
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Beyond Visual Confusion: Understanding How Inconsistencies in
ENS Normalization Facilitate Homoglyph Attacks

Anonymous Author(s)
ABSTRACT
In recent years, the Ethereum Name Service (ENS) has garnered sig-
nificant attention within the community for enabling the use of Uni-
code in domain names, thereby facilitating the inclusion of a wide
array of character sets such as Greek, Cyrillic, Arabic, and Chinese.
While this feature enhances the versatility and global accessibility
of domain names, it concurrently introduces a substantial secu-
rity vulnerability due to the presence of homoglyphs—characters
that are visually similar to others across Unicode and ASCII sets.
These similarities can be exploited in homoglyph attacks, posing
a distinct threat to domain name integrity. Despite community ef-
forts to counteract this issue through a normalization process prior
to domain resolution, our analysis uncovers significant discrepan-
cies in how the normalization processes are applied across various
applications. This inconsistency could result in the same domain
name being resolved to different addresses in different applications,
underscoring a critical vulnerability. We also discovered the new at-
tack scenario in ENS which may cause legitimate domains resolved
into malicious addresses even when they are verified by authorities.
To systematically evaluate this inconsistency, we designed a tool for
detecting application-level discrepancies in domain normalization
process without requiring access to the application’s source code.
Our evaluation on hundreds of real-world Web3 applications identi-
fies widespread deviations from established homoglyph mitigation
practices, with more than 60% digital wallets and 80% dApps (decen-
tralized applications) not able to produce consistent ENS resolving
results, potentially impacting millions of users. This analysis un-
derscores the urgent need for a standardized implementation of
normalization processes to safeguard the integrity and security of
ENS domains.
ACM Reference Format:
Anonymous Author(s). 2024. Beyond Visual Confusion: Understanding
How Inconsistencies in ENS Normalization Facilitate Homoglyph Attacks.
In . ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
The Ethereum Name Service (ENS) operates as a decentralized, ac-
cessible, and adaptable naming system that leverages the Ethereum
blockchain. Its primary function is to associate human-readable
names like ‘alice.eth’ with machine-readable designations, which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

encompass Ethereum addresses, addresses for other cryptocurren-
cies, content hashes, and additional metadata [12]. Over the past
few years, ENS has garnered significant attention within the com-
munity. ENS employs Unicode encoding, with the flexibility that
enables the encoding of an extensive character set, encompassing
characters from diverse scripts such as Greek, Cyrillic, Arabic, and
Chinese. The utilization of Unicode characters in domain names
also facilitates the incorporation of regional alphabets into domain
naming conventions.

However, a major security risk is introduced along with Unicode
characters. The Unicode system contains characters that are visually
similar to other Unicode or ASCII characters, called homoglyphs. A
homoglyph attack is one technique for carrying out this scheme. For
example, using most sans-serif fonts, the Latin letter l (lower case
‘el’) is visually confusable with the Latin letter I (upper case ‘eye’).
Rendered with such a font, the following domains are confusable:

paypal.com vs. paypaI.com

An attackerwho owns the homoglyph domain name, paypaI.com,
therefore may be able to lure victims to send transactions to their
wallets/contracts, for example by sending a scam that appears to
contain a link to the original paypal.com.

Homoglyph attacks have existed for years. In Domain Name
System (DNS), the adoption of International Domain Names (IDNs)
support also introduced the same problem [17]. Many international
letters have similar glyphs. Due to the potential abuse of homo-
glyph characters, browser vendors have been exploring techniques
to mitigate the homoglyph attack [10][26]. In ENS, the community
has been aware of the problem and since December 2021, the com-
munity has decided to enforce the normalization process before
domain resolution to mitigate the threat [28]. In the past two years,
the normalization standard has evolved to cover the majority of
homoglyph characters in Unicode. However, not all applications
are following the standard closely. Many applications are still us-
ing the first version of the normalization or even not containing a
normalization process at all.

While there are numerous parallels, homoglyph attacks within
the ENS present a more severe risk than those encountered in the
DNS. In DNS, homoglyph attacks often involve deceptive content
designed to trick victims into divulging sensitive information to the
attacker’s servers. Throughout this process, victims may encounter
multiple cues that could alert them to the fraudulent nature of the
interaction, as illustrated in Figure 1. Indicators such as outdated
website information, inaccuracies in product listings, or failures
in input validation may serve as warnings. Moreover, even if a
DNS-based homoglyph attack succeeds, the repercussions of leaked
sensitive data can often be mitigated; for instance, compromised
credit cards can be frozen, or passwords for breached accounts can
be changed. Conversely, in ENS, the act of directing a transaction
to a homoglyph domain constitutes the entirety of the attack, as
depicted in Figure 1. Unlike in DNS scenarios, where victims might

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1. Attacker sends a 
homoglyph domain to victim

Attacker Victim

2. Victim visit the 
fake website

3. Victim sends sensitive 
data to the fake website

4. Attacker collects 
leaked data

5. Attacker uses 
leaked data to 

access the 
original website

.

1. Attacker sends a 
homoglyph domain to victim

2. Victim uses the 
domain in a transaction

3. Attacker receives the 
cryptocurrencies

Homoglyph Attacks in DNS Homoglyph Attacks in ENS

Original Website Fake Website

Attacker Victim

Legitimate 
Crypto App

paypaI.com

еns.eth

paypaI.com

Figure 1: Homoglyph Attacks in ENS and DNS. The red lines are the steps where attackers achieve the attack goals. Victims are
able to stop the attack before that. In DNS, the victim needs to perform two operations to be attacked and the attack effects are
recoverable in some cases. However, in ENS, the victim only needs to type in the homoglyph domain in the crypto app they
trust and the attack effects are almost always unrecoverable.

scrutinize the content of a fraudulent website, individuals targeted
by ENS homoglyph attacks are less inclined to verify the legitimacy
of the domain’s associated address. Furthermore, the consequences
of falling victim to a homoglyph attack in ENS are invariably finan-
cial losses, which, due to the immutable nature of transactions on
the Ethereum blockchain, are irrevocable.

In this paper, we seek to investigate the extent of possible homo-
glyph risks in ENS and how well mitigation measures are enforced
in the wild. The main contributions of this paper are as follows.

• We systematically analyzed the design of ENS normaliza-
tion, identified the bad practices that lead to the inconsis-
tencies in libraries and dApps, and discovered new attack
scenarios where legitimate domains may also be affected.

• We propose a novel approach to automatically detect incon-
sistencies in the normalization process of an application
compared to the latest normalization standards.

• We measured the inconsistencies in the implementation
of ENS normalization processes in popular Web3 libraries,
wallets, and dApps. As a result, we identified 214 dApps, 41
crypto wallets, and 11 Web3 libraries that are inconsistent
with the official homoglyph mitigation and could impact
millions of users.

The remainder of this paper is organized as follows. In Section 2,
the background of homoglyph attacks and ENS is given. In Section
3, the measurement of homoglyph domains in ENS is presented. In-
consistencies in the normalization processes are provided in Section
4. Section 5 discusses related work in the literature. A discussion
around drawbacks that still need to be addressed is given in Section
6. Finally, Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the background of ENS. Then we
motivate our work with the new threats in ENS.

2.1 Ethereum Name Service
ENS shares common objectives with DNS, although it diverges
significantly in architecture due to the unique capabilities and con-
straints offered by the Ethereum blockchain. Much like DNS, ENS
functions using a structure of hierarchical names separated by dots,
referred to as domains, where the owner of a domain wields com-
plete authority over its subdomains[12]. Smart contracts known
as registrars hold ownership of top-level domains, such as ‘.eth,’
and establish regulations that govern the distribution of their re-
spective subdomains. These registrar contracts lay out guidelines
for anyone to acquire domain ownership by adhering to the speci-
fied rules. ENS also offers the flexibility to import DNS names that
users already own, making them available for use within the ENS
framework.

Due to ENS’s hierarchical structure, individuals possessing a
domain at any level are empowered to configure subdomains ac-
cording to their preferences, whether for personal or external use.
For example, if Alice is the owner of ‘www.eth’ she can establish
‘2024.www.eth’ and customize it to her specific requirements.

The workflow of ENS is shown in Figure 2. The domain owner
first registers a domain through an ENS controller (e.g., ENS offi-
cial website and MyEtherWallet). The controllers will process the
domain registration request and craft a domain registration trans-
action. The transaction will be sent to ENS registry contract on
the Ethereum blockchain. Once the transaction is processed, the
domain is registered. Then, the domain owner advertises the do-
main to his/her users. When the user tries to access the domain, the
wallet or client that the user uses will craft an ENS domain resolv-
ing transaction and send it to the domain resolver contract on the
blockchain. However, different from the registration transaction,
the resolving transaction will not be submitted to the blockchain
since the record is available on any node.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Beyond Visual Confusion: Understanding How Inconsistencies in ENS Normalization Facilitate Homoglyph Attacks Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

ENS Registry
ENS Managers

Domain Owner

User Wallets/DApps

4. Advertise the 
domain

1. Register a domain

2. Domain registration transaction

6. ENS domain 
resolving transaction5. ENS Domain Resolving

Resolvers

2. Domain registration 
transaction

Registration

Resolving

3. Add records

Figure 2: ENS Workflow

2.2 Motivation
In the ENS, domains are registered not by their apparent textual rep-
resentation but as hashed values resulting from a normalization pro-
cess. For instance, a domain like vitalik.eth is actually recorded on
the blockchain in its hashed form, i.e., [0xee6c4522aab0003e8d14cd40
a6af439055fd2577951148c14b6cea9a53475835]. This characteristic
significantly impacts the defense mechanisms against homoglyph
attacks, relegating them primarily to application-level implemen-
tations. Unlike in the DNS system for IDNs, where validation is
standardized and occurs through DNS servers because the domain
names are encoded rather than hashed, ENS operates differently.
The resolution process in ENS maps a hashed domain to a specific
wallet or contract address without an intermediate step to vali-
date the domain post-hashing. Consequently, the security against
such attacks hinges entirely on how applications manage the nor-
malization and hashing processes. This unique challenge within
ENS security protocols has prompted our investigation into these
application-level implementations.

On the other hand, considering the scenarios that ENS is used,
homoglyph attacks in ENS have the potential to cause more se-
vere security impacts to users than in DNS. In DNS, a homoglyph
attack may lure the victim to a phishing website and trick them
into sending sensitive data to the attackers. For example, a phish-
ing website could be masked as an e-commerce website. During
the homoglyph attack, the victim may notice that a) the domain
is weird, b) the prices are not reasonable, or c) the website is not
checking the validity of the card information. In other words, in
scenarios involving sensitive data compromise, the victim typically
has several opportunities to recognize the threat and halt the pro-
cess before their data is transmitted to the cybercriminal. Even if
the card details are dispatched, the victim retains the option to lock
the card, significantly reducing potential damages. Contrastingly,
within the ENS, the use of a homoglyph domain in any transaction
results in immediate financial detriment to the victim, who has a
singular opportunity to detect and avert the assault. More critically,
financial losses incurred in such instances are often irreversible.
Therefore, this paper evaluates the magnitude of this issue and
examines the effectiveness of mitigation strategies, specifically the
enforcement of the normalization process, in real-world settings.

3 OUR DISCOVERIES
ENS names have been integrated into hundreds of decentralized
applications (dApps) and wallets that are the foundation of Web3.
Hence, homoglyph domains in ENS presents a significant threat
to the security of the Ethereum ecosystem. Since ENS has a wider
support of Unicode characters than DNS, homoglyph domains in
ENS can be more diverse and sophisticated. In this section, we
measure the prevalence of homoglyph domains in ENS, identify the
popular homoglyph characters, and characterize the homoglyph
domains. We also present our findings on the new attack vectors
and scenarios that homoglyph domains in ENS can introduce.

3.1 Understanding Normalization in ENS
In this section, we present new attack vectors and scenarios that
homoglyph domains in ENS can introduce. We first present our
preiminary study on the inconsistencies in the normalization pro-
cess of ENS, which can be exploited by attackers to bypass the
security checks. We then discuss the security implications of the
inconsistencies and demonstrate them in real-world to show the
impact.

3.1.1 Normalization Process. The ENS name normalization process
standardizes the transformation of ENS names into a canonical
form before they are hashed for registration, which is defined in
ENSIP-15. ENSIP-15 extends ENSIP-1 by incorporating the latest
Unicode standards and addressingmodern challenges, such as emoji
sequences and homoglyph attacks. Normalization ensures that a
name is transformed into a consistent representation, even if input
varies. The process consists of the following steps:

(1) Tokenization: The input is split into labels, which are
further divided into sequences of Unicode code points. Each
label is tokenized into Text and Emoji tokens.

(2) Unicode Normalization: Text tokens are normalized us-
ing the NFC (Normalization Form C) standard, which com-
bines diacritical marks with base characters. Emoji tokens
are simplified by stripping optional presentation characters
(such as FE0F).

(3) Validation: The tokens are validated to ensure compliance
with character sets allowed in ENS labels. This includes
checking for disallowed characters, ensuring consistency

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

between input and output, and verifying that emojis follow
standard sequences.

(4) Concatenation: The normalized tokens are concatenated
into a string of Unicode code points, resulting in the nor-
malized label.

3.1.2 Inconsistency Types. In this subsection, we explore three
primary sources of inconsistencies in the implementation of nor-
malization processes we found in our preliminary study as detailed
in Appendix A. First, we discussed how discrepancies can emerge
due to the use of different versions of the Unicode library, empha-
sizing the need for standardized, version-independent approaches
to ensure consistent character handling. Second, we examine the
tension between official library implementations and the Unicode
Technical Standard #46 (UTS46), highlighting that variations can
occur when applications opt for customized normalization routines
based on the UTS46 standard. Lastly, we dive into the impact of
customized normalization functions within applications, which can
lead to deviations from standardized normalization outcomes. The
key takeaway from this subsection is the importance of clear com-
munication, documentation, and standardization in the Unicode
normalization ecosystem to minimize these inconsistencies and
facilitate smooth interoperability between diverse applications.

Type 1. Different Versions of Predefined Rules.
One of the prominent sources of inconsistency in the implemen-

tation of normalization processes stems from the use of different
versions of the predefined rules. As the normalization standards
evolve and the library is updated to accommodate these changes,
discrepancies can emerge between applications that utilize distinct
versions of the library. These disparities may manifest in variations
in normalization results, which can lead to interoperability issues.
For instance, a wallet relying on an older version of the predefined
rule list may consider certain characters valid, while another appli-
cation utilizing a more recent version might return error with the
same character. As a result, these disparities in library versions can
hinder the seamless exchange of data and content between different
applications.

Type 2. ENSIP-15 vs. UTS46 Standard:
Another source of inconsistency pertains to the confluence of

ENSIP-15 andUTS46. The ENS community announced that UTS46 is
used as the standard to encode the domain names. However, UTS46
itself does not contain any normalization process. While UTS46 is
a respected standard for the Unicode community, variations can
arise when applications only process inputs based on this standard
rather than adhering strictly to the official normalization process.
Consequently, the application with only UTS 46 support is much
more tolerant to homoglyph characters, which makes homoglyph
attacks easier to the users.

Type 3. ENSIP-15 vs. Customized Functions:
Inconsistencies can also arise from the customization of normal-

ization functions. While ENSIP-15 offer a standardized approach
to ENS domain normalization, some applications may choose to
implement customized normalization functions tailored to their
specific needs. One of the major reasons we observed is that the
official libraries only supported a limited number of programming
languages, while the applications are written with wider choices.
However, these customization can result in inconsistencies in the

normalization results. It becomes crucial for developers to thor-
oughly document and validate these customization to ensure that
the same rules are applied as defined in ENSIP-15.

3.2 New Attack Scenarios
Different from homoglyphs in other fields like DNS, where a banned
domain will get invalid in a few minutes all over the world, in
ENS, due to its nature that the normalization is proceeded off the
chain, any domain that has been registered can still be resolved
even when it is not allowed in the normalization standards any
more. With such feature, the inconsistency issue can cause severe
security implications to users. In this section, we further analyze the
security implications of the inconsistencies and demonstrate them
in real-world to show the impact depending on how the character
is handled by the standard normalization process.

Disallowed Homoglyph Characters. If a character is not al-
lowed (i.e., a standard normalization process will raise an alarm
and stop the resolving), the domain is considered not valid in the
community. Mostly, a character is not allowed because the com-
munity feels the character is used by attackers more than regular
users [14]. However, in the current ENS ecosystem, such domains
can still be resolved by Crypto applications that are using inconsis-
tent normalization libraries. Hence, the users of those applications
are under the risk of phishing/scam attacks though an effective
(standard normalization) mitigation is provided by the community.

Ignored Characters. Specifically, some formatting characters
and special characters used for emoji sequences (e.g., U+FE0F) will
be ignored during the normalization process, while domains con-
taining them are still considered valid in the community. In this
case, a domain containing such characters can still be accepted and
resolved by all applications. However, since these characters are
zero-width, they can be removed or placed in different positions of
a emoji sequence when the emoji is rendered exactly the same in
some fonts. Hence, if an attacker registered a domain with ignored
characters on the chain, a vulnerable application will resolve both
the attack domain and original domain into the attacker’s address.
For example, in Figure 3, the original domain only contains three
wallet icons, where U+FE0F is just for emoji sequences. With a stan-
dard normalization implemented by authorities like Etherscan[15],
U+FE0F will be ignored and the domain in Figure 3 will be resolved
into the original address. However, a legitimate Crypto applica-
tion with inconsistencies in normalization process may not ignore
U+FE0F and try to resolve the domain with it. Finally, the applica-
tion will use the one registered by the attacker for later transactions,
which is not what the user intended at the beginning.

It it worth noting that with the new attacks, even if the user
has concerns on the domains and verifies them on authorities like
Etherscan[15], they may still be attacked because authorities are
strictly following the latest official normalization standard while
the dApps may not. During our evaluation, we have identified that
even popular wallets like MathWallet, with more than one million
users, are still vulnerable to this type of attacks. The beautifier
proposed recently [29] worsened the issue by always adding for-
matting characters back to the domain for a better display, which
has been deployed by many popular websites and applications.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Beyond Visual Confusion: Understanding How Inconsistencies in ENS Normalization Facilitate Homoglyph Attacks Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1. The legitimate domain 
owner advertise his domain 

to another user

2. The user verifies the 
domain on authorities 

like Etherscan

AttackerUser

Authorities with a standard ENS 
normalization process

<FE0F> .eth

Legitimate Crypto App with 
Inconsistencies in ENS 
Normalization process

Domain Owner

3. The user interact with 
the domain

4. The attacker receives 
the cryptocurrencies

0. The attacker notices the domain is 
vulnerable to this type of attack and registers 

“ <FE0F> .eth” on the chain

ENS Registry

Figure 3: Homoglyph Attack in ENS when the domain is verified by authorities

As shown in Figure 3, with the new attacks, even if the user
has concerns on the domains and verifies them on authorities like
Etherscan, they may still be attacked because authorities are strictly
following the latest official normalization while the dApps may not.

4 MEASURING INCONSISTENCIES IN
NORMALIZATION PROCESSES IN THEWILD

Since the ENS community has been aware of homoglyph attacks,
and ENSIP-15 has been proposed as a mitigation against the attack.
In this section, we seek to answer the question:

• Is the normalization defined in ENSIP-15 correctly enforced
in different crypto applications?

4.1 Data Collection
The evaluated applications are collected as follows. We collected all
listed apps on ENS official website under ENS ecosystem. In Web3,
the community shows great interests of making mobile as the main-
stream platform [2]. The report from MarketGrowth mentioned
that significant growth of mobile crypto wallet market is expected
in the next decade [1]. The convenience provided by the mobile
platform also brings risks. We noticed that almost all browser ex-
tension wallets and web version dApps will provide the resolved
address of the input ENS domain, while on mobile, this is on the
contrast. Hence, in this paper, we focus on the mobile platform as
with less information, users are likely to be attacked if the app does
not enforce the normalization correctly. Finally, we collected 13
libraries, and 264 dApps (including 67 wallets) for our evaluation.

4.2 Automatic Normalization Inconsistency
Detection Approach

To automatically identify inconsistencies in ENS normalization
within applications, we developed a tool. This prototype system is
designed to analyze and understand the handling of ENS-related
operations within mobile applications, as illustrated in Figure 4.
The design of each component is detailed below.

Trace Collector. The process begins with instrumentation,
recording all function calls during the application’s runtime in
execution traces. As users engage with ENS-related functions, the

tool captures the triggered function calls, focusing on those rele-
vant to ENS normalization. The function names are extracted from
the smali code of the APK file of the target Android application.
Using this function list, we hook the function calls with the help
of Frida [16], capturing both the function calls and their return
values. In this paper, we hooked all the function calls. Sometimes
this will cause significant performance overhead during the user
interactions in the next step. However, since the hooking script
can be added to the runtime after everything is setup for ENS-
related operations, during our testing, only a few seconds latency
are introduced on average, which is reasonable for general testing.
Specifically, Dapps that use decoupled design pattern are excep-
tions, like Coinomi, for which we waited several minutes before we
caught the ENS-relevant function calls. As such Dapps is a minority
in our dataset (7 out of 264), we plan to address this issue as our
future work.

Trace Analyzer. Automatically identifying ENS-relevant func-
tion calls within applications presents a significant challenge due
to the vast number of function calls that must be scrutinized. Our
method simplifies this complexity by specifying input values, such
as "test.eth," and then rigorously examining each function call and
its return values. We specifically look for instances where a func-
tion call includes an argument that matches our predefined input
value and yields a return value that is the resolved address of the
domain. When these criteria are met, we classify the function as
an ENS-resolving function. Within the ENS-resolving function, the
tool searches for function calls with "test.eth" as input and output,
which are considered candidates for ENS normalization functions.
By dynamically calling these candidates with a domain contain-
ing different character sets, the tool can further determine which
candidate is indeed an ENS normalization API. For each identified
API, the tool generates a Frida script to automatically test the API
with a given set of domains to check for inconsistencies in the
normalization process.

A further challenge in identifying inconsistencies arises when
some applications rely on server-side APIs, which impose strict rate
limits. To address this, we developed a library probing technique
that identifies the normalization library used by the server-side API
with as few as 4 and up to 13 requests for the evaluated libraries.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

ENS-relevant 
operations

ENS-relevant 
function calls

Remote
Normalization Query

Normalization 
Library Probes

Inconsistency 
ReportNormalization API Identification Inconsistency Checker

Local Normalization 
Function

Complete
Domain List

User

Remote 
Querier

Local 
Querier

Trace 
Collector

Trace 
Analyzer

DAPP
(mobile app)

Differential 
Analyzer

Figure 4: Inconsistency Detection Workflow

Our library probing technique rigorously assesses normalization
outcomes for each domain in our dataset across multiple libraries,
comparing results to distinguish between libraries. Differentiation
is based on analyzing error messages and examining characters that
are altered or omitted from the inputs. Importantly, our method
efficiently identifies the most possible server-side library implemen-
tations without triggering rate limits, allowing identificationwith as
few as one request. This precision and efficiency mitigate potential
rate-limiting concerns while providing a nuanced understanding
of server-side processing and the distinctive characteristics of each
library’s approach to domain normalization.

To determine whether a specific API is a remote API, we employ
a latency-based approach. Prior to testing, the network is proxied,
and all responses from the server are delayed by 2 seconds. If the
API is a remote API, this delay will be reflected in the execution
time of the API, as local APIs are not affected by network latency.

Local/Remote Querier. With the identified API, we can query
it with different domains to check for inconsistencies in the nor-
malization process. The tool automatically generates a Frida script
to test the API with a set of domains. Results are collected and
analyzed to identify inconsistencies in the normalization process.
For local APIs, the tool directly calls the API with the given domain,
using the complete domain list from the ENS official database [4].
For remote APIs, we use the previously identified library probes
to query the server-side API. With the minimum query set (4-13
domains for our evaluated libraries), we can efficiently identify the
normalization library used by the server-side API. Even if the server
does not exactly use the identified library, the results remain valid,
as normalization outcomes are consistent across our tests, which
could still be exploited by attackers.

Differential Analyzer. Finally, the tool analyzes the results
from the local/remote queries to identify inconsistencies in the
normalization process. It generates a report outlining these incon-
sistencies and providing insights for improvement. This report
serves as the basis for identifying potential issues, as demonstrated
in Section 3.

The culmination of this testing is a detailed report that outlines
the application’s handling of homoglyph characters and normal-
ization processes, identifies deviations from standards, and offers

insights for improvement. This tool significantly benefits develop-
ers and quality assurance teams by providing a thorough analysis
that highlights areas for enhancement, thereby ensuring character
handling consistency, enhancing interoperability, and improving
the overall user experience.

By streamlining the process of detecting normalization incon-
sistencies and providing actionable insights, this tool represents a
valuable asset for ensuring the robustness and reliability of ENS-
supportedmobile applications. It offers a proactive approach to iden-
tifying and rectifying potential issues, saving time and resources
while contributing to the development of more dependable and
user-friendly applications.

Table 1: Inconsistencies in ENS Normalization Processes

Type of Application Total Count Found Inconsistent

Libraries 13 11
Wallets 67 41
dApps 264 214

4.3 Inconsistencies in Crypto Applications
We sought to investigate the ENS, Ethereum Name Service, normal-
ization processes across a diverse array of applications, including
dApps, wallets, registrars, and libraries. To answer the research
question, we need to uncover and document inconsistencies ren-
dered in the ENS normalization process of these applications.

Our comprehensive assessment encompassed twenty cryptocur-
rency wallets, revealing notable findings as detailed in Table 1.
Wallets play a pivotal role in cryptocurrency transactions by se-
curely managing public and private keys and facilitating interac-
tions across various blockchains. Our thorough examination un-
covered that 70% of the wallets evaluated, equating to fourteen
out of twenty, exhibited inconsistencies in their ENS normalization
processes. Such discrepancies could potentially lead to significant
implications, posing challenges in user interaction and transaction
processes, especially considering their extensive user base as il-
lustrated in Table 2. Since there is no exact number of app users
available, we take the following steps to estimate it. First, if the app

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Beyond Visual Confusion: Understanding How Inconsistencies in ENS Normalization Facilitate Homoglyph Attacks Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

is available on Google Play Store, we use the number of downloads
as the estimated number. Second, we search on Google and if the
app owner has a claim on the number of app users, we take the
number as the estimated number.

Table 2: Inconsistencies in normalization in selected evalu-
ated Apps

App Name Inconsis. Type # of app users Verifiable Info

Torus Type 3 N/A None
Burner Type 3 N/A Address(partial)
OwnBit Type 1 >10k None
Frontier Type 1 50k None
Coinomi Type 1 >1m None

MyEtherWallet Type 3 ~1.3m Address
Argent Type 1 >20k None
Rainbow Type 2 >20k Address
MyCrypto Type 2 N/A Address(partial)

D’CENT Wallet Type 2 >20k None
DexWallet Type 3 >10k None
Math Wallet Type 3 ~1m None
AlphaWallet Type 2 >50k None
Ambire Wallet Type 3 >1k None

Status Type 2 >1m Address(partial)

The study was also extended to two registrars, which are funda-
mental components in the ENS domain assignment protocol. The
evaluation results were alarming, with a 100% inconsistency rate.
Both registrars examined presented inconsistencies in their nor-
malization processes, outlining a critical vulnerability that could
potentially impact the efficient functioning of the Ethereum Name
Service.

Reviewing the libraries was anothermajor facet of our evaluation.
Libraries are a vital resource for developers, offering pre-written
codes, classes, procedures, scripts, configuration data, and more.
They facilitate efficient coding and prevent reinvention of the wheel
for common tasks, making them a lynchpin of efficient development
work. In our study, 13 libraries were evaluated for possible incon-
sistencies in ENS normalization. Unfortunately, the results were
disconcerting, with around 61% of libraries, 11 out of 13, presenting
inconsistencies.

However, the most astounding results came from the evalua-
tion of dApps. As the normalization process in dApps is crucial for
ensuring efficient functionality, it was essential to check for any
inconsistencies. The results were concerning; 214 out of 264 evalu-
ated dApps were found inconsistent with the official normalization,
an unignorable percentage that portrays a dire need for a review
and revamping of the current ENS standardization process.

Taken together, these results underscore the prevalent inconsis-
tencies that are spread over different aspects of the ENS normaliza-
tion process. They highlight a substantial need for enhanced ENS
normalization standards and practices across various Ethereum
related applications. It is crucial not only to identify these existing
inconsistencies but also to devise ways to rectify the anomalies
detected in the process. It is worth noting that inconsistent normal-
ization in the ecosystem is even more dangerous than no normaliza-
tion at all. When inconsistent normalization presents, the threats
will be more severe when users switch their app, exchange domains

with their friends, posting on social media, and etc. As a result of
these findings, our future work suggestions lay the foundations
for rectifying these issues and propose effective optimization and
standardization strategies for the ENS normalization process.

4.4 Case Study
In this section, we delve into two compelling case studies to illus-
trate how the inconsistency may affect the users.

MathWallet. Mathwallet is a popular crypto wallet applica-
tion that supports more than 160 different blockchains, which is
claimed to have more than 1 million users. However, in our eval-
uation, we found that its Android App resolves ENS domains by
sending the query to the server side. With our tool, we queried the
server with domains that are normalized differently in different
libraries. The results show that the server side is likely to use the
eth-ens-namehash as its normalization library. However, there is a
huge gap between the normalization process in eth-ens-namehash
and the normalization process in the official library. Even if a do-
main is malformed with homoglyph characters like zero-width
joint character (U+200D), which is invisible, the domain can still
be successfully resolved into the registered address on the chain,
violating ENSIP-15. An attacker can abuse these characters to create
a domain looks exactly the same as the target domain to lure the
victims sending tokens to their addresses. Even worse, there is no
way for the victims to validate it since the app will not show the
resolved address to the user.

4.5 Responsible Disclosure
In our investigation, we identified 255 decentralized applications
(dApps) and wallets with inconsistency issues. We attempted to
reach out to the developers of these projects to responsibly disclose
our findings. However, we were able to find valid contact infor-
mation for only 207 of them. Among these 207 dApps and wallets,
192 lacked contact information specifically designated for security
issues, complicating our efforts to communicate the security issues
effectively. Despite our outreach, only 34 of the contacted entities
responded, and of those, a mere 11 took corrective actions to ad-
dress the issue. One of the responses from a developer provided
insight into their reluctance to fix the inconsistency, stating that
they believe it is the users’ responsibility to verify domains before
interacting with them. This response highlights a critical challenge
in the ecosystem, emphasizing the need for better security com-
munication channels and the importance of shared responsibility
between service providers and users to enhance overall security.

5 RELATEDWORK
In this section, we review related work on typosquatting attack and
homoglyph detection.

5.1 Typosquatting Attack
Typosquatting stems from “domain squatting”, a practice where
individuals register domain names to sell them at a premium to
their rightful owners later [33]. It extends this concept by exploiting
human mistakes and the affordability of domain registrations to
divert traffic from established websites [23], [31]. By registering
domain names that closely resemble those of well-known sites, the

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

strategy banks on users making accidental typographical errors,
thereby redirecting them to fraudulent sites instead of their in-
tended destinations. The pioneering systematic investigation into
this phenomenon was conducted by Edelman et al. [23], with sub-
sequent research typically focusing on either measuring the impact
on users [18] or identifying and analyzing Typosquatting strategies
[32].

A critical aspect of addressing typosquatting involves under-
standing the criteria typosquatters use to select potential domain
name typos. In this context, Mohaisen et al. [31] offered an in-depth
review of prior research, which examines the various strategies
employed by typosquatters in registering domain names. Some
studies investigate specific forms of typosquatting, like those based
on homophones [24] or binary bit flips [25], while others focus on
creating a "squat space" through lexically similar URLs [31], with
the latter being more relevant to our study.

The generation of squat spaces around popular websites typi-
cally relies on identifying domain names within a specific lexical
range [31]. The Damerau-Levenshtein distance, which calculates
the number of edits required to change one string into another, is
frequently used in typosquatting to create these spaces [20].

Building upon existing studies on typosquatting, our study delves
into the unique challenges and security considerations posed by
homoglyph attacks in ENS. This connection between traditional
typosquatting and our focus on homoglyph attacks in ENS un-
derscores the evolving nature of cyber threats and highlights the
importance of developing robust defense mechanisms tailored to
the context of ENS.

5.2 Homoglyph Detection
A few approaches have been proposed to detect homoglyph do-
mains in DNS. Yazdani et al. [36] combined DNS records and do-
main string characteristics to assess the homoglyph domains. Liu
and Stamm [22] detect Unicode Obfuscated messages with the UC-
SimList. Alvi et al. [9] focus on the obfuscation in plagiarism caused
by Unicode characters. Their method uses the ‘Unicode Confus-
ables’ list from Unicode community and the hamming distance.
Krammer et al. [19] and Al Helou et al. [8] improved user interfaces
for browsers to alert users for potential phishing attacks. Although
alerting when Unicode is detected is useful in DNS and applied by
many ENS applications, it is less useful in ENS as Unicode is much
more common than in DNS.

Several studies, including those by Chiba et al. [11], Liu et al. [21],
and Sawabe et al. [30], have explored the identification of homo-
glyphs that pose a threat to prominent brand domains by assessing
the visual similarity of domain name images. While image-based
methods eliminate the need for a homoglyph table, they have in-
herent limitations, primarily safeguarding a select set of domains,
typically brand-related, and incurring significant computational
costs when extended to the entire namespace. In contrast, Elsayed
et al. [13] have developed a technique to identify potentially ma-
licious domains within newly registered Unicode domains under
the ‘.com’ and ‘.net’. This method involves substituting Unicode
characters with their corresponding ASCII homographs based on
the ’Unicode Confusables’ list. Additionally, they employ WHOIS
data to differentiate between domains with malicious intent and

protective domains. Quinkert et al. [27] have undertaken a sim-
ilar approach, extracting homoglyphs that target the top 10,000
domains from the Majestic top 1 million domains [5], utilizing the
’Unicode Confusables’ list as a reference. Xia et al.[35][34] looked
into the security of ENS domain, focusing on squatting domains
and domains detected malicious by VirusTotal.

6 DISCUSSION
The measurement results underscore the urgent need for a stan-
dardized approach to the normalization process across applications
using ENS. The observed inconsistencies in normalization imple-
mentation highlight a fragmented ecosystem where the effective-
ness of security measures varies significantly. This fragmentation
not only undermines the security of ENS but also poses a risk to the
overall integrity and user trust in decentralized naming systems.
Limitations. Recognizing the limitations of our study, particularly
in our evaluation on the inconsistency of normalization processes,
we observed that though the inconsistencies exist widely, there are
minor differences between the inconsistency cases. For example,
in the case study, we showed a domain with zero-width character,
which is considered one of the most dangerous/confusing charac-
ters. However, some inconsistency cases are not that stealthy when
there are specific input policies, (e.g., Upper case of i, I, to lower case
of L, l when the input will automatically be converted into lower
cases). In another word, besides the normalization process itself, the
context in applications will also affect the effect of homoglyph at-
tacks, including fonts, input policies, whether the resolved address
will be shown or not, and etc. However, such context information
can hardly be collected in an automatic way.

The potential for ENS domains to be rented through third-party
smart contracts introduces another layer of complexity. This ver-
satility, while a strength of the ENS system, complicates the task
of monitoring and mitigating security risks. The exploration of
third-party services and their impact on the security and usage of
ENS domains is a promising avenue for future research, potentially
uncovering new patterns of use or abuse that need to be addressed.

The study’s insights into the role of application context in the
effectiveness of homoglyph attacks reveal a critical consideration
for developers and security professionals. The impact of fonts, input
policies, and other contextual factors on the visibility and poten-
tial confusion caused by homoglyphs underscores the need for a
holistic approach to security. It suggests that mitigating homoglyph
attacks requires more than just technical solutions; it necessitates
a comprehensive strategy that considers the user interface and
experience aspects.

7 CONCLUSION
To conclude, our research has illuminated the critical issue of homo-
glyph attacks within the Ethereum Name Service (ENS) ecosystem.
While ENS offers a powerful naming solution with its Unicode
support, it also introduces security risks. Our contributions include
identifying inconsistencies in application normalization processes
and proposing the new attack scenarios that enlarges the attack
surface in ENS. These findings underline the importance of robust
normalization in ENS and similar systems. Collaborative efforts are
essential to secure naming systems in the face of evolving threats.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Beyond Visual Confusion: Understanding How Inconsistencies in ENS Normalization Facilitate Homoglyph Attacks Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Global Mobile Crypto Wallets Industry Research Report. https:

//www.marketgrowthreports.com/enquiry/request-sample/23501866P?utm_
source=GT850andutm_medium=007andutm_campaign=GT850&trk=article-
ssr-frontend-pulse_little-text-block, 2022.

[2] Web3 Goes Mobile In Bid For Mass Adoption. https://thedefiant.io/news/defi/
blockchain-phones, 2022.

[3] ENSIP-15: Predefined Rules. https://github.com/adraffy/ens-normalize.js/blob/
main/derive/output/spec.json, October 2023.

[4] @ethereumnameservice/ENS on Dune. https://dune.com/ethereumnameservice/
ens, October 2023.

[5] The Majestic Million. https://majestic.com/reports/majestic-million, October
2023.

[6] UNICODE NORMALIZATION FORMS. https://unicode.org/reports/tr15/#Norm_
Forms, October 2023.

[7] ens-normalize 1.9.0. "https://www.npmjs.com/package/@adraffy/ens-normalize/
v/1.9.0", February 2024.

[8] Johnny Al Helou and Scott Tilley. Multilingual web sites: Internationalized
domain name homograph attacks. In 2010 12th IEEE International Symposium on
Web Systems Evolution (WSE), pages 89–92. IEEE, 2010.

[9] Faisal Alvi, Mark Stevenson, and Paul Clough. Plagiarism detection in texts
obfuscated with homoglyphs. In Advances in Information Retrieval: 39th European
Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings
39, pages 669–675. Springer, 2017.

[10] Apple. About the security content of safari 6. https://support.apple.com/en-
us/HT202561, January 2017.

[11] Daiki Chiba, Ayako Akiyama Hasegawa, Takashi Koide, Yuta Sawabe, Shigeki
Goto, and Mitsuaki Akiyama. {DomainScouter}: Understanding the risks of
deceptive {IDNs}. In 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), pages 413–426, 2019.

[12] ENS developing team. Ethereum name service - introduction. https://docs.ens.
domains, October 2021.

[13] Yahia Elsayed and Ahmed Shosha. Large scale detection of idn domain name
masquerading. In 2018 APWG Symposium on Electronic Crime Research (eCrime),
pages 1–11. IEEE, 2018.

[14] ENS. Zero-width characters pose a security risk and existential threat to
ens. https://discuss.ens.domains/t/zero-width-characters-pose-a-security-risk-
and-existential-threat-to-ens/476, April 2024.

[15] Etherscan. Ethereum (eth) blockchain explorer. https://etherscan.io/, 2024.
[16] Frida. Frida. https://frida.re/, April 2024.
[17] Evgeniy Gabrilovich and Alex Gontmakher. The homograph attack. Communi-

cations of the ACM, 45(2):128, 2002.
[18] Mohammad Taha Khan, Xiang Huo, Zhou Li, and Chris Kanich. Every second

counts: Quantifying the negative externalities of cybercrime via typosquatting.
In 2015 IEEE Symposium on Security and Privacy, pages 135–150. IEEE, 2015.

[19] Viktor Krammer. Phishing defense against idn address spoofing attacks. In
Proceedings of the 2006 International Conference on Privacy, Security and Trust:
Bridge the Gap Between PST Technologies and Business Services, pages 1–9, 2006.

[20] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union, 1966.

[21] Baojun Liu, Chaoyi Lu, Zhou Li, Ying Liu, Hai-Xin Duan, Shuang Hao, and
Zaifeng Zhang. A reexamination of internationalized domain names: The good,
the bad and the ugly. In DSN, pages 654–665, 2018.

[22] Changwei Liu and Sid Stamm. Fighting unicode-obfuscated spam. In Proceedings
of the anti-phishing working groups 2nd annual eCrime researchers summit, pages
45–59, 2007.

[23] Tyler Moore and Benjamin Edelman. Measuring the perpetrators and funders of
typosquatting. In International Conference on Financial Cryptography and Data
Security, pages 175–191. Springer, 2010.

[24] Nick Nikiforakis, Marco Balduzzi, Lieven Desmet, Frank Piessens, and Wouter
Joosen. Soundsquatting: Uncovering the use of homophones in domain squatting.
In Information Security: 17th International Conference, ISC 2014, Hong Kong, China,
October 12-14, 2014. Proceedings 17, pages 291–308. Springer, 2014.

[25] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven Desmet, Frank
Piessens, and Wouter Joosen. Bitsquatting: Exploiting bit-flips for fun, or profit?
In Proceedings of the 22nd international conference on World Wide Web, pages
989–998, 2013.

[26] Opera. Internationalized domain names (idn) can be used for spoof-
ing. https://security.opera.com/en/internationalized-domain-names-idn-can-
be-used-for-spoofing-opera-security-advisories/, February 2005.

[27] Florian Quinkert, Tobias Lauinger, William Robertson, Engin Kirda, and Thorsten
Holz. It’s not what it looks like: Measuring attacks and defensive registrations of
homograph domains. In 2019 IEEE Conference on Communications and Network
Security (CNS), pages 259–267. IEEE, 2019.

[28] raffy. Ens name normalization. https://discuss.ens.domains/t/ens-name-
normalization/8652/1, December 2021.

[29] Raffy. Ens resolver. https://adraffy.github.io/ens-normalize.js/test/resolver.html,
April 2024.

[30] Yuta Sawabe, Daiki Chiba, Mitsuaki Akiyama, and Shigeki Goto. Detection
method of homograph internationalized domain names with ocr. Journal of
Information Processing, 27:536–544, 2019.

[31] Jeffrey Spaulding, Shambhu Upadhyaya, and Aziz Mohaisen. The landscape of
domain name typosquatting: Techniques and countermeasures. In 2016 11th
International Conference on Availability, Reliability and Security (ARES), pages
284–289. IEEE, 2016.

[32] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Felegyhazi, and
Chris Kanich. The long {“Taile”} of typosquatting domain names. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 191–206, 2014.

[33] Steven Wright. Cybersquatting at the intersection of internet domain names and
trademark law. IEEE Communications Surveys & Tutorials, 14(1):193–205, 2010.

[34] Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu, Xiapu Luo, and Guoai
Xu. Ethereum name service: the good, the bad, and the ugly. arXiv preprint
arXiv:2104.05185, 2021.

[35] Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu, Xiapu Luo, Guoai Xu, and
Gareth Tyson. Challenges in decentralized name management: The case of ens.
In Proceedings of the 22nd ACM Internet Measurement Conference, pages 65–82,
2022.

[36] Ramin Yazdani, Olivier van der Toorn, and Anna Sperotto. A case of identity:
Detection of suspicious idn homograph domains using active dns measurements.
In 2020 IEEE European Symposium on Security and PrivacyWorkshops (EuroS&PW),
pages 559–564. IEEE, 2020.

A PRELIMINARY STUDY
In summary, ENSIP-15 specifies how to tokenize Unicode characters,
normalize tokens, and validate tokens. ENSIP-15 contains a lot
of detailed rules, with two predefined lists (spec.json and nf.json)
containing all valid characters and form information. For example,
U+FE0F will be striped for emoji tokens during the normalization.
When normalizing tokens, ENSIP-15 uses NFC (normalization form
C as defined in Unicode standard [6]). When validating tokens,
the community has a large, predefined map [3] to specify which
character is not allowed, and which character should be replaced.

To understand how the normalization is implemented in ENS, we
first analyze the popular libraries that support ENS. From ENS offi-
cial website, we found a list of ENS libraries for various languages
and we choose the first library for each language. Considering
the popularity of JavaScript in Web3, we did manual search and
found web3.js and ethers.js are the most popular libraries in
Ethereum. In addition, in our preliminary study, we found many
applications/libraries are based on eth-ens-namehash, which was
recommended by the ENS official website as the normalization li-
brary. Hence, we added it into our list after our preliminary study.
The collected libraries are written in different languages, including
Java, Python, Go, and JavaScript, as listed in Table 3. It is worth
noting that though 1.8.8 has 0 inconsistent domain normalization re-
sults with the official library, there do exist different normalization
rules in them. One example we identified by manually checking the
code is that U+24FF is no longer allowed since 1.9.0. The number of
inconsistency results is 0 because there is no domain in our dataset
using this character. Since 1.9.0, all dingbat digits are not allowed
[7]. Web3.py has its own normalization implementation, which
looks like the same code from ens-normalize 1.8.8 but written in
Python. Hence, it has the same inconsistency as discussed above.
ensjs is the official library developed by the ENS developers, which
is also the most popular one, used by ens.domain (the official ENS
domain registration website), Metamask (one of the most popular
wallet), Alchemy (one of the most popular providers), etc. Since the
goal of normalization is to reduce the usage of homoglyph char-
acters in domains, we tried all the homoglyph domains detected

9

https://www.marketgrowthreports.com/enquiry/request-sample/23501866P?utm_source=GT850andutm_medium=007andutm_campaign=GT850&trk=article-ssr-frontend-pulse_little-text-block
https://www.marketgrowthreports.com/enquiry/request-sample/23501866P?utm_source=GT850andutm_medium=007andutm_campaign=GT850&trk=article-ssr-frontend-pulse_little-text-block
https://www.marketgrowthreports.com/enquiry/request-sample/23501866P?utm_source=GT850andutm_medium=007andutm_campaign=GT850&trk=article-ssr-frontend-pulse_little-text-block
https://www.marketgrowthreports.com/enquiry/request-sample/23501866P?utm_source=GT850andutm_medium=007andutm_campaign=GT850&trk=article-ssr-frontend-pulse_little-text-block
https://thedefiant.io/news/defi/blockchain-phones
https://thedefiant.io/news/defi/blockchain-phones
https://github.com/adraffy/ens-normalize.js/blob/main/derive/output/spec.json
https://github.com/adraffy/ens-normalize.js/blob/main/derive/output/spec.json
https://dune.com/ethereumnameservice/ens
https://dune.com/ethereumnameservice/ens
https://majestic.com/reports/majestic-million
https://unicode.org/reports/tr15/#Norm_Forms
https://unicode.org/reports/tr15/#Norm_Forms
"https://www.npmjs.com/package/@adraffy/ens-normalize/v/1.9.0"
"https://www.npmjs.com/package/@adraffy/ens-normalize/v/1.9.0"
https://support.apple.com/en-us/HT202561
https://support.apple.com/en-us/HT202561
https://docs.ens.domains
https://docs.ens.domains
https://discuss.ens.domains/t/zero-width-characters-pose-a-security-risk-and-existential-threat-to-ens/476
https://discuss.ens.domains/t/zero-width-characters-pose-a-security-risk-and-existential-threat-to-ens/476
https://etherscan.io/
https://frida.re/
https://security.opera.com/en/internationalized-domain-names-idn-can-be-used-for-spoofing-opera-security-advisories/
https://security.opera.com/en/internationalized-domain-names-idn-can-be-used-for-spoofing-opera-security-advisories/
https://discuss.ens.domains/t/ens-name-normalization/8652/1
https://discuss.ens.domains/t/ens-name-normalization/8652/1
https://adraffy.github.io/ens-normalize.js/test/resolver.html


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

in Section 4 and checked whether all libraries can generate the
same normalization results. After testing all homoglyph domains,
we found that 4,330 domains are resolved with different results

using different libraries. The different results could be two different
addresses or one address with another one valid.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Beyond Visual Confusion: Understanding How Inconsistencies in ENS Normalization Facilitate Homoglyph Attacks Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 3: Evaluated Libraries.

Name Weekly Downloads Version Language Normalization Process Library # of Inconsistent Domain Normalization Results

ensjs(Official) 36,864 3.4.3 JavaScript ens-normalize 1.9.0 Official
ethereum-ens 13,778 0.8.0 JavaScript eth-ens-namehash 4330

eth-ens-namehash 292,578 2.0.8 JavaScript idna-uts46-hx 4330
~(Fork)* 9,419 2.0.15 JavaScript eth-ens-namehash 4330
ethjs-ens 1,663 2.0.1 JavaScript eth-ens-namehash 4330
ethers.js 1,002,424 6.11.0 JavaScript ens-normalize 1.9.2 234
web3.js 474,896 4.4.0 JavaScript ens-normalize 1.8.8 0
web3j N/A 4.10.3 Java adraffy/ENSNormalize.java 0.1.2 0

KEthereum N/A 0.86.0 Kotlin Provider-based N/A
web3.py N/A 6.15.0 Python web3.py 0
go-ens N/A 3.6.0 Go golang.org/x/net/idna 4330
ethereal N/A 2.9.0 Go go-ens 4330

delphereum N/A N/A Pascal Provider-based N/A
~(Fork)*:The project is forked from eth-ens-namehash. We use it here because it is recommended in the ENS documentations

11


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Ethereum Name Service
	2.2 Motivation

	3 Our Discoveries
	3.1 Understanding Normalization in ENS
	3.2 New Attack Scenarios

	4 Measuring Inconsistencies in Normalization Processes in the Wild
	4.1 Data Collection
	4.2 Automatic Normalization Inconsistency Detection Approach
	4.3 Inconsistencies in Crypto Applications
	4.4 Case Study
	4.5 Responsible Disclosure

	5 Related Work
	5.1 Typosquatting Attack
	5.2 Homoglyph Detection

	6 Discussion
	7 Conclusion
	References
	A Preliminary Study

