
Published as a conference paper at ICLR 2022

BAM: BAYES WITH ADAPTIVE MEMORY

Josue Nassar∗
Department of Electrical and Computer Engineering
Stony Brook University
josue.nassar@stonybrook.edu

Jennifer Brennan
Department of Computer Science
University of Washington
jrb@cs.washington.edu

Ben Evans
Department of Computer Science
New York University
benevans@nyu.edu

Kendall Lowrey∗
Department of Computer Science
University of Washington
klowrey@cs.washington.edu

ABSTRACT

Online learning via Bayes’ theorem allows new data to be continuously integrated
into an agent’s current beliefs. However, a naive application of Bayesian methods
in non-stationary environments leads to slow adaptation and results in state esti-
mates that may converge confidently to the wrong parameter value. A common
solution when learning in changing environments is to discard/downweight past
data; however, this simple mechanism of “forgetting” fails to account for the fact
that many real-world environments involve revisiting similar states. We propose a
new framework, Bayes with Adaptive Memory (BAM), that takes advantage of past
experience by allowing the agent to choose which past observations to remember
and which to forget. We demonstrate that BAM generalizes many popular Bayesian
update rules for non-stationary environments. Through a variety of experiments,
we demonstrate the ability of BAM to continuously adapt in an ever-changing
world.

1 INTRODUCTION

The ability of an agent to continuously modulate its belief while interacting with a non-stationary
environment is a hallmark of intelligence and has garnered a lot of attention in recent years (Zhang
et al., 2020; Ebrahimi et al., 2020; Xie et al., 2020). The Bayesian framework enables online
learning by providing a principled way to incorporate new observations into an agent’s model of
the world (Jaynes, 2003; Gelman et al., 2013). Through the use of Bayes’ theorem, the agent can
combine its own (subjective) a priori knowledge with data to achieve an updated belief encoded by
the posterior distribution.

The Bayesian framework is a particularly appealing option for online learning because Bayes’
theorem is closed under recursion, enabling continuous updates in what is commonly referred to
as the recursive Bayes method (Wakefield, 2013). As an example, suppose the agent first observes
a batch of data, D1, and then later observes another batch of data, D2. We can express the agent’s
posterior distribution over the world, where the world is represented by θ, as

p(θ|D1,D2) =
p(D2|θ)p(θ|D1)

p(D2|D1)
, (1)

where

p(D2|D1) =

∫
p(D2|θ)p(θ|D1)dθ. (2)

Equation 1 demonstrates the elegance and simplicity of recursive Bayes: at time t, the agent recycles
its previous posterior, p(θ|D<t), where D<t = {D1, · · · ,Dt−1}, into its current prior and then
combines it with a newly observed batch of data, Dt, to obtain an updated posterior, p(θ|D≤t).
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At first glance, it would appear that a naive application of recursive Bayes would suffice for most
online learning tasks. However, the recursive Bayes method relies on the assumption that the world
is stationary, i.e. D1,D2, · · · are all independent and identically distributed. When this assumption
is violated, recursive Bayes can fail catastrophically. As an illustration, consider the law of total
variance:

Var(θ|D<t) = E[Var(θ|D<t,Dt)
∣∣D<t] + Var(E[θ|D<t,Dt]

∣∣D<t). (3)

Since both terms on the right hand side are positive, equation 3 reveals that in expectation, the
variance of the posterior decreases as more data is seen regardless of the actual distribution of Dt,
i.e.

Var(θ|D<t) ≥ E[Var(θ|D<t,Dt)
∣∣D<t]. (4)

In fact, for some models equation 4 is true with probability 1; we demonstrate examples in Appendix A.
Thus, if the parameters of the environment, θ, were to change, the variance of the posterior would
still decrease, becoming more certain of a potentially obsolete parameter estimate. Modeling the
environment as stationary when it is actually changing also keeps the learning speed of the agent
artificially low, as tighter posteriors prevent large jumps in learning. This is the opposite of what an
intelligent agent should do in such an event: if the environment changes, we would expect the agent’s
uncertainty and learning speed to increase in response.

As was elegantly stated by Monton (2002), the problem with naive use of recursive Bayes is that "Such
a Bayesian never forgets." Previous approaches on enabling recursive Bayes to work in non-stationary
settings have primarily focused on forgetting past experience either through the use of changepoint
detection (Adams & MacKay, 2007; Li et al., 2021), or by exponentially weighting past experiences
(Moens, 2018; Moens & Zénon, 2019; Masegosa et al., 2020). While empirically successful, their
focus on forgetting the past means that revisited states are treated as novel. In this work we take an
alternative approach to online Bayesian learning in non-stationary environments by endowing an
agent with an explicit memory module. Crucially, the addition of a memory buffer equips the agent
with the ability to modulate its uncertainty by choosing what past experiences to both forget and
remember. We call our approach Bayes with Adaptive Memory (BAM) and demonstrate its wide
applicability and effectiveness on a number of non-stationary learning tasks.

2 BAYES WITH ADAPTIVE MEMORY

The generative model is assumed to evolve according to

θt ∼ p(θt|θt−1, t), (5)
Dt ∼ pt(D) ≡ p(D|θt), (6)

where equation 5 is the latent dynamics that dictate the evolution of the environment parameters,
θt, and equation 6 is the likelihood whose parametric form is fixed throughout time, i.e. pt(D) =
N (θt, σ

2). Equations 5 and 6 define a state-space model, which allows one to infer θt through
Bayesian filtering (Särkkä, 2013)

p(θt|D≤t) ∝ p(Dt|θt)p(θt|D<t), (7)

p(θt|D<t) =

∫
p(θt|θt−1, t)p(θt−1|D<t)dθt−1. (8)

The parameterization of equations 5 and 6 dictate the tractability of equations 7 and 8. If a priori
an agent knew that equation 5 is a linear dynamical system with additive white Gaussian noise
and equation 6 is also Gaussian whose conditional mean is a linear function of θt, then the Kalman
filter can be used (Kalman, 1960). For more complicated latent dynamics and/or likelihood models,
methods such as particle filtering (Doucet & Johansen, 2009) and unscented Kalman filtering (Julier
& Uhlmann, 1997) can be used. Crucially, Bayesian filtering methods assume that the latent dynamics
governed by equation 5 are known; however, this is rarely the case in practice. Instead of making
assumptions on the parametric form of equation 5, we take a different approach.

In BAM, the agent maintains a memory buffer, D<t, that stores previous observations of the environ-
ment. At time t the agent obtains a new batch of data, Dt ∼ pt(D). How should the agent combine
the newly observed data, Dt, with its stored memory, D<t, to update its belief as encoded by the
posterior distribution?
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In recursive Bayes, the posterior distribution is computed according to1

p(θt|Dt,D<t) ∝ p(Dt|θt)p(θt|D<t), (9)

p(θt|D<t) ∝ p(θt)
t−1∏
j=1

p(Dj |θt), (10)

where we refer to p(θt) as the base prior. Equation 10 allows us to interpret recursive Bayes as the
agent constructing a dynamic prior, p(θt|D<t), using all the experiences stored in its memory buffer.
This works under the stationarity assumption; when this assumption is violated, the application of
Bayes’ theorem can lead to confidently wrong results as the "distance" between pi(D) and pj(D)
can be vast. An alternative is for the agent to completely forget all of its past experiences

p(θt|Dt) ∝ p(Dt|θt)p(θt). (11)
While equation 11 may be viable in situations where Dt is sufficiently informative, it is wasteful
when experiences in the memory buffer may help infer θt.

BAM dynamically finds a middle ground between these two extremes of remembering (equation 10)
and forgetting (equation 11) everything by allowing the agent to choose which data to use from
its memory buffer to construct the prior. Specifically, the agent is endowed with a time-dependent
readout weight, Wt = [wt,1, wt,2, · · · , wt,t−1] where wt,j ∈ [0, 1]. Given a new datum Dt, BAM
constructs its posterior according to

p(θt|Dt,D<t,Wt) ∝ p(θt)p(Dt|θt)
t−1∏
j=1

p(Dj |θt)wt,j . (12)

We can rewrite equation 12 as

p(θt|Dt,D<t,Wt) =
p(Dt|θt)p(θt|D<t,Wt)

p(Dt|D<t,Wt)
, (13)

where

p(θt|D<t,Wt) ∝ p(θt)
t−1∏
j=1

p(Dj |θt)wt,j , (14)

and
p(Dt|D<t,Wt) =

∫
p(Dt|θt)p(θt|D<t,Wt)dθt. (15)

The prior construction in equation 14 is akin to recursive Bayes, but now the agent can dynamically
and adaptively change its prior by using the readout weights, Wt, to weigh the importance of previous
experience where at the extreme, it can choose to completely forget a previous experience, wt,j = 0,
or fully remember it, wt,j = 1. For simplicity, we restrict the readout weights to be binary, i.e.
wt,j ∈ {0, 1}.
The combination of a memory buffer, D<t, with a time-dependent readout weight, Wt, allows BAM
to generalize many previously proposed approaches. By setting wt,1 = wt,2 = · · · = wt,t−1 = 1,
we recover recursive Bayes (equation 10). By setting wt,1 = wt,2 = · · · = wt,t−1 = α, where
0 ≤ α ≤ 1 we recover the power priors approach of Ibrahim et al. (2015). By setting wt,j = αt−1−j ,
where 0 ≤ α ≤ 1, we recover exponential forgetting (Moens, 2018; Moens & Zénon, 2019; Masegosa
et al., 2020). Lastly, by setting a particular subset of the readout weights to be 0, we recover Bayesian
unlearning (Nguyen et al., 2020).

The ability to adaptively change its prior implies that BAM can increase/decrease its uncertainty as
the situation demands; subsequently, this modulates the agent’s learning speed. Using variance as a
proxy for uncertainty, one would expect that the variance of the prior used in BAM (equation 14)
is always at least as large as the variance of the prior used in recursive Bayes (equation 10). We
formalize this for the case of binary readout weights in the following proposition.
Proposition 1. Let p(θ|D<t,Wt) be the prior used by BAM, defined in equation 14 and let p(θ|D<t)
be the recursive Bayes prior, defined in equation 13. Then

E[Var(θ|D<t,Wt)
∣∣Wt] ≥ E[Var(θ|D<t)], ∀Wt ∈ {0, 1}t−1. (16)

Proof. Proof is in Appendix B.
1Recursive Bayes is equivalent to Bayesian filtering when p(θt|θt−1, t) = δ(θt = θt−1).
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2.1 SELECTION OF READOUT WEIGHTS VIA BAYESIAN MODEL-SELECTION

While the previous section demonstrated the flexibility of BAM, the question remains: how should
the readout weights, Wt, be set? Equation 13 allows us to view different readout weights as different
models. Through this lens, we can follow the spirit of Bayesian model selection (Gelman et al., 2013)
and compute a posterior over the readout weights

p(Wt|Dt,D<t) ∝ p(Wt|D<t)p(Dt|Wt,D<t). (17)

For practicality, we compute the maximum a posteriori (MAP) estimate of equation 17 (Gelman et al.,
2013) and use that as the value of the readout weight

Wt = argmax
W∈{0,1}t−1

log p(Dt|W,D<t) + log p(W |D<t), (18)

= argmax
W∈{0,1}t−1

log

∫
p(Dt|θt)p(θt|W,D<t)dθt + log p(W |D<t). (19)

The first term of equation 18 is the log marginal likelihood, which measures the likelihood ofDt being
distributed according to the predictive distribution, p(D|W,D<t) while the prior, log p(W |D<t), acts
as a regularizer. This procedure of constantly updating the readout weights through equation 18 can
be interpreted as providing Bayes a feedback mechanism: equation 18 allows the agent to directly
measure its ability to fit the observed data using different combination of experiences in its buffer via
the readout weight, and then choosing the readout weight that leads to best fit. In contrast, standard
Bayesian inference is an open-loop procedure: data, likelihood and prior are given and a posterior is
spat out, irrespective of the fit of the model to the data (Simpson et al., 2017).

Still left is the question of how do we design the prior, p(W |D<t). In certain scenarios, using an
uninformative prior, i.e. p(W |D<t) ∝ 1, may suffice if the data is very informative and/or the number
of data points in Dt is large. In scenarios where these conditions are not met, it is important to
use an informative prior as it reduces the chance of overfitting. In general, the design of priors is
highly nontrivial (Winkler, 1967; Gelman et al., 2013; Simpson et al., 2017). While there exists many
potential options, we use penalized model complexity priors proposed by Simpson et al. (2017) as they
are designed to reduce the chance of overfitting. Following Simpson et al. (2017), we parameterize
the prior as

p(W |D<t) ∝ exp
(
−λ
√

2DKL[p(θt|W,D<t)‖p(θt)]
)
, (20)

where λ ∈ [0,∞) is a hyperparameter that controls the strength of the prior.2 Equation 20 encodes
our prior belief that we favor values ofWt that produce simpler models, where simplicity is quantified
as the Kullback-Leibler divergence between p(θt|Wt,D<t) and the base prior, p(θt).

Plugging equation 20 into equation 18 we get

Wt = argmax
W∈{0,1}t−1

log p(Dt|W,D<t)− λ
√

2DKL[p(θt|W,D<t)‖p(θt)]. (21)

In general, solving equation 21 is difficult as the number of possible readout weights is 2(t−1), making
brute force solutions practically infeasible. While there exists many approaches for performing
discrete optimization, we found that using a simple greedy approach sufficed for our experiments; in
the interest of space, we defer discussion regarding this to Appendix C.

3 RELATED WORKS

A variety of approaches have been proposed for learning in non-stationary environments. In signal
processing, adaptive filtering techniques such as recursive least squares (RLS) and least mean square
filtering (LMS) are the de facto approaches for filtering in non-stationary environments (Haykin,
2008). While empirically successful, RLS and LMS are only applicable for a limited range of models,
i.e. linear models. In contrast, BAM is a general purpose algorithm that can be deployed on a wide
variety of models.

2λ = 0 recovers the uninformative prior case, p(Wt|D<t) ∝ 1.
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If the latent dynamics are known—or assumed to be known—then Bayesian filtering can be employed.
A popular approach is to model the latent dynamics (equation 5) as an autoregressive process (Kurle
et al., 2020; Rimella & Whiteley, 2020). While this approach has been popular, it is only applicable for
models where the parameters are real-valued. A seminal work on Bayesian filtering is the Bayesian
online changepoint detction (BOCD) algorithm of Adams & MacKay (2007), where the latent
dynamics (equation 5) are modeled to be piece-wise constant. While BOCD is broadly applicable and
has seen empirical success, the caveat is that an agent forgets all previous experience when a change
is detected; thus, previously visited states appear novel to the agent and learning must begin from
scratch. An extension to BOCD was proposed by Li et al. (2021), where when a change is detected a
scaled version of the previous posterior is used as the prior. While similar in spirit to BAM, we note
that the approach proposed in Li et al. (2021) is designed for Gaussian distributions, while BAM can
work with arbitrary distributions. Moreover, the approach in Li et al. (2021) can only increase the
uncertainty by a fixed pre-determined amount while BAM can adaptively modulate its uncertainty.

Previous works have proposed solutions for making recursive Bayes more suited for use in non-
stationary environments through exponential forgetting of past data (Moens, 2018; Moens & Zénon,
2019; Masegosa et al., 2020). While these models have also seen empirical success, their focus
have been on forgetting past experiences which prevents the agent to leverage past experiences
that are relevant. In BAM, the agent is focused not only on forgetting irrelevant experiences but
remembering relevant experiences as well.

The use of readout weights in BAM can be seen as an instance of likelihood tempering, which has
been used to perform robust Bayesian inference (Wang et al., 2017) and to help with approximate
Bayesian inference schemes (Neal, 1996; 2001; Mandt et al., 2016). While previous works focus on
the offline case where data has already been collected, BAM focuses on the online case where the
agent adaptively tempers the likelihood.

The concept of an external memory buffer has recently been explored in machine learning (Gemici
et al., 2017; Wu et al., 2018; Marblestone et al., 2020). While similar in spirit to BAM, most works
use a softmax as their readout weight. As a byproduct, the agent must select an element from the
buffer even if it isn’t applicable to the task at hand! BAM has no such restriction, and can ignore all
the previous data in the buffer, resetting back to the base prior.

4 EXPERIMENTS

To demonstrate the versatility of BAM, we apply it in a variety of scenarios. As BAM is a learning
paradigm, it can be implemented as a module in a larger framework allowing it to be easily used in
settings such as control/reinforcement learning and domain adaptation (Thompson, 1933; Osband
et al., 2018; Lowrey et al., 2018; Yoon et al., 2018). BAM requires the ability to construct the
posterior, p(θt|D<t,Wt), and evaluate the log marginal likelihood, log p(Dt|D<t,Wt). In general,
the posterior and log marginal likelihood are only available analytically for conjugate priors (Gelman
et al., 2013). While approaches exist for approximating the posterior (Robert et al., 2004; Brooks
et al., 2011; Blei et al., 2017) and the log marginal likelihood (Robert et al., 2004; Gelman et al.,
2013; Grosse et al., 2015), we restrict ourselves to only use conjugate priors to ensure any benefits of
BAM are not due to uncertain effects of approximations. The use of conjugate priors also allows us
to use sufficient statistics to compute posteriors, allowing BAM to scale amicably when the number
of data points in a batch is large (Casella & Berger, 2021).

4.1 EXPERIMENT 1: INFERENCE IN A NON-STATIONARY ENVIRONMENT

To evaluate BAM on online inference in a non-stationary environment, we generate data from the
following model

θt = a sin

(
2πt

100

)
+ b, (22)

p(Dt|θt) = Binomial(15, θt), (23)

where a = 0.3 and b = 0.5 are chosen such that the lower and upper bounds for θt are 0.2 and
0.8, respectively. We evaluate BAM with no regularization, λ = 0, and with regularization, where
λ = 0.1; as the data is discrete, there is a possibility that BAM could overfit, thus a priori we
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would expect the regularized BAM to perform better. We compare against recursive Bayes, Bayesian
exponential forgetting (BF) and Bayesian online changepoint detection (BOCD). 3

Figure 1: Comparison of recursive Bayes, BOCD, BF, BAM and BAM with regularization on
inferring a time-varying parameter. Results are computed over 20 random seeds. Solids lines are the
median and and error bars represent the 10% and 90% quantiles. Left: Temporal evolution of the
posterior mean. Right: Temporal evolution of the log posterior variance.

Figure 1 demonstrates the weakness of recursive Bayes; as it views more data, the posterior gets more
confident. This reduces the learning speed of the agent, preventing it from accurately tracking θt,
and causing it to converge to the average with an extremely low posterior variance. BOCD tracks
the parameter relatively well, though its estimates are slightly delayed. As BOCD lacks the ability
to recall useful data from the past, its posterior variance resets every time a changepoint is detected.
BAM is able to track θt and doesn’t suffer from temporal lag seen in the BOCD results, though the
lack of regularization leads to estimates that are not as smooth as BOCD. The posterior variance
of BAM reflects that the agent remembers relevant history and forgets irrelevant history, reducing
the jump in posterior variance when revisiting a previously seen state. Lastly, we can see that BAM
with regularization leads to smoother estimates but tends to be less confident compared to the other
methods.

4.2 EXPERIMENT 2: CONTROLS

In this section we illustrate the benefit of memory by applying BAM on a learning task to model
non-linear dynamics for controls. The task is an analytical version of Cartpole (Barto et al., 1983),
where the goal is to swing-up a pole on a moving cart. Non-stationarity is introduced by changing
the environment’s gravity over time. We explore the performance of BAM under two different
information models. In the episodic setting, the agent is told when a change occurs, but not the
value of the new gravity parameter. In the continual learning setting, the agent is not informed of
environmental changes.4

The reward for the task is the cosine of the angle of the pole on the cart, where an angle of 0◦ is
the vertical ‘up’ position. To make the problem amenable for analytical posterior and log marginal
likelihood computations, we model the nonlinear dynamics using linear regression with random
Fourier features (RFF) (Rahimi & Recht, 2007)

xt = xt−1 +Mφ(xt−1, at) + εt, εt ∼ N (0, σ2I), (24)

3The timescale parameter for BOCD is 1/100, which is the frequency of the sinusoid. The weighting term for
BF is 0.8.

4For both settings, the number of data points in a batch is relatively large, leading the log marginal likelihood
to overtake the prior in equation 21. As regularization has little effect, results are shown for λ = 0.

6



Published as a conference paper at ICLR 2022

where xt ∈ Rdx is the state vector, at ∈ Rda is the action vector, εt ∈ Rdx is state noise and φ is our
RFF function. For simplicity, we assume a fixed noise variance of σ2 = 10−6. This parameterization
allows us to perform Bayesian linear regression over M which is analytically tractable (Gelman et al.,
2013). Full details can be found in Appendix D.1.

4.2.1 EPISODIC ONE-SHOT

In this setting our simulated Cartpole hypothetically moves between different planets—hence a change
in gravity—while still being asked to swing the pole up. In an episode, gravity is fixed for the duration
of 15 trials, where each trial resets the Cartpole to a random initial state, x0. Each trial produces
a trajectory of states and actions of length H that are batched into one unit of data, such that each
episode contributes 15 experiences; thus the datum for trial t is Dt = {([xj , aj ], [xj − xj−1])}Hj=1.

We compare BAM to recursive Bayes in a one-shot manner: after the first trial of a new episode,
BAM computes a weight vector over all previously encountered trial data to inform a posterior for the
duration of the episode. Recursive Bayes is reset to the base prior at the beginning of a new episode.
Both proceed to update their belief every trial in an episode.

We show in Figure 2 results over 5 random seeds where the expected score for a ground truth model is
shown as a reference. The first time BAM encounters a novel planet, it resets its prior to the base prior
and starts learning from scratch, similar to recursive Bayes. On subsequent visits however, BAM
is able to leverage its past experiences to quickly adapt and recover high levels of performance. As
recursive Bayes starts from scratch, it will again need multiple trials to develop a competent model.

Figure 2: We compare BAM to recursive Bayes in an episodic model learning for control setting
where the agent knows when the cartpole dynamics have changed. For reference, the ground-truth
scores (GT MPC) are also plotted for the different settings; all methods were averaged across 5
random seeds with 10-90% quantiles shown. In this sequence, the values of gravity per episode are
9.81, 11.15, 3.72, 11.15, 3.72, 9.81.

4.2.2 CONTINUAL LEARNING

In addition to the challenge of adapting to a different environment, we also test BAM when the agent
is not informed of the change, such that adaption must happen continually. In this scenario without
explicit episodes, the gravity of the world can change after a trial, unbeknownst to the agent. Similar
to the previous setting, a datum for trial t is Dt = {([xj , aj ], [xj − xj−1])}Hj=1.

While it is straightforward to run BAM in this setting, we also investigate combining BAM with
BOCD, which we denote as BAM + BOCD. In BOCD, the detection of a changepoint causes the
posterior distribution to be reset to the base prior. In BAM + BOCD, the detection of a changepoint is
used as signal for when the agent should adapt its prior by computing Wt, to obtain p(θt|Wt,D<t);
this avoids rerunning the optimization procedure after each trial.

We show in Figure 3 that while BOCD works as intended, without BAM the Cartpole has to relearn a
model from the prior belief, leading to significant dips in the expected reward. While all methods are
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able to adapt when the environment is in a constant state, the use of past information allows BAM and
BAM + BOCD to quickly adapt. We can see that BAM and BAM + BOCD perform very similarly to
each other, suggesting that we can bypass unnecessary computation.

Figure 3: The bottom plot shows the gravity value changing over time; the performance of the learned
model in the swing-up task is shown above for 5 random seeds with 10-90% quantiles. Initially all
methods perform similarly until BAM encounters an environment it has experienced before, in which
it adapts more quickly than BOCD. The initial similarity is due to both methods detecting similar
changepoints and reverting to un-informed priors. Naive BAM performs well, albeit with weight
optimization after each trail versus only during detected changepoints for the other methods (60
optimizations versus ∼5).

4.3 EXPERIMENT 3: NON-STATIONARY BANDIT

Figure 4: Cumulative regret over time between Thompson sampling (recursive Bayes), Bayesian
exponential forgetting, BOCD, UCB, and UCBAM for different numbers of non-stationary arms,
where results are averaged over 5 random arm configurations, where for each arm configuration
results were collected over 5 different random seeds. Shaded bars represent 25-75% quantiles.

A common environment for testing the performance of online learning algorithms is the bandits
setting (Sutton & Barto, 2018). We study a non-stationary version of the bandits setting where each
arm switches between two values asynchronously, such that the best arm could be, at any point in
time, a previously low value arm. Gaussian noise with σ = 0.25 is additionally added to the current
arm value. Sample arm values can be found in Figure 5.

For stationary bandits, a popular algorithm is Thompson sampling (Thompson, 1933) in which
a posterior over each arm is continually updated via recursive Bayes. These posteriors are then
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leveraged to decide which arm the agent should pull, where the posterior uncertainty allows the
agent to automatically switch between exploration and exploitation. In the non-stationary setting,
we would expect vanilla Thompson sampling to fail as the arm posteriors would continue becoming
more certain, as is evident from section 4.1. While there are many approaches for how to adapt BAM
to perform well in the non-stationary bandits setting, we take a simple approach and combine BAM
with the upper confidence bound (UCB) bandit algorithm (Agrawal, 1995), which we call UCBAM;
in the interest of space, we provide an algorithm table in Appendix D.3.1. We compare UCBAM
against UCB, Thompson sampling, Bayesian exponential forgetting + Thompson sampling and a
BOCD + Thompson sampling scheme proposed by Mellor & Shapiro (2013); hyperparameter values
can be found in Appendix D.3. From Figure 4, we see that UCBAM outperforms the other methods
for both 10 and 50 arms. Thompson sampling fails to capture the true current values of the arms
and suffers a large penalty while exploration afforded by UCB enables better performance. BOCD
achieves low regret in the 10 arm setting, but reverts to its prior too often to perform well with 50
arms.

4.4 EXPERIMENT 4: DOMAIN ADAPTATION WITH ROTATED MNIST

In the image classification setting, we often want to operate across a variety of domains. Traditional
approaches include learning a single high capacity model or encoding assumptions about the domain
structure into the system (Jaderberg et al., 2015; Worrall et al., 2017). Instead, we use a simple
multivariate linear regression model where the targets are one-hot encoded labels, taking the highest
output as the selected class. We consider a setting where the distribution of domains is known and is
the same at both train and test time and evaluate BAM’s ability to classify given a small number of
labeled examples from the domains to adapt its belief. To achieve this, we create a rotated MNIST
dataset. 32 domains were created, where each domain was comprised of 1,875 randomly sampled
without replacement from the training set. In a domain, the images are rotated by an angle sampled
uniformly at random from 0 to π. Each domain is treated as one batch of data in the memory buffer,
i.e. Di = {(xij , yij)}1875j=1 . We split and rotate the test set similarly into 8 domains and give 10 labeled
examples from each to find readout weights over the training data. We calculate the average accuracy
over all test domains and collect results over 10 random seeds. While OLS trained over all domains
get a mean and standard deviation accuracy of 55% ± 3.7% accuracy, BAM is able to achieve a test
set accuracy of 71.8% ± 5.2%, showing that BAM is able to leverage previous experiences to adapt
to novel domains.

5 CONCLUSION AND FUTURE WORK

In this work we present BAM, a flexible Bayesian framework that allows agents to adapt to non-
stationary environments. Our key contribution is the addition of a memory buffer to the Bayesian
framework, which allows the agent to adaptively change its prior by choosing which past experiences
to remember and which to forget. Empirically, we show the proposed approach is general enough
to be deployed in a variety of problem settings such as online inference, control, non-stationary
bandits and domain adaptation. To ensure that we isolated the benefits of BAM, the experiments
focused on conjugate-prior distributions as it allowed us to compute the prior/posterior and the
log-marginal likelihood in closed form. Future work will focus on leveraging advances in streaming
variational inference (Broderick et al., 2013; Kurle et al., 2020) to allow BAM to be deployed on
more complicated models, i.e. Bayesian deep neural networks. For simplicity, we focused on binary
values for the readout weights as it allowed for a simple greedy discrete optimization algorithm
to be used. We imagine that allowing the weights to be any value between 0 and 1 will increase
performance in certain settings and allow BAM to have a much larger repertoire of priors that it can
construct, as well as suggest different optimization algorithms to use within the framework. Finally,
efficient memory buffer schemes will be explored to avoid the ’infinite memory’ problem of continual
learning, enabling BAM to operate with efficiency indefinitely.
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A EXAMPLES OF POSTERIORS WITH DECREASING VARIANCE

In this section we will provide two cases where the variance of the posterior is non-increasing with
probability 1 as more data is collected, regardless of the observed data. For simplicity we stick to
only 1D, though we are confident these results extend to their multi-dimensional extensions.

A.1 BAYESIAN ESTIMATION OF MEAN OF NORMAL DISTRIBUTION

The likelihood is of the form
p(y|θ) = N (θ, σ2), (25)

where σ2 > 0 is known. We use a normal prior

p(θ) = N (θ̄0, τ0), (26)

where τ0 > 0. Given arbitrary data y1, · · · , yN ∼ p(y1:N ) we get that the posterior is of the form

p(θ|y1:N ) = N (θ̄N , τN ), (27)

where

τN = (τ−10 +Nσ−2)−1 =
σ2τ0

σ2 +Nτ0
, (28)

θ̄N = τN

(
τ−10 θ̄0 + σ−2

N∑
n=1

yn

)
. (29)

We observe that the posterior variance, equation 28, is not a function of the observed data. In fact, the
posterior variance is deterministic given N , τ0 and σ2. In this particular setting, we can show that τN
is a strictly decreasing function of N .

To prove that τ0 > τ1 > · · · > τn > · · · > τN , it suffices to show that

τn−1 > τn, ∀n ∈ {1, · · ·N}, (30)

which is equivalent to showing that
τn
τn−1

< 1, ∀n ∈ {1, · · ·N}. (31)

Before proceeding, we note that as Bayes’ theorem is closed under recursion, we can always express
the posterior variance as

τn = (τn−1 + σ−2)−1 =
σ2τn−1
σ2 + τn−1

. (32)
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Computing τn/τn−1
τn
τn−1

=
σ2τn−1
σ2 + τn−1

× 1

τn−1
, (33)

=
σ2

σ2 + τn−1
. (34)

Because
τn > 0, ∀n ∈ {0, · · · , N}, (35)

we have that σ2 < σ2 + τn−1, and conclude that τn/τn−1 < 1.

A.2 BAYESIAN LINEAR REGRESSION

Next, we consider the setting of Bayesian linear regression with known variance. The likelihood is of
the form

p(yi|xi, θ) = N (θxi, σ
2), xi ∈ R, (36)

where σ2 > 0 is known. We use a normal prior
p(θ) = N (θ̄0, τ0), (37)

where τ0 > 0. Given arbitrary observations (x1, y1), . . . , (xn, yn), we have that the posterior is of
the form

p(θ|x1:N , y1:N ) = N (θ̄N , τN ), (38)
where

τN =

(
τ−10 + σ−2

N∑
n=1

x2n

)−1
=

σ2τ0

σ2 + τ0
∑N
n=1 x

2
n

, (39)

θ̄N = τN (τ−10 θ̄0 + σ−2
N∑
n=1

xnyn). (40)

To prove that τ0 ≥ τ1 ≥ · · · ≥ τn ≥ · · · ≥ τN , it suffices to show that
τn
τn−1

≤ 1, ∀xn ∈ R, ∀n ∈ {1, · · · , N}. (41)

Again, due to the Bayes being closed under recursion, we can always rewrite the posterior variance as

τn =
(
τ−1n−1 + σ−2x2n

)−1
=

σ2τn−1
σ2 + τn−1x2n

. (42)

So
τn
τn−1

=
σ2τn−1

σ2 + τn−1x2n
× 1

τn−1
, (43)

=
σ2

σ2 + τn−1x2n
. (44)

As x2n ≥ 0, we have that τn/τn−1 ≤ 1, which completes the proof.

B PROOF OF PROPOSITION 1

For clarity, we rewrite the proposition below
Proposition. Let

p(θ|D<t,Wt) ∝ p(θ)
t−1∏
j=1

p(Dj |θ)wt,j , wt,j ∈ {0, 1}, (45)

be the prior used in BAM and let

p(θ|D<t) ∝ p(θ)
t−1∏
j=1

p(Dj |θ), (46)

be the recursive Bayes prior. Then
E
[
Var(θ|D<t,Wt)

∣∣Wt

]
≥ E[Var(θ|D<t)], ∀Wt ∈ {0, 1}t−1. (47)
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Proof. We begin by describing some simple cases, before presenting the proof for the general case.

Case 1: All the readout weights are 1.
If all the readout weights are 1, i.e. Wt = 1 then

p(θ|D<t,Wt = 1) = p(θ|D<t), (48)

recovering the recursive Bayes prior. Thus

E
[
Var(θ|D<t,Wt = 1)

∣∣Wt = 1
]

= E[Var(θ|D<t)]. (49)

Case 2: All the readout weights are 0.
If all the readout weights are 0, i.e. Wt = 0 then

p(θ|D<t,Wt = 0) = p(θ), (50)

recovering the base prior. The law of total variance states

Var(θ) = E [Var(θ|D<t)] + Var(E[θ|D<t]). (51)

As both terms on the right-hand side are positive, this implies that

E
[
Var(θ|D<t,Wt = 0)

∣∣Wt = 0
]

= Var(θ) ≥ E [Var(θ|D<t)] . (52)

Case 3: General case
Let r be the indices of the readout weight set to 1 (“remembered”) and f be the indices of the readout
weights set to 0 (“forgotten”). We can express the memory buffer as D<t = Dr ∪ Df where Dr are
the data points selected by the readout weights and Df are the data points that are ignored. We can
rewrite the BAM prior as

p(θ|D<t,Wt) = p(θ|Dr), (53)
which is equivalent to applying Bayes theorem using Dr. Similarly, we can rewrite the recursive
Bayes prior as

p(θ|D<t) = p(θ|Dr,Df) ∝ p(Df|θ)p(θ|Dr). (54)
Using the law of total variance, we get

Var(θ|D<t,W ) = Var(θ|Dr) = E
[
Var(θ|D<t)

∣∣Dr
]

+ Var
(
E[θ|D<t]

∣∣Dr
)
, (55)

where again, the above implies

Var(θ|Dr) ≥ E
[
Var(θ|D<t)

∣∣Dr
]
. (56)

As the above inequality holds for all values of Dr, it also holds under expectation as well

E[Var(θ|Dr)
∣∣Wt] ≥ E

[
Var(θ|D<t)

∣∣Wt

]
. (57)

Since Var(θ|D<t) is the variance under the recursive Bayes model, it is not a function ofWt, allowing
the conditioning on Wt to be dropped

E
[
Var(θ|D<t)

∣∣Wt

]
= E [Var(θ|D<t)] . (58)

Applying our definition of Dr recovers the desired result:

E[Var(θ|D<t,Wt)
∣∣Wt] ≥ E [Var(θ|D<t)] . (59)

C DISCUSSION OF GREEDY DISCRETE OPTIMIZATION

As the number of choices is 2(t−1), it is impractical to use brute force methods for solving
the discrete optimization problem defined in equation 21. For simplicity, we use two types of
greedy approaches for discrete optimization. In both cases, each element in memory is evalu-
ated against a target datum with the inner term of equation 19, the log marginal likelihood and
regularization term. The first is a bottom-up approach, where we start with all readout weights
set to 0 and greedily add the most beneficial associated datum until the combined score de-
creases. Pseudo code is displayed in Algorithm 1. Note that this is similar in spirit to the
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stepwise selection approach used for selecting variables in linear regression (Hocking, 1976).

Algorithm 1: Bottom-Up Greedy for BAM
Data: memoryD<t, targetDt, prior p, regularizer strength λ
priorscore← log p(Dt) ;
for size(D<t) do

for eachDi inD<t do
if W[i] > 0 then

scores[i]← log
∫
p(Dt|θt)p(θt|W,D<t)dθt + log p(W |D<t)

else
scores[i] = -Inf

end
end
score, idx = findmax(scores) ;
if score > priorscore then

W [idx]← 1 ;
priorscore← score ;
p = posterior(p,D<t[idx])

else
returnW

end
end
Result: Readout weightsW

In the second approach, the readout weight starts at 0. The contribution of each datum in D<t is
evaluated independently (and can be done practically in parallel with either multi-core CPUs or
GPUs). These scores are filtered to only be scores better than the base prior’s likelihood. The top
q% percentile of remaining scores are chosen and their corresponding readout weight value are set
to 1. Pseudo code is displayed in Algorithm 2. This approach is faster than bottom-up as only one
round of optimization is needed but the combination of each of the individual experiences could
potentially lead to sub-optimal performance. Additionally, the percentile cutoff may needlessly
include or exclude weight values.

In practice, we found that the two approaches performed similarly with the main exception be-
ing the MNIST experiment, where the parallel approach was significantly worse than bottom-up.

Algorithm 2: Parallel selection for BAM
Data: memoryD<t, targetDt, regularizer strength λ, prior distribution p, cutoff q
priorscore = log p(Dt) ;
for eachDi inD<t do

scores[i]← log
∫
p(Dt|θt)p(θt|Di)dθt + log p(W |Di)

end
cutoff = quantile(scores > priorscore, q) ;
for each in scores do

if scores[i] > cutoff then
W [i]← 1

else
W [i]← 0

end
end
Result: Readout weightsW

D EXPERIMENTAL SETTINGS

D.1 CONTROLS

For our controls experiments, we used Model Predictive Path Integral control (Williams et al., 2017),
a model predictive control (MPC) algorithm with a planning horizon of 50 timesteps and 32 sample
trajectories. Our sampling covariance was 0.4 for each controlled joint–in the case of Cartpole, the
action space is 1. The temperature parameter we used was 0.5.

Planning with a probabilistic model involves each sampling trajectory to use a different model
sampled from the current belief (as opposed to a sampled model per timestep); planning rollouts
included noise, such that

xt = xt−1 +M ′φ(xt−1, at) + εt, εt ∼ N (0, σ2I), (60)

where M ′ is sampled from the current belief. φ is the random Fourier features function from (Rahimi
& Recht, 2007) where we use 200 features with a bandwidth calculated as the mean pairwise distance
of the inputs (states and actions) which is 6.0. To learn M , we use Bayesian linear regression where
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each row of M is modeled as being independent. We place a multivariate Normal prior on each of
the rows with a prior mean of all 0s and prior precision of 10−4I .

The Cartpole model’s initial state distribution for positions and velocities were sampled uniformly
from -0.05 to 0.05, with the angle of the cart being π such that it points down. This sets up the
swing-up problem.

For the episodic one-shot experiment, we perform MPC for 200 timesteps as one trial. 15 trials make
one episode, with the dynamical properties of the environment (i.e. gravity) fixed for the duration of
the trial. We vary the gravity parameter of the model by selecting gravity values from celestial bodies
of the Solar System; we used Earth, Mars, and Neptune at 9.81, 3.72, and 11.15 m/s2, respectively.
At the start of a new episode, each method’s beliefs are reset to the base prior, and each method
proceeds to update their respective beliefs accordingly. BAM retains each trail’s datum in memory
across episodes.

For the continual learning experiment, we do not inform our agent that the model dynamics have
changed, i.e. we never reset the agent’s belief to a prior. Instead, we use Bayesian Online Changepoint
Detection (BOCD) to discern if the underlying model distribution has changed. BOCD is compared
against BAM, both with and without changepoint detection; while BOCD resets to a prior when a
change is detected, BAM optimizes for a weight vector over the previously experienced data. The
BOCD switching parameter λ for its hazard function was set to 0.11. The agent attempts the task for
60 trials, with the environment experiencing changes 3 times during said trials.

D.2 DOMAIN ADAPTATION WITH ROTATED MNIST

We ran 10 independent Bayesian linear regressions, one for each dimension of the one-hot encoded
target. As the prior, we use a multivariate Normal distribution with a prior mean of all 0s and prior
precision of 0.1I . Similar to the controls experiment, we assume the additive noise is fixed and set to
σ2 = 10−4. As regularization had little effect, we set λ = 0.

D.3 NON-STATIONARY BANDITS

For both UCB and UCBAM, we use a confidence-level function of f(t) = 1 + t log2(t). The
timescale parameter for BOCD + Thompson sampling is 0.016, which is the expected frequency of
the arm switches. The weighting term for Bayesian exponential forgetting + Thompson sampling is
0.8.

D.3.1 DESCRIPTION OF UCBAM

The challenge of bandit settings is the need to explore, especially in the non-stationary setting we
devised. As such, UCB is a well known algorithm for leveraging the uncertainty in the arm values to
enable exploration. We combine this frequentist method with BAM as follows. When we assume to
‘know’ the current best arm value, we exploit it and keep a belief over its distribution with BAM. The
signal for whether the best arm is ‘known’ is if the likelihood of the current arm’s value is higher
with our current arm belief or higher with the naive base prior. If the base prior produces a higher
likelihood, we assume the current arm distribution is incorrect (and will be updated with BAM), and
we default to the UCB metric for arm selection. This simple combination of methods in this setting
allows for the exploration benefits of UCB with the quick recognition of high value arms due to BAM
and subsequent exploitation.
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Figure 5: For reference, the arm values of the bandit experiments without added noise (σ = 0.25),
with only 2000 time steps for clarity. Each arm switches between a high and low value at variable
times, such that the highest value arm may be a previously low value arm. The simplest strategy
would be to find the highest mean value arm, which is what UCB does in this case. Recursive Bayes
attempts the same, but does not explore sufficiently to achieve an accurate estimate of the mean arm
values.

Algorithm 3: UCBAM
Data: prior distribution p
K ← number of arms ;
b = copy(p), empty D, K times ; # belief and memory per arm
known← false ;
for each iteration do

if known then
arm← thompson(b1...K)

else
arm← UCB choice

end
v← pull(arm) ;
if log(p(v)) ≥ log(barm(v)) then

known← false
else

known← true
end
barm = BAM(p,Darm<t , v) ; # BAM posterior update
D<t = [D<t, v] ; # add value to memory

end
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