Under review as a conference paper at ICLR 2025

VISUAL PROMPTING WITH ITERATIVE REFINEMENT
FOR DESIGN CRITIQUE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Feedback is crucial for every design process, such as user interface (UI) de-
sign, and automating design critiques can significantly improve the efficiency
of the design workflow. Although existing multimodal large language models
(LLMs) excel in many tasks, they often struggle with generating high-quality de-
sign critiques—a complex task that requires producing detailed design comments
that are visually grounded in a given design’s image. Building on recent advance-
ments in iterative refinement of text output and visual prompting methods, we
propose an iterative visual prompting approach for UI critique that takes an in-
put UI screenshot and design guidelines and generates a list of design comments,
along with corresponding bounding boxes that map each comment to a specific
region in the screenshot. The entire process is driven completely by LLMs, which
iteratively refine both the text output and bounding boxes using few-shot sam-
ples tailored for each step. We evaluated our approach using Gemini-1.5-pro and
GPT-40, and found that human experts generally preferred the design critiques
generated by our pipeline over those by the baseline, with the pipeline reducing
the gap from human performance by 50% for one rating metric. To assess the gen-
eralizability of our approach to other multimodal tasks, we applied our pipeline to
open-vocabulary object and attribute detection, and experiments showed that our
method also outperformed the baseline.

1 INTRODUCTION

Critiques are essential for design, providing feedback to help designers improve their work (Duan
et al.,2024a;|Wang et al.| 2021} | Xu et al.,2014). However, obtaining design critiques is often costly
and time-consuming, hindering the design process. Hence, automating design critiques has become
an important goal in many design fields. In this paper, we focus on automating critiques for user
interface (UI) design—a prevalent task in industry that directly impacts the user experience (Stone
et al., |2005). Obtaining UI design feedback typically requires expert reviews or user testing with
target end users, which may be expensive and not always readily available. This makes automated
critique extremely valuable, as it can provide instant feedback for designers to quickly iterate on
(Duan et al.l |2024a). Furthermore, automated design feedback can serve as a reward function for
automated Ul generation, which has started to gain traction (Gajos et al.,|2010; |Gajjar et al.| 2021)).

UI design critique is often complex and open-ended, involving feedback that covers multiple di-
mensions of the design (e.g., aesthetics and usability) (Nielsen & Molich, |1990; Hartmann et al.,
2008) and addresses both the overall design and specific problematic regions of the UI, based on
design principles or guidelines. This makes automated UI critique a very challenging task. Given
a Ul screen and a set of design guidelines, the model needs to understand the screen, reason with
UI design principles to detect violations in the UI design (both semantically and spatially), and then
explain and contextualize the feedback in the way that human designers can understand and act upon
(Duan et al.| 2024b) (Figure[I). Essentially, automated UI design critique is a challenging task that
presents an opportunity to develop various multimodal capabilities in models.

Multimodal LLMs have made tremendous progress in a variety of multimodal tasks, such as visual
question answering (VQA) and visual understanding, due to their extensive knowledge and gener-
alization capabilities. Although multimodal LLMs appear to be readily usable for design critique,
a multimodal task, there remains a significant gap in quality between the feedback generated by

Under review as a conference paper at ICLR 2025

these LLMs compared to that of human design experts (Duan et al.,2024b). In addition, multimodal
LLMs often struggle with achieving accurate visual grounding (Duan et al., 2024b; [Dorkenwald
et al., 2024), making it difficult for them to mark relevant regions in the UI screenshots, which is
crucial for contextualizing feedback for designers (Duan et al.,[2024b).

Recent advances in prompting techniques have improved both visual grounding and text generation
performance. For example, |[Fang et al.| (2024) introduced a visual prompting technique that adds
visual markers to an image, which helps multimodal LLMs better ground objects. Madaan et al.
(2023)); |Xu et al.| (2024a) proposed a method called iterative refinement, where an LLM’s output is
repeatedly refined by itself or another model until the output is deemed correct. iferative refinement
has been shown to improve the LLM’s performance for text-only tasks like code optimization and
machine translation. Building on these prompting methods, we develop a novel technique for UI de-
sign critique generation (Figure[T). Our approach iteratively refines both design comment text and
their corresponding bounding boxes, utilizing visual prompting to assist in bounding box generation
and refinement. For iterative refinement of bounding boxes, we introduce a novel technique that dis-
plays a zoomed-in patch of the bounding box candidate to help the refinement process. Our approach
is implemented through an architecture that coordinates multiple multimodal LLMs (Figure [2).

We evaluated our pipeline for UI critique using UICrit, a public dataset (Duan et al., 2024b), with
two state-of-the-art multimodal LLMs: Gemini-1.5-pro (Team et al., 2024)) and GPT-40 (OpenAl
et al., 2024). Our experiments demonstrated that the pipeline consistently improved the design
feedback output across both models, on both automatic metrics and human expert evaluation. To
assess the broader applicability of our method to other multimodal tasks, we tested it on open-
vocabulary object and attribute detection, where it consistently increased the mAP by up to 9.1.
These experiments demonstrate the potential of our method to be a useful technique in the broader
scope of tasks, beyond design critique generation, pushing the boundary of what prompting can
achieve for complex multimodal tasks. Our paper makes the following contributions:

e A modular multimodal prompting framework that orchestrates six LLMs (Figure [2) for
generation, refinement, and validation of design critiques, which takes in an image and a
task prompt, and generates a list of text items visually grounded in the image.

e A set of LLM prompting techniques for iterative refinement of both text and bounding
boxes that ground the text within the image. We introduce a technique for visual ground-
ing refinement, where we include a zoomed-in patch around the bounding box candidate
(Figure[3)) in the prompt to assist in fine-grained visual grounding.

e Extensive experiments with the proposed prompting framework on UI design critique, a
challenging multimodal task, and a study of its performance on open vocabulary object and
attribute detection. These experiments showed that our pipeline consistently outperformed
the baseline methods across two distinct multimodal tasks and domains.

2 RELATED WORK

2.1 AUTOMATED UI DESIGN CRITIQUE WITH LLMS

Prior work have studied the capabilities of using LLMs for UI design critique. [Duan et al.| (2024al)
explored the performance of zero-shot (text-only) GPT-4 in critiquing Ul mockups, using a JSON
representation of the Ul They identified gaps between the feedback capabilities of general-purpose
LLMs and human experts. To address this,|Duan et al.[(2024b) collected a dataset (UICrit) consisting
of human-annotated UI design critiques (grounded within UI screenshots via bounding boxes) for
UI screens that could be applied to train general purpose LLMs. Their UI design critique model
takes in a Ul screenshot and outputs critiques grounded in screenshot regions. Their method showed
a significant improvement in LLM-generated feedback with just few-shot sampling from UICerit,
although the feedback quality still falls short of human experts. Similarly, Wu et al.| (2024)) generated
a synthetic dataset of UI design comments and trained a CLIP model (Radford et al., [2021])) to assess
UI designs. We apply our approach to the design critique task, which augments the method of
Duan et al| (2024b) by incorporating iterative refinement of both the design comments and their
corresponding bounding box positions on the UI screen.

Under review as a conference paper at ICLR 2025

2.2 PROMPTING LLMS WITH ITERATIVE REFINEMENT

Iterative refinement on LLM output has been explored in prior studies, as a means to improve LLM
performance. [Madaan et al.|(2023) developed an approach called “SELF-REFINE”, where a single
LLM generates an initial output and then iteratively provides feedback on its own output and revises
the the output based on the feedback. They applied this technique across a diverse set of tasks, such
as math reasoning and dialogue response, and found that SELF-REFINE resulted in an 20% average
performance gain. Similarly, |[Zhou et al.| (2023)) utilized this iterative self-refinement technique on
long-horizon sequential task planning in robotics, leading to higher success rates. However, |Xu et al.
(2024b)) found that LLMs often exhibit self-bias (i.e. a tendency to favor its own generated output)
during self-refinement across a variety of tasks and languages. To account for this, Xu et al.[(2024a)
developed “LLMRefine”, a method for text generation that uses a separate model to provide detailed
feedback, along with a simulated annealing method to iteratively refine the LLM’s output. We also
utilize iterative refinement in our pipeline, and we extend this method to multimodal tasks by refining
both text and bounding boxes that associate the text with relevant regions in the image. Following
the method in LLMRefine, we use separate LLLMs for generation and refinement to prevent self-bias.

2.3 MULTIMODAL TASKS

Previous work has investigated a variety of grounded multimodal tasks using LLMs, where an LLM
takes in a visual input (such as an image) and generates outputs that are connected to specific ob-
jects, regions, or attributes within the visual input. [Liu et al.| (2023)) introduced Grounding DINO, a
transformer-based model that supports open-vocabulary object detection and can identify arbitrary
objects within an image. However, it struggles with complex queries involving multiple objects and
intricate spatial relationships. To address this limitation, |[Zhao et al.| (2024) developed LLM-Optic,
which uses an LLM to break down complex queries into specific objects, employs Grounding DINO
to detect candidate objects, and finally uses a multimodal LLM to select the most suitable objects
for the query. Beyond object detection, |[Bravo et al.| (2023) introduced open vocabulary object and
attribute detection, which identifies and grounds both objects and their corresponding attributes in
an image in a open vocabulary setting. In robotics, multimodal LLMs were used to help systems
understand the physical world. |[Fang et al.| (2024) introduced MOKA, which utilizes multimodal
LLMs to solve complex robotic manipulation tasks by breaking them into multiple steps. Their ap-
proach incorporates visual prompting, where visual markers are added to the image, to aid in object
grounding as part of the robot’s step-by-step instructions.

Chen et al.|(2024) examined the capabilities of multimodal LLMs for evaluation across three tasks:
pair comparison, scoring, and ranking. They found that while LLMs performed well on pair com-
parison, they struggled with the other tasks, suggesting that further improvements are needed before
LLMs can be reliable validators. Visual grounding is a vital component of our method, and we
utilize visual prompting to enhance bounding box generation and refinement. Although multimodal
validation has limitations, our ablation studies indicate that incorporating it to validate the generated
text and bounding boxes generally improved performance.

3 TASK

Ul design critique generation was first proposed as a grounded multimodal task by |Duan et al.
(2024b). The model takes in a Ul screenshot and a set of design guidelines as input and outputs
a list of design critiques. Each design critique comprises two components: a text comment that
identifies a specific issue in the Ul and a bounding box that highlights the relevant region of the
screenshot (see Figure[I). For example the text comment might state “The expected standard is to
use clear contrast for readability. In the current design, the label ‘Best’ is difficult to see on the
image due to its high transparency. To fix this, reduce the transparency of the box and apply a solid
color so that the text ‘Best’ is readable.”) and the bounding box will enclose the orange ‘Best’ tag
in the UI screenshot in[Il

As discussed earlier, the Ul design critique task is particularly challenging because the model must
understand and apply UI design principles to identify design issues in the screenshot. Furthermore,
determining the exact region of the screen (i.e., the bounding box) for a comment is not always
straightforward. For example, a comment might note that the text in the UI has poor contrast with

Under review as a conference paper at ICLR 2025

Comment 1
The expected standard is to use a clear
contrast to distinguish between icons and
background information. In the current
design, the color used for the icons is lighter
and that makes them less prominent. To fix
this, try using another color for the icons.

Ul Design Critique

Comment 2
The expected standard is the icon should
appropriately convey its meaning to the
users. In the current design, the meaning of
the icon is unclear. To fix this, replace the
icon with a more recognizable icon or add a
textlabel

Nielsen Norman Group
Jakob’s Ten
Usability Heuristics

3 Comment 3
! The expected standard is use clear contrast
for readability. In the current design, the
Iabel (best) i difficult to see on the image
due to its high transparency. To fix this,
1 reduce the transparency of the box, apply a
solid color so that the text (best) is readable.

Design Guidelines Ul Screenshot Design Comments Bbox to Ground Design Comments

| 1

Inputs Outputs

Figure 1: Illustration of the UI Design Critique Task, which takes in a UI screenshot and a set of
design guidelines and outputs a list of design comments with corresponding bounding boxes (Bbox).

the background, but not specify which text element is problematic, requiring the model to identify
the problematic elements and also determine their bounding box. While our focus in this paper
is on UI design critique, our task is representative of many multimodal tasks that require visually
grounded text generation.

4 METHOD

We developed a prompting pipeline that uses multiple LLMs to generate Ul design critiques. It
consists of six distinct LLMs that are organized into three modules: Text Generation & Refinement,
Validation, and Bounding Box Generation & Refinement. These modules communicate with each
other to complete the task. Figure[2illustrates the workflow of the pipeline, showing the main inputs
and outputs of each LLM, which are numbered by the order of execution. We break down the entire
task into separate generation and refinement steps for both text and bounding boxes, as decomposing
complex tasks has been shown to improve performance (Khot et al., [2023]).

As shown in the figure, the LLM output of each step is conditioned on that of the previous step. Since
Bounding Box Generation & Refinement is conditioned on the text predictions, and text refinement,
in turn, is conditioned on the bounding box predictions, we introduce the Validation module between
the Text and Bounding Box modules to ensure that each refinement step is based on more accurate
inputs. Additionally, each LLLM is provided with targeted few-shot examples to improve its accuracy,
as well as a text prompt containing specific instructions for that step, which is derived from the input
task prompt. To provide as much guidance as possible, we included the UI design guidelines in
the input task prompt, which are also included in the instructions prompts for relevant steps. The
specific inputs, outputs, and few-shot examples for each LLM are detailed in the following sections,
and the instructions prompt for each step can be found in Appendix[A.3]

Text Generation LLM (TextGen) The pipeline begins with the TextGen LLM that takes an image
and its instructions prompt (derived from the task prompt) as input, and generates a list of un-
grounded text items (design comments) for the image. We decided to start with text generation and
condition the bounding box generation on the generated text, instead of the other way around. This
decision is based on our observation that for design critique, LLMs tend to perform poorly on visual
grounding from scratch (i.e., without guidance from text), which makes the subsequent refinements
much more error-prone.

Text Filtering LLM (TextFilter) To reduce the chance of bounding box generation being condi-
tioned on incorrect text items (i.e., incorrect design comments), we add an additional filtering step
to remove invalid or irrelevant text items. The TextFilter LLM takes as input a list of generated
text items from TextGen, along with the image, and outputs a filtered list of valid text items. While
previous studies (Chen et al., 2024} |Shankar et al.,|2024) have shown that LLMs may not always be
reliable evaluators, |Liu et al.|(2024) demonstrated that few-shot examples can improve performance.
We designed few-shot examples for TextFilter by injecting invalid items into a correct list of text
items, using this augmented list as input and the original correct list as the expected output. This
illustrates how to filter out invalid items.

Under review as a conference paper at ICLR 2025

Text Generation &
Refinement Module

Validation Module

Bbox Generation &
Refinement Module

3. .
Llst of Filtered Text
: Te . o
Input ext‘ L|st of Text Items Text Filtering Items Bbox.
Image & ——> Generation Generation
Task Prompt LLM LLM (one text item at a time) LLM
Text Item &
Refined Text & Text Item & Refined Bbox
Correct Bbox Bbox
Text Text & Bbox Bbox
Refinement Validation Refinement
LLM for Bbox LLM LLM for Bbox
* incorrect Text & Correct Text &
Correct Bbox Incorrect Bbox

Discard: Incorrect
Text & Incorrect

Iteratively Refine Text
Bbox

Item based on Bbox until
Termination

Iteratively Refine Bbox
based on Text Item until
Termination

Output: Correct Text
& Correct Bbox

Figure 2: The figure illustrates our prompting pipeline, which takes an image and a task prompt as
input and outputs text items with their corresponding bounding boxes on the image. The pipeline
consists of six distinct LLMs, organized into three modules: Text Generation and Refinement, Val-
idation, and Bounding Box (Bbox) Generation and Refinement. Targeted few-shot examples are
provided for each LLM. The main inputs and outputs for each LLM are shown, and Section [4] de-
tails all the inputs, outputs, and few-shot examples for each LLM. Each input/output is numbered
with their order of generation, and numbers with a ’+’ indicate multiple iterations of input/output.

Bounding Box Generation LLM (BoxGen) The BoxGen LLM generates bounding boxes based
on the filtered text items from TextFilter. The LLM takes in one text item at a time, as well as
the image, and predicts a relevant region on the image via bounding box coordinates. Following
the visual prompting technique from Duan et al.| (2024b), we augment the screenshot by adding
coordinate markers along its edges (Figure [3) to help the LLM associate coordinates with specific
regions in the screen.

Bounding Box Refinement LL.M (BoxRefine) To avoid self-bias during iterative refinement (Xu
et al.l 2024b), we use a separate LLM to iteratively refine the generated bounding box from the
previous step. The BoxRefine LLM takes in several inputs, as shown in Figure |3} Similar to Box-
Gen, BoxRefine takes in the coordinate-marker enhanced screenshot image and a filtered text item.
Additionally, BoxRefine takes in the bounding box coordinates that was predicted by BoxGen, and
a close-up view of the image region specified by the predicted bounding box coordinates. In this
zoomed-in image patch, the bounding box is displayed as a blue box, with some surrounding region
of the box included for additional context. The zoomed-in image patch also has coordinate markers
along the edges to help the LLM refine the bounding box coordinates based on this close-up view.

The LLM assesses the quality of the current bounding box based on all these inputs. If the bound-
ing box is deemed accurate by the BoxRefine LLM, the iterative refinement process terminates.
Otherwise, the LLM returns the refined coordinates, which are then re-evaluated by the LLM. This
process is repeated until the LLM either confirms the bounding box as correct or the maximum
number of iterations is reached. Previous work (Madaan et al., 2023)) has shown that the history of
refinements provides helpful information. Thus, we include the history of the LLM’s refinements
for the input bounding box as an input at each iteration, which enables the model to learn from past
adjustments. Few-shot examples are generated by creating a synthetic refinement sequence with
gradually reduced noise in the perturbation of a sampled bounding box’s coordinates. Algorithm
in the Appendix details our methods for bounding box perturbation and the generation of few-shot
examples for bounding box refinement.

Text & Bounding Box Validation LLM (Validation) After determining the bounding box for the
text item, the Validation LLM determines if the bounding box and text are correct and can be used in
the final output, or if they require further refinement. The Validation LLM takes as input the entire
image, a zoomed-in image patch for the proposed region specified by the bounding box, and the text
item, and assesses the accuracy of critique generation as one of the following:

Under review as a conference paper at ICLR 2025

01234567809 “The expected

standard is to ensure
that buttons are easily
tappable and
distinguishable.
In the current design,

101:00
. the buttons are too
.
close together, making
it difficult for users to <9 102,9.1,8:6,14.9]

tap them accurately.
10 To fix this, increase
the spacing between
BN T buttons to provide
‘ . sufficient tappable
Bal | Settags || Beset || But areas and improve the
< o overall user

Fight!
WY | Settings || Reset || Bt

experience.” History of BBOX Zoom-in Patch lllustrating
Text Refinements Proposal BBOX Proposal

Fewshot Examples of

Image with
Iterative Refi Coordi

Figure 3: An example of the inputs to the Bounding Box Refinement LLM.

1. Both Text & Box Correct: Both the bounding box and the text item are accurate, and the
pair is returned. The pipeline moves onto the next text item in the filtered list.

2. Incorrect Text: The bounding box correctly identifies a region in the Ul screenshot with
design issues, but the text item is incorrect (e.g., does not adequately describe the design
issues in the region). The pair is sent to the TextRefine LLM for text refinement.

3. Incorrect Bounding Box: The text item is correct (e.g., describes a valid design issue in
the UI screenshot), but the bounding box is incorrect (e.g., does not accurately enclose
the region described in the critique). The bounding box and text item are sent back to the
BoxRefine LLM for further refinement of the bounding box.

4. Both Incorrect: Both the text and the bounding box are incorrect. The pair is discarded and
the pipeline moves onto the next text item in the filtered list.

Few-shot examples are generated differently for each case; the bounding box is perturbed for the
Incorrect Bounding Box case (Algorithm [I] in the Appendix), the text item is perturbed for the
Incorrect Text case, and both the bounding box and text are perturbed for the Both Incorrect case. In
addition, text and bounding box pairs that are sent for further refinement are sent back to this LLM
for validation, after they have been refined.

Text Refinement LLM (TextRefine) The TextRefine LLM is used to refine incorrect text items
conditioned on bounding boxes that correctly identify relevant regions in the image, as determined
by the Validation LLM. This iterative refinement process mirrors the bounding box refinement pro-
cedure. The LLM takes as input the entire image, a zoomed-in image patch focused on the bounding
box, and the text item, and refines the text iteratively until it determines that the text is accurate for
the region shown in the bounding box. Few-shot examples are generated either by perturbing the
text (if possible) or by selecting irrelevant text items from the few-shot dataset and then ranking
them by increasing semantic similarity to simulate the refinement process. The refined text item and
bounding box are then returned to the Validation LLM.

5 EXPERIMENTS

5.1 DATASET

We used the UICrit dataseﬂ collected by Duan et al.| (2024b), to evaluate our pipeline for the design
critique task. Each Ul screenshot in this dataset was annotated by three experienced human design-
ers, providing feedback that includes a list of text-based design critiques with their corresponding
bounding boxes, numerical ratings for usability, aesthetics, and overall design quality, as well as a
description of what the screen is designed for. The dataset contains a total of 11,344 design critiques
for 1,000 screenshots.

For evaluation, we used the UI screenshots from UICrit as input images, included the three sets
of design guidelines used by Duan et al.| (2024b) in the task prompt, and evaluated the model’s
output against the comments and bounding boxes of the screen from the dataset (depending on the
experiment). For few-shot examples, we sampled from a split of UICrit that is separate from the
examples used for the evaluation. The few-shot sampling methods used at each step is detailed in

Appendix

'https://github.com/google-research-datasets/uicrit

https://github.com/google-research-datasets/uicrit

Under review as a conference paper at ICLR 2025

Table 1: IoU values from the Ablation study on the different components of bounding box genera-
tion. IR stands for Iterative Refinement, and VP stands for Visual Prompting.

Methods UI Critique IoU 1
Geminil.g,m GPT4tn
Zero-shot 0.120 0.233
Zero-shot, VP 0.180 0.249
Few-shot, VP 0.267 0.319
Few-shot, VP, Zero-shot IR 0.279 0.319
Few-shot, VP, Few-shot IR 0.357 0.345

5.2 BASELINE

We used the few-shot pipeline developed by [Duan et al.| (2024b) for their UI critique task as the
baseline. Their pipeline consists of the Text Generation LLM (Figure[2) with few-shot sampling, fol-
lowed by an LLM for bounding box generation that uses visual prompting (i.e., coordinates marked
on the screenshot edges) without few-shot examples.

5.3 IMPACT OF VISUAL PROMPTING & ITERATIVE REFINEMENT ON VISUAL GROUNDING

Table[T] presents an ablation study on the different components of the Bounding Box Generation and
Refinement module (Figure [2), which illustrates the impact of visual prompting and iterative refine-
ment on the visual grounding accuracy of two state-of-the-art multimodal LLMs: Gemini-1.5-pro
and GPT-4o. For this evaluation, the module is given a Ul screenshot and one of its comments from
UICrit. Its output bounding box is evaluated against the ground-truth bounding box of that comment
in UICrit by computing their IoU. The module consists of two LLMs (BoxGen and BoxRefine), and
the BoxRefine LLM was only used for the conditions with iterative refinement (i.e., the last two
rows of the table).

For Gemini-1.5-pro, each enhancement led to an improvement in the average IoU, with the final
setup (used in our pipeline) achieving an average IoU nearly three times higher than zero-shot and
almost double that of zero-shot with visual prompting, which was used in the baseline (Duan et al.
(2024b))). For GPT-40, improvements were seen at each step, except for zero-shot iterative refine-
ment; when no few-shot examples were provided in the refinement prompt, GPT-40 did not refine
any of the input bounding boxes. Additionally, while GPT-40 had better zero-shot performance, its
IoU for the final setup was slightly worse than that of Gemini-1.5-pro. Nevertheless, iterative visual
prompting led to substantial performance gains over zero-shot prompting for both LLMs, indicating
that iterative visual prompting significantly enhances bounding box estimation.

5.4 PIPELINE ABLATION STUDY AND QUALITATIVE ANALYSIS

Table 2] presents the results of the ablation study for UI design critique for both LLMs, as well as the
results for the baseline setup and multimodal Llama-3.2 11b (Dubey et al., [2024)), which has been
finetuned on the training split of UICrit for three epochs. Since UI design critique is open-ended,
UICrit does not contain all the ground-truth design comments for each UI screenshot. Hence, we
evaluated comment generation by computing the cosine similarity of sentenceBERT embeddings
with each comment in the dataset for the UI screenshot and selecting the highest one (“Comment
Similarity” in Table[2). The IoU was estimated by comparing the predicted bounding box with that
of the most semantically similar comment (“Estimated IoU” in Table [2). The estimated IoU values
are lower than those in Table [T} where the IoU was calculated directly from the input comments’
corresponding bounding boxes in UICrit. The estimated IoU is lower because it uses the bounding
box of the most semantically similar comment in the dataset instead, which may not precisely match
the comment for which the bounding box was generated.

Each step of the pipeline incrementally improved the comment similarity and estimated IoU for
both LLMs. While GPT-40 and Gemini-1.5-pro showed similar values in terms of comment sim-
ilarity, GPT-40 achieved a higher estimated average IoU. GPT-40’s advantage could be due to its
significantly larger size—nearly three times as many parameters as Gemini-1.5-pro. The complete
pipeline also outperforms the baseline in both comment similarity and estimated IoU. Note that the

Under review as a conference paper at ICLR 2025

Table 2: Ablation study of the different steps of our pipeline on UI design critique. IR stands for
Iterative Refinement. Note that we combine the results of the Validation step with results from the
additional iterative refinement steps for bounding box and text. This is because these additional
refinements are applied to a much smaller subset; specifically, only the pairs identified as having
incorrect text or incorrect bounding boxes during the Validation step. We also include results from
the baseline setup and finetuned Llama-3.2 11b.

Pipeline Steps Comment Similarity 1 Estimated IoU* 1
Geminiy 54, GPTyg, Geminiy sy, GPTyyy,

Text Generation 0.651 0.680 N/A N/A
+ Text Filtering 0.694 0.692 N/A N/A
+ Bbox Generation 0.694 0.692 0.153 0.244
+ IR of Bbox 0.694 0.692 0.173 0.259
+ Validation, IR of Text & Bbox 0.702 0.701 0.199 0.275
Baseline 0.651 0.680 0.176 0.257
Finetuned Llama-3.2 11b 0.842 0.230

comment similarity for the baseline is identical to that of the “Text Generation’ row. This is because
both the pipeline and baseline both start with TextGen, so we used the same initial comments from
TextGen for both conditions for easier comparison. Fine-tuned Llama-3.2 achieves higher comment
similarity than the pipeline, but its estimated IoU falls between those of Gemini-1.5-pro and GPT-40
for the complete pipeline.

We conducted a qualitative analysis of the outputs from the pipeline, baseline, and finetuned Llama-
3.2, finding that the pipeline generally outperforms the baseline and finetuned Llama qualitatively.
Compared to baseline, it reduces the generation of invalid and generic comments, while producing
bounding boxes that are tighter, more specific, and closer to the target region. However, the pipeline
sometimes eliminates valid comments. Also, we found that the baseline often generates very large
bounding boxes that cover the majority of the screen. This would decrease the chance of the IoU
being zero, which may have inflated its estimated IoU. For finetuned Llama, we found that it only
generated a very limited set of critiques. In contrast, our pipeline generates a considerably more
diverse set of comments. Although finetuned Llama generally had better visual grounding, the
bounding boxes tend to be larger and less specific. Detailed results and example outputs are provided
in Section [A.4] (Appendix). Additionally, Section [A.5] (Appendix) includes a cost analysis of our
pipeline and also contains example visualizations of bounding box and comment refinements.

5.5 HUMAN EVALUATION

Due to the open-ended nature of UI design critique, UICrit does not have the complete set of ground-
truth design comments for each UI screen. Hence, we recruited human design experts to assess
the validity of the feedback generated by our pipeline. For comparison, the experts also rated the
comments generated by the baseline setup and human annotated comments from UICrit. We used
the same procedure devised by|Duan et al.|(2024b)), where each design comment was rated as invalid,
partially valid and valid, and the set of design comments from each condition was ranked as a whole,
based on overall quality and comprehensiveness. Unlike the method used by |Duan et al.| (2024b),
where participants rated both comment quality and bounding box accuracy together, our evaluation
presented participants with a screenshot marked with a ground-truth bounding box (determined and
agreed upon by the authors) and asked them to rate the validity of the comment only for that region.
This is to ensure a more rigorous and standardized approach to evaluate bounding box accuracy
and a more focused evaluation on comment quality. See Section [5.5] (Appendix) for more details
on the study method. Table [3[shows the average comment rating, the average comment set rank,
and the average IoU for each of the three conditions for Gemini-1.5-pro’s output. We used the
established ground-truth bounding boxes from comments rated as valid or partially valid to compute
the IoU with predicted bounding boxes. For the “human” condition, the IoU was not computed as
we displayed the bounding boxes from UlICrit. The average Fleiss Kappa inter-rater reliability score
(Fleiss et alJ |1971) amongst the participants was 0.22 for comment quality and 0.29 for comment
set ranking, indicating fair agreement.

Under review as a conference paper at ICLR 2025

Table 3: Human expert ratings on UI design comments generated by Gemini-1.5-pro, and IoU of the
generated bounding boxes for human validated comments.

Methods Comment Quality T Comment Set Rank | BBox IoU 1
Baseline (Duan et al.l[2024b) 0.45 2.3 0.423
Our Pipeline 0.47 2.0 0.451
Human 0.56 1.7 N/A

Across all the metrics, the pipeline outperformed the baseline, while human annotations remain the
best. Interestingly, the average comment quality rating for human feedback was lower than expected,
which may be attributed to the subjective nature of design critique (Nielsen & Molich} [1990) and the
variability in dataset quality, potentially due to UICrit’s annotators’ limited design experience (Duan
et al.,|2024b). While the gap between our pipeline and the baseline is modest, it still closes 22% of
the gap between the baseline and human condition. Notably, the average comment set rank of our
pipeline is positioned midway between the human and baseline setups. The comment set from our
pipeline was preferred over the baseline’s 58% of the time and was even favored over the human
condition 38% of the time.

6 GENERALIZATION TO OTHER TASKS

Our pipeline can be applied to other multimodal LLM tasks that involve generating visually
grounded text. To assess if its performance enhancement generalizes to other tasks, we evaluate
our pipeline on an existing vision-language modeling benchmark: Open Vocabulary Object and
Attribute Detection (Bravo et al.,[2023).

6.1 OPEN VOCABULARY OBJECT AND ATTRIBUTE DETECTION

Open vocabulary object and attribute detection, developed by Bravo et al.|(2023)), involves detecting
objects and their associated attributes, along with bounding boxes marking their locations in the im-
age (see Appendix[A.T)). During inference, the model is given a set of object classes and attributes to
identify, including classes and attributes that were not seen during training, which tests the model’s
ability to generalize to novel object classes and attributes (i.e., “open vocabulary”). [Bravo et al.
(2023)) evaluated both attribute detection (OVAD) and object detection (OVD) in this open vocab-
ulary setting. They collected a dataseﬂ of human annotated object classes and attributes for 2,000
images from the MS COCO dataset (Lin et al.|(2014))), including 80 object classes and 117 attribute
categories. The object classes are divided into base and novel categories, with only the base classes
seen during training. We used this dataset to evaluate our pipeline on this task. The task involves
taking an image as input, along with a task prompt specifying the object and attribute classes. The
output is evaluated against the ground truth object and attribute annotations. To meet the open-
vocabulary criterion of this task, we sampled few-shot examples from the base classes only, from a
split of their dataset, but used all the classes for evaluation. Appendix [A.2.2] describes the fewshot
sampling strategy in more detail.

6.2 COMPARISON WITH BASELINE

Table] presents the results of the ablation study for open-vocabulary object and attribute detection,
using both Gemini-1.5-pro and GPT-40. We used the same baseline described in Section as it
can also be applied to this task. We followed the evaluation method of Bravo et al.|(2023)), calculating
the mean average precision (mAP) across all attribute (OVAD) and object categories (OVD). The
predicted text and corresponding bounding box were matched with the ground truth by selecting
the bounding box with the highest IoU, with a minimum threshold of 0.5, and comparing the object
categories and attribute classes.

Our approach outperformed the baseline mAP for OVAD by 2.5 and OVD by 4.6 with Gemini-1.5-
pro, and by 2.2 for OVAD and 9.1 for OVD with GPT-40. The larger performance gain for OVD may
be due to the fact that it is a simpler task, with only 80 object categories compared to 117 attribute

https://ovad-benchmark.github.io/

https://ovad-benchmark.github.io/

Under review as a conference paper at ICLR 2025

Table 4: Ablation study on the open vocabulary attribute detection (OVAD) and object detection
(OVD) for Gemini-1.5-pro and GPT-40. IR stands for Iterative Refinement. Note that bounding
boxes are required for computing the mAP, so we combined the results for the text generation, text
filtering, and bounding box generation steps. Similar to Table 2| we combined the results of the
Validation step with the additional iterative refinements of the bounding box and text.

Pipeline Steps OVAD mAP 1 OVD mAP 1
Geminiy 54, GPTy4, Geminiy se, GPTyy,
Text Generation + Filtering + BBox 11.3 13.1 13.1 15.8
+ IR of BBox 12.6 14.0 15.8 17.8
+ Validation, IR of Comment & BBox 13.6 15.1 15.8 20.2
Baseline 1.1 12.9 11.2 11.1

categories, and attributes are often more nuanced and harder to detect. Additionally, GPT-4o slightly
outperformed Gemini-1.5-pro, likely due to its much larger size. However, our pipeline still falls
short of the fine-tuned model from Bravo et al.|(2023) (mAP 18.8 for OVAD and 39.3 for OVD).

7 DISCUSSION

Our pipeline outperforms the baseline for Ul critique in both comment quality and grounding accu-
racy, based on automatic metrics (e.g., IoU) and human expert ratings; its feedback was also more
often preferred by human experts. This implies that the design feedback generated by our pipeline is
more useful for human designers. Its performance improvement also generalizes to open-vocabulary
object and attribute detection, suggesting the technique could be potentially applied to enhance other
grounded multimodal LLM tasks.

While our technique outperforms the baselines for open vocabulary object and attribute detection, it
falls short of the fine-tuned LLMs from|Bravo et al.|(2023)). This is expected, since our pipeline does
not involve parameter-tuning, whereas their fine-tuned LLMs were trained on significantly more data
than the few-shot examples provided to our model. For design critique, our pipeline generates a sig-
nificantly more diverse set of critiques compared to finetuned Llama 3.2, potentially making our
pipeline more useful in practice. However, our pipeline still has room for improvement when com-
pared to human expert design feedback. Despite its performance gap with human critique (which are
expensive to acquire), the generalizability of our pipeline and its consistent performance improve-
ment over the baseline demonstrate its potential to be a versatile and resource-efficient solution for
improving multimodal LLM performance across different tasks and domains.

A reason for the performance gap could be that the LLM-based validation steps are not fully accurate
(Shankar et alJ [2024; |Chen et al.l [2024), which could lead to incorrect judgement of the bounding
box and/or text accuracy. Future work can improve the validation step with better prompting strate-
gies, or look into a human-in-the-loop approach, where human experts validate or refine the text and
bounding boxes. The human-in-the-loop validation could both improve the immediate quality of
the output and help the system learn from human inputs over time via targeted few-shot examples.
This step can be integrated into a design tool where designers validate or refine the feedback, so the
model learns to provide more accurate and personalized design critiques over time.

8 CONCLUSION

We introduce a novel prompting pipeline that improves both the quality and visual grounding of
automated UI design critique by using visual prompting and iterative refinement of both text and
bounding boxes. Our approach outperformed the baseline in human evaluations, generating higher
quality comments with more accurate visual grounding. Additionally, we demonstrated the gen-
eralizability of our technique through performance gains in open-vocabulary object and attribute
detection, suggesting its potential to enhance other grounded multimodal tasks. While our method
has limitations, it offers a versatile and resource-efficient solution for improving multimodal LLM
performance across various tasks and domains.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Maria A. Bravo, Sudhanshu Mittal, Simon Ging, and Thomas Brox. Open-vocabulary attribute de-
tection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7041-7050, June 2023.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang,
Pan Zhou, Yao Wan, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal 1lm-as-a-judge
with vision-language benchmark, 2024.

Michael Dorkenwald, Nimrod Barazani, Cees G. M. Snoek, and Yuki M. Asano. Pin: Positional
insert unlocks object localisation abilities in vlms, 2024. URL https://arxiv.org/abs/
2402 .08657.

Peitong Duan, Jeremy Warner, Yang Li, and Bjoern Hartmann. Generating automatic feedback
on ui mockups with large language models. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, CHI *24, New York, NY, USA, 2024a. Association for Computing
Machinery. ISBN 9798400703300. doi: 10.1145/3613904.3642782. URL https://doi.
org/10.1145/3613904.3642782|

Peitong Duan, Chin yi Chen, Gang Li, Bjoern Hartmann, and Yang Li. Uicrit: Enhancing automated
design evaluation with a uicritique dataset, 2024b. URL https://arxiv.org/abs/2407.
08850.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and et. al. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

Kuan Fang, Fangchen Liu, Pieter Abbeel, and Sergey Levine. MOKA: Open-World Robotic Manip-
ulation through Mark-Based Visual Prompting. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, July 2024. doi: 10.15607/RSS.2024.XX.062.

J.L. Fleiss et al. Measuring nominal scale agreement among many raters. Psychological Bulletin,
76(5):378-382, 1971.

Nishit Gajjar, Vinoth Pandian Sermuga Pandian, Sarah Suleri, and Matthias Jarke. Akin: Generating
ui wireframes from ui design patterns using deep learning. In Companion Proceedings of the
26th International Conference on Intelligent User Interfaces, IUI *21 Companion, pp. 4042,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380188. doi:
10.1145/3397482.3450727. URL https://doi.org/10.1145/3397482.3450727.

Krzysztof Z Gajos, Daniel S Weld, and Jacob O Wobbrock. Automatically generating personalized
user interfaces with supple. Artificial intelligence, 174(12-13):910-950, 2010.

Jan Hartmann, Alistair Sutcliffe, and Antonella De Angeli. Towards a theory of user judgment of
aesthetics and user interface quality. ACM Trans. Comput.-Hum. Interact., 15, 11 2008. doi:
10.1145/1460355.1460357.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Representations, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision — ECCV 2014, pp.
740-755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, and Qi Zhang. Calibrating LLM-based evaluator. In Nicoletta Calzolari, Min-Yen
Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings

11

https://arxiv.org/abs/2402.08657
https://arxiv.org/abs/2402.08657
https://doi.org/10.1145/3613904.3642782
https://doi.org/10.1145/3613904.3642782
https://arxiv.org/abs/2407.08850
https://arxiv.org/abs/2407.08850
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3397482.3450727

Under review as a conference paper at ICLR 2025

of the 2024 Joint International Conference on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pp. 2638-2656, Torino, Italia, May 2024. ELRA and
ICCL.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback. In A. Oh, T. Naumann, A. Globerson, K. Saenko,

M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36,
pp. 46534-46594. Curran Associates, Inc., 2023.

Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI *90, pp. 249-256, New York,
NY, USA, 1990. Association for Computing Machinery. ISBN 0201509326. doi: 10.1145/97243.
97281.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, and Lama Ahmad et. al. Gpt-4 technical
report, 2024. URL https://arxiv.org/abs/2303.08774,

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748-8763. PMLR,
18-24 Jul 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL jhttps://arxiv.
org/abs/1908.10084.

Shreya Shankar, J. D. Zamfirescu-Pereira, Bjorn Hartmann, Aditya G. Parameswaran, and Ilan
Arawjo. Who validates the validators? aligning 1lm-assisted evaluation of 1lm outputs with human
preferences, 2024.

Debbie Stone, Caroline Jarrett, Mark Woodroffe, and Shailey Minocha. User interface design and
evaluation. Elsevier, 2005.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan Burnell, Libin Bai, and et. al. Gemini 1.5:
Unlocking multimodal understanding across millions of tokens of context, 2024.

Chunxiao Wang, Shuai Lu, Hongzhong Chen, Ziwei Li, and Borong Lin. Effectiveness of one-click
feedback of building energy efficiency in supporting early-stage architecture design: An exper-
imental study. Building and Environment, 196:107780, 2021. ISSN 0360-1323. doi: https:
//doi.org/10.1016/j.buildenv.2021.107780. URL |https://www.sciencedirect.com/
science/article/pii/S0360132321001876.

Jason Wu, Yi-Hao Peng, Amanda Li, Amanda Swearngin, Jeffrey P. Bigham, and Jeffrey Nichols.
Uiclip: A data-driven model for assessing user interface design, 2024. URL https://arxiv.
org/abs/2404.12500.

Anbang Xu, Shih-Wen Huang, and Brian Bailey. Voyant: generating structured feedback on vi-
sual designs using a crowd of non-experts. In Proceedings of the 17th ACM Conference on
Computer Supported Cooperative Work & Social Computing, CSCW 14, pp. 1433-1444, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450325400. doi:
10.1145/2531602.2531604. URL https://doi.org/10.1145/2531602.2531604,

Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj Juraska, Biao Zhang, Zhongtao Liu,
William Yang Wang, Lei Li, and Markus Freitag. LLMRefine: Pinpointing and refining large
language models via fine-grained actionable feedback. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL
2024, Mexico City, Mexico, June 2024a. Association for Computational Linguistics. doi:
10.18653/v1/2024.findings-naacl.92.

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://www.sciencedirect.com/science/article/pii/S0360132321001876
https://www.sciencedirect.com/science/article/pii/S0360132321001876
https://arxiv.org/abs/2404.12500
https://arxiv.org/abs/2404.12500
https://doi.org/10.1145/2531602.2531604

Under review as a conference paper at ICLR 2025

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. Pride and
prejudice: LLM amplifies self-bias in self-refinement. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15474—15492, Bangkok, Thailand, August 2024b. As-
sociation for Computational Linguistics.

Haoyu Zhao, Wenhang Ge, and Ying cong Chen. Llm-optic: Unveiling the capabilities of large
language models for universal visual grounding, 2024. URL https://arxiv.org/abs/
2405.17104.

Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu, and Lei Ma. Isr-llm: Iterative self-refined
large language model for long-horizon sequential task planning. 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2081-2088, 2023.

A APPENDIX

A.1 OPEN VOCABULARY OBJECT AND ATTRIBUTE DETECTION TASK

Open vocabulary object and attribute detection, developed by |Bravo et al.| (2023), is a benchmark
task that involves detecting objects and their associated attributes, along with bounding boxes mark-
ing their locations in the image. Figure [] shows an example for the Open Vocabulary Object and
Attribute Detection Task. For further details about the task and the dataset, see the original paper
(Bravo et al., [2023).

Open
Vocabulary
Object and
Attribute
Detection
[]

- »
Task: Detect all
Objects and .
Attributes from | e —
the following =2 I

list ...

Figure 4: Illustration of the Open Vocabulary Object and Attribute Detection Task. The example
output is taken from|Bravo et al.[(2023).

A.2 FEW-SHOT SAMPLING METHODS FOR BOTH TASKS

A.2.1 UI DESIGN CRITIQUE

For both design comment generation and filtering, we sampled UI screenshots and correspond-
ing comments based on UI task and visual similarity from a split of UICrit, following the best-
performing sampling method from Duan et al.| (2024b). We used CLIP (Radford et al., |2021) to
generate joint task and screenshot embeddings, and cosine similarity to determine relatedness. For
filtering, we augmented the dataset’s comments with LLM-generated comments deemed incorrect
by annotators (Duan et al.|(2024b)). For bounding box generation, refinement, and subsequent steps
that operate on individual comments, we sampled few-shot examples by selecting the most seman-
tically similar comments and their corresponding bounding boxes from a split of UICrit. We used
sentenceBERT (Reimers & Gurevych, [2019) to embed the comment text for similarity ranking. For
validation, few-shot examples of invalid comments were selected from incorrect comments that were
marked by dataset annotators, or from irrelevant comments from other Uls. Finally, for text refine-
ment, multiple invalid comments were selected, following the process described earlier, and then
sorted by increasing cosine similarity to simulate the comment refinement process.

13

https://arxiv.org/abs/2405.17104
https://arxiv.org/abs/2405.17104

Under review as a conference paper at ICLR 2025

For bounding box refinement, we considered another technique to generate fewshot examples. This
technique involves selecting the first bounding box location based on visual similarity of the region it
contains in the fewshot Ul to that of the region contained by the input bounding box proposal of the
input screenshot. This bounding box is then gradually moved closer to the ground truth bounding
box for the fewshot UI to simulate the refinement process. However, we found that the simpler
approach of randomly perturbing the bounding box actually gave better results (IoU 0.357 (random
perturbation, from Table|[T)) vs 0.333 (visual similarity match)).

A.2.2 OPEN VOCABULARY OBJECT AND ATTRIBUTE DETECTION

For text generation (i.e., category and attributes) and filtering, we sampled images based on the
semantic similarity of their CLIP embeddings. Negative text samples for the filtering step were
generated by sampling irrelevant text from other images. For bounding box generation, refinement,
and subsequent steps applied to individual text items, we sampled few-shot examples by selecting
the most semantically similar text items and their corresponding bounding boxes from a split of their
annotated dataset. We used sentenceBERT |Reimers & Gurevych| (2019) to embed the text items for
similarity ranking. For validation, invalid text examples were perturbed by randomly swapping the
category or attributes, or by deleting or adding attributes. Similarly, for text refinement, few-shot
examples were generated by perturbing the text in decreasing amounts.

A.3 INSTRUCTIONS PROMPTS FOR PIPELINE

We provide the instructions prompt for each step of the pipeline for the UI Critique Task.

Text Generation: For these sets of guidelines: [Guidelines]. Please find
all the guideline violations in the UI provided. For violation found,
please provide an explanation that includes these three things: 1.

the expected standard (i.e. what good design should look 1like), 2.
the gap between the current design and the expected standard (i.e.
the critique for the design), and 3. how to fix the issue in the
current design. For formatting each violation, please include these
three things in separate sentences. For the expected standard (#1),
start the sentence with ’The expected standard is that...’. For the
gap (#2), start the sentence with ’'In the current design, ...’, and
for how to fix the design (#3), start the sentence with 'To fix this

.”. Please end each violation explanation with two newline
characters (\n\n). Please be specific in your violation explanations,
making sure to refer to specific UI elements and groups in the UI.
After determining all guideline violations, please also share any
other design feedback you have for the UI and follow the same format
of providing the expected standard, the critique for the design, and
how to fix the issue. We will provide N examples of a UI screenshot
and a set of valid design comments. Please learn how to give valid
design comments from these examples and apply this knowledge to
determine valid design comments for the last UI. Please be specific
in your comments, referring to specific UI elements by their text
label or icon, like in the examples provided. Also, please do not
return any comments regarding user testing nor adherence to platform
standards.

Text Filtering: For the provided UI and a list corresponding design
comments, please filter out the incorrect design comments and return
a list tuples. Each tuple contains its index i in the 1list, followed
by True or False. The tuple would contain True if the design comment
at index i in the input list is a valid design comment, and False if
the design comment at index i is an invalid comment. Please analyze
the UI screenshot to determine whether or not each design comment is
valid. We will give N examples, where each UI screenshot is followed
by a list of its corresponding design comments and an output list of
tuples, where each tuple contains the list index and True/False
indicating the validity of the design comment at that index. Please
learn from these examples, analyzing the UI screenshot to see why
each comment was considered valid or invalid. Finally, we will give a

14

Under review as a conference paper at ICLR 2025

UI screenshot, followed by its corresponding design comments. Please
output a list of tuples consisting of the comment’s list index and
an indication of each comment’s wvalidity, like in the provided
examples. Please output False for the design comment if it is about
consistency with the brand, user testing, or adherence to platform
standards. Please only output this list of tuples and nothing else.

Bounding Box Generation: You will be providing bounding boxes coordinates
for the provided UI screenshot and design comment. The bounding box
will enclose a relevant region in the screenshot that is discussed in
the design comment. You will use the coordinate axes along the edge

of the screenshot to determine the coordinates of the bounding box.
Please make sure you follow the provide coordinate axes, so that
vertical bounding box coordinates are between 0 and 16 and horizontal
bounding box coordinates are between 0 and 9, and format the
bounding box coordinates as (left, top, right, bottom). Please do not
output bounding boxes with area 0. Also, please only output the
bounding box and nothing else. We will provide N examples of design
comments, followed by the corresponding UI screenshot (with a
coordinate axis along its edge) and a correct bounding box for the
design comment in the UI screenshot based on the coordinate axis.
Please learn how to determine accurate bounding boxes for the design
comment in the UI screenshot based on these examples. We will provide
a final design comment and UI screenshot; please apply what you have
learned from the examples to determine an accurate bounding box for
this final design comment and UI screenshot only.

Bounding Box Refinement: You will be refining bounding boxes for a given
UI screenshot and design comment. The bounding box will enclose a
relevant region in the screenshot that is discussed in the design
comment. You will be given a proposed bounding box candidate and will

evaluate whether or not this bounding box accurately encloses the
region in the screenshot that is discussed in the comment. The
proposed bounding box coordinates, in the format of (left_coordinate,
top_coordinate, right_coordinate, bottom_coordinate) and is
displayed as a blue box in the screenshot patch that is also provided
, with some additional margin around the blue bounding box. Please
reflect on whether or not this bounding box is accurate and look
closely at the UI elements contained in the blue bounding box to
judge its accuracy and relevance to the design comment. If the
bounding box is not accurate, please output a new bounding box that
you think is accurate in the format of (left_coordinate,
top_coordinate, right_coordinate, bottom_coordinate), where each
coordinate is determined from the coordinate axes along the edge of
the UI screenshot provided earlier. Please make sure the new bounding
box you output is accurate, and refer to the coordinate axes along
the edge of the zoomed-in screenshot patch and the entire screenshot
(provided earlier) to determine the bounding box coordinates. If the
bounding box is accurate, please output ’'BOUNDING BOX IS ACCURATE,
PLEASE TERMINATE’. Please only output either the updated bounding or
"BOUNDING BOX IS ACCURATE, PLEASE TERMINATE’ and nothing else. We
will provide N examples of bounding box refinements for a given
design comment, UI screenshot, and bounding box candidate. Please
learn how to accurately refine bounding boxes for the design comment
in the UI screenshot based on these examples. We will provide a final
design comment, UI screenshot, and bounding box candidate; please
apply what you have learned from the examples to accurately refine
the bounding box candidate for this final design comment, UI
screenshot, and the zoomed in patch showing the bounding box
candidate.

Text and Bounding Box Validation: You are given a UI screenshot, design
comment for the UI screen, and a zoomed-in patch of the UI screenshot
showing the corresponding bounding box for the design comment.
Please evaluate the accuracy of the design comment and bounding box

15

Under review as a conference paper at ICLR 2025

with respect to the UI screenshot. The bounding box is displayed as a
blue box in the zoomed-in screenshot patch, and is supposed to
contain the region in the UI screen that is targeted by the design
comment. Please first evaluate if the design comment is valid for the
provided UI screenshot, i.e. if it correctly points out a design
issue and suggests an accurate way to fix it. Please analyze the
provided UI screenshot to assess the comment’s wvalidity. If the
design comment is valid, please next evaluate whether the blue box in
zoomed-in UI screenshot contains the region that is relevant to the
design comment. If the design comment is invalid and the blue box
still contains a region in the UI screenshot with design issues,

please return the label ’'Incorrect Comment’. If the comment is valid,
but the blue box does not contain the region relevant to the comment
, please return the label ’'Incorrect Bbox’. If the comment is invalid

and the blue box does not contain a region with design issues,
please return the label ’'Both Incorrect’. Finally, if the design
comment is valid and the blue box correctly contains a region in the
UI that is relevant to the comment, please return the label ’'Both
Correct’. Please only return the appropiate label and nothing else.
We will give N examples, the UI screenshot (labeled ’'UI Screenshot’),

followed by the design comment (labeled ’'Design Comment’), a zoomed-
in screenshot patch showing the blue bounding box (labeled ’Zoomed-in
Patch’), and finally the correct label (labeled ’"Label’) for the
accuracy of the UI screenshot, design comment, and corresponding
bounding box. Please learn from these examples, to see how to
correctly categorize the design comment and its corresponding
bounding box by accuracy. Finally, we will give a UI screenshot,
design comment, and a zoomed-in patch showing the corresponding blue
bounding box. Please apply what you have learned from the examples to

correctly classify the accuracy of the design comment and its
corresponding bounding box.

Text Refinement: You will be refining the design comment for a specific
region in a UI screenshot. You will be given a UI screenshot, a
zoomed—-in patch of the screenshot with a blue box containing the
region of interest, and a design comment for the UI region inside the

blue box. Please evaluate whether or not the design comment
accurately describes the design issue for the UI region inside the
blue box. If the design comment is accurate, please output ’COMMENT
IS ACCURATE, PLEASE TERMINATE’. If the design comment is not accurate
, please refine the design comment to the accurate and output this
accurate design comment for the region of interest, following the
same format as the input design comment. We will provide N examples
of bounding box refinements for each UI screenshot, region of
interest, and design comment candidate for the region of interest.
Please learn how to accurately refine the design comment for the
region of interest in the UI screenshot based on these examples. We
will provide a final UI screenshot, region of interest, and design
comment candidate for the region of interest; please apply what you
have learned from the examples to accurately refine design comment
candidate for this final UI screenshot and region of interest. Please
only output the refined comment or ’/COMMENT IS ACCURATE, PLEASE
TERMINATE’ and nothing else.

A.4 QUALITATIVE ANALYSIS OF OUTPUTS FROM PIPELINE, BASELINE, AND FINETUNED
LLM

We qualitatively analyzed the outputs from our pipeline, baseline, and finetuned Llama-3.2 11b.
Figure 5] presents two examples where our pipeline outperformed the baseline and Figure [f] contains
two examples where the baseline performed better. To enable easier comparison between the two
conditions, we used the same set of initial comments from the TextGen module, as both the pipeline
and baseline begin with this module.

16

Under review as a conference paper at ICLR 2025

We observed that the baseline often generates very generic comments that would apply to any UI
screen and are usually not helpful, such as suggesting that at design should be tested with users or
needs to be made responsive as shown in Figure [5] (Baseline, top screenshot). These comments are
usually eliminated by the pipeline (Pipeline, top screenshot). Additionally, the pipeline successfully
refined incorrect comments, as shown by the red and green comments in the top screenshot, and fil-
ters out incorrect comments during the validation stages as shown in both screenshots. For bounding
boxes, those generated by the pipeline are usually tighter and closer to the correct region compared
to the baseline, which often generates large, unspecific bounding boxes that encompass a significant
portion of the screen, as shown by the bounding boxes in Figures [5|and [This demonstrates the
effectiveness of iterative refinement and validation in improving bounding box accuracy. Further-
more, the large bounding boxes generated by the baseline would decrease the chance of the IoU
being zero, which may have inflated the average IoU shown in Tables[2]and 3]

The pipeline sometimes eliminated valid comments, as shown in both examples in Figure [6] where
the green comments were accurate comments that were eliminated. In the top screenshot, the
pipeline retained only one inaccurate comment, although its bounding box was significantly im-
proved. In the bottom screenshot, the pipeline produced a less accurate bounding box around the
red buttons compared to the baseline, though these instances are rare.

We found that fine-tuned Llama-3.2 generated a very limited range of comments, primarily focusing
on text readability, visual clutter, and generic critiques about the need for improved visual appeal.
This limited range could be due to the over-representation of such critiques in UICrit. Figure
presents example outputs for two screenshots, comparing them with outputs from our pipeline. The
figure shows that, in addition to its limited range of critiques, the finetuned model also produces in-
accurate comments. In contrast, our pipeline generates a significantly more diverse set of comments
with tighter bounding boxes, though the bounding boxes are generally less accurate than those from
the fine-tuned model.

Overall, the pipeline generally outperforms the baseline qualitatively, reducing the generation of
invalid and generic comments and outputting bounding boxes that are tighter, more specific, and
closer to the target region. Furthermore, it generates a considerably more diverse set of comments
compared to finetuned Llama, though its visual grounding is less accurate.

A.5 ANALYSIS OF ITERATIVE REFINEMENT

Figure [§]illustrates an example of iterative bounding box refinement (conditioned on the comment)
by BoxRefine, which terminates on a significantly more accurate bounding box. Figure 9] illus-
trates an example of comment refinement (conditioned on the bounding box) by TextRefine, which
terminates on an accurate comment on the poor layout of the region inside the bounding box.

We calculated the average number of bounding box refinements, which were 1.25 for Gemini-1.5-
pro and 0.88 for GPT-40, as well as the average number of comment refinements, which were
1.48 for Gemini-1.5-pro and 1.17 for GPT-40. Additionally, we estimated the expected number of
LLM calls required for a complete run of the pipeline, including the small fraction sent for further
refinement by Validation. The expected number of calls is 7.16 for Gemini-1.5-pro and 6.70 for
GPT-4o.

A.6 HUMAN EVALUATION METHOD

Figure|10|shows a snippet of the form used by human design experts to rate the quality of individual
comments and rank the comment sets for the three different conditions.

Given the limited availability of UI design experts and the extensive evaluation required per Ul
screen for a detailed comparison across the three conditions, only the Gemini-1.5-pro outputs for 33
UI screenshots were rated. To better represent the Ul design space in this sample, we maximized
the diversity of the Ul screenshots by randomly sampling an even number of Uls from each of the
Ul task categories identified by |Duan et al.| (2024b). We followed their method of clustering by task
descriptions from UICrit to obtain the task clusters. These 33 Uls were split into 6 groups for rating,
with three participants assigned to each group. The rating and ranking study took approximately
1 hour. We recruited 18 design experts for this study. Five of the participants had 2-4 years of

17

Under review as a conference paper at ICLR 2025

design experience, and the rest had 6-10 years. Their areas of design expertise include mobile, web,
interaction, and user experience research.

A.7 ALGORITHMS FOR GENERATING FEW-SHOT EXAMPLES FOR BOUNDING BOX
REFINEMENT

Algorithm [T| details the steps for generating the few-shot refinement examples for a selected bound-
ing box. The few-shot generation algorithm entails perturbing the bounding box coordinates by
decreasing amounts and adding the perturbations to the list of few-shot examples. The algorithm for
perturbing a bounding box is also shown in Algorithm T}

Algorithm 1 Generate Bounding Box Refinement Few-shot Examples

Require: the bounding box to be perturbed input_bbozx, the fraction that the bounding box’s coor-
dinates will be perturbed perturb_frac
Ensure: The coordinates of input_bbox perturbed by perturb_frac
1: function GENERATE_PERTURB(input_bbox, perturb_frac)
2: Compute le ft_margin, right_margin, top_-margin, bottom_margin

3: all_perturbed «+ ||

4: for x_perturb in [—perturb_frac x left_margin, perturb_frac x right_margin| do

5: for y_perturb in [—perturb_frac x top-margin, perturb_frac x bottom_margin] do
6: Update bounding box location based on z_perturd, y_perturb

7: Add perturbed bounding box to all_perturbed

8: end for

9: end for

10: final_perturbed < ||
11: Compute width and height of the input bounding box
12: for each perturbed_bboz in all_perturbed do

13: for width_fraction in [—perturb_frac, perturb_frac| do

14: for height_fraction in [—perturb_frac, perturb_frac| do

15: Update bounding box size based on width_fraction and height_fraction

16: end for

17: end for

18: end for

19: filtered_perturbed < remove_invalid_perturbed_bbox(final _perturbed, input_bbox)
20: final_bbox < random.choice(filtered_perturbed)

21: return final_bbox

22: end function

Require: Bounding box bbox, maximum number of perturbations of bbox in the list of fewshot
refinement examples max_num_perturb

Ensure: A list of bounding boxes coordinates that are perturbed versions of bbox in decreasing
amounts, where bbox is the last item in the list.

23: function GENERATE_PERTURBED_FEWSHOT_EXAMPLES(bbox, max_num_perturb)

24: perturb_options < LIST(range(maz_num_perturb + 1))

25: num_perturb < RANDOM_CHOICE(perturb_options)

26: perturb_list « ||

27: for j + num_perturbto 1 do

28: perturb_frac < j/max_num_perturb

29: output_bbox <— GENERATE_PERTURB(bboz, perturb_frac)
30: perturb_list.append(output_bbox)

31: end for

32: perturb_list.append(bbozx)
33: return perturb_list

34: end function

18

Under review as a conference paper at ICLR 2025

Pipeline

The expected standard is that the page should have a back button.
In the current design, there is no button on the page for going to
the previous page. To fix this, add a button for going back to the
previous page.

The expected standard is that the design should use a clear color
scheme. In the current design, the "FINISH" button uses the same
red color as the header, which can be confusing for users. To fix

this, the "FINISH" button should be a different color that contrasts

well with the header, such as white or black. \

You've Added Amanda Park,
ington

The expected standard is that the page should have a back button.
In the current design, there is no button on the page for going to
the previous page. To fix this, add a button for going back to the
previous page.

Baseline

ne

The expected standard is that the design should be consistent with
the rest of the app. In the current design, the color scheme and font
are different from the rest of the app. To fix this, use the same color Place Added
scheme and font as the rest of the app.

\‘

The expected standard is that the design should be accessible to all

users. In the current design, the contrast between the text and the
background is not sufficient for users with visual impairments. To{ix

this, increase the contrast between the text and the background. \
The expected standard is that the design should be documented so

that others can understand how it works and how to use it. In the

current design, it is not clear whether the design is documented. T
fix this, document the design so that others can understand how \’t\

works and how to use it.

The expected standard is that the design should be tested with users

to ensure that it is usable and meets their needs. In the current /
design, it is not clear whether the design has been tested with users.

To fix this, test the design with users to ensure that it is usable and
meets their needs.

The expected standard is that the design should be easy to
understand. In the current design, it is not clear what the user is
supposed to do next. To fix this, add a clear call to action, such as a
button that says "Next" or "Continue."

S

You've Added Amanda Park,

Washington

Pipeline

The expected standard is that the design should use as few elements as
possible to achieve its goals. In the current design, the line is
unnecessary. To fix this, remove the line.

The expected standard is to have a noticeable clickable element with

———
——

The expected standard is that the design should be visually
appealing and easy to use. In the current design, the color
scheme is not appealing. To fix this, use a more visually
appealing color scheme.

The expected standard is that the text's visual treatment and
formatting should make it easy to understand. In the current
design, the texts (Place Added) are too small and difficult to read.
To fix this, increase font size and weight to make it prominent
visible.

The expected standard is that the text and background colors used
in the design should be complementary and easy to read. In the
current design, texts are in white color on red background which
are difficult to read. To fix this, change colors to be more
complementary to each other (texts in dark colors) to make it
easier to read.

The expected standard is that the design should use as few elements a:
possible to achieve its goals. In the current design, the design has too
many icons that are not necessary. To fix this, remove unnecessary icor

The expected standard is that the text’s visual treatment and
formatting should make it easy to understand. In the current design,
the texts (Place Added) are too small and difficult to read. To fix this,
increase font size and weight to make it prominent visible.

The expected standard is that the text and background colors used in
the design should be complementary and easy to read. In the current

<«— design, texts are in white color on red background which are difficult tc
read. To fix this, change colors to be more complementary to each
other (texts in dark colors) to make it easier to read.

The expected standard is that the design should meet the needs of the
business. In the current design, it is not clear whether the design meets
the needs of the business. To fix this, ensure that the design meets the
needs of the business.

he expected standard is that the design should be responsive and work
well on all devices. In the current design, the layout is not responsive and
does not work well on all devices. To fix this, make the layout responsive

so that it works well on all devices.

clear contrast. In the current design, the element on the screen
appears non-clickable and seamlessly integrated with the background,
giving users the impression that it is merely a static part of the display
rather than an interactive component. To fix this, add a border or make
atile, so it doesn't blend in with the background.

The expected standard is that the text’s visual treatment and
formatting should make it easy to read. In the current design, the
text font size is small. To fix this, increase the font size of the text.

The d standard is that the design should use as few elements as
possible to achieve its goals. In the current design, the text "OR" is
unnecessary. To fix this, remove the text "OR".

The expected standard is that the design should match the importance of
ontent to its visual prominence. In the current design, the text "Old School
Login" is not visually prominent. To fix this, enlarge the text and use a

different font color or make it bold.

Baseline
LEEF T B
= Lognsignup
The expected standard is that the design should use as few
elements as possible to achieve its goals. Each visual element
should contribute to the overall a ntial el
should be omitted. In the current design, there are too many "

elements on the screen, which makes it difficult to focus on the
important information. To fix this, the number of elements on the
screen should be reduced, and the focus should be placed on the
most important information.

The expected standard is that the text's visual treatment and
formatting should make it easy to read. In the current design, the text
font size is small. To fix this, increase the font size of the text.

The expected standard is to have a noticeable clickable element
with clear contrast. In the current design, the element on the
screen appears non-clickable and seamlessly integrated with the
background, giving users the impression that it is merely a static
part of the display rather than an interactive component. To fix this,
add a border or make a tile, so it doesn't blend in with the
background.

Figure 5: Illustration of outputs from the pipeline and

boxes, and eliminated an invalid comment (red).

19

The expected standard is that the design should use as few elements as
possible to achieve its goals. In the current design, the line is unnecessary.
To fix this, remove the line.

The expected standard is that the g+ icon and text should be easily
distinguishable. In the current design, the button's icon and text lack clear
differentiation, causing potential confusion for users. To fix this, enhance
visual separation between the icon and text, create contrast for clarity, and
align them properly.

\The expected standard is that the design should use as few elements as
possible to achieve its goals. In the current design, the text "OR" is
unnecessary. To fix this, remove the text "OR".

The expected standard is that the design should match the importance of
content to its visual prominence. In the current design, the text "0ld School
Login" is not visually prominent. To fix this, enlarge the text and use a
different font color or make it bold.

baseline, highlighting two cases where our
pipeline outperformed the baseline. The screenshots are marked with the output bounding boxes,
and the generated comments are shown, each pointing to its corresponding bounding box (some
comments have the same bounding box). Both the pipeline and baseline begin with the TextGen
module, so we used the same initial comments from TextGen for both conditions for easier compar-
ison. In the top example, the pipeline produced more accurate bounding boxes, eliminated several
generic and unhelpful comments, and refined an inaccurate comment (red) into a more accurate one
(green). In the bottom example, the pipeline produced more considerably more accurate bounding

Under review as a conference paper at ICLR 2025

The expected standard is that the text's visual treatment and
formatting should make it easy to read. In the current design, the,
text font size is small. To fix this, we can increase the text font size.

The expected standard is that the design should be visually
appealing and easy to use. In the current design, the font size of
the text "Round 1/12" is too small. To fix this, the designer should
increase the font size of the text "Round 1/12

The expected standard is that the text's visual treatment and
formatting should make it easy to read. In the current design, the
text font size is small and the background makes the foreground
text difficult to read. To fix this, we can increase the text font size
and choose a different contrasting background.

The expected standard is that the text's visual treatment and
formatting should make it easy to read. In the current design, the
text font size is small and the background makes the foreground
text difficult to read. To fix this, we can increase the text font size
and choose a different contrasting background.

Pipeline

The expected standard is that the design should be consistent throughout.
4— In the current design, the share icon is not consistent. To fix this, we can use
the same share icon

The expected standard is that the design should be consistent throughout.
In the current design, the share icon is not consistent. To fix this, we can use
- / the same share icon

The expected standard is that the design should be consistent throughout.
In the current design, the three dot icon is not consistent. To fix this, we can
use the same three dot icon.

The expected standard is that the design should be consistent throughout.
In the current design, the date format is not consistent. To fix this, we can
use the same date format.

The expected standard is that the design should use as few elements as
possible to achieve its goals. Each visual element should contribute to the
overall message; all non-essential elements should be omitted. In the
current design, there are too many elements on the screen, making it
difficult to focus on any one thing. To fix this, the designer should remove
any unnecessary elements from the screen.

Work 03:00 Rest 01:00

The expected standard is that the design should be visually appealing and
easy to use. In the current design, the font size of the text "Round 1/12"is
too small. To fix this, the designer should increase the font size of the text
"Round 1/12

The expected standard is that the design should match the importance

of content to its visual prominence. In the current design, the text
"classic boxing" is not visually prominent. To fix this, we can increase
the font size of the text “classic boxing".

The expected standard is that the design should be visually
appealing and easy to use. In the current design, the text is not
aligned properly. To fix this, the designer should align the text to the
center

The expected standard is that the design should be visually
appealing and easy to use. In the current design, the spacing
between the elements is not consistent. To fix this, the designer
should use a consistent spacing between the elements.

The expected standard is that the design should match the importance

of content to its visual prominence. In the current design, the text

within the highlighted buttons lacks visual prominence. To fix this, we

can increase the text font size.

The expected standard is that the design should be visually appealing

and easy to use. In the current design, the buttons are too close to
each other. To fix this, the designer should add more space between
the buttons.

Figure 6: Illustration of outputs from the pipeline and baseline, highlighting two cases where the
e screenshots are marked with the output bounding boxes,
and the generated comments are shown, each pointing to its corresponding bounding box (some
comments have the same bounding box). Both the pipeline and baseline begin with the TextGen
module, so we used the same initial comments from TextGen for both conditions for easier compar-
the comments from the baseline are inaccurate, the pipeline
eliminated the only correct comment (green) and only kept an invalid comment (red), though its
bounding box is considerably more accurate. In the bottom example, the pipeline removed two valid
comments (green) and some invalid ones, and also made the bounding box around the comment

baseline outperformed our pipeline. Th

ison. For the top example, while a lot of

regarding the red buttons less accurate.

Baseline

The expected standard is that the design should match the importance of
content to its visual prominence. In the current design, the download button

Rest 01:00 is not visually prominent. To fix this, we can enlarge the download button.

The expected standard is that the design should use as few elements as
possible to achieve its goals. Each visual element should contribute to the
overall message; all non-essential elements should be omitted. In the
current design, there are too many elements on the screen, making it
difficult to focus on any one thing. To fix this, the designer should remove
any unnecessary elements from the screen.

The expected standard is that the design should be visually appealing and
easy to use. In the current design, the font size of the text "Round 1/12" is
too small. To fix this, the designer should increase the font size of the text
“Round 1/12"

Fight!
Reset

20

Under review as a conference paper at ICLR 2025

Pipeline

The expected standard is that the page should have a back button.
In the current design, there is no button on the page for going to
the previous page. To fix this, add a button for going back to the
previous page.

The expected standard is that the design should use a clear color
scheme. In the current design, the "FINISH" button uses the same
red color as the header, which can be confusing for users. To fix
this, the "FINISH" button should be a different color that contrasts
well with the header, such as white or black.

You've Added Amanda Park,
Washington

Finetuned Model

nineoze

Place Added

The expected standard is that the design should be visually
appealing and easy to use. In the current design, the color
scheme is not appealing. To fix this, use a more visually
appealing color scheme.

The expected standard is that the text's visual treatment and
formatting should make it easy to understand. In the current
design, the texts (Place Added) are too small and difficult to read.
To fix this, increase font size and weight to make it prominent
visible.

The expected standard is that the text and background colors used
in the design should be complementary and easy to read. In the
current design, texts are in white color on red background which
are difficult to read. To fix this, change colors to be more
complementary to each other (texts in dark colors) to make it
easier to read.

The expected standard is that the text should be easy to read and
respect rules of typography. In the current design, the text "You've

You've Added Amanda Park,
Washington

<

Added Amanda Park, Washington" is difficult to read because it is
| _—— too small and there is not enough contrast between the text and

the background. To fix this, the text should be increased in size and

< o o

Pipeline

The expected standard is that the design should use as few elements as
possible to achieve its goals. In the current design, the line is
unnecessary. To fix this, remove the line.

Login/ Sign Up.

The expected standard is to have a noticeable clickable element with
clear contrast. In the current design, the element on the screen
appears non-clickable and seamlessly integrated with the background,
giving users the impression that it is merely a static part of the display
rather than an interactive component. To fix this, add a border or make
atile, so it doesn't blend in with the background.

Join over 40 millon ravelers

6 0o

The expected standard is that the text’s visual treatment and
formatting should make it easy to read. In the current design, the
text font size is small. To fix this, increase the font size of the text.

Finetuned Model

=

Login/ SignUp.

The expected standard is that the design should be visually appealing
and easy to use. In the current design, the design is not visually

DAXES

the contrast between the text and the background should be
increased.

The expected standard is that the design should use as few elements as
possible to achieve its goals. In the current design, the text "OR" is
unnecessary. To fix this, remove the text "OR".

The expected standard is that the design should match the importance of
ontent to its visual prominence. In the current design, the text "0ld School

Login" is not visually prominent. To fix this, enlarge the text and use a
different font color or make it bold.

The expected standard is that the text should be easy to read and respect
rules of typography. In the current design, the text is difficult to read
because it is too small and there is not enough contrast between the text
and the background. To fix this, the text should be increased in size and
the contrast between the text and the background should be increased.

appealing and is difficult to use. To fix this, the design should be mam

N . . By
more visually appealing and easier to use.

Join over 40 millon ravelers

£ I

01d School Login

The expected standard is that the design should use as few elements as
possible to achieve its goals. In the current design, there are too many
L elements on the screen, which makes it difficult to focus on the
important information. To fix this, the number of elements on the screen
should be reduced and the most important information should be

Figure 7: Illustration of outputs from the pipeline and finetuned Llama-3.2 11b. The screenshots are
marked with the output bounding boxes, and the generated comments are shown, each pointing to its
corresponding bounding box (some comments have the same bounding box). The fine-tuned model
produces a limited range of critiques, some of which are inaccurate (red), though the bounding
boxes are generally accurate. In contrast, the pipeline generates a significantly more diverse set of
critiques, and its bounding boxes are tighter but generally less accurate.

21

Under review as a conference paper at ICLR 2025

Start End
& oot e kiae Comment: The
sr—— prerv— T expected standard is
Work 03:00 Rest 01:00 Work 03:00 Rest 01:00 Work 03:00 Rest 01:00 that the design should

03:00

match the importance
of content to its visual
) () prominence. In the
PY ° current design, the text
"classic boxing" is not
visually prominent. To
Round 1/12 Round 1/12 fix this, we can

|W ‘T| increase the font size

=S — of the text "classic
| Settings || Reset || Ewt | | Settings || Reset || Ewt | JYSIar-un

Round 1/12

] Fight! l
| Settings || Reset || Gt |
< (o] o

< [©] [m} < [¢] m}

Figure 8: An example of iterative bounding box refinement, with the comment it is conditioned on
displayed on the right. The bounding box in the first screenshot (‘Start’) is the output from BoxGen.
The refinement process progressively improves the bounding box, terminating on a significantly
more accurate bounding box (‘End’).

Start End Screenshot

@ANOALlS)0Xa 390025

The expected standard The expected standard is that The expected € Nofifications

is that design should the design should be consistent standard is that the =

convey a clear message throughout the app. In the design should be icione

In the current design, it current design, the "Ringtone" easy to understand

does not provide section and the "Message and use. In the [

enough information to Notification Sounds" section are current design, the o

the users to understand not consistent with each other. layout of the Slanca.”

what the app itselfisall ~ The "Ringtone" section has a notification settings

about. To fix this, dropdown menu, while the is confusing and Ongoing Notifcation PY

redesign it by adding "Message Notification Sounds" difficult to follow. Push Notfications °

additional information section does not. To fix this, the To fix this, the

with features to designer should make the two designer should

communicate the sections consistent with each reorganize the

content to its intended other. For example, both sections layout to make it

users. could have dropdown menus. more intuitive. m

Figure 9: An example of iterative comment refinement, with the bounding box it is conditioned on
displayed on the right. The first comment (‘Start’) was classified as incorrect by the Validation but
has an accurate corresponding bounding box. The refinement process progressively improves the
comment, terminating with an accurate comment on the poor layout of the region in the bounding
box. (‘End’).

22

Under review as a conference paper at ICLR 2025

Comment Set Ranking

Set A (All Comments)

1. The expected standard is that the text's visual treatment and formatting should make it easy to read. In the
current design, the text font size is small and the background makes the foreground text difficult to read. To fix
this, we can increase the text font size and choose a different contrasting background.

Set B (All Comments)

1. The expected standard is to have high contrast and a visually appealing background that complements the
design's overall aesthetic. In the current design, the black background lacks visual appeal. To fix this, consider
a lighter background or a textured black option to improve contrast and visual interest.

Set C (All Comments)

1. The expected standard is that the design should use as few elements as possible to achieve its goals. Each
visual element should contribute to the overall message; all non-essential elements should be omitted. In the

current design, there are too many elements on the screen, making it difficult to focus on any one thing. To fix

this, the designer should remove any unnecessary elements from the screen.

Please rank each set of comments, as a whole, based on their overall quality. Please rank them in
decreasing quality.

SetA
SetB

setC

Individual Comment Rating

Set C Comment (10 of 15) *

‘The expected standard is that the design should be visually appealing and easy to use. In the current design,
the textis not aligned properly. To fix this, the designer should align the text o the center.

classic boxing

Work 03:00 Rest 01:00

03:00

Round 1/12

Fight!
| Settings || Reset || Gmt |

o

Invalid

Partially Valid

Valid

Figure 10: The form used for individual comment quality rating and comment set ranking.

23

	Introduction
	Related Work
	Automated UI Design Critique with LLMs
	Prompting LLMs with Iterative Refinement
	Multimodal Tasks

	Task
	Method
	Experiments
	Dataset
	Baseline
	Impact of Visual Prompting & Iterative Refinement on Visual Grounding
	Pipeline Ablation Study and Qualitative Analysis
	Human Evaluation

	Generalization to Other Tasks
	Open Vocabulary Object and Attribute Detection
	Comparison with Baseline

	Discussion
	Conclusion
	Appendix
	Open Vocabulary Object and Attribute Detection Task
	Few-shot Sampling Methods for Both Tasks
	UI Design Critique
	Open Vocabulary Object and Attribute Detection

	Instructions Prompts for Pipeline
	Qualitative Analysis of Outputs from Pipeline, Baseline, and Finetuned LLM
	Analysis of Iterative Refinement
	Human Evaluation Method
	Algorithms for Generating Few-shot Examples for Bounding Box Refinement

