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ABSTRACT

Branch-and-bound (B&B) has long been favored for tackling complex Mixed
Integer Programming (MIP) problems, where the choice of branching strategy plays
a pivotal role. Recently, Imitation Learning (IL)-based policies have emerged as
potent alternatives to traditional rule-based approaches. However, it is nontrivial to
acquire high-quality training samples, and IL often converges to suboptimal variable
choices for branching, restricting the overall performance. In response to these
challenges, we propose a novel hybrid online and offline reinforcement learning
(RL) approach to enhance the branching policy by cost-effective training sample
augmentation. In the online phase, we train an online RL agent to dynamically
decide the sample generation processes, drawing from either the learning-based
policy or the expert policy. The objective is to strike a balance between exploration
and exploitation of the sample generation process. In the offline phase, a value
function is trained to fit each decision’s cumulative reward and filter the samples
with high cumulative returns. This dual-purpose function not only reduces training
complexity but also enhances the quality of the samples. To assess the efficacy of
our data augmentation mechanism, we conduct comprehensive evaluations across
a range of MIP problems. The results consistently show that it excels in making
superior branching decisions compared to state-of-the-art learning-based models
and the open-source solver SCIP. Notably, it even often outperforms Gurobi.

1 INTRODUCTION

As a general formulation and long-standing challenge, Mixed Integer Programming (MIP) (Zhang
et al., 2023) spreads wide applications ranging from manufacturing (Artigues et al., 2009) to route
planning (Halim & Ismail, 2019). Many exact algorithms (Lomnicki, 1965) have been proposed,
with common adoption of branch and bound (Brucker et al., 1994). It recursively divides the solution
space into a search tree and calculates the relaxation and boundary to prune the subtrees proved
not to contain the optimal solution. At each iteration, two important decisions need to be made,
including node selection and variable selection, which determine the next node to evaluate and select
the variables to partition the search space. In this paper, we will focus on variable selection.

Challenges: Variable selection decisions often rely on heuristics from domain experts (Achterberg
et al., 2005b), like strong branching, active constraint (AC) (Patel & Chinneck, 2007), pseudo cost
branching (PC) (Hendel, 2015), reliability pseudo cost branching (RB). However, the expert rule-
based policies can often only find the locally best variable to branch on (Achterberg et al., 2005a).
For example, for the most famous expert strong branching, it targets to select the variables that deliver
the best one-step progress in the dual bound improvements, which has been proved not always the
‘golden standard’ (Dey et al., 2021; Qu et al., 2022a). So, Glankwamdee & Linderoth (2011) proposed
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the lookahead branching, which considered more dual bound information from deeper levels to deal
with the potential local search limitations of strong branching. While in general, these effective
approaches were usually computationally expensive. In this respect, an increasing number of studies
are resorting to a learning-based branching strategy (Balcan et al., 2018), in which imitation learning
(IL) on strong branching (Hussein et al., 2017) has shown superiority. However, strong branching
cannot produce completely reliable labels due to the dual degeneracy (Cao et al., 2022b; Gamrath
et al., 2020b) in the LP solution, which may cause the product score of strong branching to combine
the improvements of the two child nodes close to zero. In addition, IL-based branching approaches
usually require a large amount of training data and GPU resources for training.

To tackle the aforementioned challenges, we propose an innovative hybrid approach that combines
online and offline RL1 techniques to enhance the training samples for branching policy learning.
It involves two distinct phases. In the online phase, we leverage an online RL agent, acting as a
dynamic collector. Its primary role is to guide decisions regarding the choice of sample generation
processes. These processes draw from two potential sources: the learning-based policy and the expert
policy. Contrasting with solely relying on expert knowledge, the samples could be generated by
the learning-based policy with the hope of bolstering exploration in unfamiliar scenarios, thereby
enhancing the performance of IL. The intuition is that learning-based policy (Gasse et al., 2019) can
deliver a smaller B&B tree than strong branching in some instances, as shown in the Appendix A.6.
Besides, Oh et al. (2018) has proved that past good experiences can add exploration for imitation
learning and may find a potentially better policy than only imitating the expert policy. The offline
phase involves training an offline agent. This offline agent is tasked with fitting the cumulative reward
function for each decision made. It operates as a filter, sifting through the generated samples to
identify those with superior cumulative returns. These high-quality samples are then earmarked for
training the branching policy. By doing so, we not only expect to improve the performance of the
branching policy but also minimize the overall training cost. The highlights of this paper are:

1) We propose an iterative collection and filtering framework that leverages a combination of online
and offline RL techniques to enhance the training samples. The online RL agent serves as a collector
responsible for determining the sample generation process, and choosing between the learning-based
policy and the expert policy. The offline RL agent functions as a filter, identifying samples with high
cumulative returns. This framework enhances the efficacy (inference performance) and efficiency
(training complexity) of the learning-based branching methods. 2) Extensive experiments on MIP
show that it consistently outperforms the default heuristic policy adopted in open-source solver SCIP.
Compared with learning-based algorithms, including the best-performing methods in the Machine
Learning for Combinatorial Optimization (ML4CO) 2021 competition2, our method can further
enhance the branching policy, illustrating its effectiveness as a plugin orthogonal to peer methods.

Difference to existing works: Table 1 compares our approach with existing works in detail. The
most critical difference is the hybrid sample collection and filtering scheme with online and offline
RL agents. Peer works mainly depend on either the expert-based samples (Gasse et al., 2019; Cao
et al., 2022a), or the pure self-generated samples with RL manner (Parsonson et al., 2023; Scavuzzo
et al., 2022). To combine the best of the two worlds, Qu et al. (2022b) tries to mix the generated
samples that lead to high performance with expert demonstration data within the training, purely by
a predefined hyperparameter G0. In this paper, we propose to train an online RL to adaptively and
dynamically mix the best of two worlds, which is more reasonable and adaptive. In addition, we also
proposed a new offline RL agent to further filter the mixed generated samples, minimizing the overall
training costs and enhancing performance to some extent.

2 PRELIMINARIES AND RELATED WORK

Preliminaries: Mixed integer programming (MIP) can be defined with three elements: optimization
objectives, decision variables, and constraints, which can be given by:

argmin
x

{ c⊤x|Ax ≤ b, l ≤ x ≤ u,x ∈ Zq × Rm−q} (1)

where x is the decision variables of total size m. n and m denote the number of constraints and
decision variables, respectively. q denotes the number of integer variables, and the remaining m− q

1Offline RL is a filtration mechanism similar to (Chen et al., 2020).
2https://www.ecole.ai/2021/ml4co-competition
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Table 1: Comparing our method with peer works.

References Sample Collection Filtering Iterative method TrainingExpert based
samples

Self-generated
samples How to mix

Gasse et al. (2019) Yes No / / No Imitation
Cao et al. (2022a) Yes No / / Yes Imitation
Parsonson et al. (2023) No Yes / / No RL
Scavuzzo et al. (2022) No Yes / / No RL

Qu et al. (2022b) Yes Yes Pre-defined
distribution / No RL

HRL-Aug(Ours) Yes Yes Online agent Offline agent Yes RL + Imitation

variables are continuous. The objective is to minimize c⊤x with the constraints Ax ≤ b, where
A ∈ Rn×m represents the constraint coefficient, and b ∈ Rn denotes the right-hand-side vector. The
x satisfying all the constraints and minimizing the objective is the optimal solution.

The flow of the B&B can be depicted as follows. Firstly, the raw MIP can be defined as the root
node of a search tree. It recursively selects a node from the search tree by the node selection rule and
then selects a variable to decompose the selected node. When branching on variable xi, the optimal
solution x∗

i is first computed by imposing a linear programming relaxation, and the relaxed objective
value can be defined as the dual bound. If x∗

i does not meet the integrity constraint, the variable xi

needs to be branched, decomposing the MIP from the current node into two sub-problems by adding
two new constraints xi ≥ ⌈x∗

i ⌉ and xi ≤ ⌊x∗
i ⌋. The iterations continue until convergence or time up.

Branching policy for branch and bound: Expert rule-based branching policies are widely adopted
in MIP solvers, including strong branching (Applegate et al., 1995), active constraint (Patel &
Chinneck, 2007) etc, which are generally difficult to design, and can usually find suboptimal variables
to branch on. Furthermore, some of them can be extremely time-consuming, like strong branching.

Learning-based policies were recently devised to replace the above expert rule-based policies, such
as imitation learning on some best-performing expert rule-based policies, like strong branching
(Applegate et al., 1995; Gasse et al., 2019; Alvarez et al., 2014; Gupta et al., 2020) and active
constraint (Patel & Chinneck, 2007). Gasse et al. (2019) first proposed to utilize bipartite graph
convolutional neural network (GCNN) to approximate strong branching decisions by IL. To make
the expert samples closer to real-world applications and further improve the performance, Cao
et al. (2022b) proposed a Dagger-like method to enhance the sample collection phase. These
methods deliver better performance and efficiency. In addition, RL-based methods are also recently
studied, which may produce even better branching policies compared with expert rule-based policies.
Scavuzzo et al. (2022) proposed a new tree Markov Decision Process, a more suitable framework for
learning to branch. Parsonson et al. (2023) proposed the retro-branching approach, by learning from
deconstructing trajectories within the sub-trees to enhance the branching policy.

In general, purely exploiting what expert policies know limits the performance of imitation learning
in some cases. While RL, free from expert rules, may be challenging in training, especially for
some large-scale problems. Note the conducted extensive experiments on the RL-based methods in
Appendix A.5, revealing the limitation of RL-based approaches. In this paper, we propose a hybrid
approach that embeds RL into imitation learning to enhance the training samples, balancing between
exploiting what experts know and exploring potential high-reward unknowns.

Training set augmentation with RL. Recently, RL-based data augmentation approaches have been
widely studied. Wang et al. (2018) developed a monotonic advantage re-weighted IL strategy to
enhance policy learning. Peng et al. (2019) proposed an advantage-weighted regression-based scheme
for offline RL. Chen et al. (2020) proposed the Best-Action Imitation Learning (BAIL) approach,
utilizing the V function to select actions for imitation learning that promised to be high-performing.
With similar insights, Qu et al. (2022a) tends to utilize BAIL to improve the quality of expert samples
for imitation learning. In general, these RL-based methods mainly rely on Monte Carlo return with
a discount factor. However, in the branching scenario, the dual bound may remain unchanged for
hundreds or even thousands of iterations, which means that the discount factor will interfere with
the accurate evaluation of the samples. In this respect, we deal with the above issue by setting the
discount factor as 1 to calculate the actual Monte Carlo return.

Imitation learning and self-imitation learning: Imitation learning (IL) has been widely adopted in
machine learning for combinatorial optimization, including solving MIP (Zhang et al., 2023). As a
special case for IL, the main idea of self-IL (Oh et al., 2018; Gangwani et al., 2018; Guo et al., 2019;
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Figure 1: Overview of the proposed HRL-Aug. It is a new iterative approach hybrid with online
and offline agents. An online agent is used to decide the sample generation processed from GCNN
πi−1 or experts to augment the training samples with higher cumulative rewards. An offline agent is
devised to reduce the generated samples and further enhance the sample quality. The samples will be
finally fed into GCNN iteratively for branching policy learning.

Zhu et al., 2014) is to learn the agent’s past experiences to indirectly drive exploration. It is believed
that the policy can be learned iteratively from the agent without any feedback from an external
expert. It shows that past good experiences are helpful on hard exploration tasks and achieved good
results in the Mujoco (Todorov et al., 2012). But in the branching scenario, each branching may have
hundreds of thousands of candidate variables, which means there large state-actions space and it is a
well-known difficulty for RL (Ecoffet et al., 2021), so we will use the online RL agent to adaptively
choose samples generation processes, either from learning-based policy or the expert policy, with the
aim of leveraging the strengths of both approaches.

3 METHODOLOGY

Fig. 1 depicts our approach with notations throughout this paper as listed in Table 2.

3.1 APPROACH OVERVIEW

Our approach, named Hybrid Reinforcement Learning for Training Set Augmentation (HRL-Aug),
is a hybrid online and offline approach to enhance the training samples towards branching policy
learning. The innovation lies in the introduction of the data augmentation scheme, as meticulously
designed for the realm of imitation learning. It comprises three components: an online Reinforcement
Learning (RL) agent, an offline RL agent, and an imitation learning-based policy, as shown in Fig 1.
The hybrid online and offline data augmentation scheme generates high-quality samples for the
IL-based GCNN network iteratively until the stop condition is met.

The Online RL Agent is utilized to select better samples from the expert policy or learning-based
policy at each variable selection decision. It plays a pivotal role by facilitating profound exploration
of uncharted scenarios. By striking a balance between exploration and exploitation, it effectively
steer clear of local optimal solutions for branching variables.

Table 2: Description of the notations in the paper.
sft state of offline reinforcement learning at node t
sot state of online reinforcement learning at node t
aot action of online reinforcement learning at node t
Ss
t scores for branching variables given by expert at node t

Sp
t scores for branching variables given by learned policies at node t

Ot bipartite graph features at node t
Rt cumulative reward at node t
rt reward at node t
πi policy trained by imitation learning at the i-th iteration
At candidate branching variable set at node t
z hyper-parameter controlling the ratio of selected samples

fθoff offline agent parameterized by θoff
fθon online agent parameterized by θon
γ discount factor for Monte Carlo Return calculation

The Offline RL Agent evaluates the cumu-
lative rewards of generated samples from
the online phase, and filtering the high-
quality samples for subsequent policy train-
ing. As will be seen from our ablation
study, it improves training efficiency.

The Imitation learning-based policy is
trained with the generated samples from
the hybrid online and offline agent. It can
be regarded as a crucial validation of our
data augmentation framework. It emerges
as a pivotal component capable of supplanting expert-based policies within solvers, akin to SCIP as
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exemplified in this study. GCNN is selected as the backbone. We take comprehensive tests on the
generalization capabilities of our framework to other approaches, and the details are given in Sec. 4.4.

3.2 ONLINE RL PHASE

Imitation learning-based models have shown their superior performance over expert rule-based
policies (Gasse et al., 2019). However, its performance largely depends on high-quality expert
samples, which are difficult to collect. Recently, self-imitation learning has proved that using past
good experiences to explore new behaviors may find a potentially better policy (Oh et al., 2018).
However, the optimization may be completely aimless at the early training stage when starting from
scratch, which may hurt the performance and greatly increase the complexity.

An intuitive idea is to combine the best of the two worlds: expert rules and past good policies,
which requires an approach to decide the sample generation processes, denoted as the online phase
in this paper. However, it is difficult to evaluate the branching decisions, making it a challenging
task to choose samples from expert rules or learning-based policies. Moreover, in the branching
scenario, samples are collected by iterative variable selection decisions, and the current decision
largely depends on the former actions and states, making it a sequential decision problem. In this
respect, we tend to define the online phase as a Markov Decision Process (MDP) and model the
sample generation process with RL.

Figure 2: Example of the dual bound changes on a
balanced item placement instance.

Firstly, we define the online RL phase as a sam-
ple selector and collector at each branching node.
In this respect, the action aot was defined as the
sample generation decision from expert rules or
past learned policies at each node t, which is
a discrete action space, only with two actions.
The state sot is formulated as sot = (Ss

t , S
p
t , Ot),

where Ss
t denotes the expert score for variables,

and the Sp
t is the score from learned policies. Ot

denotes the bipartite graph feature, and the details of features are listed in Table 11 in the Appendix.
Secondly, it is essential to drive effective evaluation for samples. We utilize the dual bound changes
as the reward rt, and Fig. 2 depicts an example on an MIP instance. The dual bound may remain
unchanged for hundreds of steps. This reveals that it may require thousands of or even longer steps
to accurately evaluate the cumulative reward. However, with the discount factor γ < 1, the reward
may have little contribution to the cumulative reward after thousands of branches, which can cause an
inaccurate evaluation of the action. Hence we set γ = 1, and the cumulative reward Rt at node t is:

Rt =

t−1∑
v=t

rv (2)

where t−1 is the final expanded node in an episode. With the above definition, we can train the online
RL agent with the advantage actor-critic method (ActorCritic). The agent dynamically decides
sample generation processes, either from the expert rule or the GCNN policy πi−1. In the training
phase, GCNN policy πi is iteratively optimized and the online RL agent relies on this evolving
GCNN to construct the input states. This introduces a potential challenge, as the previously trained
online agent may become unreliable due to the evolving policy. To address this issue, we utilize the
up-to-date πi−1 to train the online agent. With the online update mechanism, we can optimize the
online sample collection agent and obtain past good experiences, to achieve better exploration.

3.3 OFFLINE RL PHASE

With the online sample collection agent, we can easily obtain hybrid samples from both the expert rule
and the GCNN policy. However, with the iterative sample generation process, the training samples
constantly accumulate and require huge computing resources for imitation learning. In this respect,
batch deep reinforcement learning (BDRL) (Fujimoto et al., 2018; Chen et al., 2020) was proposed to
strive for both simplicity and performance by selecting high-quality samples with offline methods. In
this paper, we leverage similar ideas and develop an offline RL agent to approximate the cumulative
reward and reduce the data scale by filtering samples, thus reducing the training complexity.

For branching, the action aft is defined as the variable selection from the candidate branching variable
set. The states for the offline learning phase at node t can be defined as sft = (Ot, At), where At

5



Published as a conference paper at ICLR 2024

denotes the candidate branching variable set, Ot is the bipartite graph feature. The discount factor is
still set as γ = 1, with the cumulative reward defined as Eq. 2, to evaluate the quality of the samples.

With the above definition, let offline agent denoted by a neural network characterized by θoff = (w, b).
θoff take the {(Ot, At, Rt), t = 1, 2, ...,m} collected from the online RL phase as input and output
a real number to fit the cumulative reward, thereby obviating the need for exploration. Then the
offline agent is regarded as a λ-regularized upper envelope for the following constrained optimization
problem Eq. 3. This concept arises due to the inequality fθoff (Ot, At) ≥ Rt, and this prompts us
to define fθoff (Ot, At) as the "upper envelope", a construct geared towards aligning the envelope as
closely as feasible with Rt. Then the offline RL agent is used to select high-quality samples generated
in the online phase. With the approximate cumulative reward generated from the offline agent, we
can select the high-quality samples by Eq. 4, where z is a hyper-parameter, controlling the ratio of
the selected data samples, fθoff denotes the offline agent.

min
θoff

m∑
t=1

[fθoff (Ot, At) − Rt]
2 + λ||ω||2 s.t. fθoff (Ot, At) ≥ Rt, t = 1, 2, . . . ,m (3)

Rt ≥ zfθoff (Ot, At) (4)
Note that the offline RL agent undergoes training solely during the first iteration, as empirical evidence
suggests that its performance is already satisfactory at that point.

3.4 HYBRID TRAINING PIPELINE

The hybrid online and offline RL agents are combined as a hybrid pipeline to further enhance the
branching policy via training set augmentation, whose details are given in Algorithm 1. It operates
iteratively to collect training samples, with each iteration involving the incremental training of the
foundational GCNN model. For efficiency, the frequency of the online RL training will be controlled
by the hyperparameter Freq (see Line 6), and the offline RL agent is exclusively trained during
the first iteration. In particular, the online agent will employ the most current GCNN policy for its
training every time when the conditions in Line 6 are met. In the training phase for the online agent
fθon , we will collect the bipartite graph features Ot, along with the scores (Ss

t , S
p
t ) from the expert

rule and the GCNN policy πi−1 as the states in Line 7. Afterward, the samples generated from the
online phase (see Line 9-13) are used to train the offline agent fθoff at the first iteration in Line 15,
which is capable of selecting samples with high cumulative rewards and will be applied for all the
successive iterations. Finally, the generated samples are further aggregated to train the GCNN policy
πi, used for subsequent training. The pipeline persists until it reaches the iteration limit N .

4 EXPERIMENTS

We compare competing learning-based approaches and SCIP’s default branching rule. We run all the
experiments on an Intel(R) Xeon(R) Silver 4210 2.20GHz CPU and an NVIDIA A100 GPU.

4.1 EXPERIMENTAL PROTOCOLS

Dataset. We perform evaluation on popular binary integer programming problems: set covering,
combinatorial auctions, maximum independent set, and capacitated facility location. Instance
generation completely refers to (Gasse et al., 2019), and their variable and constraint sizes are
listed in Table 3. For each problem, we generate 10,000 instances for training, 4,000 for validation,
and 40 for testing. The test instances are all generated via different random seeds. The training and
validation are performed on the Easy instances (see Table 3), and we also generated 40 Medium and
Hard testing instances for each problem to further test the generalization ability. Besides, we conduct
experiments on more difficult MIP problems from the ML4CO 2021 competition (ML4CO datasets)
(Gasse et al., 2022), including Balanced Item Placement (1,083 columns, 195 rows), Workload
Apportionment (61,000 columns, 64,314 rows), and Anonymous, which is from the MIRPLIB
library (PAP, 2014) and inspired by real-world applications of large-scale problems.

Hyperparameters. All models are trained with Ecole (Prouvost et al., 2020). To verify the effect of
different branching strategies, we disable SCIP’s heuristic and default restart policy. In the training
phase, we collect 10,000 training and 4,000 validation samples at each iteration, and the training
iterations N = 20, 50 for binary integer programming problem and ML4CO datasets respectively,
the frequency of training the online RL agent Freq = 5. At each iteration, the embedding size for
the offline agent is 64, and the hidden layer size for both online and offline RL is set to 128. We set
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the discount factor to 1, and use Adam optimizer with learning rate 3× 10−3 to train both RL agents.
We use SCIP 7.0.3 as the backend solver, with a time limit of 1 hour for binary integer programming
problems which are the same as (Gasse et al., 2019), and 900 seconds for ML4CO datasets.

Algorithm 1 Hybrid RL for the training set augmentation
to enhance branching for B&B-based MIP.
Input: Training instances;
Number of samples generated each iteration C;
The total number of algorithm iterations N ;
The frequency of training the online RL agent Freq;
Initial branching policy π0;
Collect all samples generated in each iteration D
Collect the samples generated in the i-th iteration Di

Output: Branch policy based on Hybrid RL πN ;
1: Let i = 1;
2: Let D=∅;
3: while i ≤ N do
4: Let Di = ∅
5: Let t = 1;
6: if i== 1 or i % Freq == 0 then
7: fθon = ActorCritic(πi−1, expert)
8: end if
9: while t ≤ C do

10: Ot, At, Rt, S
s
t , S

p
t = fθon(πi−1, expert);

11: Di = Di ∪ {Ot, At, Rt, S
s
t , S

p
t };

12: t = t+ 1;
13: end while
14: if i== 1 then
15: fθoff = BDRL(Di);
16: end if
17: Remove samples from Di as Eq. 4;
18: D = D ∪Di;
19: πi = GCNN(D);
20: i = i+ 1;
21: end while

Evaluation. As discussed above, for each
binary integer programming problem, eval-
uation is performed on different difficulty
levels (Easy, Medium, Hard), each with 40
instances using five different seeds, which
amounts to a total of 200 solving attempts
per method to report aggregated results over
the same instance. We use similar metrics
as those in (Gasse et al., 2019), including
the 1-shifted geometric mean of the solving
time to measure the solving efficiency (Time),
the final node counts of the solved instances
among all baselines (Nodes), and the number
of times each branching policy delivers the
fastest solving time, over the number of in-
stances solved to optimal (Wins). Note that
we also report the average per-instance stan-
dard deviation.

As it is too large to solve in a reasonable
time, we evaluate methods with similar met-
rics as in ML4CO 2021 competition: average
DualGap and dualbound within the solving
time limit. DualGap for each instance is:

DualGap(t) =
|d(t)∗ − p∗|

max(|d(t)∗| , |p∗|)
(5)

where d(t)∗ is the best dual bound at time t
and p∗ is the best known solution value for
the instance. We also compare the cumulative
reward within the fixed time bound by Eq. 6, where Tc⊤x∗ is an instance-specific constant w.r.t. the
optimal objective c⊤x∗.

Tc⊤x∗ −
∫ ⊤

0

d(t)∗dt (6)

4.2 COMPARATIVE EXPERIMENT

Baselines. We compare our method with four baselines: 1) SCIP (v7.0.3) (Gamrath et al., 2020a):
State-of-the-art open-source solver with hybrid expert branching rules, named reliable pseudo cost
branching. 2) GUROBI (v9.5.0): State-of-the-art commercial solver with hybrid expert branching
rules which is known often much more effective than open-source solver. 3) GCNN (Gasse et al.,
2019): An IL-based model with graph convolutional networks for scoring. 4) ML4CO-KIDA (Cao
et al., 2022a): a Dagger-like (Ross et al., 1984) method based on IL, which is the best-performing
method in the ML4CO 2021 competition.

Training. For iterative-based methods, including our proposed hybrid framework and ML4CO-KIDA,
we generate 10,000 and 4,000 samples for training and validation at each iteration, respectively. As
for the IL-based GCNN, we generate 100,000 samples for training and 40,000 samples for validation.
Note that on the ML4CO datasets, we will use the model published by ML4CO-KIDA’s author on
balanced item placement and anonymous problems, and reproduce ML4CO-KIDA using the source
code for the Workload Apportionment problem. The accuracy on testing instances for different
problems is listed in Table 4, where (acc@n) denotes the accuracy of the selected branching variable
by branching policy rules for sample generation, ranking top n among the predictions.

Comparative analysis. Table 5 depicts the overall performance on four binary integer programming
problems. For the easy instances, learning-based methods significantly outperform the expert rule-
based policies, showing the effectiveness of the IL framework. Our method shows consistently higher
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Table 3: The type and protocol of the binary integer programming problem.
Difficulty Combinatorial Auction Set Covering Independent Set Capacitated Facitlity

columns rows columns rows columns rows columns rows
Easy 500 195 1000 500 500 1948 10100 10201
Medium 1000 383 1000 1000 1000 3957 20100 20301
Hard 1500 591 1000 2000 1500 5938 40100 40501

Table 4: Evaluation of three IL-based methods by accuracy@k on the test sets of seven problems.
IL-based Methods Combinatorial Auction Set Covering Independent Set Capacitated Facitlity Item Placement Workload Apportionment Anonymous

@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10
GCNN 0.62 0.97 0.56 0.97 0.48 0.86 0.56 0.99 0.77 0.99 0.28 0.84 0.50 0.87
KIDA 0.58 0.96 0.55 0.97 0.41 0.86 0.56 0.99 — — 0.23 0.78 — —
HRL-Aug 0.55 0.96 0.52 0.97 0.40 0.85 0.56 0.99 0.73 0.99 0.42 0.88 0.48 0.89

Table 5: Instances are evaluated based on solving time, the number of wins (fastest method) versus
the number of solved instances, and the number of nodes generated by B&B (lower is better).

Methods Easy Medium Hard
Time Win/Solved Nodes# Time Win/Solved Nodes# Time Win/Solved Nodes#

SCIP 2.42 ± 11.25% 10/200 21.58 ± 39.64% 32.92 ± 12.83% 1/200 1446.18 ± 26.40% 298.69 ± 8.70% 5/200 30619.07 ± 9.78%
GCNN 1.75 ± 9.73% 47/200 78.54 ± 9.11% 21.59 ± 9.87% 63/200 1049.09 ± 5.35% 225.23 ± 5.83% 79/200 25864.09 ± 4.61%
KIDA 1.70 ± 9.60% 65/200 77.98 ± 8.92% 21.62 ± 10.49% 65/200 1064.76 ± 5.96% 237.10 ± 6.25% 16/200 27264.35 ± 4.87%
HRL-Aug 1.68 ± 9.44% 78/200 77.40 ± 9.23% 21.27 ± 10.75% 71/200 1053.42 ± 7.28% 222.758 ± 6.81% 100/200 24218.31 ± 5.41%

Combinatorial Auction

Methods Easy Medium Hard
Time Win/Solved Nodes# Time Win/Solved Nodes# Time Win/Solved Nodes#

SCIP 12.38 ± 9.94% 3/200 215.20 ± 30.29% 36.83 ± 5.68% 0/200 902.26 ± 18.08% 552.67 ± 3.76% 52/170 50192.55 ± 5.53%
GCNN 7.85 ± 8.54% 75/200 190.47 ± 14.66% 24.95 ± 7.51% 70/200 692.89 ± 10.61% 529.44 ± 3.74% 30/170 34442.69 ± 3.92%
KIDA 7.89 ± 8.04% 79/200 193.47 ± 14.71% 25.47 ± 10.74% 55/200 706.31 ± 15.11% 526.01 ± 4.33% 34/170 33880.34 ± 7.06%
HRL-Aug 8.15 ± 8.85% 43/200 201.76 ± 15.62% 24.64 ± 8.36% 75/100 675.76 ± 11.67% 525.42 ± 3.06% 54/170 34858.74 ± 7.56%

Set Covering

Methods Easy Medium Hard
Time Win/Solved Nodes# Time Win/Solved Nodes# Time Win/Solved Nodes#

SCIP 9.86 ± 16.06% 19/200 72.21 ± 47.65% 121.17 ± 21.41% 1/200 1168.90 ± 24.32% 2048.93 ± 16.97% 0/122 11969.63 ± 28.10%
GCNN 7.35 ± 14.38% 60/200 80.23 ± 32.02% 56.85 ± 15.28% 39/200 532.34 ± 20.90% 767.95 ± 16.71% 10/182 8519.85 ± 28.92%
KIDA 7.39 ± 14.78% 57/100 84.20 ± 31.01% 52.88 ± 14.50% 82/200 483.53 ± 18.97% 677.15 ± 15.01% 48/185 8055.94 ± 19.74%
HRL-Aug 7.34 ± 13.22% 64/100 82.00 ± 29.41% 52.75 ± 12.50% 78/200 508.79 ± 19.86% 577.79 ± 14.77% 137/195 6048.33 ± 22.39%

Maximum Independent Set

Methods Easy Medium Hard
Time Win/Solved Nodes# Time Win/Solved Nodes# Time Win/Solved Nodes#

SCIP 96.79 ± 19.25% 27/200 591.01 ± 31.53% 403.40 ± 17.69% 41/200 741.34 ± 22.55% 921.68 ± 22.59% 37/191 392.67 ± 22.59%
GCNN 60.89 ± 33.29% 60/200 1100.35 ± 37.27% 345.56 ± 29.52% 47/200 1374.09 ± 31.95% 769.84 ± 23.17% 45/184 758.56 ± 25.13%
KIDA 60.64 ± 34.08% 52/200 1036.61 ± 37.23% 349.1 ± 34.70% 45/200 1403.62 ± 34.22% 728.94 ± 22.61% 57/184 736.21 ± 24.42%
HRL-Aug 60.19 ± 30.02% 61/100 1027.54 ± 34.19% 324.10 ± 28.49% 67/200 1348.08 ± 26.53% 718.62 ± 20.54% 58/186 717.00 ± 19.31%

Capacitated facility location

Table 6: Eperiment on the dataset of the ML4CO 2021 competition.
Methods item placement Workload Apportionment anonymous

Dual Bound Dual Gap Reward Dual Bound Dual Gap Reward Dual Bound Dual Gap Reward
SCIP 5.25 63.24% —- 699.36 3.17% —- 29926.57 52.10% —-
GCNN 5.18 61.19% 4387 701.82 2.84% 631127 31011.52 46.75% 27344112
KIDA 8.719 34.18% 7532 701.79 2.84% 631147 31102.45 46.16% 27548468
HRL-Aug 8.725 34.16% 7538 701.80 2.84% 631203 31170.81 45.64% 27672243

solving efficiency with quite close performance for easy problems. Interestingly, the results reveal
that there is no direct connection between the final node counts and the solving time.

Table 6 gathers the results for ML4CO datasets. ML4CO-KIDA significantly outperforms GCNN,
which reveals that iterative-based methods may deal with some challenges faced by pure IL models.
Among all the competing baselines, our hybrid framework consistently dominates the others, illus-
trating the effectiveness of online RL which can drive much deeper exploration from the iteratively
updated policies. Notably, the ablation study shows our proposed method can even outperform Gurobi
on item placement problems, purely assisted by the open-source solver SCIP.

Generalization analysis. We further test our method on some difficult instances (Medium and Hard)
to evaluate the generalization ability, and the overall results are gathered in Table 5. As can be
seen, the default SCIP branching strategies significantly underperform the learning-based policies
on solving time, revealing the limitations of the expert rules, especially on large-scale instances.
Similarly, our proposed method consistently outperforms the competing baselines in terms of solving
efficiency, showing a better generalization ability to larger instances.

4.3 ABLATION STUDY

We present an ablation study to verify the effectiveness of the online RL agent and offline RL agent.
Specifically, we evaluate our method and ML4CO-KIDA, with different iteration steps.

In Table 7 and Table 8, the training time is categorized into sample generation time and model training
time. For the training sample generation time, our approach closely aligns with that of ML4CO-KIDA
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Table 7: Ablation study on Combinatorial Auction.
iteration HRL-Aug ML4CO-KIDA

Samples Samples generation time Training time Samples Samples generation time Training time
1 7,067 29 min 19 min 10K 35 min 11 min
10 70,620 65 min 59 min 100K 71 min 78 min
20 127,757 98 min 129 min 200K 111 min 175 min
30 194,683 143 min 201 min 300K 149 min 266 min
40 268,013 189 min 257 min 400K 191 min 359 min

Table 8: Ablation study on anonymous.
iteration HRL-Aug ML4CO-KIDA

Samples Samples generation time Training time Samples Samples generation time Training time
1 6,627 1.78 hours 1.36 hours 10K 1.68 hours 0.26 hours

10 68,235 19.30 hours 9.57 hours 100K 16.67 hours 6.27 hours
20 136,756 38.92 hours 18.28 hours 200K 40.35 hours 29.45 hours
30 20,3754 58.31 hours 27.32 hours 300K 66.96 hours 55.10 hours
40 27,1761 77.09 hours 36.33 hours 400K 83.85 hours 59.20 hours

Table 10: Further validating the generalizability of HRL-Aug in Combinatorial Auction.
Methods MLP CNN RNN

Time Win/Solved Nodes# Time Win/Solved Nodes# Time Win/Solved Nodes#
SCIP 2.36 ± 10.41% 11/200 21.58 ± 39.64% 2.34 ± 10.56% 11/200 21.58 ± 39.64% 2.32 ± 10.65% 25/200 21.58 ± 39.64%
KIDA 1.50 ± 7.71% 83/200 98.63 ± 8.68% 1.54 ± 6.89% 86/200 102.94 ± 9.02% 1.89 ± 9.25% 73/200 94.10 ± 8.73%
Ours 1.49 ± 6.81% 106/200 100.69 ± 9.25% 1.53 ± 6.90% 103/200 100.18 ± 8.42% 1.86 ± 8.70% 102/200 94.19 ± 9.16%

on both the combinatorial auction and anonymous problem. However, with our newly incorporated
offline RL agent, the training sample size of our proposed HRL-Aug reduced by around 30% at each
iteration compared with ML4CO-KIDA. In general, the overall model training time was reduced by
28%, and 38% on combinatorial auction and anonymous problems, respectively, thus illustrating the
efficacy and essential role of the offline RL agent.

Table 9: Results on item placement.
Methods Dual Bound Dual Gap Reward
GCNN 5.183 61.19% 4387
GUROBI 8.522 36.65% —-
HRL-Aug-off 7.245 43.49% 5983
HRL-Aug-on 8.417 37.35% 7241
HRL-Aug 8.725 34.16% 7538

Table 9 ablates the effect of online/offline RL for item
placement. HRL-Aug-on means disabling the offline
agent, and thus the training samples are not filtered
by their qualities. HRL-Aug-off means disabling the
online agent, and thus the expert experience is only
considered. The results suggest that the online part is
more important, and both parts have positive effects.

4.4 GENERALIZABILITY OVER VARIABLE SELECTION POLICY EMBODIMENT

To assess our methodology’s network-wise generalization, we position it within the framework of a
combinatorial auction problem. The validation process was rigorously executed on a set of easy-level
problems, comprising 40 instances. Each instance underwent testing under five seeds. To verify the
adaptability and generalization potential of our approach across diverse network architectures, we
replaced GCNN with alternative models such as the Multilayer Perceptron (MLP, input features=17,
hidden size=64, output features=1), Convolutional Neural Networks (CNN, input channels=17,
output channels=64, kernel size=3), and Recurrent Neural Network (RNN, input size=17, hidden
size=64, num layers=1, sequence length=500) as variable selection policies for both our method and
ML4CO-KIDA. A comprehensive depiction of performance metrics has been thoughtfully compiled
and presented in Table 10. The outcomes are unequivocal – our approach consistently outperforms
both ML4CO-KIDA and SCIP. This observation substantiates the inherent model-agnostic nature of
our methodology, emphasizing its versatility and effectiveness across various scenarios.

5 CONCLUSION AND OUTLOOK

We have proposed a hybrid online and offline RL approach to enhance the branching policy via
efficient training set augmentation. Hybrid agents perform in an iterative manner, with an online
RL agent deciding sample generation, either from the expert rule or learning-based policy, and an
offline RL agent further filtering the generated samples with high cumulative returns. Experiments on
different MIP problems show its effectiveness, even achieving superior performance over the leading
commercial solver in some cases. HRL-Aug also shows superior generalization ability. Future work
may combine learning to presolve (Liu et al., 2024) and instance generation (Wang et al., 2023; Li
et al., 2023) with learning-based solvers in a synergetic manner.
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A APPENDIX

A.1 THE FEATURE OF GCNN

The bipartite graph features used throughout this paper are listed in Table 11.

Table 11: Description of the constraint, edge, and variable features in the GCNN

Name Feature Description

Constraint features

obj_cos_sim Cosine similarity with the objective.
bias Bias value, normalized with constraint coefficients.
is_tight Tightness indicator in LP solution.
dualsol_val Dual solution value, normalized.
age LP age, normalized with total number of LPs.

Edge features coef Constraint coefficient, normalized per constraint.

Variable features

type Type (binary, integer, impl. integer, continuous) as a one-hot encoding.
coef Objective coefficient, normalized.
hasl̄b Lower bound indicator.
has_ub Upper bound indicator.
sol_is_at_lb Solution value equals lower bound.
sol_is_at_ub Solution value equals upper bound.
sol_frac Solution value fractionality.
basis_status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.
reduced_cost Reduced cost, normalized.
age LP age, normalized.
sol_val Solution value.
inc_val Value in incumbent.
avg_inc_val Average value in incumbents.

A.2 BRANCHING

Branching is the core of the branch-and-bound algorithm, and designing effective strategies was
critical to mixed Integer programming (MIP) solving right from the beginning.

The overall pipeline for branching is listed as follows:

Algorithm 2 Generic branching (variable selection)
1: Input: Current subproblem Q with an optimal linear programming (LP) solution x̌ /∈ XMIP

2: Output: An index j ∈ I of an integer variable xj with the fractional LP value x̌ /∈ Z
3: Let F = {j ∈ I|x̌ /∈ Z} be the set of branching candidates.
4: For all candidates j ∈ F , calculate a score value sj ∈ R
5: return an index j ∈ F with sj = maxk∈F (sk)

There are many rule-based expert strategies, such as strong branching (Applegate et al., 1995), active
constraint (Patel & Chinneck, 2007), and so on. For example, the widely utilized strong branching
will select the fractional variable with the best dual bound improvement to branch on, listed as Eq. 7.

sj = max{čQ−
j
− čQ, čQ+

j
− čQ} (7)

where sj denotes the score for each fractional candidate j, Q−
j represents the left subproblem by

adding the trivial inequality xj ≤ ⌊x̌j⌋, and Q+
j represents the right subproblem by adding the trivial

inequality xj ≥ ⌈x̌j⌉. č denotes the objective value of the LP relaxations.

For the GCNN policy, at each variable selection iteration, it will get the input features listed in Table
11, and predict sj for each fractional candidate variable. Then it will select an index j ∈ F with
sj = maxk∈F (sk) as the branching variable.
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A.3 DIFFERENCE IN METHODOLOGY AND PERFORMANCE WITH ML4CO-KIDA (CAO ET AL.,
2022A)

KIDA is a Dagger-like method based on IL. Though interacting with the solver with 95% probability
of using model πi−1 and 5% probability of using Strong Branching in the solving process, it only
collected training samples from Strong Branching. While in our paper, there are the following major
differences, which are also our contributions:

1) In the solving process, the variable selection from πi−1 or strong branching was not decided by
pre-defined parameters (95% vs 5% in KIDA). We proposed an online RL agent to dynamically
determine the selection and may generate more reasonable samples. You can see Section 3.2 for
details.

2) Different from KIDA, samples from strong branching and πi−1 will both be collected by the
decision from the online agent.

3) We devised an extra offline learning phase to filter higher cumulative reward samples, which can
significantly reduce the training complexity and may improve imitation learning performance to some
extent.

Besides, the data augmentation mechanism in the proposed methodology can be segmented into
collectors and filters. The KIDA has no filtering phase. Key distinctions exist in the collection phase:

1) Selection Mechanism: In the case of KIDA, its selector operates under the influence of a Bernoulli
distribution, wherein a hyperparameter is determined based on an in-depth grasp of domain expertise.
Nonetheless, this approach grapples with manageability issues, particularly when the decision
problem grows in complexity. Our approach takes a different path, circumventing this challenge. We
leverage an online reinforcement learning agent that imbibes knowledge from data iteratively, thereby
gradually converging toward an optimal distribution. This distribution is notably more intricate than
the Bernoulli model, especially tailored to effectively tackle intricate decision problems.

2) Collection Mechanism: In the realm of KIDA, its collector solely acquires samples from the
expert policy of strong branching. This policy, albeit optimal at the immediate juncture, might not
necessarily hold the same effectiveness over an extended trajectory. Our approach, on the other hand,
goes beyond this confined paradigm. We amass samples not just from the expert policy, but also from
the model policy. This judicious balance between exploitation and exploration forms the bedrock of
our imitation learning, propelling us to converge toward the zenith of the optimal distribution. This
distribution, then, serves as the compass guiding our branching decisions, distinctly setting us apart
from KIDA.

A.4 FURTHER DISCUSSION ON THE NOVELTY OF OUR DATA AUGMENTATION FRAMEWORK
FOR IMITATION LEARNING

Our primary innovation lies in the introduction of the data augmentation Framework, which is
meticulously designed for the realm of imitation learning. This framework comprises three pivotal
components: an online Reinforcement Learning (RL) agent, an offline RL agent, and an imita-
tion learning-based policy. Refer to Figure 1 for a comprehensive depiction of this framework’s
architecture and functionality.

1) The Online RL Agent: The online RL agent plays a pivotal role by facilitating the profound
exploration of uncharted scenarios. By striking a balance between exploration and exploitation, it
effectively steers clear of local optimal solutions for branching variables. Consequently, the presence
of the online agent substantially enhances the overall effectiveness of imitation learning.

2) The Offline RL Agent: As evidenced by Table 7 and Table 8, the primary advantage of the
offline RL agent lies in its ability to enhance the efficiency of imitation learning. Remarkably, it
accomplishes this by reducing the model training time by approximately 30%, so the model training
time was reduced by 28%, and 38% in combinatorial auction and anonymous problem respectively.
Thereby illustrating the efficacy and efficiency of the offline RL agent.

3) The Imitation learning-based policy: A crucial validation of our proposed Data Augmentation
Framework (HRL-Aug) unfolds within the context of branching scenarios. At the core of this
validation lies the deployment of an imitation learning-based policy. This policy, meticulously learned
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Table 12: Compare with the RL for branching method.

Methods Easy Medium
Time Win/Solved Nodes# Time Win/Solved Nodes#

SCIP 8.14 ± 6.99% 4/200 121.78 ± 28.19% 29.39 ± 5.53% 1/200 660.80 ± 12.91%
Scavuzzo et al. (2022) 8.88 ± 15.96% 8/200 1215.20 ± 26.90% 63.05 ± 18.24% 0/200 6192.78 ± 21.82%
Parsonson et al. (2023) 8.86 ± 9.60% 2/200 496.3 ± 16.92% 50.67 ± 12.08% 0/200 2585.4 ± 14.68%
HRL-Aug 5.40 ± 8.84% 186/200 149.34 ± 7.37% 19.54 ± 6.77% 199/100 555.61 ± 6.52%

Set Covering

through the imitation learning process, emerges as a pivotal component capable of supplanting
expert-based policies within solvers, akin to SCIP as exemplified in this study.

Our main contribution is the novel data augmentation framework for imitation learning. We have
indeed undertaken comprehensive tests on the generalization capabilities of our proposed framework.
Specifically, we have replaced the learning-based Graph Convolutional Network (GCN) with alterna-
tive architectures, such as Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs),
and Recurrent Neural Networks (RNNs) as shown in section 4.4. Our approach consistently outper-
forms both ML4CO-KIDA and SCIP. This observation substantiates the inherent model-agnostic
nature of our methodology, emphasizing its versatility and effectiveness across various scenarios.

A.5 COMPARE WITH THE RL FOR BRANCHING METHOD

Recently RL-based methods have been proposed to enhance the branching policies, which do not rely
on the expert rule, and might find a better policy for branching. To further validate the effectiveness of
our method, we conducted an experiment in the set covering to compare with two RL-based methods,
including Scavuzzo et al. (2022) and Parsonson et al. (2023). We use similar metrics as those in
Gasse et al. (2019) and set SCIP’s parameter the same with Scavuzzo et al. (2022), Note that we use
the model published by Parsonson et al. (2023) and Scavuzzo et al. (2022), their model is trained in
the 500 rows, 1000 columns, and 400 rows, 750 columns set covering problem respectively. Then,
evaluation is performed for Easy(500 rows, 1000 columns) and Medium (1000 rows, 1000 columns)
on 40 generated instances using five different seeds, which amounts to a total of 200 solving attempts
per method. As shown in Table 12, the results show that our method is obviously better than the
RL-based method both in solving time and nodes.

A.6 COMPARE THE NUMBER OF NODES SOLVED TO OPTIMAL BETWEEN GCNN (GASSE
ET AL., 2019) AND STRONG BRANCHING.

Strong Branching is the most efficient branching strategy in terms of the number of nodes in the B&B
tree. To verify whether the learned GCNN (Gasse et al., 2019) can achieve a smaller B&B tree than
strong branching or not, we perform experiments on the combinatorial auction problem with 200
easy difficulty instances, as shown in Table 13.

Table 13: Compare the node counts
when solved to optimal.

Methods Wins(Nodes)
GCNN 40/200
Strong Branching 174/200

Specifically, we compare the number of nodes each branching
policy solved to optimal–Wins (Nodes). The Win (Nodes)
shows that the GCNN (Gasse et al., 2019) can perform better
than Strong Branching in some instances. It empirically verifies
that the quality of variable selection in strong branching can be
further improved.
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