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Abstract
Model reprogramming adapts pretrained models
to downstream tasks by modifying only the in-
put and output spaces. Visual reprogramming
(VR) is one instance for vision tasks that adds
a trainable noise pattern (i.e., a visual prompt)
to input images to facilitate downstream classi-
fication. The existing VR approaches for CLIP
train a single visual prompt using all descriptions
of different downstream classes. However, the
limited learning capacity may result in (1) a fail-
ure to capture diverse aspects of the descriptions
(e.g., shape, color, and texture), and (2) a possi-
ble bias toward less informative attributes that do
not help distinguish between classes. In this pa-
per, we introduce a decoupling-and-reweighting
framework. Our decoupled visual prompts (DVP)
are optimized using descriptions grouped by ex-
plicit causes (DVP-cse) or unsupervised clusters
(DVP-cls). Then, we integrate the outputs of
these visual prompts with a probabilistic reweight-
ing matrix (PRM) that measures their contribu-
tions to each downstream class. Theoretically,
DVP lowers the empirical risk bound. Exper-
imentally, DVP outperforms baselines on aver-
age across 11 downstream datasets. Notably,
the DVP-PRM integration enables insights into
how individual visual prompts influence classifi-
cation decisions, providing a probabilistic frame-
work for understanding reprogramming. Our
code is available at https://github.com/
tmlr-group/DecoupledVP

1. Introduction
Model reprogramming (Vinod et al., 2020; Chen, 2024;
Hung et al., 2023) is shown to be an effective approach for
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Figure 1. Difference between (a) existing VR methods that train
a single VP for all descriptions, and (b) our DVP that trains
decoupled-and-reweighted VPs that are optimized using descrip-
tions grouped by explicit causes or unsupervised clusters. Learn-
able parameters are marked with ‘fire’s.

adapting models pretrained on abundant data to a specific
task by modifying inputs and outputs without altering the
model’s core architecture or retraining. Among these meth-
ods, visual reprogramming (VR) (Cai et al., 2024b;a; Tsao
et al., 2024; Chen et al., 2023), also known as adversar-
ial reprogramming (Elsayed et al., 2018; Tsai et al., 2020),
aims to repurpose pretrained models for downstream image
classification tasks by adding trainable noise patterns to the
input images. VR for vision-language models (VLMs) (Cai
et al., 2025) trains a single noise pattern, also known as a
visual prompt (VP), to align input images with (i.e., bring
the visual features closer to texture features) all descriptions
of different downstream classes, as shown in Figure 1(a).

However, attribute descriptions (Cai et al., 2025) are com-
plex and diverse, while the learning capacity of a single
VP may be limited, potentially insufficient to handle all
image-description pairs. This may result in the VP success-
fully capturing descriptions in certain aspects while failing
in others. Additionally, the VP may unreasonably tend to
optimize less informative descriptions that, while easier to
match with images (i.e., having a higher cosine similar-
ity), exhibit low discriminability between classes. Figure
2 shows an example of a single VP pattern trained on the
OxfordFlowers (Nilsback & Zisserman, 2008) dataset for all
attributes (Cai et al., 2025), with sample descriptions shown
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Figure 2. Drawbacks of training a single VP with all attribute descriptions. Sample descriptions of different aspects for ‘artichoke’ and
‘globe thistle’ are shown on the left, while recorded cosine similarities of images and descriptions are on the right. Figure (a) illustrates its
inability to capture descriptions of diverse aspects, and Figure (b) reveals its unreasonable bias towards less informative descriptions.

on the left. Three attributes of different aspects–‘shape’,
‘stem/leaf’ and ‘petal color’–are listed for class ‘artichoke’
and ‘globe thistle’. Figure 2(a) shows the cosine similarity
between attribute descriptions and the image ‘artichoke’ be-
fore and after reprogramming using the VP pattern. It can
be observed that although adding VP enlarges the similar-
ity between the input image and the description regarding
‘petal color’, the description about ‘stem/leaf’–also being
an important aspect for distinguishing artichokes–has, con-
versely, become more alien. This illustrates the inability of a
single VP to capture descriptions of diverse aspects. Figure
2(b) shows the cosine similarity between the reprogrammed
image ‘artichoke’ or ‘globe thistle’ and their corresponding
descriptions. Intuitively, both flowers share the same ‘shape’
(i.e., large, round and spiky), while aspects like ‘stem/leaf’
and ‘petal color’ may be more informative for distinguishing
between these two classes. However, as ‘shape’ descriptions
have a higher similarity with the images, the VP learning
process favors them. It highlights how using a single VP
may exhibit a bias towards less informative descriptions.

In this paper, we first formulate the problem and then in-
troduce a decoupling-and-reweighting learning framework
(as shown in Figure 1(b)) to avoid the above drawbacks of
a single VP. Under our framework, decoupled VPs will be
optimized for different description partitions, and the impor-
tance of descriptions is distinguished through reweighting
(see Section 3 for details).

In Section 4, for the decoupling step, we propose decou-
pled visual prompts (DVP) that are optimized using descrip-
tions grouped by explicit causes (DVP-cse) or unsupervised
clusters (DVP-cls). Explicit causes can be determined by
querying a large language model (LLM) while unsupervised
clusters can be resolved with K-means. For the reweighting
step, the output of DVP will be integrated using a proba-

bility reweighting matrix (PRM) which is optimized during
learning through maximum likelihood estimation (MLE).
We also show that DVP improves the results by lowering
the empirical risk bound.

Section 5 shows the application of DVP to 11 commonly
used downstream datasets and four CLIP backbones, demon-
strating its effectiveness. The parameter analysis, ablation
experiments, and independence tests further validate the
rationality of DVP. Remarkably, the visualization results
of PRM reflect how individual VPs influence classification
decisions, reflecting their different roles and contributions
across various downstream classes.

In conclusion, both theoretical analysis and experimental
results verify the soundness of DVP. The DVP-PRM integra-
tion also offers a probabilistic framework for understanding
model reprogramming by exploring individual VPs.

2. Related Works
Model Reprogramming. Model reprogramming (Chen,
2024) is a supervised finetuning approach that achieves
transfer to downstream tasks while preserving the integrity
of pretrained models, by solely modifying the input and
output spaces. It has demonstrated promising applications
across pretrained vision (Chen et al., 2023; Tsai et al., 2020;
Cai et al., 2024a; Jin et al., 2025), graph (Jing et al., 2023),
acoustic (Yang et al., 2021; 2023; Hung et al., 2023; Yen
et al., 2023), and language models (Hambardzumyan et al.,
2021; Vinod et al., 2020; Jin et al., 2024). Comparatively, it
not only ensures the completeness of the pretrained model,
preventing catastrophic forgetting (Kirkpatrick et al., 2017)
but also enables architecture-agnostic transfer to down-
stream tasks with minimal parameter adjustments. The
robustness of model reprogramming has recently been in-
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vestigated (Chen et al., 2025; Zhou et al., 2025).

Input VR (Cai et al., 2024b;a; Chen et al., 2023) is a type of
model reprogramming, primarily used to apply pretrained
models to downstream image classification tasks by adding
trainable noise patterns to the input images. The main strate-
gies include padding trainable parameters around the images
(Chen et al., 2023; Tsai et al., 2020; Tsao et al., 2024) or
adding watermarks (Bahng et al., 2022; Oh et al., 2023)
to rescaled images, which has been successfully applied to
both unimodal image classifiers (Chen et al., 2023; Cai et al.,
2024a) and VLMs (Oh et al., 2023; Zhang et al., 2024).

Prompt Learning. Slightly different from model repro-
gramming, prompts (Jia et al., 2022) serve as learnable
weights that can be attached to any position of a pretrained
model. Therefore, prompt design often needs to consider
the specific architecture of the pretrained model. Prompts
can be added as text prompts (Zhou et al., 2022b;a) among
input words, as VPs (Chen et al., 2023; Oh et al., 2023;
Tsao et al., 2024) overlaying input images, as token prompts
(Wang et al., 2023) within self-attention layers, or as map-
pings (Khattak et al., 2023) between modalities to connect
the text and image embeddings.

Specifically, adding VPs to input images for reusing a pre-
trained VLM to downstream classification tasks is equiv-
alent to VR methods for VLMs. Among recent research,
VP (Bahng et al., 2022) overlays watermarking patterns
on images, AR (Tsai et al., 2020; Chen et al., 2023) pads
patterns around images, BlackVIP (Oh et al., 2023) aims
at black-box transfer learning, DAM (Huang et al., 2023)
partitions the image set for divide-and-conquer training, and
AttrVR (Cai et al., 2025) introduces attributes to better align
images with texts. These existing methods optimize single
VP patterns for all descriptions. Our proposed DVP strives
to train VPs with diverse roles and contributions, enhancing
both learning capability and interpretability.

3. Preliminaries and Insights
We follow standard protocols for VR on CLIP (Chen et al.,
2023; Cai et al., 2025). See Appendix D.1 for a setup com-
parison between our problem and text prompt tuning (Zhou
et al., 2022a), and Appendix D.2 for a summary of notation.

CLIP-based Image Classification. CLIP (Radford et al.,
2021) is a pre-trained VLM with an image encoder fimg :
X S → Z that projects input images from a dS-dimensional
image space X S ⊆ RdS to embedding space Z , and a text
encoder ftxt : V → Z that projects texts V ∈ V to the
same embedding space Z . The similarity between an image
xS ∈ X S and a text V ∈ V is:

fclip(x
S, V ) = cos

(
fimg(x

S), ftxt(V )
)
/τ,

where cos(·, ·) is cosine similarity and τ is the temperature.

When CLIP is used for a downstream classification task de-
fined overXT×YT, whereXT ⊆ RdT and YT respectively
represent the dT-dimensional image space and the label
space, we often use textual descriptions A ⊆ V to represent
class labels as texts that CLIP can process. Often, a descrip-
tion can be implemented as a template with placeholders,
e.g., “This is a photo of [Class Name].” (Radford et al.,
2021) or a set of attributes for the class, e.g., “[Class Name]
is [Attributes].” (Cai et al., 2025). Let A(yT) be the subset
of m descriptions for a class yT ∈ YT, with description sets
for different classes being disjoint, i.e.,A(yTi )∩A(yTj ) = ∅
for yTi ̸= yTj , and A =

⋃
yT∈YT A(yT).

Let flogits : XT × A → R|YT| be the logit vector over
the label space YT. If an input image xT ∈ XT matches
CLIP’s input dimension (dT = dS), the logit for class yT is

[flogits(x
T;A)]yT = agga∈A(yT)

(
fclip(x

T, a)
)
,

where a is a description and agg(·) is an aggregation func-
tion, typically max(·) or avg(·).

VR on CLIP. For mismatched downstream input shapes,
i.e., dT ̸= dS, standard input VR (Cai et al., 2024b) uses an
input transform fin : RdT → RdS defined as fin(xT|δ) ≜
pad(xT) + δ, where pad(·) function pads zeros around the
images and VR patterns δ ∈ RdS is a trainable visual prompt.
The logit for a class yT ∈ YT given xT and prompt δ is:[

fvr
logits(x

T; δ,A)
]
yT

= agga∈A(yT)

(
fclip(fin(x

T|δ), a)
)
. (1)

Then, the normalized probability will be obtained by

pvr(y
T|xT; δ,A) =

exp([fvr
logits(x

T;δ,A)]
yT )∑

y′∈YT exp([fvr
logits(x

T;δ,A)]
y′ )

. (2)

The parameter δ in VR can be learned by minimizing the
negative log-likelihood, computed over a downstream train-
ing set D = {(xT

j , y
T
j )}Nj=1

i.i.d∼ XT × YT as,

δ∗ = argminδ − 1
N

∑N
j=1

[
log pvr(y

T
j |xT

j ; δ,A)
]
, (3)

where N = n× |YT| is the size of training dataset with n
samples per class.

Representing in the Matrix Form. To rewrite Eq. (1) in
the matrix form, for certain input image xT, we can de-
fine a row vector Ma = [ã1, ã2, . . . , ã|A|] being the CLIP
output fclip(fin(xT|δ), ·) across different attribute descrip-
tions and another row vector My = [ỹ1, ỹ2, . . . , ỹ|YT|] be-
ing the logits fvr

logits(x
T; δ,A) across different downstream

labels. Then they can be related by a reweighting matrix
ω ∈ R|A|×|YT| that Ma · ω = My:

ã1
ã2
. . .
ã|A|


⊤

·

 ω1,1 . . . ω1,|YT|
...

. . .
...

ω|A|,1 . . . ω|A|,|YT|

 =


ỹ1
ỹ2
. . .
ỹ|YT|


⊤

, (4)
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Figure 3. Pipeline of DVP. Before training, the description partitions A1, . . . ,Av are determined–either by generating descriptions using
an LLM based on different causes (DVP-cse) or by clustering existing attribute descriptions (DVP-cls). During training, VPs are trained
for their corresponding description partitions separately, after being integrated and reweighted by PRM ω. In each iteration, ω is first
estimated, followed by the update of VPs ∆ = {δ1, . . . , δv}, w.r.t. negative log-likelihood (i.e., cross-entropy loss in classification tasks).

where each element ωp,q in ω represents the contribution
from ãp (i.e., CLIP output of the p-th attribute descrip-
tion) to ỹq (i.e., logit output for the q-th label). Here,
Eq. (4) implies that agg(·) implements a fixed reweight-
ing scheme. Concretely, if max(·) is used in Eq. (1), then
ω ∈ {0, 1}|A|×|YT|. ωp,q is set to be 1 only when ap is
the maximum CLIP output for the q-th class’s attribute
description, otherwise ωp,q = 0. If avg(·) is used, then
ω ∈ {0, 1

m}
|A|×|YT|, and ωp,q = 1/m only when the p-th

attribute is a description related to the q-th class.

Then we can replace agg(·) with a fixed ωfix and rewrite the
logits of label yq in Eq. (1) as [fvr

logits(x
T; δ, ωfix,A)]yq

=∑
ap∈A ωfix

p,q · fclip(fin(xT|δ), ap), where ωfix
p,q denotes the

entry in ωfix corresponding to the p-th description ap and
the q-th class yq. ωfix

p,q is non-zero only for ap that con-
tribute to the aggregation for the class yq . Eq. (2) under this
generalized logit definition now becomes:

pvr(y
T|xT; δ, ωfix,A) =

exp([fvr
logits(x

T;δ,ωfix,A)]
yT )∑

y′∈YT exp([fvr
logits(x

T;δ,ωfix,A)]
y′ )

. (5)

A Decoupling-and-Reweighting Framework. Consid-
ering Eq. (4), a limited Ma in current VR methods may
not capture descriptions of diverse aspects from A, shown
in Figure 2(a), and a trivial ω may cause the unreasonable
description bias in Figure 2(b).

Therefore, a decoupling-and-reweighting framework like
Figure 1(b) can be proposed. Firstly, to enhance learning
capacity, a decoupled VP set ∆ = {δ1, . . . , δv} of size v
can be optimized separately with partitions A1, . . . ,Av of
A to get a better Ma. Besides, a more precise Probabilistic
Reweighting Matrix ωPRM ∈ [0, 1]|A|×|YT| with continu-
ous values can be estimated for reweighting the outputs for
different attribute descriptions.

4. Decoupling Visual Prompts
This section details our DVP method, which implements the
decoupling-and-reweighting strategy outlined in Section 3.
Figure 3 illustrates the overall DVP pipeline. We begin
by describing two ways for partitioning class descriptions
(Section 4.1), a preparatory step before training. We then
explain how our Probabilistic Reweighting Matrix (PRM)
is estimated (Section 4.2). We use iterative training, where
the VPs set ∆ and the PRM ω are jointly optimized (see
Section 4.3). We lastly show DVP can theoretically attain a
lower empirical risk than standard input VR (Section 4.4).

4.1. Partitioning Descriptions

A core idea of DVP is to train v distinct VPs {δ1, . . . , δv},
each specialized for a corresponding partition of the full de-
scription set {A1, . . . ,Av}. We next present two strategies
for partitioning descriptions, namely DVP-cse and DVP-cls.

By Semantic Causes (DVP-cse). Following Cai et al.
(2025), who used LLMs to generate attribute description sets
for each class, we leverage LLMs, e.g., GPT series (Brown
et al., 2020), to create semantically coherent description
partitions for each cause (i.e., distinguishing aspects for the
classification task). First, we query an LLM to identify v
primary “causes” (see Appendix A.3). For each i-th cause,
we formulate a specific query, cause prompti =“Describe
the [i-th Cause] of the [Task Info.] image [Class Name]”,
which is fed into an LLM to generate a set of descriptions
Ai(y

T) for each class yT. The i-th global partition is then
Ai =

⋃
yT∈YT Ai(y

T). For computational efficiency, these
descriptions are pre-converted to text embeddings:

Ei = {ftxt(a) | a ∈ Ai}, for i = 1, . . . , v. (6)

Each embedding set Ei (representingAi) guides the learning
of its dedicated prompt δi.
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By Unsupervised Clusters (DVP-cls). Alternatively, when
using LLMs to generate descriptions is restricted, we can
still partition an existing set of descriptions A. We first
embed all descriptions into E = {ftxt(a) | a ∈ A}. We
then use K-means algorithm (MacQueen et al., 1967) to
partition these embeddings into v clusters:

{E1, . . . , Ev} = KMeans(E , v). (7)

This way each cluster Ei implicitly refers to a description
partitionAi = {a|ftxt(a) ∈ Ei}, which is then used to train
its respective prompt δi.

4.2. Reweighting Descriptions

Probabilistic Reweighting Matrix (PRM). As discussed
in Section 3, PRM accounts for quantifying the relationship
between description similarity and class logits. Let ap be
the p-the description and yq be the q-th class. We estimate
the conditional probability p(V = ap|Y T = yq), denoted
by ωprm. Each entry ωprm

p,q reflects the contribution of de-
scription ap to class yq . If ap is not a designated description
for class yq (i.e., ap /∈ A(yq)), then ωprm

p,q = 0 (Proposition
B.1, Appendix B). Otherwise, ωprm

p,q for ap ∈ A(yq) can be
estimated via MLE from counts on the training set D,

ωprm
p,q = p̂(V = ap|Y T = yq, V ∈ A(yq))

=
ND(ap, yq)∑

a′∈A(yq)
ND(a′, yq)

.
(8)

Here, ND(a, y) is the co-occurrence count of description a
with class y (see Proposition B.2, Appendix B for details).

Counting for Few-shot Settings. To handle data sparsity in
few-shot settings (where ND(ap, yq) might be sparse, mak-
ing MLE less effective), we smooth these counts. Specifi-
cally, for each training sample (xT

j , y
T
j ), instead of checking

for an exact match with ap, we find the k descriptions in A
most similar to the reprogrammed image fin(x

T
j |∆). Note

that only the specific δi ∈ ∆ is used if a description belongs
to Ai. Let this set be K(xT

j , k). The count is then:

ND(ap, yq) =
∑N

j=1 1{yTj = yq} · 1{ap ∈ K(xT
j , k)}, (9)

where 1{·} is the indicator function and k is a hyper-
parameter. That is, we substitute Eq. (9) into Eq. (8) to
obtain a more robust estimation ωprm in practice.

4.3. Iterative Training

Once the partitioning E and A are obtained through either
DVP-cse or DVP-cls, the parameters ∆ and ωprm are opti-
mized through an alternating optimization procedure (see
Algorithm 1 for details). In each training epoch, we first
update ωprm using Eq. (8) given the current ∆. Then, we
update each δi ∈ ∆ independently using only its assigned

Algorithm 1 Pipeline of DVP
1: Input: Few-shot training data DT = {(xT

j , y
T
j )}Nj=1,

description setA, hyper-parameters k, v, epoch number
E, and pre-trained CLIP model fclip with ftxt and fimg

encoders
2: Output: DVP set ∆ = {δ1, . . . , δv} and PRM ωprm

3: # Before training: divide descriptions
4: Obtain E =

⋃v
i=1 Ei by causes (method DVP-cse) us-

ing Eq. (6) or clusters (method DVP-cls) using Eq. (7)
5: # Begin training
6: Initialize δi ← 0 for i = 1, . . . , v
7: for e = 1 to E do
8: # Compute/update CLIP output (Ma in Eq. (4))
9: Compute fclip(fin(xT

j |∆), a) for j = 1, . . . , N , a ∈
A using E

10: # Step 1: update reweighting matrix (ω in Eq. (4))
11: ω ← ωprm using Eq. (8) and Eq. (9)
12: # Compute/update logits output (My in Eq. (4))
13: Compute ỹq ←

∑
ap∈A ωp,qfclip(fin(x

T
j |∆), ap),

q = 1, . . . , |YT| for j = 1, . . . , N
14: # Step 2: update DVP patterns
15: δi ← δ∗i using Eq. (10) for i = 1, . . . , v
16: end for

description partition Ai. Specifically, for each δi, the objec-
tive mirrors standard VR’s objective (Eq. (3)) over D:

minδi

(
− 1

N

N∑
j=1

log pvr(y
T
j |xT

j ; δi, ω
prm,Ai)

)
. (10)

Here, pvr derives from partition-specific logits (usingAi, δi
and ωprm), contrasting a single-prompt aggregation (with
A, δ, and ωfix) as in Eq. (5). This process is applied inde-
pendently to all δ ∈ ∆. See Appendix B.2 for details.

4.4. Justification: Empirical Risk Reduction

We analyze DVP by showing its potential to achieve a lower
empirical risk on the training data than standard VR.

Definition 4.1 (Empirical Risk). Consider an input image
space X , a discrete label space Y , a distribution D′ defined
overX×Y . LetD = {(xT

j , y
T
j )}Nj=1 be a training set drawn

i.i.d from D′. For a classifier f : X → Y parameterized
by Θ, the empirical risk R̂D(Θ) is defined as the average
negative log-likelihood as

R̂D(Θ) = − 1
N

∑N
j=1 log p(yj |xj ; Θ).

Empirical Risk of Standard VR. According to Definition
4.1, for standard VR, the parameters are Θvr = {δ}, and the
reweighting matrix ωfix is pre-determined (e.g., by max(·)
or avg(·) aggregation). Thus, the empirical risk of standard
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Table 1. Accuracy comparison of different methods trained on 16-shot downstream classification tasks, using ViT-B16-based CLIP as the
pretrained model (Mean % ± Std %, ours are highlighted and the highest is in bold). See Appendix C.7 for parameter numbers.

METHOD AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

VP 32.1±0.6 93.5±0.1 65.5±0.3 61.4±0.5 91.2±0.3 82.5±0.4 82.3±0.1 91.0±0.3 65.8±0.2 73.8±0.5 79.1±0.3 74.4
AR 31.7±0.3 95.5±0.2 68.0±0.3 62.0±0.1 93.4±0.1 85.9±0.7 85.2±0.1 92.7±0.1 67.9±0.3 78.1±0.2 81.6±0.3 76.5

ATTRVR 36.6±0.3 95.7±0.1 68.3±0.3 65.6±0.8 93.8±0.3 92.9±0.4 85.9±0.1 93.3±0.0 69.6±0.1 79.0±0.6 82.6±0.4 78.5
DVP-CSE 40.3±0.2 96.2±0.1 72.5±0.2 66.7±0.4 93.9±0.1 95.4±0.1 85.6±0.1 93.1±0.0 71.1±0.2 81.7±0.3 84.6±0.4 80.1
DVP-CLS 38.7±0.4 96.0±0.0 70.8±0.2 65.5±0.7 94.1±0.3 95.0±0.2 85.7±0.0 93.3±0.1 71.1±0.2 82.0±0.1 84.4±0.0 79.7

VR methods is

R̂vr
D (δ, ωfix) = − 1

N

N∑
j=1

log pvr(y
T
j |xT

j ; δ, ω
fix,A),

where pvr is derived from logits in Eq. (1) using ωfix. A is
the complete set of descriptions.

Empirical Risk of DVP. For DVP, whose parameters are
Θdvp = {∆, ωprm}. Given the risk (Eq. (10)) jointly ap-
plied to all δi ∈ ∆, The empirical risk of DVP is then

R̂dvp
D (∆, ωprm) = − 1

N

N∑
j=1

v∑
i=1

[
log pvr(y

T
j |xT

j ; δi, ω
prm,Ai)

]
.

Remark 4.2. Reducing all δi ∈ ∆ to the same δ and substi-
tuting ωprm with ωfix reverts DVP to standard VR.

Given the likelihood-based form of empirical risk (Defini-
tion 4.1) used in our context, we further define optimally
achievable empirical risk to compare the theoretical capa-
bility of standard VR and DVP.

Definition 4.3 (Optimally Achievable Empirical Risk). Con-
sider the training set D and the classifier f parameterized
by Θ as with Definition 4.1. The optimally achievable em-
pirical risk over Θ is defined as

R̂∗
D(Θ) = infΘ R̂D(Θ) = infΘ

(
− 1

N

∑N
j=1 log p(yj |xj ; Θ)

)
,

where the infimum is taken over all possible parameteriza-
tions Θ of f , and, if the infimum is attainable, we denote
Θ∗ = argminΘ R̂D(Θ) as the optimal parameterization
uniquely achieving R̂∗

D(Θ).

We now establish two lemmas and a corollary.

Lemma 4.4. Let δ∗ be the optimal VP for standard VR, min-
imizing R̂vr

D (δ, ωfix) for a fixed reweighting matrix ωfix. Let
∆∗

ωfix be the optimal DVPs that minimizes R̂dvp
D (∆, ωfix),

i.e., DVP using the same fixed ωfix as standard VR. Then,
we have R̂vr

D (δ∗, ωfix) ≥ R̂dvp
D (∆∗

ωfix , ω
fix).

Lemma 4.4 (proved in Appendix B.3) demonstrates the ad-
vantage of decoupling VPs and training them separately
for different description partitions. The decoupling step
contributes to the reduction in the optimally achievable em-
pirical risk by improving the learning capacity of the VPs.

Lemma 4.5. For any fixed DVP parameterization ∆, let
ωprm∗

be the optimal PRM that minimizes R̂dvp
D (∆, ωprm).

Then R̂dvp
D (∆, ωfix) ≥ R̂dvp

D (∆, ωprm∗
) holds for any ωfix.

Lemma 4.5 (proved in Appendix B.4) indicates the effec-
tiveness of reweighting the contribution from descriptions
to labels. PRM results in a lower empirical risk compared
with the pre-defined and fixed weights.

Corollary 4.6. Let δ∗ be the optimal VP for standard VR
with ωfix. Let {∆∗, ωprm∗}1 be the optimal parameteriza-
tion for DVP that minimizes R̂dvp

D (∆, ωprm). Then, it holds
that R̂vr

D (δ∗, ωfix) ≥ R̂dvp
D (∆∗, ωprm∗).

Corollary 4.6 (proved in Append B.5) indicates that the
DVP framework, by virtue of its increased capacity through
decoupled prompts and adaptive reweighting, has the po-
tential to achieve a lower or at least equal empirical risk
on the training data compared to standard VR, effectively
preventing underfitting in downstream tasks that may exist
when applying VR methods.

5. Experiments
Baselines and Benchmarks. To evaluate DVP, we follow
Cai et al. (2025) to conduct training and testing on pretrained
CLIP models (with various image encoder architectures) for
16-shot downstream classification tasks. Averaged accu-
racies of three seeds are used for evaluation. These tasks
cover various classes and domains, including patterns, ac-
tions, scenes, etc, with more information in Appendix A.1.

The following three VR baselines are included: (1) VP
(Bahng et al., 2022), a VR method in which learnable pa-
rameters are overlaid on rescaled downstream images; (2)
AR (Tsai et al., 2020; Chen et al., 2023), a VR method that
pads learnable parameters around the image; and (3) AttrVR
(Cai et al., 2025), a method that guides the learning of VP
patterns through attribute descriptions–all baseline methods
learn single and non-decoupled VPs.

Both DVP-cse and DVP-cls are tested, with the hyper-
parameter k chosen to be 3 (see Table 7). The number of
VPs in DVP-cse is set to be v = 3, while that in DVP-cls is a

1We note that ∆∗ is different from ∆∗
ωfix in Lemma 4.4.
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Table 2. Ablation studies of DVP-cse and DVP-cls, using ViT-B16-based CLIP as the pretrained model (Mean % ± Std %, ours are
highlighted and the highest is in bold).

METHOD AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

DVP-CSE 40.3±0.2 96.2±0.1 72.5±0.2 66.7±0.4 93.9±0.1 95.4±0.1 85.6±0.1 93.1±0.0 71.1±0.2 81.7±0.3 84.6±0.4 80.1
W/O CSE 36.4±0.2 95.8±0.1 69.1±0.1 65.3±0.7 94.1±0.3 93.6±0.2 85.7±0.1 93.1±0.0 70.0±0.1 80.2±0.3 82.8±0.4 78.7
W/O VR 27.5±0.3 93.2±0.3 63.9±0.4 57.0±0.3 45.9±0.8 83.6±0.2 83.9±0.0 91.3±0.1 62.3±0.2 68.3±0.3 60.3±0.4 67.0

W/O ωprm 38.0±0.1 95.8±0.1 70.4±0.4 67.7±0.3 94.8±0.1 95.0±0.3 85.8±0.1 93.5±0.1 67.1±0.1 80.3±0.5 84.9±0.1 79.4

DVP-CLS 38.7±0.4 96.0±0.0 70.8±0.2 65.5±0.7 94.1±0.3 95.0±0.2 85.7±0.0 93.3±0.1 71.1±0.2 82.0±0.1 84.4±0.0 79.7
W/O CLS 36.4±0.2 95.8±0.1 69.1±0.1 65.3±0.7 94.1±0.3 93.6±0.2 85.7±0.1 93.1±0.0 70.0±0.1 80.2±0.3 82.8±0.4 78.7
W/O VR 26.0±0.0 93.9±0.1 63.1±0.2 55.0±0.2 52.2±0.4 83.1±0.3 84.8±0.0 91.3±0.1 64.4±0.1 70.0±0.4 60.8±0.5 67.7

W/O ωprm 37.8±0.4 96.0±0.2 70.6±0.1 65.4±0.7 93.9±0.2 94.2±0.3 85.8±0.1 93.3±0.1 69.4±0.1 80.7±0.2 84.6±0.1 79.2

Figure 4. Accuracy comparison of different VR methods with the number of VR patterns (i.e., VPs) v ∈ {1, 2, 3, 5, 7}. Pre-trained
ViT-B16-based CLIP is used. The striped area indicates the error bars.

hyper-parameter that represents unsupervised clusters and is
chosen as shown in Table 8. More information about hyper-
parameters is in Appendix C.1. Implementation details are
in Appendix A.2 and generated causes are in Appendix A.3.

Performance Comparison. The results on the ViT-16-
based CLIP model are shown in Table 1. It can be observed
that both DVP-cse and DVP-cls demonstrate strong perfor-
mance. DVP-cse outperforms the baseline method AttrVR
by an average of 1.6% across 11 datasets, while DVP-cls
achieves an average improvement of 1.2%. Except for the
Food dataset, applying DVP-cse or DVP-cls achieves accu-
racy equal to or higher than AttrVR on all other datasets.

DVP-cse is designed to train VPs for descriptions grouped
by different causes. Consequently, it achieves better results
when multiple specific aspects are crucial for classification.
For instance, the Cars, Aircraft, and Flowers datasets contain
fine-grained classes that vary along multiple cause factors
(i.e., color, shape), allowing DVP-cse to achieve improve-
ments of 4.2%, 3.7%, and 2.5% over AttrVR, respectively.

Meanwhile, DVP-cls is a method that learns VPs based on
descriptions after unsupervised clustering. It tends to group
classes with similar features into a cluster for one single
VP. For datasets like UCF (i.e., different actions), or fine-
grained datasets like Cars and Aircraft, classes can be clearly
divided into subcategories based on similarity. Therefore,
DVP-cls achieves better performance than AttrVR, by 3%,
2.5%, and 2.1% on these datasets, respectively.

DVP shows no improvement on the Food dataset. This
might be attributed to the primary distinguishing factors for
food being smell and taste, while visual information is less
useful. As a result, decoupling VPs for better visual learning
will not lead to classification improvements.

Ablation Studies. The ablation studies for DVP-cse and
DVP-cls are presented in Table 2. “W/o cse” and “w/o cls”
refer to excluding decoupled VPs, reducing both methods
to training a single VP. “W/o VR” indicates the zero-shot
learning results without training the VR pattern, while “w/o
ωprm” represents results without PRM.

Without decoupling, a single VP struggles to capture di-
verse descriptions, leading to unsatisfactory performance,
especially on complex fine-grained classification tasks such
as Aircraft, Cars, and Flowers. Similarly, omitting the op-
timization of VP results in poor accuracy on downstream
tasks with significant differences from the pre-training do-
main, such as remote sensing datasets (e.g., EuroSAT, Re-
sisc). When the reweighting matrix ωprm is not applied,
the performance is notably affected in datasets with a large
number of categories (e.g., SUN with 397 classes) or com-
plex descriptions (e.g., UCF for action classification). In
summary, every component of DVP is indispensable for
achieving optimal performance improvements.

Impact of the Number of VPs. Figure 4 illustrates the
results of VR methods with various numbers of VPs. Sim-
ply increasing the number of VPs without employing the
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Weight Proportions of Different Causes after Training VR Patterns for Some Classes (Downstream Task: Flowers ; Method: DVP-cse)  

Globe Thistle Silverbush Grape Hyacinth Corn Poppy

Figure 5. Visualization results of DVP-cse, showing weights of causes for classifying certain classes, using ViT-B16-based CLIP.

# sword lily 10.97245828716017 , barbeton daisy 10.96997785972034 , rose 10.679752742568747

# canna lily 11.042198789435213 , oxeye daisy 11.629740614343293 , hibiscus 10.850143458928912

# fire lily 11.791783735870649 , sunflower 11.636159624012071 , azalea 11.154918041564736

# tiger lily 11.830814087565573 , spear thistle 11.803369455363018 , lotus 11.413374046093438

# moon orchid 12.05860270262084 , common dandelion 11.831175835211901 , windflower 11.514425394364206

# interlaced 7.698800065452183 , bumpy 5.870034279328777 , interlaced 6.194132365325835

# frilly 7.716243186886728 , flecked 6.08049806590235 , woven 6.5216781583098165

# swirly 7.813907162588256 , blotchy 6.089321798444356 , crosshatched 6.982424407454234

# fibrous 7.873567966508907 , pitted 6.3370653102359 , zigzagged 7.037472079492099

# grooved 7.9871415360864475 , dotted 6.470946829011891 , striped 7.0632283197137165

# Model B200 8.083701692184228 , MD-87 8.10214285809785 , 767-200 5.655367756334322

# DHC-8-300 8.213595866967484 , ERJ 135 8.118194558568872 , 767-300 5.8349473859798895

# DC-6 8.279997115091286 , Fokker 70 8.288469911148022 , 767-400 6.167974796688118

# DHC-8-100 8.552950640693766 , DC-9-30 8.312177177123868 , 757-200 6.198483379028306

# An-12 8.63029839091557 , Fokker 100 8.317604660898379 , 757-300 6.350068770755981

…………

Cluster One Cluster Two Cluster Three

Sorted by Distance to the Cluster Center

Top Classes within Different Clusters (Downstream Task: Flowers; Method: DVP-cls)  

…………

Sorted by Distance to the Cluster Center

…………

Sorted by Distance to the Cluster Center

Figure 6. Visualization results of DVP-cls, showing the top 3 classes closest to the description cluster centers, using ViT-B16-based CLIP.

decoupling-and-reweighting framework proposed in this
paper may even lead to a decrease in accuracy due to po-
tential overfitting. However, when the DVP approach is
used–whether in the form of DVP-cse or DVP-cls–the accu-
racy steadily improves. This suggests that the performance
improvement achieved by DVP is not merely due to the
increase in parameters, but is attributable to the benefits of
our learning framework.

Visualization of Cause Weights (DVP-cse). In DVP-
cse, since each trained VP corresponds to a specific cause,
for a single class, the weights corresponding to individual
VPs in the reweight matrix can be summed to calculate the
contribution of that cause to the predicted label. Figure 5
illustrates the contributions of three causes for four classes in
the Flowers dataset. Specifically, the spherical spiny shape
of the globe thistle, the trumpet-shaped petals of silverbush,
and the bluish-purple petals of grape hyacinth make these
three flowers distinct, matching the statistical results–flower
structure, petal shape, and color are the primary causes for
classifying these flowers, respectively. In contrast, corn
poppy is relatively ordinary in various aspects, resulting
in similar contributions across different reasons. It can
be observed that the reprogramming process determines
the priority of causes driving the final class predictions.
More results on Texture and Aircraft datasets are detailed in
Appendix C.2.

Table 3. Average accuracy of different VR methods on 11 datasets,
using different backbones as CLIP visual encoders (Mean Accu-
racy %, ours are highlighted and the highest is in bold, RN stands
for ResNet).

VP AR ATTRVR DVP-CSE DVP-CLS

RN50 53.5 60.4 64.6 66.6 66.0
RN101 57.5 62.7 67.2 69.6 68.8

VIT-B32 68.3 66.3 69.8 71.3 71.0
VIT-B16 74.4 76.5 78.5 80.1 79.7

Visualization of Cluster Components (DVP-cls). Com-
pared with the VPs in DVP-cse, which have clear corre-
spondences to specific causes, the VPs in DVP-cls tend to
correspond to descriptions of classes with commonalities.
Figure 6 shows the classes with the closest average distance
to the description cluster centers corresponding to different
VPs. It can be observed that different types of lilies are
grouped into one cluster, while daisies and sunflowers with
similar shapes are grouped together, and flowers with similar
colors are also grouped together. This explains the results in
Table 1, where DVP-cse is more suitable for classification
tasks with multiple contributing causes, while DVP-cls is
better suited for classification tasks with distinct subclass
hierarchies. More results are detailed in Appendix C.3.

Results on Different Backbones. Since VR methods
modify only the input images, they are compatible with any

8



Understanding Model Reprogramming for CLIP via Decoupling Visual PromptsPairwise HSIC of Images Embeddings Applying 

Non-decoupled/Decoupled VPs

Figure 7. Pairwise HSIC between sets of image embeddings apply-
ing non-decoupled (i.e., AttrVR) or decoupled VPs (i.e., our DVP).
Experiments are done on the Texture task with ViT-16-based CLIP.

model architecture. Table 3 presents the classification accu-
racy averaged across all datasets when using different image
encoders (i.e., ResNet or ViT) in CLIP (detailed results
are in Appendix C.4). It can be observed that both DVP-
cse and DVP-cls achieve improvements over all baseline
methods, regardless of whether smaller (RN50) or larger
(ViT-B16) pre-trained models are used. The performance
improvement of DVP becomes more pronounced for smaller
image encoders, indicating that DVP can compensate for
the limitations of pretrained models.

Discussion about Independence. We further investigate the
independence of different VPs using the Hilbert-Schmidt In-
dependence Criterion (HSIC) (Gretton et al., 2007). HSIC is
a non-parametric test where smaller values indicate greater
statistical independence between two random variables. We
calculate pairwise HSIC values (with γ = 3) between the
embedding distributions of images after adding different
VPs. This is done for a baseline approach (i.e., AttrVR,
which does not decouple VPs) and the proposed decoupling-
based approaches (i.e., our DVP implemented under both
DVP-cse and DVP-cls). Experiments are conducted on the
Texture task, which features relatively simple images to
highlight the differences. Results in Figure 7 show that
embeddings obtained by decoupled VPs exhibit lower sta-
tistical dependence between different VPs, which might be
a factor that contributes to the improved performance.

More Experiments. We conduct several additional ex-
periments to further validate our approach and explore its
characteristics. In Appendix C.5, we analyze the time cost
of various VR methods and conclude that DVP can achieve
performance improvements under the same time cost con-
straints. In Appendix C.6, we analyze different causes
and investigate what makes a cause effective for VR us-
ing DVP-cse. We conclude that the most suitable causes
should (1) be related to visual information, and (2) have a
causal relationship with accurate classification. This experi-
ment demonstrates the application of DVP-cse in evaluating
the importance of various causes for VR in classification
tasks. In Appendix C.7, we discuss the potential param-
eter overhead associated with DVP, and introduce a vari-

ant—DVPlite—which decouples VPs without introducing
additional parameters, confirming that our decoupling-and-
reweighting strategy improves performance even when no
extra parameters are used. In Appendix C.8, we demonstrate
the applicability of our DVP-PRM framework to different
VR methods. In Appendix C.9, we lastly present results
showing how performance varies with different amounts of
available training data.

6. Conclusion
In this paper, to better align downstream images with de-
scriptions for classification, we proposed a decoupling-and-
reweighting framework that learns DVP based on specific
causes or unsupervised clusters, combined with a PRM to
reweight the descriptions. DVP is shown to be effective both
theoretically and empirically. By exploring and analyzing
the distinct roles and contributions of individual VPs, we
offer new insights into model reprogramming.
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A. Appendix 1: More Training Information
A.1. Dataset Information

Table 4. Dataset Information

AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC

TASK
INFO.

aircraft
model object

fine-grained
automobile texture

remote sensing
land cover flower food pet scene action

remote
sensing scene

CLASS
NUM. 100 100 196 47 10 102 101 37 397 101 45

BATCH
SIZE

64 64 64 64 64 64 64 64 64 64 64

We follow the prior work (Cai et al., 2025) to set up our benchmark, employing the same methodology to split the 16-shot
training, validation, and test sets. All datasets are publicly available and listed as follows: FGVCAircraft (Aircraft) (Maji
et al., 2013), Caltech101 (Caltech) (Fei-Fei et al., 2004), StanfordCars (Cars) (Krause et al., 2013), Texture (DTD) (Cimpoi
et al., 2014), EuroSAT (ESAT) (Helber et al., 2019), Flowers102 (Flowers) (Nilsback & Zisserman, 2008), Food101 (Food)
(Bossard et al., 2014), OxfordPets (Pets) (Parkhi et al., 2012), SUN397 (SUN) (Xiao et al., 2010), UCF101 (UCF) (Soomro
et al., 2012), Resisc45 (Resisc) (Cheng et al., 2017). Detailed task information and the batch size used for training VR are
provided in Table 4.

A.2. Implement Details

All VR baseline methods are trained with consistent settings: a learning rate of 40, a momentum of 0.9 (SGD optimizer
(Harold et al., 1997)), and a cosine annealing scheduler (Loshchilov & Hutter, 2016), over 200 epochs. Results are averaged
across three random seeds. For method-specific hyper-parameters, we followed (Cai et al., 2025) by using a VR noise
pattern with a frame size of 30 for VP (Bahng et al., 2022) and a frame size of 16 for AR (Chen et al., 2023; Tsai et al.,
2020) and AttrVR (Cai et al., 2025). To ensure fairness, our DVP utilized the same settings as AttrVR.

For DVP-cls, we use the same descriptions as (Cai et al., 2025). For K-means, we use a maximum iteration of 300 and
the relative tolerance regarding the Frobenius norm of differences in cluster centers to be 1e-4. For DVP-cse, we use
GPT-4o-mini (Brown et al., 2020) to generate descriptions, with the maximum token to be 50, stopped at ‘.’, and the
temperature to be 0.99. We set m = 20 for each cause number in DVP-cse and the attribute numbers in DVP-cls.

A.3. Generated Causes

Table 5. Top Three Causes Used by DVP-cse for Each Dataset

CAUSE 1 CAUSE 2 CAUSE 3

AIRCRAFT shape and structure size and proportions surface features
CALTECH shape color texture

CARS front and rear design shape and body style wheels and rims
DTD pattern coarseness/granularity contrast
ESAT texture spectral information spatial characteristics

FLOWERS flower structure shape of the petals color
FOOD texture shape and composition color
PETS fur or coat type species and body shape facial features
SUN spatial layout and composition texture color and lighting
UCF motion and poses contextual elements intensity and speed

RESISC spectral information texture spatial characteristics

For DVP-cse, the top three causes for each dataset are obtained by asking an LLM to ‘List the top three causes for classifying
[Task Info.] images’, with the specific results presented in Table 5. Notably, to investigate the impact of different causes on
the results, we generated the top seven causes for the Aircraft, DTD, and Flowers datasets for comparison, as listed in Table
6. The results of DVP-cse in Figure 4 and Figure 7 apply these causes. The effect of different causes will be discussed in
Appendix C.6.
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Table 6. Top Seven Causes Used by for Aircraft, DTD and Flowers Dataset

AIRCRAFT DTD FLOWERS

CAUSE 1 shape and structure pattern flower structure
CAUSE 2 size and proportions coarseness/granularity shape of the petals
CAUSE 3 surface features contrast color
CAUSE 4 engine configuration directionality size of the Flower
CAUSE 5 wing configuration regularity fragrance
CAUSE 6 tail design roughness leaf characteristics
CAUSE 7 landing gear configuration entropy flowering time and growth habit

B. Appendix 2: More Theoretical Justification
B.1. Detailed Propositions and Proof

Proposition B.1. Assuming that V is variable representing the description text and Y T is the variable representing the
downstream label, where V ∈ A, Y T ∈ YT, and A(Y T) ⊆ A is the description subset that corresponds to class Y T, it can
be obtained that ∀V /∈ A(Y T), p(V |Y T) = 0 and ∀V ∈ A(Y T), p(V |Y T) = p(V |Y T, V ∈ A(Y T)).

Proof. By the law of total probability (Kolmogorov, 1956), we know

p(V |Y T) =p(V |Y T, V ∈ A(Y T)) · p(V ∈ A(Y T)|Y T)

+p(V |Y T, V /∈ A(Y T)) · p(V /∈ A(Y T)|Y T). (11)

For all attribute descriptions that not correspond to label yT, (i.e, ∀V /∈ A(yT)), we have p(V |Y T) = 0, as V is the
description irrelevant to Y T.

Besides, for attribute descriptions that correspond to yT, we have

∀V ∈ A(yT), p(V ∈ A(Y T)|Y T) = 1,

∀V ∈ A(yT), p(V /∈ A(Y T)|Y T) = 0,

(12)

By substituting the above two equation into Eq. (11), it can be obtained that ∀V ∈ A(yT),

p(V |Y T) = p(V |Y T, V ∈ A(Y T))× 1

+ p(V |Y T, V /∈ A(Y T))× 0

= p(V |Y T, V ∈ A(Y T)).

Conclusively, we get:

p(V |Y T) =

{
p(V |Y T, V ∈ A(Y T)) V ∈ A(Y T)

0 V /∈ A(Y T)

as is stated in Proposition B.1.

Proposition B.2. Assuming N(·, ·) is the counting function that returns the frequency of two items occurring together,
V ∈ A, Y T ∈ YT are description and label variables respectively, A(Y T) ⊆ A is the description subset that corresponds
to class Y T and a, yT are values, then through MLE (Fisher, 1922), the conditional probability p(V = a|Y T = yT, V ∈
A(yT)) can be estimated on training set D as

p̂(V = a|Y T = yT, V ∈ A(yT)) = ND(V = a, Y T = yT)∑
a′∈A(yT)ND(V = a′, Y T = yT)

.
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Proof. According to the definition of conditional probability, we can rewrite p(V = a|Y T = yT, a ∈ A(yT)) as:

p(V = a|Y T = yT, V ∈ A(yT)) = p(V = a, Y T = yT, V ∈ A(yT))
p(Y T = yT, V ∈ A(yT))

=
p(V = a, a ∈ A(yT)|Y T = yT)

p(V ∈ A(yT)|Y T = yT)
.

Therefore, for ∀a ∈ A(yT):

p(V = a|Y T = yT, V ∈ A(yT)) = p(V = a|Y T = yT)∑
a′∈A(yT) p(V = a′|Y T = yT)

, (13)

where p(V = a|Y T = yT) is a value in ω to be estimated. Given the downstream training set D = {(xT
i , y

T
i )}Ni=1, the VR

method and description set A, the maximum likelihood L(ω) is formulated to be

L(ω) =
N∏
i=1

p(V = ai|Y T = yTi ), (14)

where ai is the most similar description for sample xT
i , given the input DVP pattern ∆ and description set A. For simplicity,

we use wp,q ≜ p(ap|yq) to represent p(V = ap|Y T = yq). Thus, according to Eq. (14) any single item ωp,q in ω will have
the maximum likelihood as

L(ωp,q) =
∏

Y T∈YT

∏
V ∈A

p(V = ap|, Y T = yq)
ND(ap,yq),

where ND(ap, yq) is the counting function that returns the frequency of matched ap and yq pairs. Taking the logarithm
gives:

l(ωp,q) =
∑

Y T∈YT

∑
V ∈A
ND(ap, yq) · log p(V = ap|, Y T = yq), s.t.

∑
a′∈A

p(V = a′|, Y T = yq) = 1.

Then we introduce Lagrange multipliers λq for constrained optimization:

l′(ωp,q, λ) = l(ωp,q) + λq(1−
∑
a′∈A

p(V = a′|Y T = yq)).

Taking partial derivatives on both sides of the equation, we get

∂l′

∂p(V = ap|Y T = yq)
=

ND(ap, yq)

p(V = ap|Y T = yq)
− λq = 0.

Therefore, p̂(V = ap|, Y T = yq) =
ND(ap,yq)

λq
. Since

∑
ap∈A p(V = ap|, Y T = yq) = 1, we get

∑
ap∈A

ND(ap,yq)
λq

= 1

and thus λq = ND(yq). Substituting back into Eq. (13), we get the final prediction:

p̂(V = ap|Y T = yq) =
ND(ap, yq)∑

a′∈A(yq)
ND(a′, yq)

.

B.2. Relationship between pvr and pdvp

In DVP, since A =
⋃v

i=1 and A(yTi ) ∩A(yTj ) = ∅ for i ̸= j, the total similarity between xT and A decomposes additively
across partitions. Moreover, each δi optimizes only for Ai, making δi exclusive prompt responsible for aligning xT with
descriptions in Ai.
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The integrated logits of all prompts ∆ can thus be expressed as a summation over all individual δi with respect to the
designated description partition Ai.[

fdvp
logits(x

T; ∆, ωprm)
]
yT
q︸ ︷︷ ︸

integrated logit

=

v∑
i=1

[
fδi
logits(x

T; δi, ω
prm)

]
yT
q

=

v∑
i=1

∑
ap∈Ai

(
fclip(fin(x

T|δi), ap)
)
yT
q
· ωprm

p,q︸ ︷︷ ︸
partition-specific logit contribution

.

Given the form of Eq. (B.2), it is easy to find that, by reducing ∆ = {δ1, . . . , δv} to the same δ, as well as substituting ωprm

with ωfix (i.e., agg(·)), DVP reverts back to standard VR.

B.3. Proof of Lemma 4.4

Proof. The standard VR method, parameterized by a single prompt δ, can be viewed as a special case of the DVP model
(both using a fixed ωfix) where all decouped prompts are constrained to be identical, i.e., δ1 = δ2 = . . . , δv = δ. Specifically,
let ∆tied = {δ, . . . , δ}, then the DVP logits using ωfix become:[

fdvp
logits(x

T; ∆tied, ωfix)
]
Y T=yT

q

=

v∑
i=1

∑
ap∈As

(
fclip(fin(x

T|δ), ap) · ωfix
p,q

)
.

Since the partitions Ai are disjoint and their union is A, this sum is equivalent to
∑

ap∈A
(
fclip(fin(x

T|δ), ap) · ωfix
p,q

)
. This

expression, when aggregated according to the rules defined in ωfix, e.g., max(·) or avg(·) over descriptions for class yTq ,
yields the logits of the standard VR model fdvp

logits(x
T; δ,A). Therefore, the set of functions representable by standard VR

(parameterized by δ) is a subset of those representable by DVP (parameterized by ∆) when both use the same ωfix.

LetFvr be the function space spanned by standard VR prompts andFdvp be that for DVP prompts (both with fixed ωfix), then
Fvr ⊆ Fdvp. Given that δ∗ and ∆∗

ωfix represent the optimally achievable parameterization withinFvr andFdvp, respectively,
it is ensured that R̂vr

D (δ∗, ωfix) ≥ R̂dvp
D (∆∗

ωfix , ω
fix) because minf∈FA

R∗
D(f) ≤ minf ′∈FB

R∗
D(f

′), s.t. FB ⊆ FA (based
on Definition 4.3 and the set inclution relationship). This complete the proof.

B.4. Proof of Lemma 4.5

Proof. Assuming the hypothesis space of ωprm to be Φprm, and the optimized ωprm ∈ Φprm to be ωprm∗, then for a fixed
∆, we have:

∀ω ∈ Φprm : R̂dvp
D (∆, ω) ≥ R̂dvp

D (∆, ωprm∗). (15)

We define the ω in standard VR method that use max(·) in Eq. (1) to be ωmax, where ωmax ∈ {0, 1}|A|×|YT| as discussed
in Section 3. ωmax

p,q is set to be 1 only when ap is the q-th class’s attribute description with the maximum CLIP output,
otherwise ωmax

p,q = 0.

Besides, when avg(·) is used in Eq. (1), we define ω = ωavg. Then ωavg ∈ {0, 1
m}

|A|×|YT|, where ωavg
p,q = 1

m only when
the p-th attribute is the description of the q-th class. As a result, ωfix ∈ {ωmax, ωavg} for standard VR methods.

For ωmax, we have:

ωmax
p,q = p̂(V = ap|Y T = yq) =

{
1 ap = argmaxa′∈A(yq) ED(ã|Y T = yq)
0 otherwise ,

where ED(ã|Y T = yq) is the expectation of CLIP output ã corresponding to the description a′, for samples in the
downstream training set D whose group truth labels are yq .
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For ωavg, we have:

ωavg
p,q = p̂(V = ap|Y T = yq) =

{
1
m ap ∈ A(yq)
0 otherwise ,

where m = |A(yq)| is the number of descriptions for each class yq. It can be observed that both max(·) and avg(·) are
special cases of PRM, which is consistent with Eq. (4) in Section 3. Therefore, ωmax and ωavg exist within the hypothesis
space of PRM, meaning:

ωmax ∈ Φprm, and ωavg ∈ Φprm.

From Eq. (15), we have:

R̂dvp
D (∆, ωmax) ≥ R̂dvp

D (∆, ωprm∗), and R̂dvp
D (∆, ωavg) ≥ R̂dvp

D (∆, ωprm∗)

⇒ R̂dvp
D (∆, ωfix) ≥R̂dvp

D (∆, ωprm∗).

B.5. Proof of Corollary 4.6

Proof. According to Lemma 4.5, ∀∆, R̂dvp
D (∆, ωfix) ≥ R̂dvp

D (∆, ωprm∗), then we have:

R̂dvp
D (∆∗

1, ω
fix) ≥ R̂dvp

D (∆∗
1, ω

prm∗) ≥ R̂dvp
D (∆∗

2, ω
prm∗),

where ∆∗
1 is the optimized ∆ for R̂dvp

D (., ωfix), while ∆∗
2 is the jointly optimized ∆ considering ωprm∗. To avoid confusion,

we use ∆∗
1 and ∆∗

2 to represent different ∆∗s in Lemma 4.4 and Corollary 4.6.

Lemma 4.4 proves R̂vr
D (δ∗, ωfix) ≥ R̂dvp

D (∆∗, ωfix), i.e., R̂vr
D (δ∗, ωfix) ≥ R̂dvp

D (∆∗
1, ω

fix). Applying Lemma 4.4 in the
above equation, it can be obtained that:

R̂vr
D (δ∗, ωfix) ≥ R̂dvp

D (∆∗
1, ω

fix) ≥ R̂dvp
D (∆∗

2, ω
prm∗)

⇒ R̂vr
D (δ∗, ωfix) ≥ R̂dvp

D (∆∗
2, ω

prm∗).

That is, R̂vr
D (δ∗, ωfix) ≥ R̂dvp

D (∆∗, ωprm∗), as ∆∗, ωprm∗ are jointly optimzed.

C. Appendix 3: More Experimental Results
C.1. Hyper-parameters

C.1.1. CHOOSING HYPER-PARAMETERS

Table 7. Choosing Appropriate Hyper-parameter k with the zero-shot accuracy

k AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

1 27.00 93.67 66.67 55.67 51.26 84.53 86.36 91.25 66.08 70.74 61.65 68.63
3 27.36 93.63 66.52 55.44 52.12 84.41 86.43 91.39 66.28 70.79 61.67 68.73
5 27.78 93.31 66.46 54.55 51.32 83.52 86.54 91.25 65.61 70.58 61.43 68.39
7 27.69 93.31 66.47 54.43 50.17 82.54 86.55 91.22 65.15 70.26 61.33 68.10

For both DVP-cse and DVP-cls, the optimal value of hyper-parameter k is determined based on the average zero-shot
accuracy on the validation sets of downstream tasks under different k values in {1, 3, 5, 7}. The results are shown in Table 7.
When k = 3, the average zero-shot accuracy reached its peak. Therefore, we set k = 3 in this study.

For hyper-parameter v in DVP-cls, we selected the value from v ∈ {1, 2, 3}. Since the sample size and number of classes
vary across datasets, we determined a dataset-specific v using the validation set for each dataset. The detailed results are
shown in Table 8.
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Table 8. Choosing Appropriate Hyper-parameter v

v AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC

1 38.07 87.97 56.30 87.60 96.47 89.47 81.77 88.57 66.50 77.40 85.70
2 41.53 89.93 59.23 93.23 96.07 91.27 83.20 89.30 69.50 82.33 88.00
3 45.27 90.07 61.17 95.20 93.77 93.00 83.17 90.40 71.03 82.30 89.03

OPTIMAL 3 3 3 3 1 3 2 3 3 2 3

Figure 8. Impact of hyper-parameter k on DVP-cse, when k ∈ {1, 3, 5, 7, 9}, using ViT-B16-based CLIP as the pretrained model.

Figure 9. Impact of hyper-parameter k on DVP-cls, when k ∈ {1, 3, 5, 7, 9}, using ViT-B16-based CLIP as the pretrained model.

Figure 10. Impact of hyper-parameter v on DVP-cls, when v ∈ {1, 2, 3, 5, 7}, using ViT-B16-based CLIP as the pretrained model.

C.1.2. IMPACT OF HYPER-PARAMETERS

Impact of k. Figures 8 and Figure 9 illustrate the impact of different k ∈ {1, 3, 5, 7, 9} values on DVP-cse and DVP-cls.
The k setting is designed to compensate for the limited training data. For datasets with fewer classes and limited training
samples, such as the Texture dataset, increasing k within a reasonable range (i.e., k=3, k=5) generally leads to a steady
improvement in accuracy. In contrast, for datasets with sufficient samples, such as Flowers and Aircraft, the effect of k is
relatively minor.

Impact of v. Figure 10 shows the impact of different v values on DVP-cls. For most datasets, accuracy increases with v
before stabilizing, with a few exceptions. One such exception is the ESAT remote sensing dataset, which contains only
10 relatively simple classes. In this case, a larger v, implying more VPs and parameters, may lead to overfitting. Another
exception is the Food dataset. As mentioned in Section 5, VR methods generally perform less effectively on this dataset, so
increasing v does not yield significant improvements.
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Weight Proportions of Different Causes after Training VR Patterns for Some Classes (Downstream Task: Texture ; Method: DVP-cse) 

Polka-dotted Studded Knitted Fibrous

Figure 11. Visualization results of DVP-cse, showing weights of causes for classifying certain classes, using ViT-B16-based CLIP.

Weight Proportions of Different Causes after Training VR Patterns for Some Classes (Downstream Task: Aircraft; Method: DVP-cse)  

-

707-320737-800757-200747-200

Figure 12. Visualization results of DVP-cse, showing weights of causes for classifying certain classes, using ViT-B16-based CLIP.

C.2. More Visualization Results of DVP-cse

Figure 11 shows the causes’ weight distribution for specific classes in the DTD dataset, obtained from the PRM trained
with DVP-cse. The results offer a degree of interpretability. For instance, the ‘polka-dotted’ class, characterized by spotted
patterns, has the highest weight for the ‘pattern’ cause. Similarly, ‘studded’, usually associated with metallic textures, shows
the largest weight for ‘coarseness/granularity’. For classes like ‘knitted’, which are strongly related to weaving, images
often exhibit black gaps and solid color areas from the knitting, making contrast the most important classification factor.
Meanwhile, classes such as ‘fibrous’, which have diverse characteristics, exhibit a more balanced distribution of cause
weights.

Figure 12 shows the cause weight distribution for specific classes in the Aircraft dataset, obtained from the PRM trained
with DVP-cse. The obtained weights also aid in understanding the classification process. For instance, the 747-200, as
a double-deck aircraft, has a distinctive shape, making ‘shape and structure’ the most critical factor. The 757-200, with
a longer fuselage and shorter wings compared with other models, is primarily classified based on ‘size and proportions’.
Meanwhile, the 737-800 typically features two cabin doors and relatively large cabin windows, making ‘surface features’ a
key classification criterion.

C.3. More Visualization Results of DVP-cls

Figures 13 and Figure 14 illustrate the classes closest to the center of each description cluster in DVP-cls (i.e., sorted by
the sum of each sample’s distance to the cluster center). As discussed in Section 5, DVP-cls tends to group descriptions of
classes with similar attributes–which might belong to the same subclass–into the same cluster.

Figure 13 presents the results on the DTD dataset, where cluster 1 corresponds to overlayed or layered patterns, such as
‘interlaced’, ‘frilly’, and ‘swirly’. Cluster 2 represents textures characterized by spots, including ‘bumpy’ and ‘flecked’.
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# sword lily 10.97245828716017 , barbeton daisy 10.96997785972034 , rose 10.679752742568747

# canna lily 11.042198789435213 , oxeye daisy 11.629740614343293 , hibiscus 10.850143458928912

# fire lily 11.791783735870649 , sunflower 11.636159624012071 , azalea 11.154918041564736

# tiger lily 11.830814087565573 , spear thistle 11.803369455363018 , lotus 11.413374046093438

# moon orchid 12.05860270262084 , common dandelion 11.831175835211901 , windflower 11.514425394364206

# interlaced 7.698800065452183 , bumpy 5.870034279328777 , interlaced 6.194132365325835

# frilly 7.716243186886728 , flecked 6.08049806590235 , woven 6.5216781583098165

# swirly 7.813907162588256 , blotchy 6.089321798444356 , crosshatched 6.982424407454234

# fibrous 7.873567966508907 , pitted 6.3370653102359 , zigzagged 7.037472079492099

# grooved 7.9871415360864475 , dotted 6.470946829011891 , striped 7.0632283197137165

# Model B200 8.083701692184228 , MD-87 8.10214285809785 , 767-200 5.655367756334322

# DHC-8-300 8.213595866967484 , ERJ 135 8.118194558568872 , 767-300 5.8349473859798895

# DC-6 8.279997115091286 , Fokker 70 8.288469911148022 , 767-400 6.167974796688118

# DHC-8-100 8.552950640693766 , DC-9-30 8.312177177123868 , 757-200 6.198483379028306

# An-12 8.63029839091557 , Fokker 100 8.317604660898379 , 757-300 6.350068770755981

…………

Cluster One Cluster Two Cluster Three

Sorted by Distance to the Cluster Center

Top Classes within Different Clusters (Downstream Task: Texture; Method: DVP-cls)  

…………

Sorted by Distance to the Cluster Center

…………

Sorted by Distance to the Cluster Center

Figure 13. Visualization results of DVP-cls, showing the top 3 classes closest to the description cluster centers, using ViT-B16-based
CLIP.
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# fibrous 7.873567966508907 , pitted 6.3370653102359 , zigzagged 7.037472079492099

# grooved 7.9871415360864475 , dotted 6.470946829011891 , striped 7.0632283197137165

# Model B200 8.083701692184228 , MD-87 8.10214285809785 , 767-200 5.655367756334322

# DHC-8-300 8.213595866967484 , ERJ 135 8.118194558568872 , 767-300 5.8349473859798895

# DC-6 8.279997115091286 , Fokker 70 8.288469911148022 , 767-400 6.167974796688118

# DHC-8-100 8.552950640693766 , DC-9-30 8.312177177123868 , 757-200 6.198483379028306

# An-12 8.63029839091557 , Fokker 100 8.317604660898379 , 757-300 6.350068770755981

…………

Cluster One Cluster Two Cluster Three

Top Classes within Different Clusters (Downstream Task: Aircraft; Method: DVP-cls)  

Sorted by Distance to the Cluster Center

…………

Sorted by Distance to the Cluster Center

…………

Sorted by Distance to the Cluster Center

Figure 14. Visualization results of DVP-cls, showing the top 3 classes closest to the description cluster centers, using ViT-B16-based
CLIP.

Cluster 3 relates to interwoven patterns, such as ‘interlaced’, ‘woven’, and ‘crosshatched’. Figure 14 shows the results on
the Aircraft dataset, with consistent conclusions. For example, cluster 3 groups all 767-x models into a single cluster. This
clustering effectively reflects the subclass-based organization of different labels.

C.4. More Results on Different Backbones

Table 9. Accuracy comparison of different methods trained on 16-shot downstream classification tasks, using RN50-based CLIP as the
pretrained model (Mean %, ours are highlighted and the highest is in bold).

METHOD AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

VP 16.2 80.1 44.0 43.4 59.7 53.6 65.3 77.2 48.8 52.0 47.7 53.5
AR 18.6 86.5 53.9 46.4 66.6 60.9 74.2 82.5 56.8 59.7 58.4 60.4

ATTRVR 20.7 89.1 53.9 54.4 72.0 74.8 75.3 88.9 59.9 63.6 58.2 64.6
DVP-CSE 23.5 89.8 55.9 57.6 74.4 81.4 74.8 88.5 60.5 65.5 60.3 66.6
DVP-CLS 22.1 89.8 54.5 55.9 72.2 80.0 75.0 88.9 61.1 65.9 60.8 66.0

Tables 9 to 11 present the detailed results of various VR methods on different datasets when CLIP adopts different image
encoder architectures (RN50, RN101, ViT-B32). On average, DVP-cse outperforms the baseline method AttrVR by 1.5% to
2.4%, while DVP-cls, though slightly less effective than DVP-cse, still achieves an average improvement of 1.2% to 1.6%
over AttrVR. Notably, the performance gains from DVP are more pronounced when the pretrained image encoder uses
simpler architectures, such as RN50 and RN101. The only exception among these datasets is Food. As discussed in Section
5, VR methods are less effective on this dataset, and thus DVP’s decoupling-and-reweighting framework does not improve
accuracy for this task.
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Table 10. Accuracy comparison of different methods trained on 16-shot downstream classification tasks, using RN101-based CLIP as the
pretrained model (Mean %, ours are highlighted and the highest is in bold).

METHOD AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

VP 19.3 83.0 53.7 43.4 62.8 57.2 71.2 80.2 53.5 54.2 54.0 57.5
AR 19.5 89.7 62.0 46.3 70.4 60.4 78.0 84.4 58.4 60.6 60.2 62.7

ATTRVR 23.3 92.0 62.2 55.6 70.3 76.2 79.5 89.3 62.1 64.5 64.5 67.2
DVP-CSE 24.7 93.3 64.1 59.2 73.3 82.9 79.3 90.4 62.4 67.6 67.8 69.6
DVP-CLS 23.8 92.7 62.5 58.0 70.7 80.6 79.1 89.5 63.7 68.1 68.4 68.8

Table 11. Accuracy comparison of different methods trained on 16-shot downstream classification tasks, using ViT-B32-based CLIP as
the pretrained model (Mean %, ours are highlighted and the highest is in bold).

METHOD AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

VP 24.3 92.3 58.6 54.9 85.9 71.2 75.0 86.8 61.0 67.3 73.9 68.3
AR 21.8 92.7 56.9 49.9 85.6 66.7 75.7 84.7 59.9 63.5 71.6 66.3

ATTRVR 24.5 92.0 56.6 56.8 88.6 77.8 77.2 89.8 62.8 67.9 73.9 69.8
DVP-CSE 27.3 93.4 58.1 58.8 89.1 83.1 76.8 89.8 63.5 69.0 75.4 71.3
DVP-CLS 26.1 92.9 56.5 57.2 88.5 82.5 77.0 89.2 64.2 70.5 76.0 71.0

C.5. Discussion about Training Time

Table 12. Accuracy comparison of AttrVR with DesAttr and our methods with only one VP trained, using ViT-B16-based CLIP as the
pretrained model (Mean %, ours are highlighted and the highest is in bold).

AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

ATTRVR (DESATTR) 35.9 95.6 68.2 64.4 93.8 92.4 85.7 93.0 67.7 78.6 81.8 77.9
DVP-CSE (NUM=1) 37.2 96.0 70.1 66.3 93.8 93.8 85.6 93.3 68.4 79.7 81.7 78.7
DVP-CLS (NUM=1) 36.4 95.8 69.1 65.3 94.1 93.6 85.7 93.1 70.0 80.2 82.8 78.7

Table 13. Training cost of different VR methods, using the ViT-B16-based CLIP as the pretrained model and the Flowers task as an
example (ours are highlighted ).

VP AR ATTRVR DVP-CSE (NUM=1) DVP-CLS (NUM=1)

PARAMETER NUMBER 69.8K 39.9K 39.9K 39.9K 39.9K
TRAINING TIME FOR EACH EPOCH (S) 2.97±0.02 2.85±0.03 2.83±0.03 2.87±0.02 2.88±0.04

TRAINING TIME IN TOTAL (MIN) 9.78±0.07 9.44±0.05 9.54±0.04 9.70±0.03 9.66 ± 0.07

A potential limitation of DVP is the increased training time required due to the larger number of VPs that need to be
optimized. However, since each VP is trained independently, the process can be parallelized, minimizing any significant
increase in overall training time. Additionally, the time cost of computing the PRM primarily involves matrix operations,
which do not require gradient calculations. Compared with the time-consuming forward pass of CLIP, this overhead is
negligible.

Even under the constraint that DVP must use only one VP as the baseline method for a fair comparison, it can still achieve
improvements over the baseline with almost no additional time overhead. Table 12 compares AttrVR and DVP when only a
single VP is used, while Table 13 shows the runtime of various VR methods. For fairness, the number of descriptions is kept
consistent, and only one VP is used for each method. The results demonstrate that both DVP-cse and DVP-cls can deliver an
average accuracy improvement with negligible extra computational cost.

C.6. Exploring Impact of Different Causes

Figure 15 demonstrates the impact of using a single cause in DVP-cse on the classification results for Flowers. Some causes,
such as flower structure, size, and leaf characteristics, significantly contribute to the success of reprogramming. These
causes are well-suited for reprogramming because they are visually distinctive, making them easier to optimize through
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Results of the Single Decoupled VR Pattern trained with a Single Cause (Downstream Task: Flowers)  

Samples

Figure 15. Comparison results of different causes for classifying Flowers applying DVP-cse with a single cause, using ViT-B16-based
CLIP.

Results of the Single Decoupled VR Pattern trained with a Single Cause (Downstream Task: Texture)  

Samples

Figure 16. Comparison results of different causes for classifying DTD applying DVP-cse with a single cause, using ViT-B16-based CLIP.

Results of the Single Decoupled VR Pattern trained with a Single Cause (Downstream Task: Aircraft)  

Samples

Figure 17. Comparison results of different causes for classifying Aircraft applying DVP-cse with a single cause, using ViT-B16-based
CLIP.

VP patterns, and they are causally linked to correct classification. Conversely, causes like color, fragrance, and flowering
time/growth habit are less effective for reprogramming. Color is less suitable because individual flowers within the same
class may exhibit color variations, reducing its contribution to accurate classification. Meanwhile, fragrance and flowering
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DVP-cse DVPlite VP and Corresponding Causes

Figure 18. Pipeline of the original DVP-cse and DVPlite under the setting of four decoupled causes, using the Flowers dataset as an
example. For different causes, DVP-cse requires training multiple separate VPs, multiplying the parameters. In contrast, DVPlite decouples
the VPs into up, down, left, and right directions, assigning them to different causes, which maintains parameter count comparable to other
VR methods.

time/growth habit are not visual features, making them inherently unsuitable for VR methods.

Figure 16 and Figure 17 respectively illustrate the influence of different causes on classification results for the DTD and
Aircraft datasets. In Figure 16, it is evident that most causes, except for entropy, yield similar results, while entropy leads to
noticeably poorer VR performance. This is because entropy, as a cause, lacks a direct connection to visual information,
making it difficult to optimize classification through VR. In contrast, causes such as pattern, contrast, and regularity are
directly tied to visual features, facilitating effective reprogramming. Figure 17 highlights that the most suitable causes for
VR in the Aircraft dataset are shape and structure, engine configuration, and wing configuration.

In summary, the most effective attribute descriptions for guiding VR meet two key criteria: (1) they are related to visual
information, and (2) they have a causal relationship with accurate classification.

C.7. DVPlite: A Potential Method for Parameter Reduction

When aiming to enhance the accuracy as DVP does without increasing the parameter overhead, we propose DVPlite as a
potential alternative. It enables decoupling-and-reweighting while keeping the parameter number consistent with that of
other VR methods.

VR pattern consists of trainable parameters arranged alongside the four edges of the image (i.e., padding). In DVP, each VR
pattern is trained independently, resulting in a substantial increase in the total number of parameters. The proposed DVPlite
method in this section divides the VR pattern into four independent parts, with a total number of trainable parameters equal
to that of AttrVR. Each part is positioned at the top, bottom, left, and right peripheries, as is shown in Figure 18.

Table 14. Accuracy comparison of our DVPlite and the best-performing baseline method AttrVR trained on 16-shot downstream
classification task, using ViT-B16-based CLIP as the pretrained model (Mean %, ours is highlighted and the highest is in bold).

AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

ATTRVR (BASELINE) 36.6 95.7 68.3 65.6 93.8 92.9 85.9 93.3 69.6 79 82.6 78.5
DVPLITE 39.3 95.9 71.4 66.5 93.8 95.2 85.8 93.4 71.6 81 83.6 79.8

Table 15. A comparison of parameter numbers for different methods and their average accuracy across 11 datasets, using ViT-B16-based
CLIP as the pretrained model (Mean %, ours are highlighted .

VP AR ATTRVR DVP-CSE DVP-CLS DVPLITE

PARAMETER NUMBERS 0.07M 0.04M 0.04M 0.12M 0.04-0.12M 0.04M
AVERAGE ACCURACY OVER 11 TASKS 74.4 76.5 78.5 80.1 79.7 79.8

Accuracy comparisons of our DVPlite and the best-performing baseline method AttrVR are shown in Table 14, and the
parameter numbers are shown in Table 15. In the DVPlite experiments presented here, the assignment of which specific VP
was applied to which spatial location was determined randomly (and kept fixed for that run). DVPlite is then implemented
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under our proposed two-stage DVP-PRM framework, with the four parts trained independently.

Therefore, the core DVP-PRM principles yield benefits without increasing the parameter count. DVPlite outperformed the
AttrVR baseline with an identical parameter budget, demonstrating the effectiveness of the decoupling-and-reweighting
strategy itself. However, investigating structured or learnable assignments of VPs to spatial locations instead of random
assignments might be an interesting open question that deserves formal and systematic exploration in future studies.

C.8. Applying DVP-PRM to Different VR methods

Table 16. Results of applying our DVP-PRM framework to various VR methods, including VP and AR (for AR, results equal to that of
DVP-cse and DVP-cls), trained on a 16-shot downstream classification task, using ViT-B16-based CLIP as the pretrained model.

AIRCRAFT CALTECH CARS DTD ESAT FLOWERS FOOD PETS SUN UCF RESISC AVG.

VP + OURS-CSE (%) + 6.2 + 1.2 + 4.3 + 4.0 + 0.6 + 9.2 + 0.2 + 1.1 + 2.4 + 2.6 + 2.4 + 3.1
VP + OURS-CLS (%) + 6.3 + 0.8 + 1.2 + 2.0 + 0.0 + 8.4 + 0.2 + 1.1 + 2.5 + 3.5 + 2.7 + 2.6
AR + OURS-CSE (%) + 8.6 + 0.7 + 4.5 + 4.7 + 0.5 + 9.5 + 0.4 + 0.4 + 3.2 + 3.6 + 3.0 + 3.6
AR + OURS-CLS (%) + 7.0 + 0.5 + 2.8 + 3.5 + 0.7 + 9.1 + 0.5 + 0.6 + 3.2 + 3.9 + 2.8 + 3.1

Given the existence of various VR methods, including watermarking-based (i.e. VP(Bahng et al., 2022)) and padding-based
(i.e. AR (Tsai et al., 2020)), we apply the proposed DVP-PRM framework to both types to evaluate its performance. Notably,
applying the framework to the padding-based VR setting corresponds to the DVP-cse and DVP-cls results presented in this
paper. Performance improvements achieved by incorporating our module into different VR methods are summarized in
Table 16. These results suggest that our method is effective for both watermarking-based and padding-based VR, consistently
providing performance gains across these different approaches.

C.9. Training Results Under Sparse Data Conditions

Table 17. Accuracy comparison of different VR methods with fewer or more training samples (i.e., 1-, 4-, 8-, and 32-shot tasks), using
ViT-B16-based CLIP as the pretrained model and the Aircraft task as an example (Mean %±Std %, ours are highlighted and the highest
is in bold).

VP AR ATTRVR DVP-CSE DVP-CLS

1-SHOT 24.1±0.4 25.1±0.4 31.5±0.2 28.1±0.8 29.4±0.5
4-SHOT 27.5±0.2 27.7±0.4 33.4±0.6 32.3±0.1 32.5±0.3
8-SHOT 29.5±0.3 30.1±0.1 35.1±0.3 36.4±0.1 35.9±0.5

16-SHOT 32.1±0.6 31.7±0.3 36.6±0.3 40.3±0.2 38.7±0.4
32-SHOT 34.5±0.4 34.2±0.7 38.4±0.3 43.1±0.8 41.2±0.5

To evaluate the performance of DVP under varying amounts of training data, we conducted experiments on the Aircraft
dataset with 1-, 4-, 8-, 16-, and 32-shot settings. The results are presented in Table 172.

It can be observed that under extremely limited training conditions, such as the 1-shot and 4-shot scenarios, DVP performs
worse than the baseline methods. This is attributed to the fact that the MLE in the PRM module becomes more reliable with
larger amounts of data. The suboptimal performance under very low-data conditions highlights one of the limitations of
DVP.

However, the performance improvement of DVP becomes increasingly evident when the number of training shots exceeds 8
for the Aircraft dataset, and is particularly pronounced under the 32-shot setting. This suggests that as the amount of training
data increases, DVP can better leverage its modeling capacity, resulting in more substantial gains.

D. Appendix 4: Problem Setup & Notation
D.1. Problem Setup Comparison

We clarify the differences between the problem this work focuses on and another active research theme to avoid confusion.

2Note that we conducted additional experiments and correct the 8-shot and 32-shot results reported in the rebuttal, but these corrections
do not affect the conclusions presented during rebuttal.
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Visual Reprogramming (This Work). The focus of this paper is to address the challenge of adapting CLIP, pretrained on
aligned image-text pairs, to downstream classification tasks where input dimensions mismatch the original model (dT ̸= dS).
Following established visual reprogramming protocols, we learn a set of visual prompts (VPs) ∆ = δ1, . . . , δv that perturb
input images to align them with CLIP’s pretrained feature space. Formally, given a downstream dataset D = {(xT

j , y
T
j )}Nj=1

with images xT
j ∈ XT and labels yTj ∈ YT, we optimize ∆ to minimize the cross-entropy loss:

∆∗ = argmin
∆

− 1

N

N∑
j=1

log p(yTj |fin(xT
j ; ∆),A)

 .

where fin(x
T; ∆) = pad(xT) + ∆ pads to match CLIP’s expected dimensions and applies trainable visual prompts ∆.

Text Prompt Tuning. In contrast, text prompt tuning methods like CoOp (Zhou et al., 2022a) adapt pretrained CLIP by
modifying its text input space. Instead of perturbing images, these studies aim to optimize a set of continuous context vectors
C = [c1, . . . , cM ] prepended to class names, forming prompts such as “”c1 · · · cM [Class Info].” For class y, its embedding
becomes

ftxt(C, y) = ftxt (concat(c1, . . . , cM , ftokenize(y))) .

where ftokenize(y) tokenizes the class name y. The learning objective maximizes the alignment between image embeddings
fimg(x

T) and adapted text embeddings ftxt(C, yT).

C∗ = argmin
C

− 1

N

N∑
j=1

log p(yTj |xT
j ;C)

 .

D.2. Notations

We then provide a list of key mathematical notations used throughout the paper to ensure clarity and consistency.

D.2.1. GENERAL CONCEPTS REGARDING CLIP MODEL

Table 18. General Concepts and Notation
Symbol Description

CLIP Contrastive Language-Image Pre-training model (Radford et al., 2021).
fimg CLIP’s image encoder.
ftxt CLIP’s text encoder.
X S Input image space for the pre-trained CLIP model (i.e., source domain images). X S ⊆ RdS .
V Text space containing all textual descriptions.
Z Shared embedding space for images and text.
V A textual phrase or description from V .
XT Input image space for a downstream task (target domain images). XT ⊆ RdT .
YT Label space for the downstream task.
xT An image from the target domain XT.
yT A label from the target label space YT.
dS Dimensionality of source domain images.
dT Dimensionality of target domain images.
fclip(x

S, V ) CLIP similarity score between image xS and text V . Defined in Eq. (1).
τ Temperature parameter in CLIP’s similarity computation.
A The complete set of textual descriptions used for all classes in a downstream task.
A(yT) Subset of A containing m descriptions specifically for class yT.
m Number of textual descriptions per class.
[flogits(x

T;A)]yT Logit for class yT given image xT, computed using standard CLIP when dT = dS.
agg(·) Generic aggregation function (e.g., max(·), avg(·)) over description similarities.
| · | The cardinality of a set, i.e., the number of elements in a set.
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D.2.2. STANDARD VISUAL REPROGRAMMING (VR)

Table 19. Standard Visual Reprogramming Notation
Symbol Description

fin(x
T|δ) Input transformation function in VR, fin(xT|δ) = pad(xT) + δ.

pad(·) Zero-padding function to make xT dimensionally compatible with fimg.
δ The single, trainable visual prompt (a vector or tensor in RdS ) in standard VR.
[fvr

logits(x
T; δ,A)]yT Logit for class yT given image xT and prompt δ in standard VR. Defined in Eq. (1).

pvr(y
T|xT; δ,A) Normalized probability for class yT in standard VR, obtained via softmax over fvr

logits.
Ma Row vector (1× |A|) of CLIP similarities between fin(x

T|δ) and all descriptions in A.
My Row vector (1× |YT|) of class logits.
ω General reweighting matrix (|A| × |YT|) relating a⊤

x,δ to y⊤
x,δ,ω via a⊤

x,δ ω = y⊤
x,δ,ω .

ωp,q Element of ω, representing the contribution of the p-th description to the q-th class logit.
ωfix Fixed reweighting matrix used in standard VR, determined by the choice of agg(·) (e.g., max(·) or avg(·)).
D Downstream training set, consisting of N image-label pairs: {(xT

j , y
T
j )}Nj=1.

N Total number of samples in the training set D.

D.2.3. DECOUPLED VISUAL PROMPTS (DVP) FRAMEWORK

Table 20. Decoupled Visual Prompts (DVP) Framework Notation
Symbol Description

∆ Set of v visual prompts, i.e., ∆ = {δ1, δ2, . . . , δv}.
δi The i-th decoupled visual prompt, specialized for description partition Ai.
A The full description set.
E The full set of text embeddings for descriptions in A.
Ai The i-th partition of the full description set A.
Ei The set of text embeddings corresponding to descriptions in partition Ai.
v Number of decoupled visual prompts and description partitions.
DVP-cse DVP variant where partitions Ai are formed based on explicit semantic causes from an LLM.
DVP-cls DVP variant where partitions Ai are formed by unsupervised clustering of description embeddings.
PRM (ωprm) Probabilistic Reweighting Matrix: The learned (|A| × |YT|) matrix in the DVP framework.
ωprm
p,q Entry of PRM, estimated as p̂(V = ap|Y T = yq, V ∈ A(yq)).

ND(a, y) Co-occurrence count of description a and class y in training set D. Used for PRM estimation.
K(xT

j , k) Set of top-k descriptions in A most similar to fin(x
T
j |∆) for image xT

j .
k Number of top similar descriptions considered for smoothed PRM counting.
pvr(y

T|xT; δi, ω
prm,Ai) Probability derived from [fδi

logits(x
T)].

[fdvp
logits(x

T;∆, ωprm)]yT
q

Integrated logit for class yT
q in DVP, combining all prompts ∆ and PRM ωprm.

pdvp(y
T|xT;∆, ωprm,A) Final probability for class yT in DVP, from integrated logits.
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