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ABSTRACT

Accurate multi-step forecasting of node-level attributes on dynamic graphs is crit-
ical for applications ranging from financial trust networks to biological networks.
Existing spatio-temporal graph neural networks typically assume a static adja-
cency matrix. In this work, we propose an end-to-end dynamic edge-biased spatio-
temporal model that ingests a multidimensional time series of node attributes and
a time series of adjacency matrices, to predict multiple future steps of node at-
tributes. At each time step, our transformer-based model injects the given ad-
jacency as an adaptable attention bias, allowing the model to focus on relevant
neighbors as the graph evolves. We further deploy a masked node/time pretraining
objective that primes the encoder to reconstruct missing features, and train with
scheduled sampling and a horizon-weighted loss to mitigate compounding error
over long horizons. Unlike prior work, our model accommodates dynamic graphs
that vary across input samples, enabling forecasting in multi-system settings such
as brain networks across different subjects, financial systems in different contexts,
or evolving social systems. Empirical results demonstrate that our method con-
sistently outperforms strong baselines on Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE).

Figure 1: Overview of expected input and output of DynaSTy

1 INTRODUCTION

Many real-world systems, ranging from brain connectivity networks to social trust platforms, are
naturally represented as dynamic graphs, where the set of edges and node attributes evolve over time.
In these settings, the underlying relationships between entities (i.e., the graph structure) change due
to external stimuli or internal dynamics. For example, in functional brain networks, edges correspond
to time-varying functional connections between brain regions, which reconfigure dynamically in
response to cognitive states or external tasks. In Bitcoin-OTC and Alpha trust networks, the trust
rating interactions between users evolve as a result of transactions, leading to changing connectivity

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

over time. Similarly, in dynamic social or biological systems, interactions are not only sparse but also
transient, making edge evolution a critical modeling component. While considerable progress has
been made in learning from dynamic graphs, much of this work focuses on node classification (Sun
et al. (2022); Ma et al. (2025); Song et al. (2025)) or link prediction (Mei & Zhao (2024); Tian et al.
(2024)), often assuming fixed node connectivity. In contrast, predicting future node attributes, such
as a node’s behavioral signal, risk score, or physiological state, is both important and underexplored,
especially in the presence of dynamic edge structures.

Most existing Spatiotemporal Graph Neural Network (STGNN) models, including DCRNN (Li et al.
(2018)), STGCN (Yu et al. (2018)), and MTGNN (Wu et al. (2020)), assume a static input graph
that remains fixed across all time steps and training examples. This design inherently restricts these
models to learning from a single system of entities (e.g., a single traffic network), where both the
node set and the relational structure are shared globally. However, in many real-world applications,
such as brain network analysis, multi-subject behavioral tracking, or ecological monitoring, we are
presented with multiple distinct systems that share a common node ontology (e.g., brain regions) but
exhibit different relational dynamics. In these settings, each input example corresponds to a different
spatiotemporal graph sequence.

We propose a node attribute prediction method, DynaSTy, that leverages the structure of the dynamic
graphs while maintaining a fixed node set across samples. The model relaxes the assumption of a
static global graph shared across training samples and allows a different dynamic graph per train-
ing sample. This makes the model directly applicable to domains such as fMRI-based brain region
BOLD signal (Ogawa et al. (1990)) forecasting, where each subject has a different dynamic brain
connectivity profile but shares the same set of anatomical regions. By modeling both temporal dy-
namics and sample-specific graph structure, our approach generalizes STGNNs to broader domains
where individual graphs evolve differently across examples.

To evaluate our method, we consider semi-synthetic and real-world datasets including the LA traffic
network and Bitcoin-OTC and Alpha trust networks, where node features represent things like traffic
volume at an intersection or average trust ratings given and received. We also compare against strong
baselines like STGCN (Yu et al. (2018)), DGCRN and MTGNN, showing that our model achieves
superior performance on mean squared error and mean absolute error metrics on most datasets. To
our knowledge, prior work rarely evaluates node-attribute forecasting under fully evolving edges,
especially in the per-sample dynamic-graph setting; we explicitly target this regime.

2 RELATED WORK

Dynamic Graph Representation Learning. A large body of work has been devoted to learning on
dynamic graphs, primarily targeting tasks such as link prediction and node classification. Methods
such as EvolveGCN ( Pareja et al. (2019)), TGAT ( Dai et al. (2024)), TGN ( Rossi et al. (2020)),
and DyRep ( Trivedi et al. (2018)) model temporal interactions in graphs by evolving either node
embeddings or graph parameters over time. However, these methods typically focus on classifica-
tion or event prediction and do not address the task of predicting continuous-valued node attributes.
Furthermore, many prior works model graphs as streams of discrete events (e.g., interactions be-
tween node pairs), rather than explicitly modeling evolving graph snapshots with dense temporal
node attributes. Event-stream models are flexible but can’t always handle rich node attribute time
series directly (e.g., vectors of features at each time step). Our method is better suited for settings
where both topology and node attributes evolve continuously and are available at regular intervals.

Time Series Forecasting with GNNs. Several methods have explored forecasting node values in
spatiotemporal settings, especially in traffic and sensor networks. STGCN ( Yu et al. (2018)) and
DCRNN ( Li et al. (2018)) operate on static graphs and combine temporal convolution or recur-
rent modules with graph convolution for short-term forecasting. GMAN ( Zheng et al. (2020)),
PDFormer ( Jiang et al. (2023)) are transformer-based methods model dynamic spatial dependen-
cies via spatial self-attention. These models assume fixed connectivity between nodes, making them
inapplicable to domains where the underlying network structure evolves. While some extensions like
AGCRN ( Bai et al. (2020)), DSTAGNN ( Lan et al. (2022)), MTGNN ( Wu et al. (2020)) and Graph
WaveNet ( Wu et al. (2019)) incorporate latent or adaptive graphs, they often do not model fully dy-
namic edge sets or permit per-timestep graph changes. STG-NCDE ( Choi et al. (2022)) models
traffic with neural controlled differential equations (NCDE), combining separate continuous-time
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spatial/temporal NCDEs; it also assumes a shared topology per dataset and static prior relationships.
Another conceptually related method is AGATE ( Yamasaki et al. (2023)), which is a holistic frame-
work for next-step graph evolution that jointly models node/edge birth–death and node-attribute dy-
namics via an interdependent (‘reuse’) stage. In contrast, our objective is specialized node-attribute
forecasting under a fixed node set; we neither supervise nor evaluate link or node-birth processes.

Node Attribute Prediction in Dynamic Graphs. Surprisingly few works explicitly address multi-
variate node attribute prediction in dynamic graphs with changing edge structure. DGCRN ( Li et al.
(2023)) is one of the few methods that allow learning dynamic relationships between nodes, but it
still does not accommodate using prior knowledge of a dynamic graph as input.

Our work differs from prior approaches in three key ways:

• We formulate and tackle per-sample dynamic-graph forecasting: multi-step, multi-
dimensional node-attribute prediction where each training example provides its own evolv-
ing topology.

• We introduce a graph-portable spatial encoder that injects the provided At as an additive
edge-bias in attention at each time step, preserving permutation equivariance and incorpo-
rating edge dynamics.

• We combine the encoder with a rollout-robust temporal decoder with scheduled sam-
pling and horizon-aware loss and demonstrate consistent gains on heterogeneous datasets,
including cases where per-sample graphs materially improve accuracy.

3 PROBLEM FORMULATION

Let Gt = (V, Et) denote a graph snapshot at time t, where V is a fixed set of N nodes and Et is
the edge set at time t. Let Xt ∈ RN×D be the matrix of node features, and At ∈ RN×N be the
adjacency matrix corresponding to Gt at time t. Given a sequence {X1, . . . , XL} and {A1, . . . , AL},
the goal is to predict future node features {XL+1, . . . , XL+H}, conditioned on both node feature
evolution and the dynamic graph structures.

4 METHODS

4.1 OVERVIEW

We want multi-step, multi-dimensional node-attribute forecasts on time-evolving graphs, and we
often have a different graph per training sample (e.g., per subject, per day). That asks for a spatial
module that respects graph structure but stays permutation-equivariant and portable to new graphs,
a temporal module that’s stable for long horizons, and a decoder that handles distribution shift as we
roll out predictions. DynaSTy’s blocks map cleanly onto these needs.

4.2 INPUT REPRESENTATION

Each training sample consists of:

• A node attribute history tensor Xhist ∈ RN×D×L, where N is the number of nodes, D is
the feature dimension of each node and L is the input sequence length.

• A dynamic graph sequence Ahist ∈ RN×N×L, representing one adjacency matrix per time
step.

The forecasting target is a trajectory Y ∈ RN×D×H of node attributes over H future time steps.

4.3 ENCODING AND TEMPORAL POSITION

We begin by linearly projecting each node’s input feature vector to a hidden dimension d, and add
learnable temporal positional encodings:

Z = Linear(Xhist) + PEtime
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Figure 2: High-level Architecture Diagram

This produces Z ∈ RN×d×L, which is then passed through a stack of transformer layers. Even
though the temporal model is a GRU/temporal block later, giving each step a distinctive “timestamp
vector” helps the spatial encoder condition on phase (e.g., rush hour vs midnight) so it can form
time-aware spatial contexts. Learned encodings can also absorb dataset-specific periodicities beyond
simple sinusoids.

4.4 TRANSFORMER LAYERS

Each transformer layer integrates dynamic edge-aware multi-head attention by injecting per-time-
step adjacency information as a learnable bias in the attention scores. This allows the model to adapt
spatial attention to changing graph structure, which is critical for domains like brain networks and
evolving trust graphs. At each layer, node i attends to node j at time t using:

scoreij =
Q⊤

i Kj√
d

+ Biasij(At)

where Biasij is computed via a small MLP over At[i, j]. The output is passed through a residual
feedforward block. We apply edge dropout during training to encourage robustness to noise. The
bias term acts as a learned log-prior over plausible message routes given the current graph, nudg-
ing attention toward neighbors that the topology deems influential, while the content term ⟨Qi,Kj⟩
allows attention to override the graph when feature similarity indicates otherwise. This decouples
where to look (softmax over biased logits) from what to aggregate (values), improving expressivity
over fixed graph filters. Different heads can specialize to different regimes of At (e.g., strong vs.
weak ties), which a single global head cannot capture. Because the bias only depends on the per-
muted entries of At, the layer remains permutation-equivariant and naturally supports per-sample
graphs by simply supplying each sample’s At sequence.

In the current architecture, the encoder only uses spatial attention, with temporal modeling delegated
to the decoder. We also experimented with adding temporal self-attention in the encoder, which
improved the performance, but minimally. These results are reported in the appendix.

4.5 FORECASTING DECODER

The output from the encoder, Zenc ∈ RN×d×L, represents the encoded history of node features
across the L input time steps, where N is the number of nodes and d is the hidden dimension.
This tensor is first reshaped and permuted into a format suitable for sequence modeling, and passed
through a GRU encoder to obtain an initial hidden state h0 that summarizes the historical dynamics
of each node.
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The decoder then operates autoregressively over the prediction horizon H . At each future time step t,
the decoder GRU generates an output zt and new hidden state ht based on the previous hidden state
and the current input. The output is passed through a forecast-step MLP to produce the predicted
node features at time t, denoted as yt ∈ RN×D, where D is the feature dimension. These outputs
are collected over the entire forecast horizon to yield the final output tensor Ypred ∈ RN×D×H .

Scheduled Sampling. During training, we employ scheduled sampling to bridge the gap between
the training and inference conditions, a technique introduced by (Bengio et al. (2015)). In traditional
teacher forcing, the decoder is always fed the ground truth from the previous time step. However, at
inference time, ground truth is not available, and the decoder must rely entirely on its own predic-
tions. To mitigate this train-test discrepancy, we probabilistically choose between using 1. only the
decoder’s previous prediction ŷt−1 and 2. a weighted combination of the ground truth Y true

t−1 and the
model’s own previous prediction ŷt−1 as input at each time step during training. This probability is
governed by a decaying function of the training epoch, such that early in training, the decoder relies
mostly on ground truth, and gradually transitions to using its own predictions as training progresses.
This improves robustness and reduces error accumulation over long forecasting horizons.

The complete predicted sequence is generated by unrolling the decoder in H time steps, using sam-
pled or predicted inputs, and projecting the hidden states back into the feature space through the
MLP head.

4.6 LOSS FUNCTIONS

Our loss function is a combination of Mean Absolute Error and a Variation loss:

L = LMAE + λ · Lvar

where λ is a weighting coefficient, and:

LMAE =

H∑
t=1

wt · MAE(Y pred
t , Y true

t ) (1)

Lvar =

H−1∑
t=1

MSE(Y pred
t+1 − Y pred

t , Y true
t+1 − Y true

t ) (2)

The weights wt are exponentially decaying to emphasize short-term accuracy. Variation loss penal-
izes differences in temporal derivatives (i.e., frame-to-frame changes) between the prediction and
ground truth, and discourages oversmooth predictions by explicitly penalizing when the predicted
signal lacks the expected variability over time.

4.7 MASKED PRETRAINING

To enhance the model’s representation of spatiotemporal dependencies before supervised forecast-
ing, we introduce a self-supervised masked pretraining objective. Inspired by masked language mod-
eling in NLP (Devlin et al. (2019)), we randomly mask a subset of entries across nodes and time
steps in the input history tensor Xhist ∈ RN×D×L and train the model to reconstruct these values
using the corresponding adjacency sequence Ahist. This technique improves representation learning
and has shown success in both sequence modeling and graph neural networks ( Devlin et al. (2019);
Liu et al. (2023); Hu et al. (2020)).

Masking Strategy. For each training sample, we generate a binary mask M ∈ {0, 1}N×D×L by
sampling entries uniformly at random with probability pmask = 0.15. The masked input X̃hist is
created by zeroing out the selected entries:

X̃hist = Xhist ⊙ (1−M)

We feed X̃hist and Ahist into the encoder and decode a full reconstruction X̂hist using the same pro-
jection head used in forecasting.
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Table 1: Network Statistics

Dataset Nodes Input length Output length Feature dimension
Bitcoin Alpha 1296 12 8 2
Bitcoin OTC 1304 12 8 2
METR-LA 207 12 6/12 1
PEMS-Bay 325 12 6/12 1
Brain 200 12 8 1

Loss Function. We compute a masked reconstruction loss that penalizes reconstruction error only
at masked positions:

Lpretrain =
∥(X̂hist −Xhist)⊙M∥2

∥M∥1 + ϵ

where ϵ is a small constant to avoid division by zero. This objective trains the model to learn gener-
alizable spatiotemporal representations, even in the absence of forecasting supervision.

Pretraining Schedule. We first train the model for a fixed number of epochs using Lpretrain only,
and then fine-tune on the forecasting task with the supervised loss L = LMAE + λLvar. We ob-
serve that masked pretraining improves performance, particularly on datasets with noisy or irregular
structure such as traffic and trust networks.

4.8 TRAINING PROCEDURE

We train using Adam with a learning rate of 10−3 for up to 100 epochs, using early stopping based
on validation RMSE. During early epochs, we apply curriculum learning by gradually increasing
the forecast horizon.

5 EXPERIMENTS

We run our models on different relevant datasets described below, and conduct analyses on effects
of certain hyperparameters on training time and RMSE.

5.1 DATASET AND SETUP

Bitcoin Trust Networks: We evaluate our model on the dynamic Bitcoin-OTC and Bitcoin-Alpha
trust networks, obtained from the Stanford Large Network Dataset Collection (Kumar et al. (2016;
2018)), which capture time-evolving ratings exchanged between users in peer-to-peer marketplaces.
Each dataset consists of a temporal edge list where nodes represent users and edges encode ratings
(ranging from -10 to 10) given by one user to another at a particular timestamp. We discretize time
into fixed-size intervals and construct a dynamic graph sequence by aggregating ratings within each
interval. At every time step, each user (node) is represented by a 2-dimensional feature vector: their
average rating given and average rating received within that interval.
Traffic data: The METR-LA traffic dataset contains speed measurements from sensors distributed
across the Los Angeles metropolitan area. The underlying network is static, defined by the physical
distances between sensors (Jagadish et al. (2014)). To simulate dynamic topology, we generate semi-
synthetic dynamic graphs by repeating the static network across all time steps. We use sequences of
12 time steps as input and predict the following 12 and 6 time steps. The PEMS-BAY dataset is a
similar one, consisting of highway traffic sensor readings collected by the California Department of
Transportation, processed and released by Li et al. (2018)
Brain Networks: We also evaluate our model on fMRI data from the ABIDE dataset (Di Martino
et al. (2014)), where each subject has a time series of BOLD signals across a consistent set of brain
regions. For each subject labeled as neurotypical (label = 0), we extract a matrix of shape [N, T],
where N = 200 is the number of anatomical regions of interest (ROIs), and T is the number of fMRI
time points. To construct dynamic brain networks, we apply a sliding window (size 20, stride 1) over
each subject’s time series, compute Pearson correlation matrices within each window, and threshold
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the absolute values at 0.8 to obtain binarized adjacency matrices. This yields a sequence of dynamic
graphs [T’, N, N] and corresponding node features [T’, N, 1] per subject.

We split the datasets into training (70%), validation (10%), and test (20%) sets and normalize inputs.
The output from the models are denormalized before calculating evaluation metrics.

Table 2: Performance (MAE and RMSE) of different methods on various datasets.

Dataset Bitcoin Alpha Bitcoin OTC METR (12 steps) METR (6 steps) PEMS (12 steps) PEMS (6 steps) Brain
Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
LSTM 2.1 3.8 2.89 3.6 4.57 9.5 4.3 7.93 3.43 6.59 2.49 4.68 26.66 37.1
STGCN 2.8 3.65 2.09 4.7 4.5 9.5 3.49 7.34 2.52 5.66 1.81 4.36 25.53 36.8
DCRNN 1.18 3.42 1.43 2.8 3.6 7.6 3.15 6.45 2.07 4.74 1.74 3.97 23.47 36.5
Graph WaveNet 1.27 2.85 1.38 2.86 3.53 7.37 3.07 6.22 1.95 4.52 1.63 3.70 22.54 33.75
MTGNN 2.17 3.19 2.33 3.21 3.49 7.23 3.05 6.17 1.94 4.49 1.65 3.74 21.9 35.1
DGCRN 1.54 2.9 1.56 2.53 3.44 7.1 2.99 6.05 1.89 4.42 1.59 3.63 26.19 39.35
staticDynaSTy 1.57 3.01 1.41 2.81 3.23 6.35 2.48 5.4 1.85 3.73 1.48 2.96 20.51 27.4
shuffledDynaSTy 1.36 3.1 1.38 2.51 3.23 6.35 2.48 5.4 1.85 3.73 1.48 2.96 20.5 28.32
DynaSTy 1.15 2.8 1.37 2.49 3.23 6.34 2.48 5.4 1.85 3.73 1.48 2.96 17.61 26.84

5.2 BASELINES AND METRICS

We compare our model against the following widely used spatiotemporal baselines:

• LSTM Hochreiter & Schmidhuber (1997): A fully connected long short-term memory net-
work that ignores graph structure and models the temporal dynamics of each node inde-
pendently. It serves as a strong non-graph baseline for time series forecasting.

• STGCN Yu et al. (2018): Combines spectral graph convolution with temporal gated con-
volutions. Assumes a fixed graph structure and models spatial and temporal dependencies
separately using CNN-based operations.

• DCRNN Li et al. (2018): Introduces diffusion convolution over a static graph into a recur-
rent neural network, enabling spatiotemporal sequence modeling through localized mes-
sage passing and gated recurrence.

• Graph WaveNet Wu et al. (2019): Uses adaptive graph learning and wavelet-inspired tem-
poral convolutions to model spatiotemporal dynamics. Like other baselines, it assumes a
global graph, either fixed or learned.

• MTGNN Wu et al. (2020): Learns a static graph structure and temporal dependencies
jointly using graph attention and dilated temporal convolutions. While it can learn the
graph, it still assumes a single global graph shared across samples. MTGNN offers users
the option to provide a predefined graph as well, and all of our reported results are the best
of the two versions.

• DGCRN (Li et al., 2023). A recurrent encoder–decoder that generates a dynamic adja-
cency at each time step via a hyper-network (conditioned on features/hidden states) and
fuses it with a pre-defined static graph.

We evaluate all models using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).
Classical univariate forecasting methods such as ARIMA and SARIMA are not included, as they are
not designed for high-dimensional, interconnected systems and have been shown to perform poorly
(Li et al. (2018); Wu et al. (2019)) in high-dimensional, non-stationary graph settings like those we
study.

The mechanism of converting dynamic graphs to static for running baseline methods that operate on
static graphs is described in Appendix A.

6 RESULTS

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) results are presented in Ta-
ble 2. The model used had 4 attention heads, 4 transformer layers, 48 hidden dimensions for all the
datasets. All reported values are means over 10 independent runs, with standard deviations between
0.0009 and 0.06. Our method significantly outperforms existing approaches on all datasets, with
p-values between 0.000007 and 0.00012.
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To demonstrate the effectiveness of considering dynamic graphs instead of static, we ran our model
on the aggregated static graphs that were used in the other baseline models and report these results
next to the staticDynaSTy method in Table2. We observe that the dynamic version outperforms the
static when the original graphs are in fact dynamic, i.e., the Bitcoin and brain networks.

Per-sample graphs matter. To test whether conditioning on each sample’s own dynamic graph
helps, we shuffled the input dynamic graphs at training time so that the node dynamics and the
dynamic graphs do not correspond anymore. These results are in the second last row of Table 2.
We can see that in Bitcoin and Brain datasets, the performance significantly drops as a result of this
shuffling, indicating that we are losing information. In case of the traffic datasets, no such drop is
observed because these graphs by design are shared globally and no per sample graphs are available.

As a second test, we compare DynaSTy with the next-best performing method, Graph WaveNet,
using a brain fMRI dataset with two cohorts: neurotypical (y=0) and neurodivergent (y=1). Dy-
naSTy, which consumes each subject’s dynamic graph sequence A1:H , attains RMSE=26 when
trained/evaluated only on y=0, RMSE=21 only on y=1, and 22 when trained jointly on the com-
bined cohort. Joint training therefore yields a 15.4% reduction relative to y=0 alone (26→22) while
remaining within 4.8% of the y=1-only optimum (21→ 22). In contrast, Graph WaveNet, which
learns a single shared adjacency for all samples, yields RMSE=36 on y=0, 29 on y=1, and 33 on
the combined cohort. Joint training thus helps the harder cohort (36→33) but does not approach the
easier cohort’s optimum (29), indicating that a single global graph forces a compromise that cannot
capture cohort-specific connectivity.

6.1 HYPERPARAMETER SENSITIVITY

The main hyperparameters in DynaSTy are the number of attention layers, number of attention heads
in each layer and the number of hidden dimensions the input is projected to. We ran our model on the
METR-LA and brain datasets with varying each hyperparameter while keeping the others constant
and documented the effect on training time and RMSE as shown in Figure 3. It is observed that while
all three parameters have a significant effect on RMSE, increasing the hidden dimension seems to
be the most effective, while also maintaining the training time within a reasonable range (maximum
102 seconds for METR-LA and 73 seconds for Brain). On the other hand, increasing the number
of attention heads or the number of transformer layers, both related to the transformer component,
quickly increases training time to about 125 seconds for METR-LA and 140 seconds for Brain.

We also document the average training times per epoch and inference times for DynaSTy and com-
pare with baselines on the METR-LA dataset with an input sequence length of 12 and output (pre-
diction) sequence length of 12 in 4 in Appendix B.

Table 3: Ablation study with edge bias, masked pretraining and variation loss. Table shows mean
RMSE values across 10 runs.

Configuration Brain (8 steps) Brain (12 steps) METR (6 steps) METR (12 steps)
Full Model 26.84 27.29 5.4 6.34
w/o Edge bias 31.92 33.26 6.21 7.53
w/o Pretraining 28.53 29.52 5.88 7.01
w/o Variation Loss 27.02 30.31 5.79 7.25

7 CONCLUSION AND FUTURE WORK

We introduce DynaSTy, a spatiotemporal transformer architecture for node attribute prediction on
dynamic graphs. The model combines a dynamic edge-bias attention mechanism with an autore-
gressive GRU-based decoder to jointly capture spatial and temporal dependencies. Empirical results
on real-world network datasets with evolving edge structures demonstrate consistent improvements
over strong spatiotemporal baselines, including DCRNN and MTGNN.

In future work, we aim to extend this framework in several directions. First, we plan to apply Dy-
naSTy to more complex real-world dynamic systems where the temporal resolution may vary across
time or across entities. Second, we intend to develop a distributed version of DynaSTy to improve
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Figure 3: Impact of architectural hyperparameters on performance and runtime.

This figure shows the effect of the number of attention heads (left), hidden dimension size (center),
and number of transformer layers (right) on both RMSE and training time for the METR-LA and
BRAIN datasets with input sequence of length 12, and outputs of length 12 and 8 respectively. For
each subplot, the primary Y-axis (blue) corresponds to the METR-LA dataset, and the secondary
Y-axis (red) corresponds to the BRAIN dataset.

scalability on large-scale networks, such as Bitcoin trust graphs with over 1,000 nodes, where cur-
rent runtimes are a bottleneck. Another way of reducing the runtime complexity would be by shifting
to a sparse attention paradigm instead of full attention which is O(N2).

Finally, a key limitation of the current design is its assumption that the node set remains fixed
over time. This presents two challenges: (i) it implicitly assumes that all nodes exist from t = 0,
which is often unrealistic in dynamic systems such as social or biological networks where nodes
appear and disappear; and (ii) it imposes computational and memory overhead by forcing inactive
or disconnected nodes to be included at every time step. Extending DynaSTy to support a variable
node set over time would require a transition from discrete-time snapshot modeling to a continuous-
time representation of dynamic graphs, which we consider a promising and important future research
direction.

8 REPRODUCIBILITY STATEMENT

All code and link to datasets used are available in https://anonymous.4open.science/r/
DYNASTY-4DFD/ and the instructions to run them will be updated soon.
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A STATIC GRAPH ASSUMPTIONS IN BASELINES.

All the STGNN baselines considered (DCRNN, STGCN, MTGNN) require a single static adjacency
matrix that is shared across time and across training examples. In contrast, our model is designed
to handle dynamic graphs that vary per time step and per sample. To ensure a fair comparison, we
construct fixed adjacency matrices tailored to each dataset. MTGNN is slightly better because it
offers the option to learn the adjacency matrix from the observed data, but it is still static and shared
across samples.

Brain Networks. In the brain network setting, each subject yields a distinct dynamic graph sequence
derived from pairwise correlations between brain regions. To aggregate these into a single global
adjacency matrix suitable for the baselines, we compute a thresholded binary correlation matrix for
each subject and then average these across subjects to produce an edge co-occurrence matrix. We
then threshold this matrix at τ = 0.5, retaining edges that appear in more than 50% of individual
graphs. This consensus adjacency matrix captures the most consistent inter-regional connections
across the population and is used as the fixed graph for all static-graph baselines.

Bitcoin Trust Networks. In contrast, the Bitcoin trust networks involve user-to-user interactions
recorded over time. Here, we construct the fixed graph by including an edge between two users if
they ever interacted (i.e., if any trust rating was exchanged between them at any time). This results
in a binary adjacency matrix capturing the union of all observed edges across the dataset. The loss
of information is less concerning in this case since the training samples belong to a single dynamic
system, unlike the brain dataset where each training sample came from a different person.

These distinct aggregation strategies reflect the differing structure and semantics of the two domains:
the brain networks involve latent, population-level structure shared across subjects, while the Bitcoin
networks reflect explicit interaction histories between individual agents.

B RUNTIME COMPLEXITY

We analyze the computational complexity of DynaSTy in terms of the key input parameters: batch
size B, number of nodes N , input sequence length L, hidden dimension d, number of attention heads
h, and prediction horizon H .

Input Projection and Positional Encoding. The linear projection of node attributes from input
dimension D to hidden dimension d and the addition of learnable positional encodings incurs a cost
of:

O(B · L ·N · d)

Spatiotemporal Transformer Layers. Each transformer layer applies edge-biased multi-head at-
tention across all node pairs per time step. This involves:

• Attention score computation: O(N2 · d) per time step
• Edge-bias MLP over each pairwise edge: O(N2 · h)

Summed across the batch and sequence length, the total complexity is:

O(B · L ·N2 · (d+ h))

GRU Encoder. We flatten the sequence across time and encode each node’s L-step history using
a GRU, with complexity:

O(B ·N · L · d2)

GRU Decoder. The decoder autoregressively predicts H future steps per node, each using GRU
recurrence and MLP projection:

O(B ·N ·H · d2)

Output Projection. Mapping decoder outputs back to the original feature space costs:

O(B ·H ·N · d)
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Overall Complexity. The total runtime is dominated by the spatiotemporal attention and decoder
GRU steps:

O
(
B · L ·N2 · d

)
+O

(
B ·N · (L+H) · d2

)
Scalability Consideration. The quadratic dependency on the number of nodes N in the attention
mechanism may limit scalability on large graphs (e.g., Bitcoin trust networks with N > 1000).
Future work may explore sparse or localized attention to improve computational efficiency.

B.1 COMPARISON OF RUNTIMES

Since DynaSTy has a pretraining step with 15 epochs, this time was added to the total training time
before averaging across epochs. Table 4 reports this pretraining + training time in seconds. The main
bottleneck in the training time are the transformer layers, which makes the model scale quadratically
in the number of nodes. It also scales quadratically in the number of hidden dimensions, but most
often the number of nodes is much greater than the hidden dimension, especially in cases like the
Bitcoin networks.

Table 4: Wall Times on the METR-LA dataset averaged across 50 epochs

Method Training (s) Inference (s)
STGCN 54 12
DCRNN 320 92
Graph WaveNet 187 52
MTGNN 173 48
DGCRN 155 42
DynaSTy 124 33

C TEMPORAL SELF ATTENTION

Given encoder activations H ∈ RB×N×d×L (batch B, history length L, nodes N , channel dimen-
sion d), we optionally add a lightweight temporal block that attends within each node across time,
without mixing nodes. This module models long-range and non-uniform temporal dependencies
(variable lags, periodicities) at each node, complementing the spatial encoder that conditions on At

per step. Computationally, it costs O(BNL2D) (attention over L for each of BN node streams)
and preserves permutation equivariance over nodes. In our implementation it can be toggled on/off;
when enabled, we insert it after the spatial transformer stack and before the GRU summarizer, keep-
ing the rest of the architecture unchanged. We observed a 0.53% - 7.1% reduction in RMSE on our
datasets, reported in Table 5.
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Table 5: Effect of temporal self-attention on RMSE (↓). Same encoder/decoder, training schedule,
and data splits; only the temporal-attention block is toggled.

Dataset RMSE w/o Temp. Attn. RMSE w Temp. Attn. ∆ (%)
Bitcoin Alpha 2.8 2.6 -7.14
Bitcoin OTC 2.49 2.38 -4.41
METR-LA 6.34 6.1 -3.78
PEMS-Bay 3.73 3.71 -0.53
Brain 26.84 26.11 -2.72
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