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Figure 1: Our IMAGE method is inspired by human perception; by masking key details of objects,
we encourage the model to learn more robust representations.

ABSTRACT

In recent years, zero-shot and few-shot learning in visual grounding have garnered
considerable attention, largely due to the success of large-scale vision-language
pre-training on expansive datasets such as LAION-5B and DataComp-1B. How-
ever, the continuous expansion of these datasets presents significant challenges,
particularly with respect to data availability and computational overhead, thus cre-
ating a bottleneck in the advancement of low-shot learning capabilities. In this
paper, we propose a novel approach, Interpretative MAsking with Gaussian Ra-
diation ModEling, aimed at enhancing vocabulary grounding in low-shot learning
scenarios without necessitating an increase in dataset size. Drawing inspiration
from cognitive science and the recent success of masked autoencoders (MAE), our
method leverages adaptive masking on salient regions of the feature maps gener-
ated by the vision backbone. This enables the model to learn robust, generalized
representations through the reconstruction of occluded information, thereby facili-
tating effective attention to both local and global features. We evaluate the efficacy
of our approach on benchmark datasets, including COCO and ODinW, demon-
strating its superior performance in zero-shot and few-shot tasks. Experimental
results consistently show that IMAGE outperforms baseline models, achieving
enhanced generalization and improved performance in low-shot scenarios. These
findings highlight the potential of adaptive feature manipulation through attention
mechanisms and Gaussian modeling as a promising alternative to approaches that
rely on the continual scaling of dataset sizes for the advancement of zero-shot and
few-shot learning.

1 INTRODUCTION

”To see the world in a grain of sand,” – William Blake, Auguries of Innocence

When observing an object, humans naturally focus on key details to grasp its essence. Masking these
key features in visual tasks may encourage models to learn more robust representations, potentially
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enhancing performance. Low-shot object grounding has gained significant attention due to its abil-
ity to reduce reliance on large labeled datasets. The capacity to ground and recognize novel objects
with minimal examples is particularly valuable in applications like autonomous driving, where sys-
tems must handle rare or unseen situations with limited data Rezaei & Shahidi (2020). Additionally,
low-shot grounding aids embodied AI in associating new concepts or objects within interactive en-
vironments with few labeled examples Varley et al. (2024). Recent vision-language models, such
as CLIP Radford et al. (2021), have achieved notable success in bridging visual and textual modali-
ties by leveraging large-scale pre-training. However, despite their strong performance, these models
remain data-hungry, requiring substantial labeled data to adapt to new scenes. This reliance limits
their utility in scenarios where data collection is challenging or impractical.

In visual grounding, recent efforts to enhance open-vocabulary detection have integrated textual
prompts and multimodal fusion into object detection frameworks. Models like GLIP Li et al. (2022),
YOLO-world Cheng et al. (2024), and Grounding DINO Liu et al. (2023) extend traditional detectors
by incorporating language understanding, enabling object detection based on textual descriptions.
While these approaches have advanced zero-shot grounding, they still demand extensive data to
perform effectively. Furthermore, these models often struggle in complex scenes where visual cues
are occluded or misaligned with textual descriptions.

These limitations highlight a critical issue: current multimodal models struggle to generalize from
seen to unseen categories without explicit training examples. This challenge is compounded by
their reliance on static visual cues and the lack of dynamic reasoning, as existing methods prioritize
dataset expansion over teaching models to effectively ”interpret” images. There are some methods
such as Masked Autoencoder (MAE) He et al. (2022) and FLIP Li et al. (2023) attempt to improve
the performance of a model by reconstructing the masked portion of the input data. However, this
randomized masking approach suffers from poor interpretability, determinism and effect enhance-
ment.

To address these limitations in a better way, we propose IMAGE, a novel method that introduces
an adaptive masking strategy on features within the framework. Inspired by the human ability to
infer missing information and focus attention dynamically, IMAGE mirrors cognitive processes in
human reasoning. By deploying an adaptive mask scheme, IMAGE enables the model to learn more
robust representations and focus on discriminative features.(eg. it makes more sense to identify cats
by focusing on silhouette features rather than colors). In a word, IMAGE allows the model to learn
how to “heed” objects rather than mechanically scanning and recognizing them.

We validate our method on datasets such as COCO Lin et al. (2014) and ODinW, and test it in
both zero-Shot and few-Shot situations. Utilizing IMAGE’s adaptive masking strategy, we achieve
measurable improvements in both few-shot and zero-shot detection accuracy without significant
computational overhead. Extrinsically, our method reduces the dependence on ever-larger datasets.
Intrinsically, it provides a theoretical based way to empower existing detection models with robust
learning and reasoning abilities. Our contributions are as follows:

• We introduce IMAGE, a novel adaptive masking framework that enhances low-shot visual
grounding by enabling models to focus on important object features and improve reasoning
capabilities, leading to more robust representations.

• We demonstrate theoretically and empirically that adaptive masking improves model ro-
bustness and generalization to unseen datasets, effectively addressing fundamental chal-
lenges in zero-shot and few-shot learning without relying on larger datasets.

• We provide empirical evidence on standard benchmarks showing that IMAGE outperforms
baseline models and random masking strategies in low-shot settings, enhancing both few-
shot and zero-shot performance with minimal computational overhead.

.

2 RELATED WORK

Zero-Shot and Few-Shot Learning in Visual Grounding Low-shot learning, especially Zero-
shot learning (ZSL), aims to recognize objects from unseen classes by leveraging knowledge transfer
from seen classes Lampert et al. (2009); Farhadi et al. (2009); Socher et al. (2013). Early approaches
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in ZSL for visual grounding focused on attribute-based methods and semantic embeddings to relate
seen and unseen classes Akata et al. (2015); Xian et al. (2018). With the advent of large-scale
vision-language models like CLIP Radford et al. (2021), recent works have utilized these pretrained
models for zero-shot grounding tasks Gu et al. (2021); Li et al. (2022). However, these methods often
rely on extensive datasets for pre-training and fine-tuning, limiting their scalability and practicality.
Few-shot learning, on the other hand, seeks to learn new concepts from a small number of labeled
examples Fei-Fei et al. (2006); Snell et al. (2017). In visual grounding, few-shot learning approaches
have been developed to enhance generalization to new classes with limited annotated data Kang et al.
(2019); Sun et al. (2021). Despite progress, many few-shot methods struggle with overfitting due
to data scarcity and often require complex meta-learning frameworks Finn et al. (2017); Li et al.
(2019).

Attention Mechanisms and Masking Strategies in Vision Models Attention mechanisms have
become integral in deep learning models for their ability to focus on relevant parts of the input
data Bahdanau et al. (2015); Vaswani et al. (2017). In vision transformers, self-attention enables the
modeling of global dependencies, enhancing feature representations Dosovitskiy et al. (2021); Liu
et al. (2021). In the self-supervised learning area, masking parts of the input data has been an effec-
tive technique to improve feature representations. Methods like Masked Autoencoders (MAE) He
et al. (2022) mask random patches of the input image and train the model to reconstruct them.
BEiT Bao et al. (2021) extends this idea by using a tokenizer to create discrete tokens for masked
patch prediction. However, these methods typically use random masking, which does not guide the
model to focus on important features.

Radiance Field Modeling and Gaussian Approaches Radiance fields have been employed in
computer vision and graphics to model the way light interacts with surfaces, enabling high-fidelity
scene reconstruction Mildenhall et al. (2020); Niemeyer et al. (2020). Neural Radiance Fields
(NeRF) Mildenhall et al. (2020) represent scenes using continuous volumetric radiance fields pa-
rameterized by neural networks. Gaussian modeling of radiance fields allows for smooth represen-
tations and has been utilized in various applications Wang et al. (2021); Kim et al. (2022). Similarly,
Zhou et al. Zhou et al. (2016) demonstrated that global average pooling enables CNNs to localize
discriminative regions without explicit localization training. In our work, we employ a dynamic
Gaussian modeling approach to represent the importance prior distribution of the feature map. This
approach allows us to flexibly apply an adaptive mask to the feature map, instead of using rigid
thresholding, thereby enhancing the model’s focus on salient regions.

3 METHOD

IMAGE aims to enhance zero-shot and few-shot visual grounding without relying on large-scale
datasets. Inspired by Masked Autoencoders (MAE), IMAGE leverages adaptive masking techniques
that emphasize salient regions within an image’s feature map, compelling the model to infer missing
information and learn robust, generalized representations. As is shown in Fig. 2. IMAGE consists
of two primary components: the Importance Prior Generation Block (θp), which estimates the
importance of image patches based on their relationships within the feature map, and the Adaptive
Mask Generation Block (θm), which creates adaptive masks guided by the importance prior to
direct the model’s attention during training. Given an input image, a pretrained Swin-Transformer
backbone network processes it to produce hierarchical feature maps at multiple scales, denoted as
{F1, F2, F3, F4}, where each feature map Fi has dimensions (B,Ci, Hi,Wi), representing batch
size B, number of channels Ci, and spatial dimensions Hi×Wi at scale i. IMAGE applies adaptive
masking on these feature maps, focusing the model’s attention on the most relevant regions, thereby
improving its reasoning capabilities and generalization performance.

3.1 IMPORTANCE PRIOR GENERATION

The first step in adaptive masking is to compute an importance prior that captures the relevance of
each patch within a feature map. For each feature map Fi, we perform the following steps:

3
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Figure 2: Pipeline of IMAGE model, consisting of two blocks: attention prior generation module
and RF-GAM mask generation module.

Self-Attention Encoding We reshape Fi into a sequence of tokens and apply a self-attention
mechanism to capture contextual relationships between image patches:

Xi = Reshape(Fi) ∈ RB×Ni×Ci ,

Zi = Xi + SelfAttention(Xi),

Ti = Zi + FFN(Zi),

where Ni = Hi ×Wi is the number of patches at scale i, and FFN denotes a feedforward network.

Importance Prior Calculation To compute the importance of each patch, we calculate the corre-
lation between each patch pj and all other patches in Ti:

Sj = pj × T⊤
i ,

where pj ∈ RB×1×Ci is the feature vector of the j-th patch. We then average Sj over all patches to
obtain the importance score for patch pj :

sj = AveragePooling(Sj).

Repeating this for all patches yields the importance prior matrix Swhole ∈ RB×Ni×1. We normalize
the importance scores to ensure comparability:

S̃whole =
Swhole −min(Swhole)

max(Swhole)−min(Swhole)
.

3.2 ADAPTIVE MASK GENERATION

Using the importance prior S̃whole, we generate adaptive masks that obscure certain patches based on
their importance. For the mask generation module, IMAGE proposes two mask generation strate-
gies, corresponding to our adaptive mask and RF-GAM method respectively. The details are as
follows:

Threshold-Based Adaptive Masking We sort the patches based on their importance scores and
designate the top ρi% as important regions for each scale i. Within these important regions, we
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randomly select γ% of the patches to apply masking. For the remaining patches, we randomly mask
patches to meet the desired masking ratio ρi. This strategy challenges the model to infer critical
information from incomplete data while ensuring it has sufficient information to learn effectively.

Radiance Field Gaussian Adaptive Masking (RF-GAM) To implement a spatially aware mask-
ing strategy, we model the importance distribution using Gaussian radiance fields. For each feature
map Fi, we select the top Ki patches as radiation points based on their importance scores. For
each radiation point k, we estimate its variance σ2

k by combining its feature vector fk with the
cross-attention output ck and passing it through a feedforward network:

hk = [fk, ck],

σ2
k = ReLU(FFNσ(hk)) + ϵ,

where ϵ ensures numerical stability. The radiance intensity at each location (x, y) is computed as:

I(b)(x, y) =

Ki∑
k=1

α
(b)
k exp

(
−∥(x, y)− (xk, yk)∥2

2σ
2(b)
k

)
,

where α
(b)
k is the amplitude (importance score) of radiation point k. We determine masking thresh-

olds based on the intensity distribution’s mean µ(b) and standard deviation σ(b):

T
(b)
hard = µ(b) + (δ + k)σ(b),

T
(b)
no-mask = µ(b) + (δ − k)σ(b),

with hyperparameters δ and k. The mask M
(b,p)
i is defined as:

M
(b,p)
i =


0, if I(b)(x, y) > T

(b)
hard,

1, if I(b)(x, y) < T
(b)
no-mask,

1−
I(b)(x, y)− T

(b)
no-mask

T
(b)
hard − T

(b)
no-mask

, otherwise.

The final mask Mi ∈ [0, 1]B×Ni is applied to the feature map:

F ′
i = Fi ⊙ Reshape(Mi),

where ⊙ denotes element-wise multiplication.

Progressive Masking Strategy To ensure effective learning, we introduce a progressive masking
strategy that adjusts the masking ratio over the course of training:

• Multi-Scale Masking: Apply different masking ratios at different feature map scales.
Lower-level feature maps retain more detail, while higher-level maps have higher mask-
ing ratios to focus on reasoning.

• Dynamic Masking: Gradually increase the masking ratio and mask strength during train-
ing. The hyperparameter k in RF-GAM is adjusted per epoch:

kepoch = k0

(
1− epoch

Etotal

)
,

where k0 is the initial value, and Etotal is the total number of training epochs.

This progressive approach allows the model to adapt to increasing levels of difficulty, enhancing its
ability to infer missing information and learn robust representations.
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Optimization and Learning Strategy To optimize the model effectively, we employ the follow-
ing learning strategies:

• Loss Functions: We combine the standard contrastive loss used in vision-language align-
ment with the localization loss Llocalization, weighted by β:

Ltotal = Lcontrastive + βLlocalization.

• Training Schedule: We adopt an asymptotic learning schedule, gradually increasing the
masking difficulty as the model becomes more capable.

• Hyperparameter Tuning: Parameters such as the initial masking ratio, the rate of increase,
and the thresholds in RF-GAM are tuned to balance the trade-off between learning from
sufficient information and challenging the model.

By integrating the adaptive masking technique with a carefully designed optimization strategy, IM-
AGE effectively enhances the model’s ability to generalize from limited data without the need for
scaling up dataset size.

3.3 THEORETICAL ANALYSIS

We provide a theoretical justification for how adaptive masking improves performance, drawing
parallels to the principles of generalization.
Assumption 1. The IAMGE model is trained on a dataset of image-text pairs (xi, ti) drawn i.i.d.
from an unknown joint distribution D. Each image xi is encoded into a feature map Fi, and the
adaptive masking function generates a mask matrix Mi based on the importance prior learned
from the feature map.
Assumption 2. The masking loss Lmask is L-Lipschitz continuous with respect to the masked feature
map F ′

i = Fi ⊙Mi, where ⊙ denotes element-wise multiplication.
Lemma 1. Let ŷij be the predicted similarity between the masked image feature embedding and
the corresponding text embedding in a batch. Let y∗ij be the optimal similarity that minimizes the
IMAGE loss LIMAGE. Then, with probability at least 1− δ, we have:

|ŷij − y∗ij | ≤
1

τ

√
log(2/δ)

2Nbatch
+

βL

τ
,

where τ is the temperature hyperparameter, β is the masking loss weight, and Nbatch is the batch
size.

Proof. The first term arises from Hoeffding’s inequality, which bounds the deviation between the
empirical mean ŷij and the true expectation y∗ij of the similarity between masked image features and
text embeddings. Since 0 ≤ ŷij ≤ 1, the deviation is bounded by:

P (|ŷij − E[ŷij ]| ≥ ϵ) ≤ 2 exp
(
−2Nbatchϵ

2
)
.

Solving for ϵ with probability 1− δ gives the first term.

The second term follows from the Lipschitz continuity of Lmask. By Assumption 2, for any two
masked feature maps F ′

i and F ′′
i , we have:

|Lmask(F ′
i)− Lmask(F ′′

i )| ≤ L∥F ′
i −F ′′

i ∥.
The deviation between the masked features of ŷ and y∗ is bounded by their total variation distance,
scaled by the Lipschitz constant and the loss weight β. Combining both terms completes the proof.

Theorem 1 (IMAGE Generalization Bound). Let fθ denote the IMAGE model with learned pa-
rameters θ. Let R̂(fθ) and R(fθ) denote its empirical and expected risks, respectively, on a down-
stream task. Then, with probability at least 1− δ over the training set, we have:

R(fθ) ≤ R̂(fθ) +O

1

τ

√
log(1/δ)

Nbatch
+

βL

τ

 .
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Proof. The empirical risk R̂(fθ) is an average over the predicted similarities ŷij for image-text pairs
in the masked feature space. By Lemma 1 and applying a union bound over all O(N2

batch) pairs, each
term ŷij concentrates around the optimal y∗ij with high probability. The total deviation is bounded
by:

|R̂(fθ)−R(fθ)| ≤
1

τ

√
log(2N2

batch/δ)

2Nbatch
+

βL

τ
.

Simplifying the logarithmic term and constants yields the stated bound.

Discussion. The theoretical analysis demonstrates that adaptive masking contributes to reducing
the generalization error by forcing the model to learn robust representations from incomplete data.
The generalization bound indicates that the error decreases with larger batch sizes Nbatch and appro-
priate choices of the temperature parameter τ , masking loss weight β, and Lipschitz constant L. By
adaptively masking key regions, the model is encouraged to develop stronger reasoning capabilities,
which translates to improved performance in zero-shot and few-shot tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Dataset We conduct experiments on the COCO and ODinW dataset. For training and evaluation
in a close-set setting, we use the COCO 2017 dataset. The training set (train2017) contains approx-
imately 118,000 images with 80 object categories, and the validation set (val2017) consists of about
5,000 images. To assess zero-shot detection capabilities, we utilize the ODinW datasets, specifically
the ODinW 13 and ODinW 35 subsets. These datasets comprise images from various domains and
contain object categories not present in the COCO training set, making them suitable for evaluating
zero-shot performance. For few-shot experiments, we create subsets of the COCO train2017 dataset
by randomly selecting 5%, 10%, 20%, and 30% of the data.

Evaluation Metrics We assess the performance of the proposed method using the following met-
rics: (1) Average Precision (AP): Following the standard COCO evaluation protocol, we report the
Average Precision at Intersection-over-Union (IoU) thresholds ranging from 0.5 to 0.95, denoted as
AP@[0.5:0.95]. (2) Zero-Shot Detection: For the ODinW datasets, we use mean Average Precision
(mAP) as the primary metric to evaluate the model’s zero-shot detection performance. (3) Few-Shot
Performance: To assess generalization in few-shot settings, we report AP on the COCO val2017
set, evaluating the model’s ability to learn from limited data.

Implementation Details Our model is based on the Grounding DINO framework, incorporating
a Swin-T backbone. The adaptive masking modules are integrated after the backbone’s feature
extraction stages, as described in Section 3. Different mask rates are applied to the four feature layers
from the Swin-T backbone, with initial mask rates set to 20%, 30%, 40%, and 50%, respectively. In
RF-GAM module, The parameter k0 in the Gaussian modeling starts at 0.5 and decays smoothly to
near zero over all epochs to facilitate progressive learning.

4.2 QUALITATIVE RESULTS

Overall Performance To assess the generalization capabilities of IMAGE, we compare their per-
formance in zero-shot, close-set, and few-shot settings under the same number of training epochs.
The experiment shows great improvement of our method in low-shot and close-set grounding tasks,
As shown in Fig. 3. In particular, we also discuss the final results of these methods, shown in the
table 1, where IMAGE still exhibits excellent performance.

In the close-set scenario, after training on the full COCO train2017 dataset for 10 epochs, the RF-
GAM model achieves an AP of 44.1% on the COCO val2017 dataset, while the baseline model got
42.2% AP. In the few-shot scenario with 30% of the training data and 6 epochs, the model achieves
an AP of 32.3%, which is close to the performance achieved by the baseline trained with the full
dataset and outperforms the baseline model about 17% AP with 30% of the training data. This

7
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Datasets Metric Baseline Random Mask Adaptive Mask RF-GAM
Close-set COCO val2017 0.454 0.456 0.473 0.481 (+2.7%)

Zero-shot ODinW 13 0.208 0.190 0.235 0.251 (+4.3%)
ODinW 35 0.092 0.085 0.104 0.112 (+2.0%)

Few-shot COCO val2017 0.400 0.392 0.426 0.437 (+3.7%)

Table 1: Performance comparison across different datasets with percentage improvement in IMAGE
in low-shot setting.

Figure 3: Scaling laws of our IMAGE model. With increased epochs, IMAGE achieves more accu-
rate grounding AP across all four datasets and three settings.

highlights the efficiency of our method in low-data regimes and extraordinary robust representation
learning .

For zero-shot evaluation, we test our models on the ODinW datasets, which contain categories not
seen during training. As presented in Table 1, the RF-GAM model achieves an average AP of 25.1%
on the ODinW 13 dataset, outperforming the baseline and random masking methods about 5% AP.
This indicates that our adaptive masking strategies greatly enhance the model’s ability to generalize
to unseen categories, paving for the meta-learning in a new way.

Few-Shot Training with Different Data Ratios We evaluate our models in few-shot learning sce-
narios by training them on varying proportions (5%, 10%, 20%, and 30%) of the COCO train2017
dataset and testing on the COCO val2017 dataset. This setup simulates situations with limited an-
notated data.

As shown in Fig. 4, our adaptive masking methods significantly improve performance in few-shot
settings. For instance, with only 30% of the training data and after 6 epochs, the RF-GAM model
achieves an AP of 32.3%, compared to 15.3% for the baseline model under the same conditions.
In addition, RF-GAM with only 30% of the training data is already comparable in accuracy to the
baseline with 100%. These demonstrates that RF-GAM enchants the model with incredible gener-
alization ability and be able to learn effectively from limited data by focusing on critical features.

Figure 4: Comparison between IMAGE with other strategies in different few-shot ratios

Impact of Different Mask Ratios To investigate the effect of different mask ratios on model
performance, we experimented with various initial mask rates applied to different feature layers.

8
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The mask ratios tested include [10%, 20%, 30%, 40%], [20%, 30%, 40%, 50%], and [30%, 40%,
50%, 60%].

The results in Table 2 indicate that the initial mask ratio of [20%, 30%, 40%, 50%] yields the best
performance on most datasets, achieving the highest AP of 0.481 on the COCO val2017 dataset,
0.112 on the ODinW 35 dataset, and 0.437 on the fewshot(30%) dataset. On the ODinW 13 dataset,
the [30%, 40%, 50%, 60%] mask ratio gives the best performance with an AP of 0.253. These results
suggest that a balanced masking strategy across feature layers generally enhances feature learning
and overall model performance, but the optimal ratio may vary slightly depending on the dataset.

Scale masking ratio COCO val2017 ODinW 13 ODinW 35 fewshot(30%)
[10%,20%,30%,40%] 0.479 0.248 0.109 0.431
[20%,30%,40%,50%] 0.481 0.251 0.112 0.437
[30%,40%,50%,60%] 0.470 0.253 0.111 0.424

Table 2: IMAGE Results Across Different Datasets and Scale-masking Combinations

Figure 5: Results in different occlusion ratios on
images across various methods.

The Performance of Methods in Different
Occlusion Ratios In the study of object
grounding accuracy under partial occlusion, we
compared our RF-GAM model, which utilizes
adaptive masking and Gaussian dynamic mod-
eling strategies, against a baseline model, ran-
dom masking, and adaptive masking methods.
AS shown in Fig. 5, as the occlusion rate in-
creases from 0% to 80%, all models experience
a decline in accuracy. However, RF-GAM con-
sistently achieves the highest accuracy, partic-
ularly under higher occlusion rates, where its
superiority becomes more evident. Even with
80% occlusion, RF-GAM still achieved 0.362
AP, far surpassing the baseline model (0.136)
and outperforming both random and adaptive
masking methods. This superiority can be at-
tributed to the fact that the adaptive masking
strategy based on Gaussian dynamic modeling
in RF-GAM empowers the model to reason ro-
bustly from the residual image information.

4.3 ABLATION STUDIES

Effectiveness of Importance Prior in Adaptive Masking To assess the impact of incorporating
importance priors in our adaptive masking strategy, we compare our model using adaptive masking
strategy with a baseline and random masking where the masking is applied uniformly at random
without considering patch importance. In random masking, patches are masked without regard to
their significance in the feature map.

As shown in Table 1, the model utilizing the importance prior in adaptive masking methods demon-
strates superior performance across all evaluation settings. Specifically, in the close-set scenario
on COCO val2017, the model with importance prior achieves an AP of 47.3%, compared to
45.6%, 45.4% for the random masking and baseline respectively. In the zero-shot evaluation on
the ODinW 13 dataset, the importance prior model attains an average AP of 23.5%, surpassing the
baseline’s 20.5% and 19% in random masking. For few-shot learning with 30% of the training data,
the importance prior model achieves an AP of 42.6%, consistently outperforming the baseline’s
40.0% and 39.2% in random masking. These results confirm that incorporating patch importance
into the masking strategy effectively enhances feature learning by focusing on critical regions, lead-
ing to improved detection performance.
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Effectiveness of Gaussian Radiance Field Modeling We evaluate the contribution of RF-GAM
by comparing it with the standard adaptive masking method that does not use radiance field model-
ing. The standard adaptive masking applies masking based on patch importance but without model-
ing the spatial distribution of importance using Gaussian functions.

As presented in Table 1, the RF-GAM method consistently outperforms the standard adaptive mask-
ing method across all scenarios. In the close-set evaluation on COCO val2017, RF-GAM achieves
an AP of 44.1%, compared to 43.7% for the standard adaptive mask. In zero-shot detection on
ODinW 13, RF-GAM attains an average AP of 25.1%, exceeding the standard method’s 23.5%. In
the few-shot setting with 20% training data and 6 epochs, RF-GAM achieves an AP of 32.3%, higher
than the standard adaptive mask’s 29.0%. These improvements indicate that modeling the impor-
tance distribution using Gaussian radiance fields allows for more nuanced and effective masking,
enhancing the model’s ability to learn salient features.

Settings Close-set (COCO) Few-shot (COCO) Zero-shot (ODinW 13/35)
non-progressive 0.476 0.426 0.235 / 0.110
progressive 0.481 0.437 0.251 / 0.112

Table 3: The comparison of non-progressive and progressive training across datasets.

Effectiveness of Progressive Training Strategy To determine the impact of the progressive train-
ing strategy, we conduct experiments where the parameter k in the RF-GAM method is held con-
stant, effectively removing the progressive aspect. In the standard RF-GAM, k starts at an initial
value (e.g., 0.5) and decays to near zero over the training epochs to facilitate gradual learning. By
fixing k, we assess whether the progressive adjustment contributes to performance gains.

The results in Table 3 reveal that the progressive training strategy significantly enhances model per-
formance. Without progressive k decay, the IMAGE model achieves an AP of 47.6% on COCO
val2017, which is slightly lower than the 48.1% achieved with the progressive strategy. Similarly,
in zero-shot detection on ODinW 13, the non-progressive model attains an average AP of 23.5%,
compared to 25.1% with progressive training. In the few-shot scenario with 30% data, the non-
progressive model achieves an AP of 42.6%, lower than the 43.7% with progressive k decay. These
results suggest that gradually reducing k during training helps the model adaptively adjust the mask-
ing intensity, promoting better feature learning and generalization.

5 CONCLUSION

In this paper, we introduced IMAGE (Interpretative MAsking with Gaussian Radiation ModEling),
a novel approach designed to enhance zero-shot and few-shot visual grounding without the need
for enlarging dataset sizes. Inspired by cognitive science and the success of Masked Autoencoders
(MAE), our method employs adaptive masking on salient regions of the feature maps generated by
the vision backbone, compelling the model to reconstruct occluded information and thereby learn ro-
bust, generalized representations that effectively attend to both local and global features. Evaluated
on benchmark datasets including COCO and ODinW, IMAGE consistently outperforms baseline
models, demonstrating superior performance in zero-shot and few-shot tasks. These findings un-
derscore the potential of adaptive feature manipulation through attention mechanisms and Gaussian
modeling as a promising alternative to methods relying on dataset scaling for advancing low-shot
learning capabilities.

The challenges posed by complex real-world visual data, such as severe occlusions and missing
key object features, present opportunities to further enhance our approach. Future work could fo-
cus on integrating more sophisticated data augmentation techniques or incorporating multimodal
data—such as depth information or temporal cues—to improve the model’s ability to generalize
from incomplete visual inputs. Additionally, applying our adaptive masking strategy to other ar-
eas like video understanding or 3D vision may extend its benefits. A deeper investigation into the
interplay between adaptive masking, attention mechanisms, and Gaussian modeling may provide
valuable insights, potentially leading to further advancements in zero-shot and few-shot learning
across various domains.
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