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Abstract

The dynamic Schrödinger bridge problem provides an appealing setting for solving
constrained time-series data generation tasks posed as an iteration over optimal
transport problems. Recent works have demonstrated state-of-the-art results but
are limited to learning bridges with only initial and terminal constraints. Our
work extends this paradigm by proposing the Iterative Smoothing Bridge (ISB).
We integrate Bayesian filtering and optimal control into learning the diffusion
process, enabling constrained stochastic processes governed by sparse observations
at intermediate stages and terminal constraints, and assess the effectiveness of ISB
on a single-cell embryo RNA data set.

1 Introduction

Generative diffusion models have gained increasing popularity and achieved impressive results
in a variety of challenging application domains, such as computer vision (e.g., Ho et al., 2020;
Song et al., 2021; Dhariwal & Nichol, 2021), reinforcement learning (e.g., Janner et al., 2022),
and time series modelling (e.g., Rasul et al., 2021; Vargas et al., 2021; Tashiro et al., 2021; Park
et al., 2022). Recent works have explored connections between denoising diffusion models and the
dynamic Schrödinger bridge problem (SBP, e.g., Vargas et al., 2021; De Bortoli et al., 2021; Shi et al.,
2022) to adopt iterative schemes for solving the dynamic optimal transport problem more efficiently.

Sparse observations

π0 ∼ N(0, I)
πT ∼ N((10, 0)⊤, I)

Transport between two Gaussians at the
terminal time T constrained by sparse

observations ( ) at intermediate times.

The solution of the SBP then acts as a denoising diffusion
model in finite time and minimizes Kullback–Leibler (KL)
divergence to a set reference process. Data may then be
generated by time reversal of the process, i.e., through the
denoising process.

In many applications, the interest is not purely in mod-
elling transport between an initial and terminal state dis-
tribution. For example, in naturally occurring generative
processes, we typically observe snapshots of realizations
along intermediate stages of individual sample trajectories
(see Sec. 1). Such problems arise in medical diagnosis
(e.g., tissue changes and cell growth), demographic mod-
elling, environmental dynamics, and animal movement
modelling. patterns. Recently, constrained optimal control problems have been explored by adding
additional fixed path constraints (Maoutsa et al., 2020; Maoutsa & Opper, 2022) or modifying the
prior processes (Fernandes et al., 2021). However, defining meaningful fixed path constraints or prior
processes for the optimal control problems can be challenging, while sparse observational data are
accessible in many real-world applications.

In this work, we propose the Iterative Smoothing Bridge (ISB), an iterative method for solving control
problems under constraints on both the initial and terminal distribution and sparse observational
data constraints, the latter acting as a way to encourage the paths sampled from the transport process
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to lie close to the observed data points. We perform the conditioning by leveraging the iterative pass
idea from the Iterative Proportional Fitting procedure (IPFP, see Kullback, 1968; De Bortoli et al.,
2021) and applying differentiable particle filtering (Reich, 2013; Corenflos et al., 2021). Integrating
sequential Monte Carlo methods (e.g., Doucet et al., 2001; Chopin & Papaspiliopoulos, 2020) into
the IPFP framework in such a way is non-trivial and can be understood as a novel iterative version of
the algorithm by Maoutsa & Opper (2022) but with more general marginal constraints and additional
path constraints defined by data.

We summarize the contributions as follows. (i) We propose a novel method for solving constrained
optimal transport as a bridge problem under sparse observational data constraints. (ii) Thereof, we
utilize the strong connections between the constrained bridging problem and particle filtering in
sequential Monte Carlo, extending those links from pure inference to learning. Additionally, (iii) we
demonstrate practical efficiency by applying the iterative smoothing approach to single-cell embryo
RNA modelling.

2 Background

For modelling the time dynamics, we assume a (continuous-time) state-space model consisting of a
non-linear latent Itô SDE (see, e.g., Øksendal, 2003; Särkkä & Solin, 2019) in [0, T ]× Rd with drift
function fθ(·) and diffusion function g(·), and a Gaussian observation model, i.e.,

x0 ∼ π0, dxt = fθ(xt, t) dt+ g(t) dβt, (1)

and yk ∼ N(yk |xt, σ
2 Id)

∣∣
t=tk

, where the drift function fθ : Rd×[0, T ]→ Rd is modelled by a neu-
ral network parameterized by θ ∈ Θ, diffusion g : [0, T ]→ R and βt denotes standard d-dimensional
Brownian motion. xt denotes the latent process and yt denotes the observation-space process. We
consider the continuous-discrete time setting, where the process is observed at discrete times tk such
that observational data can be given in terms of a collection of input–output pairs {(tj ,yj)}Mj=1.

Schrödinger Bridges and Optimal Control The Schrödinger bridge problem (SBP, Schrödinger,
1932; Léonard, 2014) is an entropy-regularized optimal transport problem where the optimality is
measured through the KL divergence from a reference measure P to the posterior Q, with fixed initial
and final densities π0 and πT , i.e., minQ∈P(π0,πT ) DKL [Q ∥P] .

In this work, we consider only the case where the measures P and Q are constructed as the marginals
of an SDE, i.e., Qt is the probability measure of the marginal of the SDE in Eq. (1) at time t,
whereas Pt corresponds to the probability measure of the marginal of a reference SDE dxt =
f(xt, t) dt + g(t) dβt, at time t, where we call f the reference drift. Under the optimal control
formulation of the SBP (Caluya & Halder, 2021) the KL divergence reduces to

E
[ ∫ T

0
1

2g(t)2 ∥fθ(xt, t)− f(xt, t)∥2 dt
]
, (2)

where the expectation is over paths from Eq. (1). Rüschendorf & Thomsen (1993) and Ruschendorf
(1995) showed that a solution to the SBP can be obtained by iteratively solving two half-bridge
problems using the Iterative Proportional Fitting procedure (IPFP) for l = 0, 1, . . . , L steps, Q2l+1 =
argminQ∈P(·,πT ) DKL [Q ∥Q2l] and backwards Q2l+2 = argminQ∈P(π0,·) DKL [Q ∥Q2l+1].
where Q0 is set as the reference measure, and P(π0, ·) and P(·, πT ) denote the sets of probability
measures with only either the marginal at time 0 or time T coinciding with π0 or πT , respectively.
Recently, the IPFP to solving Schrödinger bridges has been adapted as a machine learning problem
(Bernton et al., 2019; Vargas et al., 2021; De Bortoli et al., 2021).

3 The Iterative Smoothing Bridge

Given an initial and terminal distribution π0 and πT , we are interested in learning a data-conditional
bridge between π0 and πT . Let D = {(tj ,yj)}Mj=1 be a set of M sparsely observed values (allowing
for multiple observations at a single time), i.e., only a few or no observations are made at each
point in time and let the state-space model of interest be given by Eq. (1). Our aim is to find a
parameterization of the drift function fθ such that evolving N particles xi

t, with xi
0 ∼ π0 (with

i = 1, 2, . . . , N ), according to Eq. (1) will result in samples xi
T from the terminal distribution
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πT . Inspired by the IPFP by De Bortoli et al. (2021), which decomposes the SBP into finding two
half-bridges, we propose to iteratively solve the two half-bridge problems while accounting for the
additional sparse observations simultaneously. For this, let

dxt = fl,θ(xt, t) dt+ g(t) dβt, x0 ∼ π0, (3)

dzt = bl,ϕ(zt, t) dt+ g(t) dβ̂t, z0 ∼ πT , (4)

denote the forward and backward SDE at iteration l = 1, 2, . . . , L, where β̂t is the reverse-time
Brownian motion. For simplicity, we denote βt = β̂t when the direction of the SDE is clear.

To learn the data-conditional bridge, our Iterative Smoothing Bridge (ISB) method employs the
following steps: 1 evolve forward particle trajectories according to Eq. (3) with drift fl−1,θ and
filter w.r.t. the observations {(tj ,yj)}Mj=1, 2 learn the drift function bl,ϕ for the reverse-time SDE,
3 evolve backward particle trajectories according to Eq. (4) with the drift bl,ϕ learned in step 2

and filter w.r.t. the observations {(tj ,yj)}Mj=1, and 4 learn the drift function fl,θ for the forward
SDE based on the backward particles.

Step 1 (and 3 ): Given a fixed discretization of the time interval [0, T ] denoted as {tk}Kk=1 with
t1 = 0 and tK = T , denote the time step lengths as ∆k = tk+1 − tk. By truncating the Itô–Taylor
series of the SDE, we can consider an Euler–Maruyama (e.g., Ch. 8 in Särkkä & Solin, 2019) type of
discretization for the continuous-time problem. Following Eq. (3), we evolve the ith particle at time
tk according to

x̃i
tk

= xtk−1
+ fl−1,θ(xtk−1,tk−1

)∆k + g(tk−1)
√

∆k ξ
i
k, (5)

where ξik ∼ N(0, I). Notice that we have not yet conditioned on the observational data. In step 3 ,
the particles z̃itk of the backward SDE Eq. (4) are similarly obtained. The SDE dynamics sampled in
steps 1 and 3 apply the learned drift functions fl−1,θ and bl,ϕ from the previous step and do not
require sampling from the underlying SDE model.

For resampling, we employ a differentiable resampling procedure, where the particles and weights
(x̃i

tk
, wi

tk
) are transported to uniformly weighted particles (xi

tk
, 1
N ) by solving an entropy-regularized

optimal transport problem (Cuturi, 2013; Peyré & Cuturi, 2019; Corenflos et al., 2021) (see App. D).
Through application of the ε-regularized optimal transport map T(ε) ∈ RN×N (see Corenflos et al.,
2021) the particles are resampled via the map to xi

tk
= X̃⊤

tk
T(ε),i, where X̃tk ∈ RN×d denotes the

stacked particles {x̃i
tk
}Ni=1 at time tk before resampling.

Step 2 (and 4 ): Given the particles {xi
tk
}K,N
k=1,i=1, we now aim to learn the drift function for the

respective reverse-time process. The purpose of this step is to find a mean-matching reversal of the
trajectories, in other words we aim to find fl,θ such that it best explains the change we observe from
{xi

tk
} to {xi

tk+1
} for each trajectory i = 1, 2, . . . , N .

In case no observation is available at time tk, we apply the mean-matching loss based on a Gaussian
transition approximation proposed in De Bortoli et al. (2021):

ℓik+1,nobs = ∥bl,ϕ(xi
tk+1

, tk+1)∆k−xi
tk+1
−fl−1,θ(x

i
tk+1

, tk)∆k+xi
tk
+fl−1,θ(x

i
tk
, tk)∆k∥2. (6)

In case an observation is available at time tk the particle values X̃tk will be coupled through the
optimal transport map. Therefore, the transition density is a sum of Gaussian variables (see App. A
for details and a derivation), and the mean-matching loss is therefore given by:

ℓik+1,obs = ∥bl,ϕ(xi
tk+1

, tk+1)∆k − xi
tk+1
− fl−1,θ(x

i
tk+1

, tk)∆k

+
∑N

n=1 T(ε),i,n

(
xn
tk

+ fl−1,θ(x
n
tk
, tk)∆k

)
∥2,

In deriving the loss, we apply the property that the reverse drift should satisfy

bl,ϕ(xtk+1
, tk+1) = fl−1,θ(xtk+1

, tk)− g(tk+1)
2∇ ln ptk+1

, (7)

where ptk+1
is the particle filtering density after differential resampling at time tk+1. Thus the impact

of observations to the loss function is two-fold, the observations define the value of the transport
matrix T(ε) and the marginal score∇ ln ptk+1

.
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The overall objective function is a combination of both loss functions, with the respective mean-
matching loss depending on whether tk is an observation time. The final loss function is written
as:

ℓ(ϕ) =
∑N

i=1

[∑K
k=1 ℓ

i
k,obs(ϕ)Iytk

̸=∅ + ℓik,nobs(ϕ)Iytk
=∅

]
, (8)

where Icond. denotes an indicator function that returns ‘1’ iff the condition is true, and ‘0’ otherwise.
Consequently, the parameters ϕ of bl,ϕ are learned by minimizing Eq. (8) through gradient descent.
In practice, a cache of trajectories {xi

tk
}K,N
k=1,i=1 is maintained through training of the drift functions,

and refreshed at a fixed number of inner loop iterations, as in De Bortoli et al. (2021), avoiding
differentiation over the SDE generation computational graph. In the single-cell experiment, the
cache size is set to 1000 and it is refreshed every 500 iterations. The calculations for step 4 follow
similarly. We present a high-level description of the ISB steps in Alg. 1.

4 Experiments

To assess the properties and performance of the ISB, we present a single-cell embryo RNA modelling
experiment to demonstrate how the iterative learning procedure can incorporate both observational
data and terminal constraints.

We parametrize the forward and backward drift functions fθ and bϕ as neural networks,and use a MLP
block design as in De Bortoli et al. (2021). The latent state SDE was simulated by Euler–Maruyama
with a fixed time-step of 0.01 over 100 steps and 1000 particles, full details are included in App. B.

Table 1: Results for the single-cell embryo RNA ex-
periment. We compare ISB to TrajectoryNet, IPML,
and our implementation of IPFP. Unlike the other
methods, our model is able to utilize the intermedi-
ate data distributions while training.

Earth mover’s distance
METHOD t=0 t=1 t=2 t=3 t=T

TrajectoryNet 0.62 1.15 1.49 1.26 0.99
IPML 0.34 1.13 1.35 1.01 0.49
IPFP (no obs) 0.57 1.53 1.86 1.32 0.85
ISB (single-cell obs) 0.57 1.04 1.24 0.94 0.83

Pr
in

ci
pa

la
xi

s
#1

PA
#2

t=
0

t=
1

t=
2

t=
3

t=
T

(b) Iterative Smoothing Bridge

Single-cell embryo RNA-seq We evaluated our approach on an Embryoid body scRNA-seq time
course (Tong et al., 2020). The data consists of RNA measurements collected over five time ranges
from a developing human embryo system. No trajectory information is available, instead we only have
access to snapshots of RNA data. This leads to a data set over 5 time ranges, the first from days 0–3 and
the last from days 15–18. In the experiment, we followed the protocol by Tong et al. (2020), reduced
the data dimensionality to d = 5 using PCA, and used the first and last time ranges as the initial and
terminal constraints. All other time ranges are considered observational data. Contrary to the other ex-
periments, intermediate data are imprecise (only a time range of multiple days is known) but abundant.

We set the diffusion g(t) to a constant level, and learned the ISB using a zero drift and compared it
against an unconditional bridge obtained through the IPFP (De Bortoli et al., 2021)—see Sec. 4. The
ISB learns to generate trajectories with marginals closer to the observed data while performing com-
parably to the IPFP at the initial and terminal stages. This improvement is also verified numerically in
Table 1, showing that the ISB obtains a lower Earth mover’s distance between the generated marginals
and the observational data than IPFP. Additionally, Table 1 lists the performance of previous works
that do not use the intermediate data during training (Tong et al., 2020) or only use it to construct
an informative reference drift (Vargas et al., 2021), see App. B.1 for details. In both cases, ISB
outperforms the other approaches w.r.t. the intermediate marginal distributions (t = 1, 2, 3), while
IPML (Vargas et al., 2021) outperforms ISB at the initial and terminal stages due to its data-driven
reference drift. Notice that while we reduced the dimensionality via PCA to 5 for fair comparisons
to Vargas et al. (2021), the ISB model would also allow modelling the full state-space model, with
observations in the high-dimensional gene space and a latent SDE.
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A Method Details

We present the details of the objective function derivation in App. A.1 and explain the connection
of the backward drift function to Hamilton–Jacobi equations in App. A.2. In App. A.3, we discuss
the behaviour of our model at the limit M →∞, that is, when the observations fully represent the
marginal densities of the stochastic process.

A.1 Deriving the Mean-matching Loss at Observation Times

Recall that the forward loss is written as

ℓ(ϕ) =

N∑
i=1

[
K∑

k=1

ℓik,obs(ϕ)Iytk
̸=∅ + ℓik,nobs(ϕ)Iytk

=∅

]
, (9)

where the loss at observations ℓik,obs(ϕ) and loss elsewhere ℓik,nobs(ϕ) are

ℓik+1,nobs = ∥bl,ϕ(xi
tk+1

, tk+1)∆k−xi
tk+1
−fl−1,θ(x

i
tk+1

, tk)∆k+xi
tk
+fl−1,θ(x

i
tk
, tk)∆k∥2, (10)

ℓik+1,obs = ∥bl,ϕ(xi
tk+1

, tk+1)∆k − xi
tk+1
− fl−1,θ(x

i
tk+1

, tk)∆k

+
1

Cε,i

∑N
n=1 T(ε),i,n

(
xn
tk

+ fl−1,θ(x
n
tk
, tk)∆k

)
∥2, (11)

For convenience, we state the backward loss functions which follow similarly to their forward
versions. The backward loss is defined as

←−−
ℓ(θ) =

N∑
i=1

[
K∑

k=1

←−
ℓ i

k,obs(θ)Iytk
̸=∅ +

←−
ℓ i

k,nobs(θ)Iytk
=∅

]
, (12)

where the loss at observations
←−
ℓ i

k,obs(θ) and loss elsewhere
←−
ℓ i

k,nobs(θ) are

←−
ℓ i

k+1,nobs = ∥fl,θ(xi
tk+1

, tk+1)∆k − xi
tk+1
− bl,θ(x

i
tk+1

, tk)∆k + xi
tk

+ bl,θ(x
i
tk
, tk)∆k∥2, (13)

←−
ℓ i

k+1,obs = ∥fl,θ(xi
tk+1

, tk+1)∆k − xi
tk+1
− bl,ϕ(x

i
tk+1

, tk)∆k

+
1

Cε,i

∑N
n=1 T(ε),i,n

(
xn
tk

+ bl,ϕ(x
n
tk
, tk)∆k

)
∥2. (14)

Proposition 1. Define the forward SDE as

dxt = fl,θ(xt, t) dt+ g(t) dβt, x0 ∼ π0, (15)

and a backward SDE drift as

bl,ϕ(xtk+1
, tk+1) = fl−1,θ(xtk+1

, tk)− g(tk+1)
2∇ ln ptk+1

, (16)

where ptk+1
is the particle filtering density after differential resampling at time tk+1. Then

bl,ϕ(xtk+1
, tk+1) minimizes the loss function

ℓik+1,obs = ∥bl,ϕ(xi
tk+1

, tk+1)∆k − xi
tk+1
− fl−1,θ(x

i
tk+1

, tk)∆k

+
1

Cε,i

∑N
n=1 T(ε),i,n

(
xn
tk

+ fl−1,θ(x
n
tk
, tk)∆k

)
∥2, (17)

where we denote Cε,i =
1

g(tk+1)2∆k
Var

(∑N
n=1 T(ε),i,nx̃

n
tk+1

)
, and {x̃i

tk+1
}Ni=1 are the particles

before resampling.

Proof sketch. Our objective is to find a backward drift function bl,ϕ(xtk+1
, tk+1) as in Eq. (16).

Notice that at observation times tk, this is not equivalent to finding the reverse drift of the SDE
forward transition and differential resampling combined, since the drift function fl−1,θ alone does not
map the particles {xi

tk
}Ni=1 to the particles {xi

tk+1
}Ni=1. We will derive a loss function for learning
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the backward drift as in Eq. (16) below, leaving the discussion on why it is a meaningful choice of a
backward drift to App. A.2. Our derivation closely follows the proof of Proposition 3 in De Bortoli
et al. (2021), but we provide the details here for the sake of completeness.

First, we give the transition density pxtk
|xi

tk−1
(xk) and apply it to derive the observation time loss

ℓik,obs. The derivation for the loss ℓik,no obs is skipped since it is as in the proof of Proposition 3 in
De Bortoli et al. (2021). Suppose that at tk, there are observations. By definition, the particles before
resampling {x̃i

tk+1
}Ni=1 are generated by the Gaussian transition density

p(x̃tk+1
|xi

tk
) = N(x̃tk+1

|xi
tk

+ δkfl(x
i
tk
, tk), g(tk+1)

2∆kI). (18)

Recall that the resampled particles are defined as a weighted average of all the particles, xi
tk

=∑N
n=1 x̃

n
tk
T(ε),i,n. Thus, the transition density from {xi

tk
}Ni=1 to the particles {xi

tk+1
}Ni=1 is also a

Gaussian,

p(xtik+1
|xi

tk
) = N(x̃tk+1

|
N∑

n=1

T(ε),i,n(x
n
tk−1

+∆kfl−1,θ(x
n
tk
, tk)), g(tk+1)

2∆kCε,iId). (19)

We will derive the loss function Eq. (17) by modifying the mean matching proof in De Bortoli
et al. (2021) by the transition mean Eq. (19) and the backward drift definition Eq. (16). Using
the particle filtering approximation, the marginal density can be decomposed as ptk+1

(xk+1) =∑N
i=1 ptk(x

i
k)pxk+1 |xi

k
(xk+1). By substituting the transition density Eq. (19) it follows that

ptk+1
(xtk+1

) =
1

Z

N∑
i=1

ptk(x
i
tk
) exp

−∥
(∑N

n=1 T(ε),i,n(x
i
tk

+ fl−1,θ(xtk , tk))
)
− xtk+1

∥2

2g(tk+1)2Cε,i∆k

 ,

(20)
where Z is the normalization constant of Eq. (19). As in the proof of Proposition 3 of De Bor-
toli et al. (2021), we derive an expression for the score function. Since ∇ ln ptk+1

(xtk+1
) =

∇xtk+1
ptk+1

(xtk+1
)

ptk+1(xtk+1
)

, we first manipulate∇xtk+1
ptk+1

(xtk+1
),

∇xtk+1
ptk+1

(xtk+1
) =

1

Z

N∑
i=1

∇xtk+1
p(xi

tk
) exp

−∥
(∑N

n=1 T(ε),i,n(x
i
tk

+ fl−1,θ(xtk , tk))
)
− xtk+1

∥2

2g(tk+1)2Cε,i∆k


=

1

Z

( N∑
i=1

p(xi
tk
)

(
N∑

n=1

1

g(tk+1)2∆kCε,i

(
T(ε),i,n(x

i
tk

+ fl−1,θ(xtk , tk))− xtk+1

))

exp

−∥
(∑N

n=1 T(ε),i,n(x
i
tk

+ fl−1,θ(xtk , tk))
)
− xtk+1

∥2

2g(tk+1)2Cε,i∆k

).
(21)

Substituting ptk(x
i
k) =

ptk+1
(xtk+1

)p
xk+1 | xi

k
(xk+1)

p
xi
k

| xk+1
(xi

k)
to the equation above gives

∇xtk+1
ptk+1

(xtk+1
) = ptk+1

(xtk+1
)

N∑
i=1

pxk+1 |xi
k
(xi

k)

(
N∑

n=1

(
T(ε),i,n(x

i
tk

+ fl−1,θ(xtk , tk))− xtk+1

)
g(tk+1)2∆kCε,i

)
,

(22)
and dividing by ptk+1(xtk+1

) yields

∇ ln ptk+1
(xtk+1

) =

N∑
i=1

px
ti
k
|xtk+1

(xtik
)

(
N∑

n=1

(
T(ε),i,n(x

i
tk

+ fl−1,θ(xtk , tk))− xtk+1

)
g(tk+1)2∆kCε,i

)
.

(23)
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Substituting Eq. (23) to the definition of the optimal backward drift Eq. (16) gives

bl,ϕ(xtk+1
, tk+1) = fl−1,θ(xtk+1

, tk)− g(tk+1)
2∇ ln ptk+1

(xk+1)

= fl−1,θ(xtk+1
, tk)

− g(tk+1)
2

N∑
i=1

px
ti
k
|xtk+1

(xtk+1
)

(
N∑

n=1

(
T(ε),i,n(x

i
tk

+ fl−1,θ(xtk , tk))− xtk+1

)
g(tk+1)2∆kCε,i

)
,

(24)

where taking fl−1,θ(xtk+1
, tk) inside the sum yields

bl,ϕ(xtk+1
, tk+1) =

N∑
i=1

px
ti
k
|xtk+1

(xtk+1
)(

1

Cε,i

(
N∑

n=1

T(ε),i,n(x
i
tk

+ fl−1,θ(xtk , tk))

)
−

xtk+1

Cε,i
−∆kfl−1,θ(xtk+1

, tk)

)
/∆k). (25)

Multiplying the equation above by ∆k gives

∆kbl,ϕ(x
i
tk+1

, tk+1) =

(
N∑

n=1

T(ε),i,n(x
n
tk

+ fl−1,θ(x
n
tk
, tk))

)
−

xi
tk+1

Cε,i
−∆kfl−1,θ(xtik+1

, tk).

(26)
Thus we may set the objective for finding the optimal backward drift bl,ϕ as

ℓik+1,no obs = ∥bl,ϕ(xi
tk+1

, tk+1)∆k −
xi
tk+1

Cε,i
− fl−1,θ(x

i
tk+1

, tk)∆k

+
1

Cε,i

∑N
n=1 T(ε),i,n

(
xn
tk

+ fl−1,θ(x
n
tk
, tk)∆k

)
∥2. (27)

Notice that if the weights before resampling are uniform, then T(ε) = IN , and for all i ∈ 1, 2, . . . , N

it holds that Cε,i = 1, since all but one of the terms in the sum 1
g(tk+1)2

Var
(∑N

n=1 T(ε),i,nx̃
n
tk+1

)
vanish. Similarly, for one-hot weights Cε,i = 1. In practice, we set the constant Cε,i = 1 as in ??
and observe good empirical performance with the simplified loss function.

A.2 Connection to Hamilton–Jacobi Equations

We connect the backward drift function bl,ϕ(xtk+1
, tk+1) = fl−1,θ(xtk+1, tk) −

g(tk+1)
2∇ ln ptk+1

(xtk+1
) to the Hamilton–Jacobi equations for stochastic control through following

the setting of Maoutsa & Opper (2022), which applies the drift fl−1,θ(xt, t)− g(t)2∇ ln pt(xt) for a
backwards SDE initialized at πT .

Consider a stochastic control problem with a path constraint U(xt, t), optimizing the following loss
function,

J =
1

N

N∑
i=1

∫ T

t=0

1

2g(t)2
∥fθ(xi

t, t)− f(xi
t, t)∥2 + U(xi

t, t) dt− lnχ(xi
T ), (28)

with the paths, xi
t sampled as trajectories from the SDE

x0 ∼ π0, dxt = fl−1,θ(xt, t) dt+ g(t) dβt, (29)

and the loss lnχ(xi
T ) measures distance from the distribution πT . Since we set the path constraint

via observational data, our method resembles setting U(xi
t, t) = 0 when t is not an observation time,

and U(xi
t) = − logp(y |xi

t), where p(y |xi
t) is the observation model.

Let qt(x) denote the marginal density of the controlled (drift fθ) SDE at time t. In Maoutsa & Opper
(2022), the marginal density is decomposed as

qt(x) = φt(x)pt(x), (30)
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Algorithm 1 The Iterative Smoothing Bridge

Input: Marginal constraints (π0, πT ), observations D = {(tj ,yj)}Mj=1, initial drift function f0,θ,
iterations L, discretization steps K, number of particles N , observation noise schedule κ(l)

Output: Learned forward and backward drift (fθ, bϕ)
for l = 1 to L do

Fo
rw

ar
d

pr
oc

es
s

Initialize forward particles {xi
0}Ni=1 ∼ π0

for k = 1 to K do
Generate {xi

k}Ni=1 using {xi
k−1}Ni=1 ▷ Eq. (3)

if Observations at tk then
{xi

k}Ni=1 ← DiffResample({xi
k}Ni=1, κ(l))

end if
end for
Optimize the forward loss function w.r.t. ϕ ▷ Eq. (8)

B
ac

kw
ar

d
pr

oc
es

s

Initialize backward particles {ziK}Ni=1 ∼ πT

for k = K to 1 do
Generate {zik−1}Ni=1 using {zik}Ni=1 ▷ Eq. (4)
if Observations at tk then
{zik−1}Ni=1 ← DiffResample({zik−1}Ni=1, κ(l))

end if
end for
Optimize the backwards loss function w.r.t. θ ▷ Eq. (12)

end for

where φt(x) is a solution to a backwards Fokker-Planck-Kolmogorov (FPK) partial differential
equation starting from φT (x) = πT , and the density evolves as in

dφt(x)

dt
= −L†

fφt(x) + U(x, t)φt(x), (31)

where L†
f is the adjoint FPK operator to the uncontrolled system. The density pt(x) corresponds to

the forward filtering problem, initialized with π0,

dpt(x)

dt
= Lf (pt(x))− U(x, t)pt(x), (32)

where Lf is the FPK operator of the uncontrolled SDE (with drift f ). The particle filtering trajectories
{xtk}i generated in our method are samples from the density defined by Eq. (32). In the context of
our method, the path constraint matches the log-weights of particle filtering at observation times and
is zero elsewhere.

In Maoutsa & Opper (2022), a backward evolution for qt is applied, using the backwards time
q̃T−τ (x) = qτ (x), yielding a backwards SDE starting from q̃0(x) = {xi

T }Ni=1, reweighted according
to πT . The backward samples from q̃ are generated following the SDE dynamics

dxi
τ = (f(xi

τ , T − τ) + g(t)2∇ ln pT−τ (x
i
τ ) dt+ g(t) dβτ . (33)

We have thus selected the backward drift bl,ϕ to match the drift of q̃t(x), the backward controlled
density. Intuitively, our choice of bl,ϕ is a drift which generates the smoothed particles when initialized
at {xi

T }Ni=1, the terminal state of the forward SDE. The discrepancy between πT and the distribution
induced by {xi

T }Ni=1 then motivates the use of an iterative scheme after learning to simulate from
qt(x).

A.3 Observing the Full Marginal Density

Suppose that at time tk, we let the number of observations grow unbounded. We analyse the behaviour
of our model at the resampling step, at the limit M →∞ for the number of observations and σ → 0
for the observation noise. When applying the bootstrap proposal, recall that we combined the multiple
observations to compute the log-weights as

logwi
tk

= − 1

2σ2

∑
yj∈DH

i,tk

∥xi
tk
− yj∥2, (34)
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which works well in practice for the sparse-data settings we have considered. Below we analyse the
behaviour of an alternative way to combine the weights and show that given an infinite number of
observations, it creates samples from the true underlying distribution.

Proposition 2. Let {xi
tk
}Ni=1 be a set of particles and {yj}Mj=1 the observations at time tk. Assume

that the observations have been sampled from a density ρtk and that for all i it holds that xi
tk
∈

supp(ρtk). Define the particle weights as

logwi
tk,σ,M

= log

(
1

Z|DH(M)
i,tk

|

∑
yj∈DH(M)

i,tk

exp(−∥xi
tk
− yj∥2/2σ2)

)
, (35)

where Z is the normalization constant of the observation model Gaussian p(y |xi
tk
). Then for each

particle xi
tk

, its weight satisfies

lim
σ→0

lim
M→∞

wi
tk,σ,M

= ρtk(xtk). (36)

Proof sketch. We drop the σ and H(M) from the weight notation for simplicity of notation, but
remark that the particle filtering weights are dependent on both quantities. Consider the number of
particles N fixed, and denote the d-dimensional sphere centered at xi

tk
as B(xi

tk
, r). Since each

particle xi
tk

lies in the support of the true underlying marginal density ρtk , then for any radius r > 0

such that B(xi
tk
, r) ∈ supp(ρtk), and H > 0, we may choose M high enough so that the points

yj ∈ DH
i,tk

satisfy yj ∈ B(xi
tk
, r). It follows from Eq. (35) that

wi
tk

=
1

Z|DH(M)
i,tk

|

∑
yj∈DH(M)

i,tk

exp(−∥xi
tk
− yj∥2/2σ2). (37)

For any r > 0 and with observation noise σ = cr, we may set c,H(M) so that the sum above
approximates the integral

wi
r,tk
≈ 1

|B(xi
tk
, r)|

∫
B(xi

tk
,r)

p(y |xi
tk
)ρt(y) dy. (38)

By applying the Lebesque differentiation theorem, we obtain that for almost every xi
tk

, we have
limr→0 w

i
tk,r

= ρtk(x
i
tk
), since as σ → 0, the density p(y |xi

tk
) collapses to the Dirac delta of xi

tk
.

Prop. 2 can be interpreted as the infinite limit of a kernel density estimate of the true underlying
distribution. Resampling accurately reweights the particles so that the probability of resampling
particle xi

tk
is proportional to the density ρtk compared to the other particles. Notice that the result

does not guarantee that the particles will cover the support of ρtk , since we did not assume that the
drift initialization generates a marginal density at time tk covering its support.

B Experimental Details

The observational data consists of 10 points selected from the Schrödinger bridge trajectories, all
observed at t ∈ [0.25, 0.5, 0.75] with an exponential observation noise schedule κ(l) = 1.25l−1. The
ISB was run for 6 epochs and initialized with a drift from the pre-trained Schrödinger bridge model
from the unconstrained problem.

The observational data consists of 10 points which lie evenly distributed on a circle, observed at
t = 0.5 with an exponential observational noise schedule κ(l) = 0.5 · 1.25l−1. The ISB was run
for 6 epochs and initialized with a drift from the pre-trained Schrödinger bridge model from the
unconstrained problem.

The observational data consists of 6 points, with pairs being observed at times t ∈ [0.4, 0.5, 0.6]. We
used a bilinear observational noise schedule with a linear decay for the first half of the iterations from
κ(0)2 = 4 to κ(L/2)2 = 1 and a linear ascend for the second half of the iterations from κ(L/2)2 = 1
to κ(L)2 = 4. The ISB ran for 6 epochs, with a zero drift initialization.
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B.1 Single-Cell Data Set

We directly use the preprocessed data from the TrajectoryNet (Tong et al., 2020) repository and run
the ISB model on a MacBook Pro CPU. A major difference between our implementation and Vargas
et al. (2021) is the reference drift. We set the reference drift to zero, which means that we utilize the
intermediate data only as observations in the state-space model. On the contrary, Vargas et al. (2021)
fits a mixture model of 15 Gaussians on the combined data set (across all measurement times) and
sets the reference drift to the gradient of the log-likelihood of the mixture model. Effectively, such a
reference drift aids in keeping the SDE trajectories within the support of the combined data set. We
remark that if the intermediate observed marginals had clearly disjoint support, combining all the
data would cause the mixture model to have ‘gaps’ and could cause an unstable reference model drift.
Thus we consider our approach of setting the reference drift to zero as more generally applicable.

As in Vargas et al. (2021), we set the process noise to g(t) = 1 and model the SDE between time
t ∈ [0, 4]. The learning rate is set to 0.001 with a batch size of 256 and the number of neural network
training iterations equal to 5000. We apply the ISB for 6 iterations. We perform filtering using 1000
points from the intermediate data sets, but compute the Earth mover’s distance by comparing it to all
available data. As the observational data at T = 1, 2, 3 consists of a high number of data points, the
parameters H (number of nearest neighbours) and σ (observation noise) need to be carefully set. We
set H = 10 to only include the close neighbourhood of each particle and set the observation noise
schedule as constant 0.7.

C Computational Considerations

Below we discuss some important computational considerations in detail, analyzing the limit L→∞
from the perspective of setting the observation noise schedule in App. C.1.

C.1 Discussion on Observation Noise

When letting L→∞, the choice of observation noise should be carefully planned in order for the ISB
procedure to have a stationary point. Here we explain why an unbounded observation noise schedule
κ(l) implies convergence to the IPF method for uncontrolled Schrödinger bridges (De Bortoli et al.,
2021), when using a nearest neighbour bootstrap filter as the proposal density.
Proposition 3. Let Ω ∈ Rd be a bounded domain where both the observations and SDE trajectories
lie, and let the particle filtering weights {wi

l,tk
}Ni=1 at ISB iteration l be

logwi
l,tk

= − 1

2κ(l)2

∑
yj∈DH

tk

∥xi
tk
− yj∥2. (39)

If the schedule κ(l) is unbounded with respect to l, then for any δ there exists l′ such that for the
normalized weights it holds

|ŵi
l′,tk
− 1

N
| ≤ δ. (40)

Proof sketch. Since κ(l) is unbounded, for any S > 0 ∃ l′ such that κ(l′) ≥ S. We choose the value
of S so that the following derivation yields Eq. (40).

Let S =
√
0.5R−1|DH

tk
|diam(Ω)2, and apply the property that ∥xi

tk
−yj∥2 ≤ diam(Ω)2 to Eq. (39),

logwi
l′,tk
≥ − 1

2S2

∑
yj∈DH

tk

∥xi
tk
− yj∥2

≥ −

∑
yj∈DH

tk

∥xi
tk
− yj∥2

R−1|DH
tk
|diam(Ω)2

≥ −

∑
yj∈DH

tk

diam(Ω)2

R−1|DH
tk
|diam(Ω)2

≥ −R.

(41)

The bound above is for the unnormalized weights, and the normalized log-weights are defined as

log ŵi
l′,tk

= logwi
l′,tk
− log

( N∑
j=1

exp(logwj
l′,tk

)

)
, (42)
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where for the normalizing constant it holds that

log

( N∑
j=1

exp(logwj
l′,tk

)

)
≤ log

( N∑
j=1

1

)
= log(N), (43)

since wj
l′,tk

is the value of a probability density and thus always wj
l′,tk
≤ 1. Combining Eq. (42),

Eq. (41) and Eq. (43), it follows that

log ŵi
l′,tk
− (− log(N) ≥ −R, (44)

where taking exponentials on both sides gives

ŵi
l′,tk
− 1

N
≥ −(1− exp(−R))

1

N
. (45)

Since the weights are normalized, even the largest particle weight ŵj
l′,tk

can differ from 1
N as much

as every smaller weight in total lies under 1
N ,

ŵj
l′,tk
≤ 1

N
+ (N − 1)

(
(1− exp(−R))

1

N

)
, (46)

implying that for any weight ŵj
l′,tk

, it holds that

|ŵj
l′,tk
− 1

N
| ≤ (N − 1)

(
(1− exp(−R))

1

N

)
≤ 1− exp(−R), (47)

and selecting R = − log(1− δ) is sufficient for δ < 1.

Effectively, the above derivation implies that for an unbounded observation noise schedule κ(l),
the particle weights will converge to uniform weights. Since performing differentiable resampling
on uniform weights implies that T(ε) = IN , the ISB method trajectory generation step and the
objective in training the backward drift converge to those of the IPF method for solving unconstrained
Schrödinger bridges. Intuitively, this means that at the limit L → ∞, our method will focus on
reversing the trajectories and matching the terminal distribution while not further utilizing information
from the observations.

D Differentiable Resampling

In the ISB model steps 1 and 3 presented in Sec. 3, we applied differentiable resampling (see
Corenflos et al., 2021). Resampling itself is a basic block of particle filtering. A differentiable
resampling step transports the particles and weights (x̃i

tk
, wi

tk
) to a uniform distribution over a set of

particles through applying the differentiable ensemble transport map T(ε), that is

(x̃i
tk
, wi

tk
)→ (X̃⊤

tk
T(ε),i, 1/N) = (xi

tk
, 1/N), (48)

where X̃tk ∈ RN×d denotes the stacked particles {x̃i
tk
}Ni=1 at time tk before resampling and xi

tk
denotes the particles post resampling. Here we give the definition of the map T(ε) and review the
regularized optimal transport problem which has to be solved to compute it. We partly follow the
presentation in Sections 2 and 3 of Corenflos et al. (2021), but directly apply the notation we use for
particles and weights and focus on explaining the transport problem rather than the algorithm used to
solve it.

The standard particle filtering resampling step consists of sampling N particles from the categorical
distribution defined by the weights {wi

tk
}Ni=1, resulting in the particles with large weights being most

likely to be repeated multiple times. A result from Reich (2013) gives the property that the random
resampling step can be approximated by a deterministic ensemble transform T. In heuristic terms,
the ensemble transform map will be selected so that the particles {xi

tk
}Ni=1 will be transported with

minimal cost, while allowing all the weights to be uniform.

Let µ and ν be atomic measures, µ =
∑N

i=1 w
i
tk
δx̃i

tk
and ν =

∑N
i=1 N

−1δx̃i
tk

, where δx is the Dirac
delta at x. Then µ is the particle filtering distribution before resampling. Define the elements of a
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cost matrix C ∈ RN×N as Ci,j = ∥x̃i
tk
− x̃j

tk
∥2, and the 2-Wasserstein distance between two atomic

measures as

W2
2 (µ, ν) = min

P∈S(µ,ν)

N∑
i=1

N∑
j=1

Ci,jPi,j . (49)

Above the optimal matrix P is to be found within S(µ, ν), which is a space consisting of mixtures of
N particles to N particles such that the marginals coincide with the weights of µ and ν, formally

S(µ, ν) =

P ∈ [0, 1]N×N |
N∑
i=1

Pi,j = wi
tk
,

N∑
j=1

Pi,j =
1

N

 . (50)

The entropy-regularized Wasserstein distance with regularization parameter ε is then

W2
2,ε = min

P∈S(µ,ν)

N∑
i=1

N∑
j=1

Pi,j

(
Ci,j + ε log

Pi,j

wi
tk
· 1
N

)
. (51)

The unique minimizing transport map of the above Wasserstein distance is denoted by POPT
ε , and

the ensemble transport map is then set as T(ε) = NPOPT
ε . This means that we can find the matrix

T(ε) via minimizing the regularized Wasserstein distance, which is done by applying the iterative
Sinkhorn algorithm for entropy-regularized optimal transport (Cuturi, 2013).
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