes and consequently
induces a roughly diagonal structure on C(G̃τ).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 2 0 2 4
×10 4

0

1

2

3

4
Fr

eq
ue

nc
y

×107 Layer 0: Iter 1000
original off-diagonal
projected off-diagonal

4 2 0 2 4
×10 4

0

1

2

3

4
×107 Layer 0: Iter 1400

4 2 0 2 4
×10 4

0

1

2

3

4
×107 Layer 0: Iter 1800

4 2 0 2 4
Value ×10 4

0

2

4

6

8

Fr
eq

ue
nc

y

×106 Layer 3: Iter 1000

4 2 0 2 4
Value ×10 4

0

1

2

3

4

5

×106 Layer 3: Iter 1400

4 2 0 2 4
Value ×10 4

0

1

2

3

4

5 ×106 Layer 3: Iter 1800

Figure 1: Histograms of off-diagonal elements C(Gτ) (original) and C(G̃τ) (two-sided projection),
corresponding to the two first layers of ResNet50 trained on ImageNet1k. In this experiment, we set
the frequency T = 500 and plot histograms at iterations with and without SVD applied.

3.1. PERIODIC PROJECTION ONTO GRADIENT SUBSPACES

The analysis presented above applies only to the iteration in which the SVD is implemented. However,
it is impractical to utilize SVD at every iteration of the training procedure due to computational
overhead. Fortunately, there are recent works on low-rank gradient projection (Gur-Ari et al., 2018;
Gooneratne et al., 2020; Zhao et al., 2024; Liang et al., 2024) indicating that the optimization process
usually acts on low-dimensional subspaces. GaLore (Zhao et al., 2024) exploits this concept by
showing that the training trajectory can be divided into continual subspaces, from which the gradients
within each subspace can be governed by a common spanning basis. GaLore deployed this idea by
periodically applying SVD on the gradients to extract projection matrices. Mathematically, during
each period of length T , say [κT, (κ+ 1)T], the gradient Gτ can be represented via SVD as:

Gτ ≈ PκΣτQ
⊤
κ ∀τ ∈ [κT, (κ+ 1)T]

where Pκ, _,Q⊤
κ ← SVD(GκT) are kept the same throughout the period.

We can adapt this assumption to our framework. In this way, we can expect that our projected
gradients in each period are still approximately diagonal, namely:

G̃τ ≜ P⊤
κGτQκ ≈ (P⊤

κPκ)Στ (Q
⊤
κQκ) = Στ .

As a result, we can achieve a desired diagonal structure on C(G̃τ),∀τ ∈ [κT, (κ+ 1)T].

Why the full matrices Pκ,Qκ matter: connection and difference with Galore. It is essential
to note that, since GaLore’s focus is on memory efficiency, they just implemented truncated SVD
to capture the top-K representation of the gradient matrices. This assumption is reasonable when
considering that gradients are low-rank matrices. However, using truncated SVD involves careful
tweaking of the K values and more importantly, the gradient projection step has to be executed on
the smaller dimension of the matrix.1 On the other hand, our framework would require sophisticated

1Let’s omit subscripts τ, κ for simplicity. Consider Gm×n ≈ Pm×KΣK×KQ⊤
n×K as the truncated SVD of

gradient matrix Gm×n with m ≤ n. The GaLore algorithm performs a gradient projection as G̃ = P⊤
m×KG,

which maps n vectors of size m from G onto the subspace spanned by K vectors of size m from Pm×K . Since
K ≤ m ≤ n, this operator is more effective than projecting in larger dimensions, i.e. G̃ = GQn×K .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

modifications in GaLore, of which Pκ,Qκ need to be the full matrices or K is at least the effective
rank. This guarantees that Pκ,Qκ can form complete bases for the rows and columns of the gradient
matrices in each period. To make the algorithm effortless, we propose to adopt the full matrices
instead of tunning effective rank K.

One-sided projection. Instead of using two-sided projection as described so far, we can opt for a
simpler version involving just one-sided projection, namely G̃τ ≜ P⊤

τ Gτ = ΣτQ
⊤
τ , then we have:

C(G̃τ) ≜ vec(G̃τ)vec(G̃τ)
⊤ = vec(ΣτQ

⊤
τ)vec(ΣτQ

⊤
τ)

⊤

= (Qτ ⊗ Im)vec(Στ)vec(Στ)
⊤(Qτ ⊗ Im)⊤. (7)

Gradient at Iter 1000 Gradient at Iter 1400

Projected Gradient at Iter 1000 Projected Gradient at Iter 1400
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.3

Figure 2: Sparsity of one-sided projection.

The projected gradient G̃τ = ΣτQ
⊤
τ inherently

exhibits a sparse structure as illustrated in Figure 2.
This is because Στ is a diagonal matrix and the
smallest singular values on the diagonal will zero
out the magnitude of corresponding rows on Qτ .
In Figure 1 and 9, we further show the histograms
of off-diagonal elements of C(Gτ) and C(G̃τ)
(both two-sided and one-sided), corresponding to
the two first layers of ResNet50 trained on Im-
ageNet1k. We can observe notable differences
in sparsity patterns of off-diagonal elements of
C(G̃τ) compared to the original C(Gτ) over it-
erations. The matrix C(G̃τ) is roughly diagonal,
enabling a more accurate diagonal approximation
for the preconditioner matrix C̃t.

3.2. GRADIENT PROJECTION IMPLIES NETWORK REPARAMETERIZATION

In the previous sections, we demonstrated that we can rotate the gradients Gτ to G̃τ in such a way
that the matrix C(G̃τ) is approximately diagonal. Consequently, it induces a diagonal approximation
of C̃t as follows:

C̃
(d)

t =

[
EMA
τ∈[t]

diag
[
vec(G̃τ)vec(G̃τ)

⊤
]
+ ϵImn

]−1/2

=

[
EMA
τ∈[t]

diag
[
vec(G̃

2

τ) + ϵ
]]−1/2

(8)

= diag−1/2

[
EMA
τ∈[t]

[
vec(G̃

2

τ) + ϵ
]]
,

This makes the preconditioned gradient at iteration t becomes:

C̃
(d)

t vec(G̃t) =
vec(G̃t)√

EMAτ∈[t]

[
vec(G̃

2

τ) + ϵ
] (9)

However, this quantity cannot be directly applied to update the weight parameters, as the gradient
projection implicitly imposes a reparameterization on the weight space. In Figure 3, we illustrate
how the update in equation 9 can be utilized to learn a rotated network rather than the original one.
This rotated network introduces two auxiliary layers defined by Pκ,Q

⊤
κ , and reparameterizes the

original weight parameters as W̃ = P⊤
κWQκ. While this transformation does not alter the forward

pass of the original network, it does lead to a corresponding gradient, represented as:

∇
W̃
L(W̃;X) = P⊤

κ∇WL(W̃;X)Qκ =
same forward response

P⊤
κ∇WL(W;X)Qκ, (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

x y
W

∂L
∂x

∂L
∂y

x x̃
Pκ

∂L
∂x

∂L
∂x̃

ỹ
W̃

P⊤
κWQκ

∂L
∂ỹ

y
Q⊤

κ

∂L
∂y

Figure 3: Illustration of network reparameterization induced by gradient projection.

which is equivalent to our two-sided gradient projection. Therefore, we can derive the preconditioned
gradient descent for the rotated network using the following update:

W̃t+1 = W̃t+1 − ηt
G̃t√

EMAτ∈[t]

[
G̃

2

τ + ϵ
] (11)

of which, we dropped the vectorization to ensure dimensional compatibility. Since Pκ and Qκ are
full-rank orthogonal matrices, the reparameterization is invertible and thus the update on the original
parameter can be obtained by a projection back step as:

Wt+1 = Wt+1 − ηtPκ
G̃t√

EMAτ∈[t]

[
G̃

2

τ + ϵ
]Q⊤

κ , t ∈ [κT, (κ+ 1)T] (12)

3.3. FINAL ALGORITHM AND RELATED WORKS

We provide the details of our proposal in Algorithm 1, which encompasses both two-sided and one-
sided rotation versions. We also employ an exponential moving average of the projected gradients G̃
to derive the first-order moment estimation Mt. This accumulation is performed before applying
preconditioning. It should be noted that our implementation requires torch.linalg.svd(Gt,
full_matrices=True) to extract the full projection matrices Pt,Qt in each period. For Ada-
Diag++, we recommend implementing the first SVD step at the T ’th iteration of the training process
to avoid numerical issues.

Given the flexibility of our framework, we can adapt it for other adaptive optimizers like Adafactor.
In Appendix A, we provided variants of the algorithm tailored for Adafactor, along with empirical
results evaluating its performance.

In connection with other existing algorithms, several prior works on optimization are relevant to our
framework. George et al. (2018) and Liu et al. (2018) proposed utilizing the eigenbasis of the Fisher
Information Matrix to construct diagonal preconditioning approximations within the natural gradient
or online Laplace approximation families. Similarly, Anil et al. (2020) extends this idea by leveraging
the eigendecomposition of Shampoo’s preconditioners as a basis for the diagonal transformations.

Our method, in contrast, focuses on diagonalizing the preconditioner matrix within the generalized
family of adaptive moment-based optimization algorithms, which includes Adam and Adafactor
optimizers as specific cases. While primarily inspired by the critical idea of gradient projection in
GaLore, we explore the full-rank projection case and thus move beyond GaLore’s main focus on
memory efficiency. We also acknowledge the concurrent work by SOAP (Vyas et al., 2024), which
obtains the projection matrices Pt and Qt by performing eigendecomposition on the accumulators
of GtG

⊤
t and G⊤

t Gt (referred to as Shampoo’s preconditioners), respectively. Essentially, the
eigenvector matrix retrieved from the eigendecomposition of GtG

⊤
t (and G⊤

t Gt) corresponds to
the left (and right) singular matrix of Gt. Our proposal is therefore effectively equivalent to SOAP
without accumulations, resulting in enhanced memory efficiency. From a practical standpoint, our
algorithms can substantially outperform Adam with only a manageable overhead.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4. CONVERGENCE ANALYSIS

In comparison to optimizers such as AdaGrad, Adam, and variants, the algorithm 1 introduces addi-
tional projection matrices {Pt,Qt}, resulting in complex interactions between the model parameter
Wt and optimization states St = {Mt,Vt}. It is important to note that the second-order momentum
Vt is the key factor in our framework. Without this quantity, the proposed algorithm would degenerate
to the standard gradient descent with momentum, eliminating any potential improvements. This
implies that the algorithms cannot be reduced to a simpler form for analyzing convergence guarantees.
Moreover, applying SVD periodically to produce projection matrices also causes intricate behaviors
in the dynamic subspace of optimization trajectory. It is unclear whether the momentum estimates
accumulated across previous subspaces would be consistent with each other and advantageous for
updates conducted in subsequent subspaces.

Inspired by the recent work on Online Subspace Descent (Liang et al., 2024), we leverage the
Hamiltonian descent framework to tackle these challenges. Essentially, this framework investigates
continuous-time ODE forms of optimizers in the limit of infinitesimal step size. In this setting, the
optimizers will minimize an associated Hamiltonian functionH(.), which is an augmented version of
the original objective L(.). For example, we can derive continuous-time form for Adam optimizer as:

d

dt
Wt = −Mt/(

√
Vt + ϵ),

d

dt
Mt = Gt −Mt,

d

dt
Vt = G2

t −Vt,

which yields a Hamiltonian functions defined by: H(W,M,V) = L(W)+
1

2

〈
M/(
√
V + ϵ),M

〉
.

Proposition 1. Using this general approach, we formulate continuous-time forms for AdaDiag and
AdaDiag++ as follows:

(AdaDiag) :
d

dt
Wt = −Pt

Mt√
Vt + ϵ

,
d

dt
Mt = P⊤

t Gt −Mt,
d

dt
Vt = (P⊤

t Gt)
2 −Vt

(AdaDiag++) :
d

dt
Wt = −Pt

Mt√
Vt + ϵ

Q⊤
t ,

d

dt
Mt = P⊤

t GtQt−Mt,
d

dt
Vt = (P⊤

t GtQt)
2−Vt

Both yield the same Hamiltonian function: H(W,M,V) = L(W) +
1

2

〈
M/(
√
V + ϵ),M

〉
.

Convergence to Local Optima. The key properties is that the function H(.) is monotoni-

cally non-decreasing along its ODE trajectory, namely
d

dt
H(Wt,St) ≤ 0,∀t. By LaSalle’s

Invariance principle, the set of accumulation points (Wt,St) must be contained in I, where

I = {the union of complete trajectories satisfying
d

dt
H(Wt,St) = 0}. The points in limit set

I should satisfy P⊤
t ∇L(Wt) ≡ 0 for AdaDiag or P⊤

t ∇L(Wt)Qt ≡ 0 for AdaDiag++, respectively.
Since Pt,Qt are full-rank orthogonal matrices, we must have∇L(Wt) ≡ 0, which indicates that all
trajectories will converge to local optimal points. Detailed analysis is provided in Appendix B.

5. EXPERIMENTS

In this section, we conduct several experiments on image classification and language modeling tasks
to verify the efficiency of our algorithm. We will also demonstrate that our general framework can be
effectively applied to enhance adaptive moment-based optimizers such as AdamW and Adafactor.

5.1. IMAGE CLASSIFICATION

We first evaluated the optimization algorithms, including AdamW, AdaDiag, and AdaDiag++, by
pretraining the ImageNet1k dataset from scratch using ResNets and Vision Transformers (ViTs)
architectures. The images underwent Inception-style cropping (Szegedy et al., 2016) and random
horizontal flipping during pre-processing. We trained ResNet50 for 90 epochs with a batch size
of 1024, utilizing a cosine learning rate decay scheduler. For ViTs, we conducted training over
300 epochs with a batch size of 4096, using a learning rate schedule that included a 10,000-step

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80
epoch

50

55

60

65

70

75

80

to
p-

1
ac

cu
ra

cy

ImageNet1k with ResNet50

AdamW
AdaDiag
AdaDiag++

0 20 40 60 80
epoch

20

30

40

50

60

ImageNet1k with ViT-B/32

AdamW
AdaDiag
AdaDiag++

0 20 40 60 80
epoch

20

30

40

50

60

70 ImageNet1k with ViT-S/16

AdamW
AdaDiag
AdaDiag++

Figure 4: Top-1 Accuracy of optimizers in pretraining ResNet50, ViT-B/32, and ViT-S/16 from
scratch on the ImageNet1k. For better ViT’s visualization, we crop the learning curve up to epoch 80.

Table 1: Comparison of Adam and AdaDiag on pre-training ResNets and ViTs architectures with
ImageNet1k dataset. Top-1 accuracy on the validation set is reported.

Models ResNet50 ViT-S/16 ViT-B/32
Adam (Kingma & Ba, 2014) 75.61 78.35 72.20
AdaDiag (ours) 75.85 79.18 73.39
AdaDiag++ (ours) 75.86 79.14 73.24

warmup followed by linear decay. Additionally, we employed strong data augmentations, such as
RandAugment (2,15) (Cubuk et al., 2019) and mixup (0.5) (Zhang et al., 2017), to further improve
the performance of the ViTs. For hyperparameters settings, such as learning rate (lr), weight decay
(λ), and dropout rate (dr), we opted for recommended configurations from prior research and left
them in Appendix C.

As shown in Figure 4, AdaDiag and AdaDiag++ exhibit substantial improvements in convergence
speed compared to the baseline AdamW. For the ViT-B/32 and ViT-S/16 models, we focus on the
first third of the training phase so that we can observe notable accelerations across the three models.
For the full performances, we refer to the results in Figure 8 in Appendix D. The final results at
convergence are provided in Table 1. By more accurate approximations of the preconditioner matrix,
we expect that AdaDiag++ can navigate the complex curvature more efficiently and thus provide better
convergence properties, even compared to AdaDiag. The results appear to support this argument. It’s
important to mention that these two algorithms would perform similarly after converging at some
point. We hypothesize that the optimization trajectory will eventually converge to a stable region
where the gradients reside in a very low-dimensional subspace. The precondition approximations, at
this stage, become less critical as the optimization process focuses on fine-tuning within this reduced
space.

5.2. LANGUAGE MODELING

We apply the algorithms to pre-train LLaMA-based large language model, with RMSNorm and
SwiGLU activations (Zhang & Sennrich, 2019; Shazeer, 2020; Touvron et al., 2023), on the C4
dataset (Raffel et al., 2020). We measured the perplexity of the models on the validation set
throughout training to assess convergence properties and final model performance. Specifically, we
trained LLaMA models of sizes 60M, 130M, and 350M for 10K, 20K, and 60K steps, respectively.
The learning rate schedule included a warmup phase during the first 10% of the training steps,
followed by cosine annealing that decayed the learning rate to 10% of its initial value. All models
used a maximum sequence length of 256 and a batch size of 512.

The results are provided in Figure 5 and Table 2. Our optimizer AdaDiag consistently outperforms
Adam on various sizes of LLaMA models. In particular, AdaDiag can achieve 1.8x-2x speed-up
compared to Adam, achieving the same perplexity with half fewer steps. Because of resource
constraints, we were unable to conduct experiments with billion-parameter models. However, we are
confident that similar results can be reliably achieved with larger-scale models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Iteration (×103)

30

35

40

45

50

55

P
er

pl
ex

ity

LLaMA-60M
AdamW
AdaDiag

0 5 10 15
Iteration (×103)

20

25

30

35

40

45

50 LLaMA-130M
AdamW
AdaDiag

0 10 20 30 40 50 60
Iteration (×103)

15

20

25

30

35

40

45 LLaMA-350M
AdamW
AdaDiag

Figure 5: Training progression for pre-training LLaMA models on C4 dataset.
Table 2: Comparison of Adam and AdaDiag on pre-training LLaMA models with the C4 dataset.
Validation perplexity is reported for models with 60/130/350 Million parameters trained for 1.1/2.2/6.4
Billion training tokens.

Optimizer Validation Perplexity
60M / 1.1B 130M / 2.2B 350M / 6.4B

Adam (Kingma & Ba, 2014) 31.12 24.55 18.79
AdaDiag (ours) 28.71 22.40 16.91

5.3. IMPROVING COMPUTATIONAL AND MEMORY EFFICIENCY

Although our proposal can greatly enhance the performance, it comes with an inevitable trade-off
in algorithmic complexity. While the total computational overhead induced by periodic SVD is
negligible (less than 10%), the memory usage caused by the full-rank projection may limit the
applicability of the algorithms. To address this challenge, we propose to apply the general framework
to memory-efficiency optimization methods such as Adafactor (Shazeer & Stern, 2018). This
optimizer employs a rank-1 parameterization to the second-order moment and thus offers a sublinear
memory cost. In Table 3, we provide an analysis of the complexity of these algorithms.

Table 3: Memory requirements for different optimizers, with weight parameter of size m×n,m ≤ n.

Optimizers Adam AdaDiag AdaDiag++ Adafactor AdafacDiag

w/ m. w/o m. w/ m. w/o m.

Weights mn mn mn mn mn mn mn
Gradient mn mn mn mn mn mn mn
Optim. States 2mn m2 + 2mn (m + n)2 mn + m + n m + n m2 + mn + m + n m2 + m + n

Adafactor with momentum (w/ m.) has demonstrated results comparable to Adam on various
tasks (Shazeer & Stern, 2018; Chen et al., 2024). Hence, the AdafacDiag integration could poten-
tially surpass Adam’s performance while maintaining a similar complexity. We conducted several
experiments to validate this hypothesis, with the results presented in Appendix A.

6. DISCUSSION

In this work, we proposed an efficient approach to improve adaptive moment-based optimizers by
introducing a preconditioner diagonalization strategy. By leveraging an invertible transformation,
we were able to enhance the reliability of the diagonal approximation used for the preconditioner
matrix, resulting in a more effective estimation of second-order statistics. Our empirical evaluations
demonstrated significant improvements in both convergence speed and final model performance
across several standard tasks. Furthermore, our work also underscores the significance of employing
structural preconditioning techniques to improve existing adaptive learning rate optimizers. Devising
new preconditioners or exploring network reparameterization present promising approaches to this

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

problem. In addition, it is vital to establish theoretically sound frameworks to better understand
adaptive moment-based optimizers in dynamic subspaces. This would enable us to identify the
optimal subspace where the moment estimates can be applied most effectively.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Shun-ichi Amari, Ryo Karakida, and Masafumi Oizumi. Fisher information and natural gradient
learning in random deep networks. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 694–702. PMLR, 2019.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Joseph-Frédéric Bonnans, Jean Charles Gilbert, Claude Lemaréchal, and Claudia A Sagastizábal.
Numerical optimization: theoretical and practical aspects. Springer Science & Business Media,
2006.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In International Conference on Machine Learning, pp. 557–565. PMLR, 2017.

Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained optimization:
As lyapunov predicts. arXiv preprint arXiv:2310.05898, 2023.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in Neural Information Processing Systems, 36, 2024.

Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical
automated data augmentation with a reduced search space. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3008–3017, 2019. URL
https://api.semanticscholar.org/CorpusID:208006202.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.

Xuefeng Gao, Mert Gürbüzbalaban, and Lingjiong Zhu. Global convergence of stochastic gradient
hamiltonian monte carlo for nonconvex stochastic optimization: Nonasymptotic performance
bounds and momentum-based acceleration. Operations Research, 70(5):2931–2947, 2022.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

Mary Gooneratne, Khe Chai Sim, Petr Zadrazil, Andreas Kabel, Françoise Beaufays, and Giovanni
Motta. Low-rank gradient approximation for memory-efficient on-device training of deep neural
network. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3017–3021. IEEE, 2020.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

12

https://api.semanticscholar.org/CorpusID:208006202

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Kaizhao Liang, Bo Liu, Lizhang Chen, and Qiang Liu. Memory-efficient llm training with online
subspace descent. arXiv preprint arXiv:2408.12857, 2024.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting. In
2018 24th International Conference on Pattern Recognition (ICPR), pp. 2262–2268. IEEE, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet.
Hamiltonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Umut Şimşekli, Mert Gürbüzbalaban, Thanh Huy Nguyen, Gaël Richard, and Levent Sagun. On
the heavy-tailed theory of stochastic gradient descent for deep neural networks. arXiv preprint
arXiv:1912.00018, 2019.

Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. On the origin of implicit
regularization in stochastic gradient descent. arXiv preprint arXiv:2101.12176, 2021.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Yingjie Tian, Yuqi Zhang, and Haibin Zhang. Recent advances in stochastic gradient descent in deep
learning. Mathematics, 11(3):682, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Hongyi Zhang, Moustapha Cissé, Yann Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. ArXiv, abs/1710.09412, 2017. URL https://api.semanticscholar.
org/CorpusID:3162051.

13

https://api.semanticscholar.org/CorpusID:3162051
https://api.semanticscholar.org/CorpusID:3162051

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285–21296, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A. ADAFACTOR OPTIMIZER

Algorithm 2 Adafactor for matrix parameter W of size m× n, m ≤ n.

Inputs: moment decay coefficients β1, β2, smoothing term ϵ = 10−30, regularization constant λ
Initialization: weight parameters W0 ∈ Rm×n, initial moments M0, r0, s0 ← 0
repeat
t← t+ 1
Gt = ∇L(Wt;Bt)
rt = β̂2trt−1 + (1− β̂2t)

[
(Gt)

2 + ϵ
]
1n

st = β̂2tst−1 + (1− β̂2t)
[
(G⊤

t)
2 + ϵ

]
1m

Vt = rts
⊤
t /(1

⊤
mrt)

Mt = β̂1tMt−1 + (1− β̂1t)clip
(
Gt/

(√
Vt

))
Wt+1 = Wt − ηt (Mt + λWt)

until stopping criterion is met
return optimized parameter Wt

Algorithm 3 AdafacDiag for matrix parameter W of size m× n, m ≤ n.

Inputs: moment decay coefficients β1, β2, smoothing term ϵ = 10−30, regularization constant λ
Initialization: weight parameters W0 ∈ Rm×n, initial moments M0, r0, s0 ← 0
repeat
t← t+ 1
Gt = ∇L(Wt;Bt)
if t mod T = 0 then
Pt, _, Q⊤

t = torch.linalg.svd(Gt, full_matrices=True)
else
Pt,Q

⊤
t ← Pt−1,Q

⊤
t−1

end if
G̃t = P⊤

t Gt

rt = β̂2trt−1 + (1− β̂2t)
[
(G̃t)

2 + ϵ
]
1n

st = β̂2tst−1 + (1− β̂2t)
[
(G̃

⊤
t)

2 + ϵ
]
1m

Vt = rts
⊤
t /(1

⊤
mrt)

Mt = β̂1tMt−1 + (1− β̂1t)clip
(
G̃t/

(√
Vt

))
Wt+1 = Wt − ηt (PtMt + λWt)

until stopping criterion is met
return optimized parameter Wt

Adafactor (Shazeer & Stern, 2018) proposed an efficient rank-1 parameterization for the second-order
momentum V, which is widely adopted in adaptive optimization methods like RMSprop, Adam, and
its variants. The factorization was derived by minimizing the total elementwise I-divergence subject
to componentwise non-negative constraints:

minimize
r∈Rm,s∈Rn

m∑
i=1

n∑
j=1

d(Vij , risj)

in which ri ≥ 0, sj ≥ 0 and d(p, q) = p log p
q − p+ q.

Solving this problem results in a closed-form solution denoted by r = V1n, s = V⊤1m/r
⊤1n.

Intuitively, Adafactor tracks the moving averages of the row and column sums of squared gradients
throughout iterations, yielding factored second-moment estimators rt and st. It then reconstructs
a low-rank parameterization of the second-order momentum using a normalized outer product
rts

⊤
t /(1

⊤
mrt). This method is computationally efficient and scalable, as it directly offers analytical

formulations without requiring further approximations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 20 40 60 80
epoch

40

45

50

55

60

65

70

75

80

to
p-

1
ac

cu
ra

cy

ImageNet1k with ResNet50

Adafactor
AdafacDiag
AdafacDiag++
Adam

0 20 40 60 80 100
epoch

0

10

20

30

40

50

60

ImageNet1k with ViT-B/32

Adafactor
AdafacDiag
AdafacDiag++
Adafactor w/ momentum
AdafacDiag w/ momentum
AdafacDiag++ w/ momentum
Adam

0 20 40 60 80 100
epoch

0

10

20

30

40

50

60

70

ImageNet1k with ViT-S/16

Adafactor
AdaFac-Diag
AdafacDiag++
Adafactor w/ momentum
AdafacDiag w/ momentum
AdafacDiag++ w/ momentum
Adam

Figure 6: Top-1 Accuracy of optimizers in pre-training ResNet50, ViT-B/32, and ViT-S/16 from
scratch on the ImageNet1k.

Table 4: Comparison of Adam, Adafactor, and AdafacDiag on pre-training ResNets and ViTs
architectures with ImageNet1k dataset. Top-1 accuracy on the validation set is reported.

Models ResNet50 ViT-S/16 ViT-B/32
AdamW 75.61 78.35 72.20
Adafactor 75.37 77.14 71.42
AdafacDiag 75.68 78.45 72.54
AdafacDiag++ 75.60 78.56 72.78
Adafactor w/ momentum - 78.44 72.31
AdafacDiag w/ momentum - 78.90 73.24
AdafacDiag++ w/ momentum - 78.66 73.28

Incorporating Adafactor into our framework offers significant computational and memory efficiency
benefits. This can be evident in Table 3, from which AdafacDiag demonstrates lower complexity in
optimization states when compared to Adam. To further assess the effectiveness of this integration, we
carried out experiments similar to those described in the main text. As shown in Figure 6, AdafacDiag
(on ResNet50) and AdafacDiag with momentum (on ViTs) can outperform Adam by noticeable
margins. The experiments on LLaMA-based models using the C4 dataset also delivered consistent
results, presented in Figure 7 and Table 5. These advantages highlight the potential of utilizing these
algorithms in a wide range of real-world tasks, particularly in large-scale applications.

0 2 4 6 8
Iteration (×103)

30

35

40

45

50

55

P
er

pl
ex

ity

LLaMA-60M
Adam
AdafacDiag
AdafacDiag w/ momentum

0 5 10 15
Iteration (×103)

20

25

30

35

40

45

50 LLaMA-130M
Adam
AdafacDiag
AdafacDiag w/ Momentum

Figure 7: Training progression of Adam and AdafacDiag for pre-training LLaMA models on C4
dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Comparison of Adam and AdafacDiag on pre-training LLaMA models with the C4 dataset.
Validation perplexity is reported for models with 60/130 Million parameters trained for 1.1/2.2 Billion
training tokens.

Optimizer Validation Perplexity
60M / 1.1B 130M / 2.2B

Adam (Kingma & Ba, 2014) 31.12 24.55
AdafacDiag (ours) 31.43 22.82
AdafacDiag w/ momentum (ours) 28.91 22.54

B. HAMILTONIAN FUNCTION ANALYSES

We first formalize a unified view of adaptive moment-based optimizers in the update scheme as:

Wt+1 = Wt + ϕt(St) St = ψt(St−1,∇L(Wt)) (13)

where St is the optimization state, and ϕt, ψt are some mapping functions. One powerful approach
to studying the dynamic behavior of these optimizers is to examine their continuous-time ODE forms
in the limit of infinitesimal step size (Maddison et al., 2018; Gao et al., 2022; Chen et al., 2023). It
provides insights into the asymptotic convergence of the algorithms, abstracting away the choices of
step size, discretization, and accumulation errors.

We observe that the update 13 can be discretized from the following continuous-time form:

d

dt
Wt = ∂SH(Wt,St)− Φ(∂WH(Wt,St))

d

dt
St = −∂WH(Wt,St)−Ψ(∂SH(Wt,St))

(14)

whereH(.) is a Hamiltonian function that satisfies:

min
S
H(W,S) = L(W) ∀W,

meaning that minimizingH(W,S) will reduce to minimizing the original objective L(W). Addi-
tionally, Φ,Ψ are two monotonic mapping satisfying:

∥A∥2Φ = ⟨A,Φ(A)⟩ ≥ 0, ∥A∥2Ψ = ⟨A,Ψ(A)⟩ ≥ 0, ∀A

The key properties is thatH(W,S) is monotonically non-decreasing along the trajectory 14:

d

dt
H(Wt,St)

=

〈
∂WH(Wt,St),

d

dt
Wt

〉
+

〈
∂SH(Wt,St),

d

dt
St

〉
= −⟨∂WH(Wt,St),Φ(∂WH(Wt,St))⟩ − ⟨∂SH(Wt,St),Ψ(∂SH(Wt,St))⟩
= −∥∂WH(Wt,St)∥2Φ − ∥∂SH(Wt,St)∥2Ψ ≤ 0,

where we cancel out the cross terms ⟨∂WH(Wt,St), ∂SH(Wt,St)⟩ to get the second equation.

Let’s take Adam optimizer as a specific example, we have its ODE form represented as:

d

dt
Wt = −

Mt√
Vt + ϵ

,
d

dt
Mt = Gt −Mt,

d

dt
Vt = G2

t −Vt, (15)

of which the Hamiltonian function is defined by:

H(W,M,V) = L(W) +
1

2

〈
M√
V + ϵ

,M

〉
(16)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We have the derivative:
d

dt
H(Wt,Mt,Vt)

=

〈
Gt,

d

dt
Wt

〉
+

〈
Mt√
Vt + ϵ

,
d

dt
Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , ddtVt

〉

=

〈
Gt,−

Mt√
Vt + ϵ

〉
+

〈
Mt√
Vt + ϵ

,Gt −Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 ,G2
t −Vt

〉

= −
〈

Mt√
Vt + ϵ

,Mt

〉
+

1

4

〈
M2

t(√
Vt + ϵ

)2 ,√Vt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 ,G2
t

〉

= −
〈

Mt√
Vt + ϵ

,Mt

〉
+

1

4

〈
Mt√
Vt + ϵ

⊙
√
Vt√

Vt + ϵ
,Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 ,G2
t

〉

≤ −1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 ,G2
t

〉
≤ 0.

A similar analysis can be applied to the AdaDiag and AdaDiag++. In AdaDiag’s case, we have the
continuous form:

d

dt
Wt = −Pt

Mt√
Vt + ϵ

,
d

dt
Mt = P⊤

t Gt −Mt,
d

dt
Vt = (P⊤

t Gt)
2 −Vt, (17)

yielding the Hamiltonian functionH(W,M,V) = L(W) +
1

2

〈
M√
V + ϵ

,M

〉
, for which:

d

dt
H(Wt,Mt,Vt)

=

〈
Gt,

d

dt
Wt

〉
+

〈
Mt√
Vt + ϵ

,
d

dt
Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , ddtVt

〉

=

〈
Gt,−Pt

Mt√
Vt + ϵ

〉
+

〈
Mt√
Vt + ϵ

,P⊤
t Gt −Mt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , (P⊤
t Gt)

2 −Vt

〉

= −
〈

Mt√
Vt + ϵ

,Mt

〉
+

1

4

〈
M2

t(√
Vt + ϵ

)2 ,√Vt

〉
− 1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , (P⊤
t Gt)

2

〉

≤ −1

4

〈
M2

t√
Vt ⊙

(√
Vt + ϵ

)2 , (P⊤
t Gt)

2

〉
≤ 0.

This result implies that the points in the limit set:

I = {the union of complete trajectories satisfying
d

dt
H(Wt,Mt,Vt) = 0}

must satisfy P⊤
t Gt ≡ 0. Since Pt is a full-rank orthogonal matrix, we have Gt ≡ 0, indicating that

the optimization algorithm converges to a local optimum.

C. HYPERPARAMETER SETTINGS

For all optimizers, we used decay moment coefficients (β1, β2) = (0.9, 0.999) along with the bias-
correction steps, the smoothing constant ϵ = 10−8. Specifically with AdaDiag, AdaDiag++, we use
the SVD frequency T = 500, 200 for image and language tasks, respectively.

For image classification, we used (lr, λ) = (0.001, 0.1) and (0.0003, 0.1) for all ResNets and ViTs
experiments, respectively.

For language modeling, we tuned the learning rate over the set {0.003, 0.001, 0.0003, 0.0001} and
selected the optimal value based on validation perplexity. The specific settings are summarized in the
Table 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Training configuration for LLaMA models.

LLaMA models Tokens Training Steps Warmup Steps Learning Rate
60M 1.3B 10K 1K 0.003
130M 2.6B 20K 2K 0.001
350M 7.8B 60K 6K 0.001

D. ADDITIONAL FIGURES

0 20 40 60 80
epoch

50

55

60

65

70

75

80

to
p-

1
ac

cu
ra

cy

ImageNet1k with ResNet50

AdamW
AdaDiag
AdaDiag++

0 100 200 300
epoch

50

55

60

65

70

75 ImageNet1k with ViT-B/32

AdamW
AdaDiag
AdaDiag++

0 100 200 300
epoch

50

55

60

65

70

75

80 ImageNet1k with ViT-S/16

AdamW
AdaDiag
AdaDiag++

Figure 8: Top-1 Accuracy of optimizers in pre-training (to the end) ResNet50, ViT-B/32, and ViT-S/16
from scratch on the ImageNet1k.

4 2 0 2 4
×10 4

0

1

2

3

4

Fr
eq

ue
nc

y

×107 Layer 0: Iter 1000
original off-diagonal
projected off-diagonal

4 2 0 2 4
×10 4

0

1

2

3

4

×107 Layer 0: Iter 1400

4 2 0 2 4
×10 4

0

1

2

3

4

×107 Layer 0: Iter 1800

4 2 0 2 4
Value ×10 4

0

2

4

6

Fr
eq

ue
nc

y

×106 Layer 3: Iter 1000

4 2 0 2 4
Value ×10 4

0

1

2

3

4
×106 Layer 3: Iter 1400

4 2 0 2 4
Value ×10 4

0

1

2

3

4

5 ×106 Layer 3: Iter 1800

Figure 9: Histograms of off-diagonal elements C(Gτ) (original) and C(G̃τ) (one-sided projection,
AdaDiag), corresponding to the two first layers of ResNet50 trained on ImageNet1k. In this experi-
ment, we set the frequency T = 500 and plot histograms at iterations with and without SVD applied.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

4 2 0 2 4
×10 4

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y

×107Layer 0: Iter 1000
original off-diagonal
projected off-diagonal

4 2 0 2 4
×10 4

0.0

0.5

1.0

1.5

2.0

2.5
×107Layer 0: Iter 1400

4 2 0 2 4
×10 4

0.0

0.5

1.0

1.5

2.0

2.5
×107Layer 0: Iter 1800

4 2 0 2 4
Value ×10 4

0.0

0.5

1.0

1.5

Fr
eq

ue
nc

y

×106Layer 3: Iter 1000

4 2 0 2 4
Value ×10 4

0.00

0.25

0.50

0.75

1.00

1.25
×106Layer 3: Iter 1400

4 2 0 2 4
Value ×10 4

0.0

0.5

1.0

1.5
×106Layer 3: Iter 1800

Figure 10: Histograms of off-diagonal elements C(Gτ) (original) and C(G̃τ) (GaLore), correspond-
ing to the two first layers of ResNet50 trained on ImageNet1k. Compared to the full-rank case, the
low-rank GaLore projection (r = min{m,n}/2) does not exhibit a discernible sparsity structure in
the off-diagonal elements. GaLore even creates off-diagonal elements with larger magnitudes. Note
that the support was truncated for better visualization.

20

	Introduction
	Preliminaries and Background
	Preconditioned Gradient Descent
	Adaptive Moment Estimation
	Adaptive Moment Estimation via Diagonal Preconditioning Approximation

	Preconditioner Diagonalization with Gradient Projection
	Periodic Projection onto Gradient Subspaces
	Gradient Projection Implies Network Reparameterization
	Final Algorithm and Related Works

	Convergence Analysis
	Experiments
	Image Classification
	Language Modeling
	Improving computational and memory efficiency

	Discussion
	Adafactor optimizer
	Hamiltonian function analyses
	Hyperparameter Settings
	Additional Figures

