
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNASTY: A FRAMEWORK FOR SPATIOTEMPORAL
NODE ATTRIBUTE PREDICTION IN DYNAMIC GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate multi-step forecasting of node-level attributes on dynamic graphs is crit-
ical for applications ranging from financial trust networks to biological networks.
Existing spatio-temporal graph neural networks typically assume a static adja-
cency matrix. In this work, we propose an end-to-end dynamic edge-biased spatio-
temporal model that ingests a multidimensional time series of node attributes and
a time series of adjacency matrices, to predict multiple future steps of node at-
tributes. At each time step, our transformer-based model injects the given ad-
jacency as an adaptable attention bias, allowing the model to focus on relevant
neighbors as the graph evolves. We further deploy a masked node/time pretraining
objective that primes the encoder to reconstruct missing features, and train with
scheduled sampling and a horizon-weighted loss to mitigate compounding error
over long horizons. Unlike prior work, our model accommodates dynamic graphs
that vary across input samples, enabling forecasting in multi-system settings such
as brain networks across different subjects, financial systems in different contexts,
or evolving social systems. Empirical results demonstrate that our method con-
sistently outperforms strong baselines on Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE).

Figure 1: Overview of expected input and output of DynaSTy

1 INTRODUCTION

Many real-world systems, ranging from brain connectivity networks to social trust platforms, are
naturally represented as dynamic graphs, where the set of edges and node attributes evolve over time.
In these settings, the underlying relationships between entities (i.e., the graph structure) change due
to external stimuli or internal dynamics. For example, in functional brain networks, edges correspond
to time-varying functional connections between brain regions, which reconfigure dynamically in
response to cognitive states or external tasks. In Bitcoin-OTC and Alpha trust networks, the trust
rating interactions between users evolve as a result of transactions, leading to changing connectivity

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

over time. Similarly, in dynamic social or biological systems, interactions are not only sparse but also
transient, making edge evolution a critical modeling component. While considerable progress has
been made in learning from dynamic graphs, much of this work focuses on node classification (Sun
et al. (2022); Ma et al. (2025); Song et al. (2025)) or link prediction (Mei & Zhao (2024); Tian et al.
(2024)), often assuming fixed node connectivity. In contrast, predicting future node attributes, such
as a node’s behavioral signal, risk score, or physiological state, is both important and underexplored,
especially in the presence of dynamic edge structures.

Most existing Spatiotemporal Graph Neural Network (STGNN) models, including DCRNN (Li et al.
(2018)), STGCN (Yu et al. (2018)), and MTGNN (Wu et al. (2020)), assume a static input graph
that remains fixed across all time steps and training examples. This design inherently restricts these
models to learning from a single system of entities (e.g., a single traffic network), where both the
node set and the relational structure are shared globally. However, in many real-world applications,
such as brain network analysis, multi-subject behavioral tracking, or ecological monitoring, we are
presented with multiple distinct systems that share a common node ontology (e.g., brain regions) but
exhibit different relational dynamics. In these settings, each input example corresponds to a different
spatiotemporal graph sequence.

We propose a node attribute prediction method, DynaSTy, that leverages the structure of the dynamic
graphs while maintaining a fixed node set across samples. The model relaxes the assumption of a
static global graph shared across training samples and allows a different dynamic graph per train-
ing sample. This makes the model directly applicable to domains such as fMRI-based brain region
BOLD signal (Ogawa et al. (1990)) forecasting, where each subject has a different dynamic brain
connectivity profile but shares the same set of anatomical regions. By modeling both temporal dy-
namics and sample-specific graph structure, our approach generalizes STGNNs to broader domains
where individual graphs evolve differently across examples.

To evaluate our method, we consider semi-synthetic and real-world datasets including the LA traffic
network and Bitcoin-OTC and Alpha trust networks, where node features represent things like traffic
volume at an intersection or average trust ratings given and received. We also compare against strong
baselines like STGCN (Yu et al. (2018)), DGCRN and MTGNN, showing that our model achieves
superior performance on mean squared error and mean absolute error metrics on most datasets. To
our knowledge, prior work rarely evaluates node-attribute forecasting under fully evolving edges,
especially in the per-sample dynamic-graph setting; we explicitly target this regime.

2 RELATED WORK

Dynamic Graph Representation Learning. A large body of work has been devoted to learning on
dynamic graphs, primarily targeting tasks such as link prediction and node classification. Methods
such as EvolveGCN (Pareja et al. (2019)), TGAT (Dai et al. (2024)), TGN (Rossi et al. (2020)),
and DyRep (Trivedi et al. (2018)) model temporal interactions in graphs by evolving either node
embeddings or graph parameters over time. However, these methods typically focus on classifica-
tion or event prediction and do not address the task of predicting continuous-valued node attributes.
Furthermore, many prior works model graphs as streams of discrete events (e.g., interactions be-
tween node pairs), rather than explicitly modeling evolving graph snapshots with dense temporal
node attributes. Event-stream models are flexible but can’t always handle rich node attribute time
series directly (e.g., vectors of features at each time step). Our method is better suited for settings
where both topology and node attributes evolve continuously and are available at regular intervals.

Time Series Forecasting with GNNs. Several methods have explored forecasting node values in
spatiotemporal settings, especially in traffic and sensor networks. STGCN (Yu et al. (2018)) and
DCRNN (Li et al. (2018)) operate on static graphs and combine temporal convolution or recur-
rent modules with graph convolution for short-term forecasting. GMAN (Zheng et al. (2020)),
PDFormer (Jiang et al. (2023)) are transformer-based methods model dynamic spatial dependen-
cies via spatial self-attention. These models assume fixed connectivity between nodes, making them
inapplicable to domains where the underlying network structure evolves. While some extensions like
AGCRN (Bai et al. (2020)), DSTAGNN (Lan et al. (2022)), MTGNN (Wu et al. (2020)) and Graph
WaveNet (Wu et al. (2019)) incorporate latent or adaptive graphs, they often do not model fully dy-
namic edge sets or permit per-timestep graph changes. STG-NCDE (Choi et al. (2022)) models
traffic with neural controlled differential equations (NCDE), combining separate continuous-time

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

spatial/temporal NCDEs; it also assumes a shared topology per dataset and static prior relationships.
Another conceptually related method is AGATE (Yamasaki et al. (2023)), which is a holistic frame-
work for next-step graph evolution that jointly models node/edge birth–death and node-attribute dy-
namics via an interdependent (‘reuse’) stage. In contrast, our objective is specialized node-attribute
forecasting under a fixed node set; we neither supervise nor evaluate link or node-birth processes.

Node Attribute Prediction in Dynamic Graphs. Surprisingly few works explicitly address multi-
variate node attribute prediction in dynamic graphs with changing edge structure. DGCRN (Li et al.
(2023)) is one of the few methods that allow learning dynamic relationships between nodes, but it
still does not accommodate using prior knowledge of a dynamic graph as input.

Our work differs from prior approaches in three key ways:

• We formulate and tackle per-sample dynamic-graph forecasting: multi-step, multi-
dimensional node-attribute prediction where each training example provides its own evolv-
ing topology.

• We introduce a graph-portable spatial encoder that injects the provided At as an additive
edge-bias in attention at each time step, preserving permutation equivariance and incorpo-
rating edge dynamics.

• We combine the encoder with a rollout-robust temporal decoder with scheduled sam-
pling and horizon-aware loss and demonstrate consistent gains on heterogeneous datasets,
including cases where per-sample graphs materially improve accuracy.

3 PROBLEM FORMULATION

Let Gt = (V, Et) denote a graph snapshot at time t, where V is a fixed set of N nodes and Et is
the edge set at time t. Let Xt ∈ RN×D be the matrix of node features, and At ∈ RN×N be the
adjacency matrix corresponding to Gt at time t. Given a sequence {X1, . . . , XL} and {A1, . . . , AL},
the goal is to predict future node features {XL+1, . . . , XL+H}, conditioned on both node feature
evolution and the dynamic graph structures.

4 METHODS

4.1 OVERVIEW

We want multi-step, multi-dimensional node-attribute forecasts on time-evolving graphs, and we
often have a different graph per training sample (e.g., per subject, per day). That asks for a spatial
module that respects graph structure but stays permutation-equivariant and portable to new graphs,
a temporal module that’s stable for long horizons, and a decoder that handles distribution shift as we
roll out predictions. DynaSTy’s blocks map cleanly onto these needs.

4.2 INPUT REPRESENTATION

Each training sample consists of:

• A node attribute history tensor Xhist ∈ RN×D×L, where N is the number of nodes, D is
the feature dimension of each node and L is the input sequence length.

• A dynamic graph sequence Ahist ∈ RN×N×L, representing one adjacency matrix per time
step.

The forecasting target is a trajectory Y ∈ RN×D×H of node attributes over H future time steps.

4.3 ENCODING AND TEMPORAL POSITION

We begin by linearly projecting each node’s input feature vector to a hidden dimension d, and add
learnable temporal positional encodings:

Z = Linear(Xhist) + PEtime

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: High-level Architecture Diagram

This produces Z ∈ RN×d×L, which is then passed through a stack of transformer layers. Even
though the temporal model is a GRU/temporal block later, giving each step a distinctive “timestamp
vector” helps the spatial encoder condition on phase (e.g., rush hour vs midnight) so it can form
time-aware spatial contexts. Learned encodings can also absorb dataset-specific periodicities beyond
simple sinusoids.

4.4 TRANSFORMER LAYERS

Each transformer layer integrates dynamic edge-aware multi-head attention by injecting per-time-
step adjacency information as a learnable bias in the attention scores. This allows the model to adapt
spatial attention to changing graph structure, which is critical for domains like brain networks and
evolving trust graphs. At each layer, node i attends to node j at time t using:

scoreij =
Q⊤

i Kj√
d

+ Biasij(At)

where Biasij is computed via a small MLP over At[i, j]. The output is passed through a residual
feedforward block. We apply edge dropout during training to encourage robustness to noise. The
bias term acts as a learned log-prior over plausible message routes given the current graph, nudg-
ing attention toward neighbors that the topology deems influential, while the content term ⟨Qi,Kj⟩
allows attention to override the graph when feature similarity indicates otherwise. This decouples
where to look (softmax over biased logits) from what to aggregate (values), improving expressivity
over fixed graph filters. Different heads can specialize to different regimes of At (e.g., strong vs.
weak ties), which a single global head cannot capture. Because the bias only depends on the per-
muted entries of At, the layer remains permutation-equivariant and naturally supports per-sample
graphs by simply supplying each sample’s At sequence.

In the current architecture, the encoder only uses spatial attention, with temporal modeling delegated
to the decoder. We also experimented with adding temporal self-attention in the encoder, which
improved the performance, but minimally. These results are reported in the appendix.

4.5 FORECASTING DECODER

The output from the encoder, Zenc ∈ RN×d×L, represents the encoded history of node features
across the L input time steps, where N is the number of nodes and d is the hidden dimension.
This tensor is first reshaped and permuted into a format suitable for sequence modeling, and passed
through a GRU encoder to obtain an initial hidden state h0 that summarizes the historical dynamics
of each node.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The decoder then operates autoregressively over the prediction horizon H . At each future time step t,
the decoder GRU generates an output zt and new hidden state ht based on the previous hidden state
and the current input. The output is passed through a forecast-step MLP to produce the predicted
node features at time t, denoted as yt ∈ RN×D, where D is the feature dimension. These outputs
are collected over the entire forecast horizon to yield the final output tensor Ypred ∈ RN×D×H .

Scheduled Sampling. During training, we employ scheduled sampling to bridge the gap between
the training and inference conditions, a technique introduced by (Bengio et al. (2015)). In traditional
teacher forcing, the decoder is always fed the ground truth from the previous time step. However, at
inference time, ground truth is not available, and the decoder must rely entirely on its own predic-
tions. To mitigate this train-test discrepancy, we probabilistically choose between using 1. only the
decoder’s previous prediction ŷt−1 and 2. a weighted combination of the ground truth Y true

t−1 and the
model’s own previous prediction ŷt−1 as input at each time step during training. This probability is
governed by a decaying function of the training epoch, such that early in training, the decoder relies
mostly on ground truth, and gradually transitions to using its own predictions as training progresses.
This improves robustness and reduces error accumulation over long forecasting horizons.

The complete predicted sequence is generated by unrolling the decoder in H time steps, using sam-
pled or predicted inputs, and projecting the hidden states back into the feature space through the
MLP head.

4.6 LOSS FUNCTIONS

Our loss function is a combination of Mean Absolute Error and a Variation loss:

L = LMAE + λ · Lvar

where λ is a weighting coefficient, and:

LMAE =

H∑
t=1

wt · MAE(Y pred
t , Y true

t) (1)

Lvar =

H−1∑
t=1

MSE(Y pred
t+1 − Y pred

t , Y true
t+1 − Y true

t) (2)

The weights wt are exponentially decaying to emphasize short-term accuracy. Variation loss penal-
izes differences in temporal derivatives (i.e., frame-to-frame changes) between the prediction and
ground truth, and discourages oversmooth predictions by explicitly penalizing when the predicted
signal lacks the expected variability over time.

4.7 MASKED PRETRAINING

To enhance the model’s representation of spatiotemporal dependencies before supervised forecast-
ing, we introduce a self-supervised masked pretraining objective. Inspired by masked language mod-
eling in NLP (Devlin et al. (2019)), we randomly mask a subset of entries across nodes and time
steps in the input history tensor Xhist ∈ RN×D×L and train the model to reconstruct these values
using the corresponding adjacency sequence Ahist. This technique improves representation learning
and has shown success in both sequence modeling and graph neural networks (Devlin et al. (2019);
Liu et al. (2023); Hu et al. (2020)).

Masking Strategy. For each training sample, we generate a binary mask M ∈ {0, 1}N×D×L by
sampling entries uniformly at random with probability pmask = 0.15. The masked input X̃hist is
created by zeroing out the selected entries:

X̃hist = Xhist ⊙ (1−M)

We feed X̃hist and Ahist into the encoder and decode a full reconstruction X̂hist using the same pro-
jection head used in forecasting.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Network Statistics

Dataset Nodes Input length Output length Feature dimension
Bitcoin Alpha 1296 12 8 2
Bitcoin OTC 1304 12 8 2
METR-LA 207 12 6/12 1
PEMS-Bay 325 12 6/12 1
Brain 200 12 8 1

Loss Function. We compute a masked reconstruction loss that penalizes reconstruction error only
at masked positions:

Lpretrain =
∥(X̂hist −Xhist)⊙M∥2

∥M∥1 + ϵ

where ϵ is a small constant to avoid division by zero. This objective trains the model to learn gener-
alizable spatiotemporal representations, even in the absence of forecasting supervision.

Pretraining Schedule. We first train the model for a fixed number of epochs using Lpretrain only,
and then fine-tune on the forecasting task with the supervised loss L = LMAE + λLvar. We ob-
serve that masked pretraining improves performance, particularly on datasets with noisy or irregular
structure such as traffic and trust networks.

4.8 TRAINING PROCEDURE

We train using Adam with a learning rate of 10−3 for up to 100 epochs, using early stopping based
on validation RMSE. During early epochs, we apply curriculum learning by gradually increasing
the forecast horizon.

5 EXPERIMENTS

We run our models on different relevant datasets described below, and conduct analyses on effects
of certain hyperparameters on training time and RMSE.

5.1 DATASET AND SETUP

Bitcoin Trust Networks: We evaluate our model on the dynamic Bitcoin-OTC and Bitcoin-Alpha
trust networks, obtained from the Stanford Large Network Dataset Collection (Kumar et al. (2016;
2018)), which capture time-evolving ratings exchanged between users in peer-to-peer marketplaces.
Each dataset consists of a temporal edge list where nodes represent users and edges encode ratings
(ranging from -10 to 10) given by one user to another at a particular timestamp. We discretize time
into fixed-size intervals and construct a dynamic graph sequence by aggregating ratings within each
interval. At every time step, each user (node) is represented by a 2-dimensional feature vector: their
average rating given and average rating received within that interval.
Traffic data: The METR-LA traffic dataset contains speed measurements from sensors distributed
across the Los Angeles metropolitan area. The underlying network is static, defined by the physical
distances between sensors (Jagadish et al. (2014)). To simulate dynamic topology, we generate semi-
synthetic dynamic graphs by repeating the static network across all time steps. We use sequences of
12 time steps as input and predict the following 12 and 6 time steps. The PEMS-BAY dataset is a
similar one, consisting of highway traffic sensor readings collected by the California Department of
Transportation, processed and released by Li et al. (2018)
Brain Networks: We also evaluate our model on fMRI data from the ABIDE dataset (Di Martino
et al. (2014)), where each subject has a time series of BOLD signals across a consistent set of brain
regions. For each subject labeled as neurotypical (label = 0), we extract a matrix of shape [N, T],
where N = 200 is the number of anatomical regions of interest (ROIs), and T is the number of fMRI
time points. To construct dynamic brain networks, we apply a sliding window (size 20, stride 1) over
each subject’s time series, compute Pearson correlation matrices within each window, and threshold

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the absolute values at 0.8 to obtain binarized adjacency matrices. This yields a sequence of dynamic
graphs [T’, N, N] and corresponding node features [T’, N, 1] per subject.

We split the datasets into training (70%), validation (10%), and test (20%) sets and normalize inputs.
The output from the models are denormalized before calculating evaluation metrics.

Table 2: Performance (MAE and RMSE) of different methods on various datasets.

Dataset Bitcoin Alpha Bitcoin OTC METR (12 steps) METR (6 steps) PEMS (12 steps) PEMS (6 steps) Brain
Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
LSTM 2.1 3.8 2.89 3.6 4.57 9.5 4.3 7.93 3.43 6.59 2.49 4.68 26.66 37.1
STGCN 2.8 3.65 2.09 4.7 4.5 9.5 3.49 7.34 2.52 5.66 1.81 4.36 25.53 36.8
DCRNN 1.18 3.42 1.43 2.8 3.6 7.6 3.15 6.45 2.07 4.74 1.74 3.97 23.47 36.5
Graph WaveNet 1.27 2.85 1.38 2.86 3.53 7.37 3.07 6.22 1.95 4.52 1.63 3.70 22.54 33.75
MTGNN 2.17 3.19 2.33 3.21 3.49 7.23 3.05 6.17 1.94 4.49 1.65 3.74 21.9 35.1
DGCRN 1.54 2.9 1.56 2.53 3.44 7.1 2.99 6.05 1.89 4.42 1.59 3.63 26.19 39.35
staticDynaSTy 1.57 3.01 1.41 2.81 3.23 6.35 2.48 5.4 1.85 3.73 1.48 2.96 20.51 27.4
shuffledDynaSTy 1.36 3.1 1.38 2.51 3.23 6.35 2.48 5.4 1.85 3.73 1.48 2.96 20.5 28.32
DynaSTy 1.15 2.8 1.37 2.49 3.23 6.34 2.48 5.4 1.85 3.73 1.48 2.96 17.61 26.84

5.2 BASELINES AND METRICS

We compare our model against the following widely used spatiotemporal baselines:

• LSTM Hochreiter & Schmidhuber (1997): A fully connected long short-term memory net-
work that ignores graph structure and models the temporal dynamics of each node inde-
pendently. It serves as a strong non-graph baseline for time series forecasting.

• STGCN Yu et al. (2018): Combines spectral graph convolution with temporal gated con-
volutions. Assumes a fixed graph structure and models spatial and temporal dependencies
separately using CNN-based operations.

• DCRNN Li et al. (2018): Introduces diffusion convolution over a static graph into a recur-
rent neural network, enabling spatiotemporal sequence modeling through localized mes-
sage passing and gated recurrence.

• Graph WaveNet Wu et al. (2019): Uses adaptive graph learning and wavelet-inspired tem-
poral convolutions to model spatiotemporal dynamics. Like other baselines, it assumes a
global graph, either fixed or learned.

• MTGNN Wu et al. (2020): Learns a static graph structure and temporal dependencies
jointly using graph attention and dilated temporal convolutions. While it can learn the
graph, it still assumes a single global graph shared across samples. MTGNN offers users
the option to provide a predefined graph as well, and all of our reported results are the best
of the two versions.

• DGCRN (Li et al., 2023). A recurrent encoder–decoder that generates a dynamic adja-
cency at each time step via a hyper-network (conditioned on features/hidden states) and
fuses it with a pre-defined static graph.

We evaluate all models using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).
Classical univariate forecasting methods such as ARIMA and SARIMA are not included, as they are
not designed for high-dimensional, interconnected systems and have been shown to perform poorly
(Li et al. (2018); Wu et al. (2019)) in high-dimensional, non-stationary graph settings like those we
study.

The mechanism of converting dynamic graphs to static for running baseline methods that operate on
static graphs is described in Appendix A.

6 RESULTS

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) results are presented in Ta-
ble 2. The model used had 4 attention heads, 4 transformer layers, 48 hidden dimensions for all the
datasets. All reported values are means over 10 independent runs, with standard deviations between
0.0009 and 0.06. Our method significantly outperforms existing approaches on all datasets, with
p-values between 0.000007 and 0.00012.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

To demonstrate the effectiveness of considering dynamic graphs instead of static, we ran our model
on the aggregated static graphs that were used in the other baseline models and report these results
next to the staticDynaSTy method in Table2. We observe that the dynamic version outperforms the
static when the original graphs are in fact dynamic, i.e., the Bitcoin and brain networks.

Per-sample graphs matter. To test whether conditioning on each sample’s own dynamic graph
helps, we shuffled the input dynamic graphs at training time so that the node dynamics and the
dynamic graphs do not correspond anymore. These results are in the second last row of Table 2.
We can see that in Bitcoin and Brain datasets, the performance significantly drops as a result of this
shuffling, indicating that we are losing information. In case of the traffic datasets, no such drop is
observed because these graphs by design are shared globally and no per sample graphs are available.

As a second test, we compare DynaSTy with the next-best performing method, Graph WaveNet,
using a brain fMRI dataset with two cohorts: neurotypical (y=0) and neurodivergent (y=1). Dy-
naSTy, which consumes each subject’s dynamic graph sequence A1:H , attains RMSE=26 when
trained/evaluated only on y=0, RMSE=21 only on y=1, and 22 when trained jointly on the com-
bined cohort. Joint training therefore yields a 15.4% reduction relative to y=0 alone (26→22) while
remaining within 4.8% of the y=1-only optimum (21→ 22). In contrast, Graph WaveNet, which
learns a single shared adjacency for all samples, yields RMSE=36 on y=0, 29 on y=1, and 33 on
the combined cohort. Joint training thus helps the harder cohort (36→33) but does not approach the
easier cohort’s optimum (29), indicating that a single global graph forces a compromise that cannot
capture cohort-specific connectivity.

6.1 HYPERPARAMETER SENSITIVITY

The main hyperparameters in DynaSTy are the number of attention layers, number of attention heads
in each layer and the number of hidden dimensions the input is projected to. We ran our model on the
METR-LA and brain datasets with varying each hyperparameter while keeping the others constant
and documented the effect on training time and RMSE as shown in Figure 3. It is observed that while
all three parameters have a significant effect on RMSE, increasing the hidden dimension seems to
be the most effective, while also maintaining the training time within a reasonable range (maximum
102 seconds for METR-LA and 73 seconds for Brain). On the other hand, increasing the number
of attention heads or the number of transformer layers, both related to the transformer component,
quickly increases training time to about 125 seconds for METR-LA and 140 seconds for Brain.

We also document the average training times per epoch and inference times for DynaSTy and com-
pare with baselines on the METR-LA dataset with an input sequence length of 12 and output (pre-
diction) sequence length of 12 in 4 in Appendix B.

Table 3: Ablation study with edge bias, masked pretraining and variation loss. Table shows mean
RMSE values across 10 runs.

Configuration Brain (8 steps) Brain (12 steps) METR (6 steps) METR (12 steps)
Full Model 26.84 27.29 5.4 6.34
w/o Edge bias 31.92 33.26 6.21 7.53
w/o Pretraining 28.53 29.52 5.88 7.01
w/o Variation Loss 27.02 30.31 5.79 7.25

7 CONCLUSION AND FUTURE WORK

We introduce DynaSTy, a spatiotemporal transformer architecture for node attribute prediction on
dynamic graphs. The model combines a dynamic edge-bias attention mechanism with an autore-
gressive GRU-based decoder to jointly capture spatial and temporal dependencies. Empirical results
on real-world network datasets with evolving edge structures demonstrate consistent improvements
over strong spatiotemporal baselines, including DCRNN and MTGNN.

In future work, we aim to extend this framework in several directions. First, we plan to apply Dy-
naSTy to more complex real-world dynamic systems where the temporal resolution may vary across
time or across entities. Second, we intend to develop a distributed version of DynaSTy to improve

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Impact of architectural hyperparameters on performance and runtime.

This figure shows the effect of the number of attention heads (left), hidden dimension size (center),
and number of transformer layers (right) on both RMSE and training time for the METR-LA and
BRAIN datasets with input sequence of length 12, and outputs of length 12 and 8 respectively. For
each subplot, the primary Y-axis (blue) corresponds to the METR-LA dataset, and the secondary
Y-axis (red) corresponds to the BRAIN dataset.

scalability on large-scale networks, such as Bitcoin trust graphs with over 1,000 nodes, where cur-
rent runtimes are a bottleneck. Another way of reducing the runtime complexity would be by shifting
to a sparse attention paradigm instead of full attention which is O(N2).

Finally, a key limitation of the current design is its assumption that the node set remains fixed
over time. This presents two challenges: (i) it implicitly assumes that all nodes exist from t = 0,
which is often unrealistic in dynamic systems such as social or biological networks where nodes
appear and disappear; and (ii) it imposes computational and memory overhead by forcing inactive
or disconnected nodes to be included at every time step. Extending DynaSTy to support a variable
node set over time would require a transition from discrete-time snapshot modeling to a continuous-
time representation of dynamic graphs, which we consider a promising and important future research
direction.

8 REPRODUCIBILITY STATEMENT

All code and link to datasets used are available in https://anonymous.4open.science/r/
DYNASTY-4DFD/ and the instructions to run them will be updated soon.

REFERENCES

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive Graph Convolutional Recurrent
Network for Traffic Forecasting, 2020. URL https://arxiv.org/abs/2007.02842. Version Number:
2.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), volume 28, 2015.

Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. Graph neural controlled
differential equations for traffic forecasting. In Proceedings of the AAAI Conference on Artificial

9

https://anonymous.4open.science/r/DYNASTY-4DFD/
https://anonymous.4open.science/r/DYNASTY-4DFD/
https://arxiv.org/abs/2007.02842

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Intelligence, volume 36, pp. 6367–6375, 2022. URL https://ojs.aaai.org/index.php/AAAI/article/
view/20587.

Chaofan Dai, Qideng Tang, and Huahua Ding. TGAT: Temporal Graph Attention Network for
Blockchain Phishing Scams Detection. In 2024 International Conference on Computer, In-
formation and Telecommunication Systems (CITS), pp. 1–7, Girona, Spain, July 2024. IEEE.
ISBN 9798350359091. doi: 10.1109/CITS61189.2024.10608015. URL https://ieeexplore.ieee.
org/document/10608015/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2019.

Adriana Di Martino, Chao-Gan Yan, Qiang Li, Elizabeth Denio, F. Xavier Castellanos, Kaat Alaerts,
Jeffrey S. Anderson, Michal Assaf, Susan Y. Bookheimer, Mirella Dapretto, Ben Deen, Stefa-
nia Delmonte, Ilan Dinstein, Birgit Ertl-Wagner, Damien A. Fair, Louise Gallagher, Daniel P.
Kennedy, Courtney L. Keown, Christian Keysers, Janet E. Lainhart, Catherine Lord, Beatriz Luna,
Vinod Menon, Nancy J. Minshew, and et al. The autism brain imaging data exchange: towards
a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19:
659–667, 2014. doi: 10.1038/mp.2013.78.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations (ICLR), 2020.

H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jignesh M. Pa-
tel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and transportation engineering. In Pro-
ceedings of the 31st IEEE International Conference on Data Engineering (ICDE), pp. 1260–1264.
IEEE, 2014.

Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-
aware dynamic long-range transformer for traffic flow prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, 2023. doi: 10.1609/aaai.v37i4.25556. URL
https://arxiv.org/abs/2301.07945.

Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge weight pre-
diction in weighted signed networks. In Data Mining (ICDM), 2016 IEEE 16th International
Conference on, pp. 221–230. IEEE, 2016.

Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrahma-
nian. Rev2: Fraudulent user prediction in rating platforms. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pp. 333–341. ACM, 2018.

Shiyong Lan, Yitong Ma, Weikang Huang, Wenwu Wang, Hongyu Yang, and Pyang Li. DSTAGNN:
Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 11906–11917. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/lan22a.html.

Fuxian Li, Jie Feng, Huan Yan, Guangyin Jin, Depeng Jin, and Yong Li. Dynamic graph convo-
lutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions on
Knowledge Discovery from Data, 17(1):1–21, 2023. doi: 10.1145/3532611.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations
(ICLR ’18), 2018.

Yao Liu, Jian Tang, Jie Gao, Zhenguo Wang, and Wei Yang. Masked modeling of multivariate
time series with transformer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 7326–7334, 2023.

10

https://ojs.aaai.org/index.php/AAAI/article/view/20587
https://ojs.aaai.org/index.php/AAAI/article/view/20587
https://ieeexplore.ieee.org/document/10608015/
https://ieeexplore.ieee.org/document/10608015/
https://arxiv.org/abs/2301.07945
https://proceedings.mlr.press/v162/lan22a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiaoxu Ma, Chen Zhao, Minglai Shao, and Yujie Lin. Hypergraph-based dynamic graph node
classification. In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5, 2025. doi: 10.1109/ICASSP49660.2025.10889498.

Peng Mei and Yuhong Zhao. Dynamic network link prediction with node representation
learning from graph convolutional networks. Scientific Reports, 14, 2024. doi: 10.1038/
s41598-023-50977-6.

Seiji Ogawa, T K Lee, A S Nayak, and P Glynn. Brain magnetic resonance imaging with contrast
dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24):
9868–9872, 1990.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. EvolveGCN: Evolving Graph Convolu-
tional Networks for Dynamic Graphs, November 2019. URL http://arxiv.org/abs/1902.10191.
arXiv:1902.10191 [cs].

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. In ICML 2020 Work-
shop on Graph Representation Learning, 2020.

Xiaomeng Song, Bin Zhou, Yanjiang Wang, and Weifeng Liu. Dynamic graph structure evo-
lution for node classification with missing attributes. Scientific Reports, 15, 2025. doi:
10.1038/s41598-025-09840-z.

Jiarui Sun, Mengting Gu, Chin-Chia Michael Yeh, Yujie Fan, Girish Chowdhary, and Wei Zhang.
Dynamic graph node classification via time augmentation. In 2022 IEEE International Confer-
ence on Big Data (Big Data), pp. 800–805, 2022. doi: 10.1109/BigData55660.2022.10020941.

Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
model for link prediction. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=82Mc5ilInM.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Representation Learn-
ing over Dynamic Graphs, March 2018. URL http://arxiv.org/abs/1803.04051. arXiv:1803.04051
[cs].

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph WaveNet
for Deep Spatial-Temporal Graph Modeling, May 2019. URL http://arxiv.org/abs/1906.00121.
arXiv:1906.00121 [cs].

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks, May 2020.
URL http://arxiv.org/abs/2005.11650. arXiv:2005.11650 [cs].

Shohei Yamasaki, Yuya Sasaki, Panagiotis Karras, and Makoto Onizuka. Holistic prediction on a
time-evolving attributed graph. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 13676–13694, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.765. URL
https://aclanthology.org/2023.acl-long.765/.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-Temporal Graph Convolutional Networks: A Deep
Learning Framework for Traffic Forecasting. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, pp. 3634–3640, July 2018. doi: 10.24963/ijcai.2018/
505. URL http://arxiv.org/abs/1709.04875. arXiv:1709.04875 [cs].

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph multi-attention
network for traffic prediction. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 1234–1241, 2020.

Our experiments were implemented in Python 3.10 using the PyTorch deep learning framework. All
experiments were run on a Linux server with CUDA 11.8 and NVIDIA H100 GPUs.

11

http://arxiv.org/abs/1902.10191
https://openreview.net/forum?id=82Mc5ilInM
http://arxiv.org/abs/1803.04051
http://arxiv.org/abs/1906.00121
http://arxiv.org/abs/2005.11650
https://aclanthology.org/2023.acl-long.765/
http://arxiv.org/abs/1709.04875

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A STATIC GRAPH ASSUMPTIONS IN BASELINES.

All the STGNN baselines considered (DCRNN, STGCN, MTGNN) require a single static adjacency
matrix that is shared across time and across training examples. In contrast, our model is designed
to handle dynamic graphs that vary per time step and per sample. To ensure a fair comparison, we
construct fixed adjacency matrices tailored to each dataset. MTGNN is slightly better because it
offers the option to learn the adjacency matrix from the observed data, but it is still static and shared
across samples.

Brain Networks. In the brain network setting, each subject yields a distinct dynamic graph sequence
derived from pairwise correlations between brain regions. To aggregate these into a single global
adjacency matrix suitable for the baselines, we compute a thresholded binary correlation matrix for
each subject and then average these across subjects to produce an edge co-occurrence matrix. We
then threshold this matrix at τ = 0.5, retaining edges that appear in more than 50% of individual
graphs. This consensus adjacency matrix captures the most consistent inter-regional connections
across the population and is used as the fixed graph for all static-graph baselines.

Bitcoin Trust Networks. In contrast, the Bitcoin trust networks involve user-to-user interactions
recorded over time. Here, we construct the fixed graph by including an edge between two users if
they ever interacted (i.e., if any trust rating was exchanged between them at any time). This results
in a binary adjacency matrix capturing the union of all observed edges across the dataset. The loss
of information is less concerning in this case since the training samples belong to a single dynamic
system, unlike the brain dataset where each training sample came from a different person.

These distinct aggregation strategies reflect the differing structure and semantics of the two domains:
the brain networks involve latent, population-level structure shared across subjects, while the Bitcoin
networks reflect explicit interaction histories between individual agents.

B RUNTIME COMPLEXITY

We analyze the computational complexity of DynaSTy in terms of the key input parameters: batch
size B, number of nodes N , input sequence length L, hidden dimension d, number of attention heads
h, and prediction horizon H .

Input Projection and Positional Encoding. The linear projection of node attributes from input
dimension D to hidden dimension d and the addition of learnable positional encodings incurs a cost
of:

O(B · L ·N · d)

Spatiotemporal Transformer Layers. Each transformer layer applies edge-biased multi-head at-
tention across all node pairs per time step. This involves:

• Attention score computation: O(N2 · d) per time step
• Edge-bias MLP over each pairwise edge: O(N2 · h)

Summed across the batch and sequence length, the total complexity is:

O(B · L ·N2 · (d+ h))

GRU Encoder. We flatten the sequence across time and encode each node’s L-step history using
a GRU, with complexity:

O(B ·N · L · d2)

GRU Decoder. The decoder autoregressively predicts H future steps per node, each using GRU
recurrence and MLP projection:

O(B ·N ·H · d2)

Output Projection. Mapping decoder outputs back to the original feature space costs:

O(B ·H ·N · d)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Overall Complexity. The total runtime is dominated by the spatiotemporal attention and decoder
GRU steps:

O
(
B · L ·N2 · d

)
+O

(
B ·N · (L+H) · d2

)
Scalability Consideration. The quadratic dependency on the number of nodes N in the attention
mechanism may limit scalability on large graphs (e.g., Bitcoin trust networks with N > 1000).
Future work may explore sparse or localized attention to improve computational efficiency.

B.1 COMPARISON OF RUNTIMES

Since DynaSTy has a pretraining step with 15 epochs, this time was added to the total training time
before averaging across epochs. Table 4 reports this pretraining + training time in seconds. The main
bottleneck in the training time are the transformer layers, which makes the model scale quadratically
in the number of nodes. It also scales quadratically in the number of hidden dimensions, but most
often the number of nodes is much greater than the hidden dimension, especially in cases like the
Bitcoin networks.

Table 4: Wall Times on the METR-LA dataset averaged across 50 epochs

Method Training (s) Inference (s)
STGCN 54 12
DCRNN 320 92
Graph WaveNet 187 52
MTGNN 173 48
DGCRN 155 42
DynaSTy 124 33

C TEMPORAL SELF ATTENTION

Given encoder activations H ∈ RB×N×d×L (batch B, history length L, nodes N , channel dimen-
sion d), we optionally add a lightweight temporal block that attends within each node across time,
without mixing nodes. This module models long-range and non-uniform temporal dependencies
(variable lags, periodicities) at each node, complementing the spatial encoder that conditions on At

per step. Computationally, it costs O(BNL2D) (attention over L for each of BN node streams)
and preserves permutation equivariance over nodes. In our implementation it can be toggled on/off;
when enabled, we insert it after the spatial transformer stack and before the GRU summarizer, keep-
ing the rest of the architecture unchanged. We observed a 0.53% - 7.1% reduction in RMSE on our
datasets, reported in Table 5.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Effect of temporal self-attention on RMSE (↓). Same encoder/decoder, training schedule,
and data splits; only the temporal-attention block is toggled.

Dataset RMSE w/o Temp. Attn. RMSE w Temp. Attn. ∆ (%)
Bitcoin Alpha 2.8 2.6 -7.14
Bitcoin OTC 2.49 2.38 -4.41
METR-LA 6.34 6.1 -3.78
PEMS-Bay 3.73 3.71 -0.53
Brain 26.84 26.11 -2.72

14

	Introduction
	Related Work
	Problem Formulation
	Methods
	Overview
	Input Representation
	Encoding and Temporal Position
	Transformer Layers
	Forecasting Decoder
	Loss Functions
	Masked Pretraining
	Training Procedure

	Experiments
	Dataset and Setup
	Baselines and Metrics

	Results
	Hyperparameter Sensitivity

	Conclusion and Future Work
	Reproducibility statement
	Static Graph Assumptions in Baselines.
	Runtime Complexity
	Comparison of Runtimes

	Temporal Self Attention

