

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

UNIVERSAL VALUE-FUNCTION UNCERTAINTIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Estimating epistemic uncertainty in value functions is a crucial challenge for many aspects of reinforcement learning (RL), including efficient exploration, safe decision-making, and offline RL. While deep ensembles provide a robust method for quantifying value uncertainty, they come with significant computational overhead. Single-model methods, while computationally favorable, often rely on heuristics and typically require additional propagation mechanisms for myopic uncertainty estimates. In this work we introduce universal value-function uncertainties (UVU), which, similar in spirit to random network distillation (RND), quantify uncertainty as squared prediction errors between an online learner and a fixed, randomly initialized target network. Unlike RND, UVU errors reflect policy-conditional *value uncertainty*, incorporating the future uncertainties *any given policy* may encounter. This is due to the training procedure employed in UVU: the online network is trained using temporal difference learning with a synthetic reward derived from the fixed, randomly initialized target network. We provide an extensive theoretical analysis of our approach using neural tangent kernel (NTK) theory and show that in the limit of infinite network width, UVU errors are exactly equivalent to the variance of an ensemble of independent universal value functions. Empirically, we show that UVU achieves equal performance to large ensembles on challenging multi-task offline RL settings, while offering simplicity and substantial computational savings.

1 INTRODUCTION

Deep reinforcement learning (RL) has emerged as an essential paradigm for addressing difficult sequential decision-making problems (Mnih et al., 2015; Silver et al., 2016; Vinyals et al., 2019) but a more widespread deployment of agents to real-world applications remains challenging. Open problems such as efficient exploration, scalable offline learning and safety pose persistent obstacles to this transition. Central to these capabilities is the quantification of *epistemic uncertainty*, an agent’s uncertainty due to limited data. In the context of RL, uncertainty estimation relating to the *value function* is of particular importance as it reflects uncertainty about long-term consequences of actions.

However, computationally tractable estimation of value-function uncertainty remains a challenge. Bayesian RL approaches, both in its model-based (Ghavamzadeh et al., 2015) and model-free (Dearden et al., 1998) flavors, typically come with sound theoretical underpinnings but face significant computational hurdles due to the general intractability of posterior inference. Theoretical guarantees of the latter are moreover often complicated by the use of training procedures like temporal difference (TD) learning with bootstrapping. Conversely, deep ensembles (Lakshminarayanan et al., 2017) have emerged as a reliable standard for practical value uncertainty estimation in deep RL (Osband et al., 2016; Chen et al., 2017). Empirically, independently trained value functions from random initialization provide effective uncertainty estimates that correlate well with true estimation errors. Although in general more tractable than full posterior inference, this approach remains computationally challenging for larger models where a manyfold increase in computation and memory severely limits scalability. Various single-model approaches like random network distillation (RND) (Burda et al., 2019), pseudo counts (Bellemare et al., 2016) or intrinsic curiosity (Pathak et al., 2017) efficiently capture *myopic* epistemic uncertainty but require additional propagation mechanisms to obtain value uncertainties (O’Donoghue et al., 2018; Janz et al., 2019; Zhou et al., 2020) and often elude a thorough theoretical understanding. We conclude that there persists a lack of computationally efficient single-model approaches with the ability to directly estimate policy-dependent value uncertainties with a strong theoretical foundation.

To this end, we introduce *universal value-function uncertainties* (UVU), a novel method designed to estimate epistemic uncertainty of value functions for any given policy using a single-model architecture. Similar in spirit to the well-known RND algorithm, UVU quantifies uncertainty through a prediction error between an online learner u and a fixed, randomly initialized target network g . Crucially, and in contrast to the regression objective of RND, UVU optimizes its online network u using temporal difference (TD) learning with a synthetic reward r_g generated entirely from the target network g . By construction, the reward r_g implies a value learning problem to which the target function g itself is a solution, forcing the online learner u to recover g through minimization of TD losses. UVU then quantifies uncertainty as the squared prediction error between online learner and fixed target function. Unlike previous methods, our design requires no training of multiple models (e.g., ensembles) nor separate value and uncertainty models (e.g., RND, ICM). Furthermore, we design UVU as a universal policy-conditioned model (comparable to universal value function approximators (Schaul et al., 2015)), that is, it takes as input a state, action, and policy encoding and predicts the epistemic uncertainty associated with the value function for the encoded policy.

A key contribution of our work is a thorough theoretical analysis of UVU using the framework of neural tangent kernels (NTK) (Jacot et al., 2018). Specifically, we characterize the learning dynamics of wide neural networks with TD losses and gradient descent to obtain closed-form solutions for the convergence and generalization behavior of neural network value functions. In the limit of infinite network width, we then show that prediction errors generated by UVU are equivalent to the variance of an ensemble of universal value functions, both in expectation and with finite sample estimators.

We validate UVU empirically on an offline multi-task benchmark from the minigrid suite where agents are required to reject tasks they cannot perform to achieve maximal scores. We show that UVU’s uncertainty estimates perform comparably to large deep ensembles, while drastically reducing the computational footprint.

2 PRELIMINARIES

We frame our work within the standard Markov Decision Process (MDP) (Bellman, 1957) formalism, defined by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \gamma, P, \mu)$. Here, \mathcal{S} is the state space, \mathcal{A} is the action space, $\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathbb{R})$ is the distribution of immediate rewards, $\gamma \in [0, 1]$ is the discount factor, $P : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S})$ is the transition probability kernel, and $\mu : \mathcal{P}(\mathcal{S})$ is the initial state distribution. An RL agent interacts with this environment by selecting actions according to a policy $\pi : \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})$. At each timestep t , the agent is in state S_t , takes action $A_t \sim \pi(\cdot | S_t)$, receives a reward $R_t \sim \mathcal{R}(\cdot | S_t, A_t)$, and transitions to a new state $S_{t+1} \sim P(\cdot | S_t, A_t)$. We quantify the merit of taking actions $A_t = a$ in state $S_t = s$ and subsequently following policy π by the action-value function, or Q-function $Q^\pi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, which accounts for the cumulative discounted future rewards and adheres to a recursive consistency condition described by the Bellman equation

$$Q^\pi(s, a) = \mathbb{E}_{\mathcal{R}, \pi, P}[R_0 + \gamma Q^\pi(S_1, A_1) | S_0 = s, A_0 = a]. \quad (1)$$

The agent’s objective then is to maximize expected returns $J(\pi) = \mathbb{E}_{S_0 \sim \mu, A_0 \sim \pi(\cdot | S_0)}[Q^\pi(S_0, A_0)]$.

Often, we may be interested in agents capable of operating a variety of policies to achieve different goals. Universal value function approximators (UVFAs) (Schaul et al., 2015) address this by conditioning value functions additionally on an encoding $z \in \mathcal{Z}$. This encoding specifies a current policy context, indicating for example a task or goal. We denote such *universal Q*-functions as $Q(s, a, z)$. In the context of this work, we consider z to be a parameterization or indexing of a specific policy $\pi(\cdot | s, z)$, or in other words $Q : \mathcal{S} \times \mathcal{A} \times \mathcal{Z} \rightarrow \mathbb{R}$, $Q(s, a, z) \equiv Q^{\pi(\cdot | s, z)}(s, a)$.

Both in the single and multi task settings, obtaining effective policies may require efficient exploration and an agent’s ability to reason about *epistemic* uncertainty. This source of uncertainty, in contrast to *aleatoric* uncertainty, stems from a lack of knowledge and may in general be reduced by the acquisition of data. In the context of RL, we make an additional distinction between *myopic uncertainty* and *value uncertainty*.

2.1 MYOPIC UNCERTAINTY AND NEURAL TANGENT KERNELS

Myopic uncertainty estimation methods, such as RND or ensembles predicting immediate rewards or next states, quantify epistemic uncertainty without explicitly accounting for future uncertainties

108 along trajectories. We first briefly recall the RND algorithm (Burda et al., 2019) , before introducing
 109 the neural tangent kernel (NTK) (Jacot et al., 2018) framework.
 110

111 Random network distillation comprises two neural networks: A fixed, randomly initialized *target*
 112 *network* $g(x; \psi_0)$, and a *predictor network* $u(x; \vartheta_t)$. The online predictor $u(x; \vartheta_t)$ is trained via
 113 gradient descent to minimize a square loss between its own predictions and the target network’s
 114 output on a set of data points $\mathcal{X} = \{x_i \in \mathbb{R}^{d_{\text{in}}}\}_{i=1}^{N_D}$. The RND prediction error at a test point x then
 115 serves as an uncertainty or novelty signal. The loss and error function of RND are then given as
 116

$$\mathcal{L}_{\text{rnd}}(\theta_t) = \frac{1}{2}(u(\mathcal{X}; \theta_t) - g(\mathcal{X}; \psi_0))^2, \quad \text{and} \quad \epsilon_{\text{rnd}}^2(x; \vartheta_t, \psi_0) = \frac{1}{2}(u(x; \vartheta_t) - g(x; \psi_0))^2. \quad (2)$$

117 This mechanism relies on the idea that the predictor network recovers the outputs of the target
 118 network only for datapoints contained in the dataset $x_i \in \mathcal{X}$, while a measurable error ϵ_{rnd}^2 persists
 119 for out-of-distribution test samples $x_T \notin \mathcal{X}$, yielding a measure of epistemic uncertainty.
 120

121 Next, we introduce the framework of neural tangent kernels, an analytical framework we intend to
 122 employ for the study of neural network and deep ensemble behavior. Consider a neural network
 123 $f(x, \theta_t) : \mathbb{R}^{n_{\text{in}}} \rightarrow \mathbb{R}$ with hidden layer widths $n_1, \dots, n_L = n$ and inputs $x \in \mathbb{R}^{n_{\text{in}}}$, a dataset \mathcal{X} ,
 124 and labels $\mathcal{Y} = \{y_i \in \mathbb{R}\}_{i=1}^{N_D}$. Inputs x_i may, for example, be state-action tuples and labels y_i may
 125 be rewards. The network parameters $\theta_0 \in \mathbb{R}^{n_p}$ are initialized randomly $\theta_0 \sim \mathcal{N}(0, 1)$ and updated
 126 with gradient descent with infinitesimal step sizes, also called gradient flow. In the limit of infinite
 127 width n , the function initialization $f(\cdot, \theta_0)$, as shown by Lee et al. (2018), is equivalent to a Gaussian
 128 process prior with a specific kernel $\kappa : \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{in}}} \rightarrow \mathbb{R}$ called the neural network Gaussian process
 129 (NNGP). The functional evolution of f through gradient flow is then governed by a *gradient* inner
 130 product kernel $\Theta : \mathbb{R}^{n_{\text{in}}} \times \mathbb{R}^{n_{\text{in}}} \rightarrow \mathbb{R}$ yielding
 131

$$\Theta(x, x') = \nabla_{\theta} f(x, \theta_0)^{\top} \nabla_{\theta} f(x', \theta_0), \quad \text{and} \quad \kappa(x, x') = \mathbb{E}[f(x, \theta_0)f(x', \theta_0)]. \quad (3)$$

132 Remarkably, seminal work by Jacot et al. (2018) showed that in the limit of infinite width and appro-
 133 priate parametrization¹, the kernel Θ becomes deterministic and remains constant throughout training.
 134 This limiting kernel, referred to as the neural tangent kernel (NTK), leads to analytically tractable
 135 training dynamics for various loss functions, including the squared loss $\mathcal{L}(\theta_t) = \frac{1}{2}\|f(\mathcal{X}; \theta_t) - \mathcal{Y}\|_2^2$.
 136 Owing to this, one can show (Jacot et al., 2018; Lee et al., 2020) that for $t \rightarrow \infty$ post conver-
 137 gence function evaluations $f(\mathcal{X}_T, \theta_{\infty})$ on a set of test points \mathcal{X}_T , too, are Gaussian with mean
 138 $\mathbb{E}[f(\mathcal{X}_T, \theta_{\infty})] = \Theta_{\mathcal{X}_T \mathcal{X}} \Theta_{\mathcal{X} \mathcal{X}}^{-1} \mathcal{Y}$ and covariance

$$\text{Cov}[f(\mathcal{X}_T, \theta_{\infty})] = \kappa_{\mathcal{X}_T \mathcal{X}_T} - (\Theta_{\mathcal{X}_T \mathcal{X}} \Theta_{\mathcal{X} \mathcal{X}}^{-1} \kappa_{\mathcal{X} \mathcal{X}_T} + h.c.) + \Theta_{\mathcal{X}_T \mathcal{X}} \Theta_{\mathcal{X} \mathcal{X}}^{-1} \kappa_{\mathcal{X} \mathcal{X}} \Theta_{\mathcal{X} \mathcal{X}}^{-1} \Theta_{\mathcal{X} \mathcal{X}_T}, \quad (4)$$

139 where *h.c.* denotes the Hermitian conjugate of the preceding term and we used the shorthands
 140 $\Theta_{\mathcal{X}_1 \mathcal{X}_2} = \Theta(\mathcal{X}_1, \mathcal{X}_2)$ and $\kappa_{\mathcal{X}_1 \mathcal{X}_2} = \kappa(\mathcal{X}_1, \mathcal{X}_2)$. This expression provides a closed-form solution for
 141 the epistemic uncertainty captured by an infinite ensemble of NNs in the NTK regime trained with
 142 square losses. For example, the predictive variances of such ensembles are easily obtained as the
 143 diagonal entries of Eq. 4. While requiring an idealized setting, NTK theory offers a solid theoretical
 144 grounding for quantifying the behavior of deep ensembles and, by extension, myopic uncertainty
 145 estimates from related approaches. However, this analysis does not extend to value functions trained
 146 with TD losses and bootstrapping as is common in practical reinforcement learning settings.
 147

148 2.2 VALUE UNCERTAINTY

150 In contrast to myopic uncertainties, value uncertainty quantifies a model’s lack of knowledge in the
 151 value $Q^{\pi}(s, a)$. As such it inherently depends on future trajectories induced by policies π . Due to
 152 this need to account for accumulated uncertainties over potentially long horizons, value uncertainty
 153 estimation typically renders more difficult than its myopic counterpart.
 154

155 A widely used technique(Osband et al., 2016; Chen et al., 2017; An et al., 2021) to this end is the use
 156 of deep ensembles of value functions $Q(s, a, \theta_t) : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ from random initializations θ_0 . Q -
 157 functions are trained on transitional data $\mathcal{X}_{TD} = \{s_i, a_i\}_{i=1}^{N_D}$, $\mathcal{X}'_{TD} = \{s'_i, a'_i\}_{i=1}^{N_D}$, and $r = \{r_i\}_{i=1}^{N_D}$,
 158 where s'_i are samples from the transition kernel P and a'_i are samples from a policy π . Q -functions
 159 are then optimized through gradient descent on a temporal difference (TD) loss given by

$$\mathcal{L}(\theta_t) = \frac{1}{2} \| [\gamma Q^{\pi}(\mathcal{X}'_{TD}, \theta_t)]_{\text{sg}} + r - Q^{\pi}(\mathcal{X}_{TD}, \theta_t) \|_2^2, \quad (5)$$

160 161 ¹so-called NTK parametrization scales forward/backward passes appropriately, see Jacot et al. (2018)

162 where $[\cdot]_{\text{sg}}$ indicates a stop-gradient operation. Due to the stopping of gradient flow through $Q(\mathcal{X}', \theta_t)$,
 163 we refer to this operation as semi-gradient updates. Uncertainty estimates can then be obtained as the
 164 variance $\sigma_q^2(s, a) = \mathbb{V}_{\theta_0}[Q(s, a, \theta_t)]$ between ensembles of Q -functions from random initializations.
 165 While empirically successful, TD-trained deep ensembles are not as well understood as the supervised
 166 learning setting outlined in the previous section 2.1. Due to the use of bootstrapped TD losses, the
 167 closed-form NTK regime solutions in Eq. 4 do not apply to deep value function ensembles.

168 An alternative to the above approach is the propagation of myopic uncertainty estimates. Several prior
 169 methods(O'Donoghue et al., 2018; Zhou et al., 2020; Luis et al., 2023) formalize this setting under a
 170 model-based perspective, where transition models $\tilde{P}(\cdot|s, a)$ are sampled from a Bayesian posterior
 171 conditioned on transition data up to t . For acyclic MDPs, this setting permits a consistency condition
 172 similar to the Bellman equation that upper bounds value uncertainties recursively. While this approach
 173 devises a method for obtaining value uncertainties from propagated myopic uncertainties, several
 174 open problems remain, such as the tightness of model-free bounds of this kind (Janz et al., 2019;
 175 Van der Vaart et al., 2025) as well as how to prevent *underestimation* of these upper bounds due to
 176 the use of function approximation (Rashid et al., 2020; Zanger et al., 2024).

178 3 UNIVERSAL VALUE-FUNCTION UNCERTAINTIES

180 Our method, *universal value-function uncertainties* (UVU), measures epistemic value uncertainty as
 181 the prediction errors between an online learner and a fixed target network, similar in spirit to random
 182 network distillation (Burda et al., 2019). However, while RND quantifies myopic uncertainty through
 183 immediate prediction errors, UVU modifies the training process of the online learner such that the
 184 resulting prediction errors reflect value-function uncertainties, that is, uncertainty about long-term
 185 returns under a given policy.

186 Our method centers around the interplay of two distinct neural networks: an online learner
 187 $u(s, a, z, \vartheta_t) : \mathcal{S} \times \mathcal{A} \times \mathcal{Z} \rightarrow \mathbb{R}$, parameterized by weights ϑ_t , and a fixed, randomly initialized
 188 target network $g(s, a, z, \psi_0) : \mathcal{S} \times \mathcal{A} \times \mathcal{Z} \rightarrow \mathbb{R}$, parameterized by weights ψ_0 . Given a transition
 189 (s, a, s') and policy encoding z , we draw subsequent actions a' from a policy $\pi(\cdot|s', z)$. Then, we
 190 use the fixed target network g to generate synthetic rewards as

$$191 \quad r_g^z(s, a, s', a') = g(s, a, z, \psi_0) - \gamma g(s', a', z, \psi_0). \quad (6)$$

193 While the weights ψ_0 of the target network remain fixed at initialization, the online network u is
 194 trained to minimize a TD loss using the synthetic reward r_g^z . Given a dataset $\mathcal{X} = \{s_i, a_i, z_i\}_{i=1}^{N_D}$, we
 195 have

$$196 \quad \mathcal{L}(\vartheta_t) = \frac{1}{2N_D} \sum_i^{N_D} (\gamma [u(s'_i, a'_i, z_i, \vartheta_t)]_{\text{sg}} + r_g^z(s_i, a_i, s'_i, a'_i) - u(s_i, a_i, z_i, \vartheta_t))^2, \quad (7)$$

198 where $[\cdot]_{\text{sg}}$ indicates a stop-gradient operation. For any tuple (s, a, z) ($\in \mathcal{X}$ or not), we measure
 199 predictive uncertainties as squared prediction errors between the learner and the target function

$$200 \quad \epsilon(s, a, z, \vartheta_t, \psi_0)^2 = (u(s, a, z, \vartheta_t) - g(s, a, z, \psi_0))^2. \quad (8)$$

202 The intuition behind this design is that, by construction, the value-function associated with policy
 203 $\pi(\cdot|s, z)$ and the synthetic rewards $r_g^z(s, a, s', a')$ exactly equals the fixed target network $g(s, a, z, \psi_0)$.
 204 As a sanity check, note that the target function $g(s, a, z, \psi_0)$ itself satisfies the Bellman equation for
 205 the policy $\pi(\cdot|s, z)$ and the synthetic reward definition in Eq. (6), constituting a *random value function*
 206 to r_g^z and hence achieves zero-loss according to Eq. (7). Therefore, if the dataset \mathcal{X} sufficiently covers
 207 the dynamics induced by $\pi(\cdot|s, z)$, the online network $u(s, a, z, \vartheta_0)$ is able to recover $g(s, a, z, \psi_0)$
 208 exactly, nullifying prediction errors. However, when data coverage is incomplete for the evaluated
 209 policy, minimization of the TD loss 7 is not sufficient for the online network $u(s, a, z, \vartheta_0)$ to recover
 210 target network predictions $g(s, a, z, \psi_0)$. This discrepancy is captured by the prediction errors, which
 211 quantify epistemic uncertainty regarding future gaps of the available data.

212 3.1 BUILDING INTUITION BY AN EXAMPLE

214 To build intuition for how UVU operates and captures value uncertainty, we first consider a tabular
 215 setting with a simple chain MDP as illustrated in Figure 1. Suppose we collect data from a deter-
 216 ministic policy π_d using action a exclusively. Given this dataset, suppose we would like to estimate

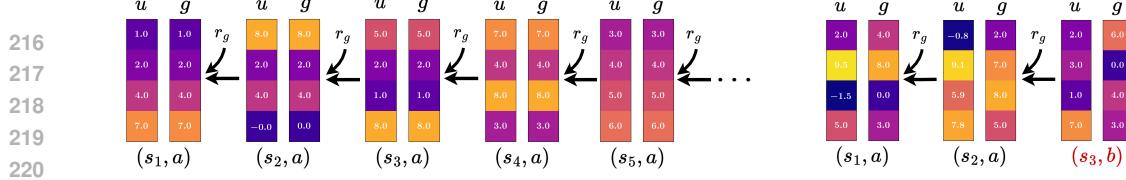


Figure 2: (left:) Illustration of uncertainty estimation in tabular UVU with 4 independently initialized tables for u and g . Access to full trajectory data allows u to recover g . (right:) By executing action “b”, trajectories are effectively truncated, preventing u from recovering g . All plots use $\gamma = 0.7$.

the uncertainty associated with the value $Q^{\pi(\cdot|s,z)}(s, a)$ of a policy $\pi(\cdot|s, z)$ that differs from the data-collection policy in that it chooses action “b” in s_3 . In our tabular setting, we then initialize random tables u_{sa} and g_{sa} . For every transition (s_t, a_t, s_{t+1}) contained in our single-trajectory dataset, we draw $a_{t+1} \sim \pi(\cdot|s, z)$, compute the reward $r_{g,t}$ as $r_{g,t} = g_{stat} - \gamma g_{s_{t+1}a_{t+1}}$ and update table entries with the rule $u_{s_t a_t} \leftarrow r_{g,t} + \gamma u_{s_{t+1} a_{t+1}}$. Fig. 2 visualizes this process for several independently initialized tables (rows in Fig. 2) for the data-collecting policy π_d (left), and for the altered policy $\pi(\cdot|s, z)$ (right), which chooses action “b” in s_3 . We outline how this procedure yields uncertainty estimates: We first note, that one may regard g as a randomly generated value-function, for which we derive the corresponding reward function as r_g . As g_{sa} , by construction, is the value-function corresponding to r_g , one may expect that the update rule applied to u_{sa} causes u_{sa} to recover g_{sa} . Crucially, however, this is only possible if sufficient data is available for the evaluated policy. When a policy diverges from available data, as occurs under $\pi(\cdot|s, z)$ in s_3 , this causes an effective truncation of the collected trajectory. Consequently, $u_{s_1 a}$ and $u_{s_2 a}$ receive updates from $u_{s_3 b}$, which remains at its initialization, rather than inferring the reward-generating function g_{sa} . In the absence of long-term data, the empirical Bellman equations reflected in our updates do not uniquely determine the underlying value function g_{sa} . Indeed, both u_{sa} and g_{sa} incur zero TD-error in the r.h.s. of Fig. 2, yet differ significantly from each other. It is this ambiguity that UVU errors $(g_{sa} - u_{sa})^2$ quantify. To ensure u recovers g , longer rollouts under the policy $\pi(\cdot|s, z)$ are required to sufficiently constrain the solution space dictated by the Bellman equations (as seen in Fig. 2 left).

Figure 3 illustrates uncertainty estimates for the shown chain MDP using neural networks and for a whole family of policies $\pi(\cdot|s, z)$ which select the unexplored action b with probability $1 - z$. We analyze the predictive variance of an ensemble of 128 universal Q -functions, each conditioned on the policy $\pi(\cdot|s, z)$. In the bottom row, we plot the squared prediction error of a single UVU model, averaged over 128 independent heads. Both approaches show peaked uncertainty in early sections, as policies are more likely to choose the unknown action “b” eventually, and low uncertainty closer to the terminal state and for z close to 1. A comparison with RND is provided in the Appendix B.3.

4 WHAT UNCERTAINTIES DO UNIVERSAL VALUE-FUNCTION UNCERTAINTIES LEARN?

While the previous section provided intuition for UVU, we now derive an analytical characterization of the uncertainties captured by the prediction errors ϵ between a converged online learner u and the fixed target g . We turn to NTK theory to characterize the generalization properties of the involved neural networks in the limit of infinite width, allowing us to draw an exact equality between the squared predictions errors of UVU and the variance of universal value function ensembles.

In the following analysis, we use the notational shorthand $x = (s, a, z)$ and $x' = (s', a', z)$ and denote a neural network $f(x, \theta_t)$ with hidden layer widths $n_1, \dots, n_L = n$, transitions from $\mathcal{X} = \{(s_i, a_i, z_i)\}_{i=1}^{N_D}$ to $\mathcal{X}' = \{(s'_i, a'_i, z_i)\}_{i=1}^{N_D}$, where $a'_i \sim \pi(\cdot|s'_i, z_i)$, and rewards $r = \{r_i\}_{i=1}^{N_D}$. The evolution of the parameters θ_t under gradient descent with infinitesimal step sizes, also called gradient flow, is driven by the minimization of TD losses with

$$\frac{d}{dt} \theta_t = -\alpha \nabla_{\theta} \mathcal{L}(\theta_t), \quad \text{and} \quad \mathcal{L}(\theta_t) = \frac{1}{2} \| [\gamma f(\mathcal{X}', \theta_t)]_{\text{sg}} + r - f(\mathcal{X}, \theta_t) \|_2^2. \quad (9)$$

We study the dynamics induced by this parameter evolution in the infinite-width limit $n \rightarrow \infty$. In this regime, the learning dynamics of f become linear as the NTK becomes deterministic and stationary,

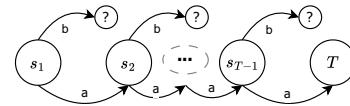


Figure 1: Chain MDP of length N with unexplored actions b .

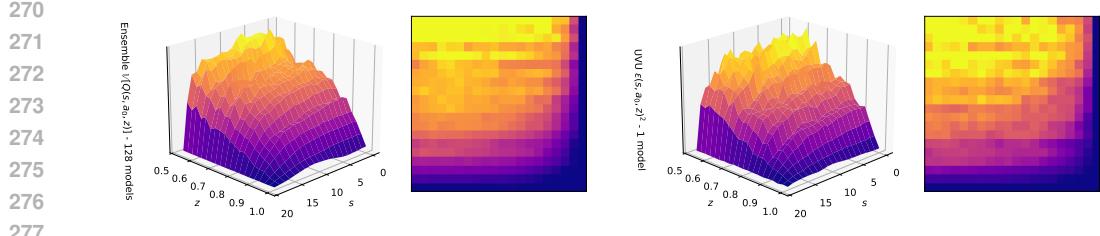


Figure 3: *From left to right, (1. and 2.):* Variance of an ensemble of 128 universal Q-functions trained on a chain MDP dataset. *(3. and 4.):* Value uncertainty as measured by UVU prediction errors with a single 128-headed model. All plots evaluate the “*a*” action of the chain MDP.

permitting explicit closed-form expressions for the evolution of the function $f(x, \theta_t)$. In particular, we show that the post convergence function $\lim_{t \rightarrow \infty} f(x, \theta_t)$ is given by

$$f(x, \theta_\infty) = f(x, \theta_0) - \Theta_{xx'} (\Theta_{xx'} - \gamma \Theta_{x'x'})^{-1} (f(\mathcal{X}, \theta_0) - (\gamma f(\mathcal{X}', \theta_0) + r)), \quad (10)$$

where $\Theta_{xx'}$ is the NTK of f . Proof is given in Appendix A.1. This identity is useful to our analysis as it delineates any converged function $f(x, \theta_\infty)$ trained with TD losses 9 through its initialization $f(x, \theta_0)$. Theorem 1 leverages this deterministic dependency to express the distribution of post convergence functions over random initializations θ_0 .

Theorem 1. *Let $f(x, \theta_t)$ be a NN with L hidden layers of width $n_1, \dots, n_L = n$ trained with gradient flow to reduce the TD loss $\mathcal{L}(\theta_t) = \frac{1}{2} \|\gamma [f(\mathcal{X}', \theta_t)]_{sg} + r - f(\mathcal{X}, \theta_t)\|_2^2$. In the limit of infinite width $n \rightarrow \infty$ and time $t \rightarrow \infty$, the distribution of predictions $f(\mathcal{X}_T, \theta_\infty)$ on a set of test points \mathcal{X}_T converges to a Gaussian with mean and covariance given by*

$$\mathbb{E}_{\theta_0} [f(\mathcal{X}_T, \theta_\infty)] = \Theta_{\mathcal{X}_T \mathcal{X}} \Delta_{\mathcal{X}}^{-1} r,$$

$$\text{Cov}_{\theta_0} [f(\mathcal{X}_T, \theta_\infty)] = \kappa_{\mathcal{X}_T \mathcal{X}_T} - (\Theta_{\mathcal{X}_T \mathcal{X}} \Delta_{\mathcal{X}}^{-1} \Lambda_{\mathcal{X}_T} + h.c.) + (\Theta_{\mathcal{X}_T \mathcal{X}} \Delta_{\mathcal{X}}^{-1} (\Lambda_{\mathcal{X}} - \gamma \Lambda_{\mathcal{X}'}) \Delta_{\mathcal{X}}^{-1 \top} \Theta_{\mathcal{X} \mathcal{X}_T}),$$

where $\Theta_{xx'}$ is the NTK, $\kappa_{xx'}$ is the NNGP kernel, *h.c.* denotes the Hermitian conjugate, and

$$\Delta_{\tilde{\mathcal{X}}} = \Theta_{\mathcal{X} \tilde{\mathcal{X}}} - \gamma \Theta_{\mathcal{X}' \tilde{\mathcal{X}}}, \quad \text{and} \quad \Lambda_{\tilde{\mathcal{X}}} = \kappa_{\mathcal{X} \tilde{\mathcal{X}}} - \gamma \kappa_{\mathcal{X}' \tilde{\mathcal{X}}}.$$

Proof is provided in Appendix A.1. Theorem 1 is significant as it allows us to formalize explicitly the expected behavior and uncertainties of neural networks trained with semi-gradient TD losses, including universal value function ensembles and the prediction errors of UVU. In particular, the variance of an ensemble of universal Q -functions $Q(\mathcal{X}_T, \theta_\infty)$ over random initializations θ_0 is readily given by the diagonal entries of the covariance matrix $\text{Cov}[Q(\mathcal{X}_T, \theta_\infty)]$. Applied to the UVU setting, Theorem 1 gives an expression for the converged online network $u(x, \vartheta_\infty) = \Theta_{xx'} \Delta_{\mathcal{X}}^{-1} r_g^z$ trained with the synthetic rewards $r_g^z = g(\mathcal{X}, \psi_0) - \gamma g(\mathcal{X}', \psi_0)$. From this, it is straightforward to obtain the distribution of post convergence prediction errors $\frac{1}{2} \epsilon(x, \vartheta_\infty, \psi_0)^2$. In Corollary 1, we use this insight to conclude that the expected squared prediction errors of UVU precisely match the variance of value functions $Q(x, \theta_\infty)$ from random initializations θ_0 .

Corollary 1. *Under the conditions of Theorem 1, let $u(x, \vartheta_\infty)$ be a converged online predictor trained with synthetic rewards generated by the fixed target network $g(x, \psi_0)$ with $r_g^z = g(\mathcal{X}, \psi_0) - \gamma g(\mathcal{X}', \psi_0)$. Furthermore denote the variance of converged universal Q -functions $\mathbb{V}_{\theta_0}[Q(x, \theta_\infty)]$. Assume u , g , and Q are architecturally equal and parameters are drawn i.i.d. $\theta_0, \vartheta_0, \psi_0 \sim \mathcal{N}(0, 1)$. The expected squared prediction error coincides with Q -function variance*

$$\mathbb{E}_{\vartheta_0, \psi_0} \left[\frac{1}{2} \epsilon(x, \vartheta_\infty, \psi_0)^2 \right] = \mathbb{V}_{\theta_0} [Q(x, \theta_\infty)], \quad (11)$$

where the l.h.s. expectation and r.h.s. variance are taken over random initializations $\vartheta_0, \psi_0, \theta_0$.

Proof is given in Appendix A.1.3. This result provides the central theoretical justification for UVU: in the limit of infinite width, our measure of uncertainty, the expected squared prediction error between the online and target network, is mathematically equivalent to the variance one would obtain by training an ensemble of universal Q -functions.

In practice, we are moreover interested in the behavior of finite estimators, that is, ensemble variances are estimated with a finite number of models. We furthermore implement UVU with a number



Figure 4: (a) Ablation on `GoToDoor-10` with different network widths. Shaded region indicates standard deviations over 5 seeds. (b) Runtime of various ensemble sizes vs. UVU. Ensembles are implemented with `vmap` in JAX(Bradbury et al., 2018). (c) Illustration of the `GoToDoor` environment. The agent (red triangle) must navigate to the door indicated by the task specification z .

of multiple independent heads u_i and g_i with shared hidden layers. Corollary 2 shows that the distribution of the sample mean squared prediction error from M heads is identical to the distribution of the sample variance of an ensemble of $M + 1$ independently trained universal Q -functions.

Corollary 2. *Under the conditions of Theorem 1, consider online and target networks with M independent heads $u_i, g_i, i = 1, \dots, M$, each trained to convergence with errors $\epsilon_i(x, \vartheta_\infty, \psi_0)$. Let $\frac{1}{2}\bar{\epsilon}(x, \vartheta_\infty, \psi_0)^2 = \frac{1}{2M} \sum_{i=1}^M \epsilon_i(x, \vartheta_\infty, \psi_0)^2$ be the sample mean squared prediction error over M heads. Moreover, consider $M + 1$ independent converged Q -functions $Q_i(x; \theta_\infty)$ and denote their sample variance $\bar{\sigma}_Q^2(x, \theta_\infty) = \frac{1}{M} \sum_{i=1}^{M+1} (Q_i(x; \theta_\infty) - \bar{Q}(x; \theta_\infty))^2$, where \bar{Q} is the sample mean. The two estimators are identically distributed according to a scaled Chi-squared distribution*

$$\frac{1}{2}\bar{\epsilon}(x, \vartheta_\infty, \psi_0)^2 \stackrel{D}{=} \bar{\sigma}_Q^2(x, \theta_\infty), \quad \bar{\sigma}_Q^2(x, \theta_\infty) \sim \frac{\sigma_Q^2}{M} \chi^2(M), \quad (12)$$

with M degrees of freedom and $\sigma_Q^2(x, \theta_\infty) = \mathbb{V}_{\theta_0}[Q(x, \theta_\infty)]$ is the analytical variance of converged Q -functions given by Theorem 1.

Proof is provided in Appendix A.2.3. The distributional equivalence of these finite sample estimators provides theoretical motivation for using a multi headed architecture with shared hidden layers within a single UVU model and its use as an estimator for ensemble variances of universal Q -functions. While the assumptions of infinite width and gradient flow are theoretical idealizations, several empirical results suggest that insights from the NTK regime can translate well to practical finite width deep learning models (Lee et al., 2020; Liu et al., 2020; Tsilivis and Kempe, 2022), motivating further empirical investigation in Section 5.

5 EMPIRICAL ANALYSIS

Our empirical analysis is designed to assess whether UVU can effectively quantify value function uncertainty in practical settings, comparing its performance against established baselines, particularly deep ensembles. Specifically, we aim to address the following questions:

1. Does the theoretical motivation for UVU hold in practice and do its uncertainty estimates enable effective decision-making comparable to deep ensembles?
2. How are uncertainty estimates generated by UVU affected by deviations from our theoretical analysis, namely finite network width?

To address these questions, we focus on an offline multitask RL setting with incomplete data where reliable uncertainty estimation is crucial to attain high performance.

5.1 EXPERIMENTAL SETUP

In our experimental analysis, we use an offline variant of the `GoToDoor` environment from the Minigrid benchmark suite (Chevalier-Boisvert et al., 2023). An example view is shown in Figure 4 (c). In this task, the agent navigates a grid world containing four doors of different colors, placed at random locations and receives a task specification z indicating a target door color. Upon opening the correct door, the agent receives a reward and is placed in a random different location. Episodes are of

378
 379 Table 1: Results of offline multitask RL with task rejection on different variations of the GoToDoor
 380 environment. Results are average evaluation returns of the best-performing policy over 10^5 gradient
 381 steps and intervals are 90% student's t confidence intervals from 10 independent seeds.

Size	DQN	BDQNP(3)	BDQNP(15)	BDQNP(35)	DQN-RND	DQN-RND-P	UVU (Ours)
5	$5.50 \pm .15$	$8.69 \pm .24$	$10.50 \pm .04$	$10.58 \pm .03$	$3.94 \pm .50$	$10.41 \pm .12$	$10.54 \pm .03$
6	$4.93 \pm .12$	$7.66 \pm .09$	$9.39 \pm .04$	$9.57 \pm .04$	$1.99 \pm .40$	$9.28 \pm .12$	$9.54 \pm .03$
7	$4.58 \pm .09$	$6.61 \pm .16$	$8.49 \pm .05$	$8.75 \pm .06$	$2.66 \pm .43$	$8.12 \pm .23$	$8.73 \pm .04$
8	$4.06 \pm .12$	$5.91 \pm .10$	$7.68 \pm .05$	$7.92 \pm .05$	$2.53 \pm .54$	$7.40 \pm .14$	$8.03 \pm .04$
9	$3.66 \pm .09$	$5.04 \pm .08$	$6.69 \pm .07$	$7.03 \pm .13$	$2.39 \pm .38$	$6.39 \pm .19$	$7.29 \pm .10$
10	$3.39 \pm .11$	$4.64 \pm .14$	$6.09 \pm .13$	$6.53 \pm .16$	$2.25 \pm .48$	$5.64 \pm .17$	$6.72 \pm .12$

382
 383 fixed length and feature a randomly generated grid layout and random door positions / colors. In our
 384 experiments, we use variations of different difficulties by increasing maximum grid sizes.

385
 386 **Dataset Collection.** A dataset $\mathcal{D} = \{(s_i, a_i, r_i, z_i, s'_i,)\}_{i=1}^{N_D}$ is collected using a policy that per-
 387 forms expertly but systematically fails for certain task/grid combinations (e.g., it can not successfully
 388 open doors on the “north” wall, irrespective of color or grid layout). Policies seeking to improve
 389 upon the behavior policy thus ought to deviate from the dataset, inducing value uncertainty.

390
 391 **Task Rejection Protocol.** All baselines implement a DQN-based agent trained in an offline fashion
 392 on \mathcal{D} . As the agents aim to learn an optimal policy for all grids and tasks contained in \mathcal{D} , the resulting
 393 greedy policy tends to deviate from the available data when the collecting policy is suboptimal. We
 394 employ a task-rejection protocol to quantify an agent’s ability to recognize this divergence and the
 395 associated value uncertainty. As most task/grid combinations are contained in \mathcal{D} , though with varying
 396 levels of policy expertise, myopic uncertainty is not sufficient for fulfilling this task. Specifically,
 397 upon encountering the initial state s_0 , the agent is given opportunity to reject a fixed selection of tasks
 398 (here door colors). It is subsequently given one of the remaining, non-rejected tasks and performance
 399 is measured by the average return achieved on the attempted task. Successful agents must thus either
 400 possess uncertainty estimates reliable enough to consistently reject tasks associated with a data/policy
 401 mismatch or rely on out-of-distribution generalization. Similar protocols, known as accuracy rejection
 402 curves, have been used widely in the supervised learning literature(Nadeem et al., 2009).

403 5.2 RESULTS

404
 405 We conduct experiments according to the above protocol and perform a quantitative evaluation
 406 of UVU and several baseline algorithms. All agents are trained offline and use the basic DQN
 407 architecture (Mnih et al., 2015) adapted for universal value functions, taking the task encoding z
 408 as an additional input to the state (details are provided in Appendix B). Specifically, we compare
 409 UVU against several baselines: A DQN baseline with random task rejection (DQN); Bootstrapped
 410 DQN with randomized priors (BDQNP) (Osband et al., 2019); A DQN adaptation of random
 411 network distillation (DQN-RND) (Burda et al., 2019) and a version adapted with the uncertainty
 412 prior mechanism proposed by Zanger et al. (2024) (DQN-RND-P). Except for the DQN baseline,
 413 all algorithms reject tasks based on the highest uncertainty estimate, given the initial state s_0 and action
 414 a_0 , which is chosen greedily by the agent.

415
 416 Table 1 shows the average return achieved by each method on the GoToDoor experiment across
 417 different maximum grid sizes, with average runtimes displayed in Fig. 4 (b). This result addresses
 418 our first research question regarding the practical effectiveness of UVU compared to ensembles and
 419 other baseline methods. As shown, the standard DQN baseline performs significantly worse than
 420 uncertainty-based algorithms, indicating that learned Q -functions do not generalize sufficiently to
 421 counterbalance inadequate uncertainty estimation. Both small and large ensembles significantly
 422 improve performance by leveraging uncertainty to reject tasks and policies associated with missing
 423 data. RND-based agents perform well when intrinsic reward priors are used. Our approach scores
 424 highly and outperforms many of the tested baselines with statistical significance, indicating that it is
 425 indeed able to effectively quantify value uncertainty using a single-model multi-headed architecture.

426
 427 We furthermore ablate UVU’s dependency on network width, given that our theoretical analysis
 428 is situated in the infinite width limit. Fig. 4 (a) shows that UVU’s performance scales similarly
 429 with network width to DQN and BDQNP baselines, indicating that finite-sized networks, provided
 430 appropriate representational capacity, are sufficient for effective uncertainty estimates.

432 6 RELATED WORK

434 A body of literature considers the quantification of value function uncertainty in the context of
 435 exploration. Early works (Dearden et al., 1998; Engel et al., 2005) consider Bayesian adoptions of
 436 model-free RL algorithms. More recent works provide theoretical analyses of the Bayesian model-
 437 free setting and correct applications thereof (Fellows et al., 2021; Schmitt et al., 2023; Van der Vaart
 438 et al., 2025), which is a subject of debate due to the use TD losses. Several works furthermore derive
 439 provably efficient model-free algorithms using frequentist upper bounds on values in tabular (Strehl
 440 et al., 2006; Jin et al., 2018) and linear settings (Jin et al., 2020). Similarly, Yang et al. (2020) derive
 441 provably optimistic bounds of value functions in the NTK regime, but in contrast to our work uses
 442 local bonuses to obtain these. The exact relationship between bounds derived from local bonuses and
 443 the functional variance in ensemble or Bayesian settings remains open.

444 The widespread use and empirical success of ensembles for uncertainty quantification in deep learning
 445 (Dietterich, 2000; Lakshminarayanan et al., 2017) has motivated several directions of research towards
 446 a better theoretical understanding of their behavior. Following seminal works by Jacot et al. (2018)
 447 and Lee et al. (2020) who characterize NN learning dynamics in the NTK regime, a number of works
 448 have connected deep ensembles to Bayesian interpretations (He et al., 2020; D’Angelo and Fortuin,
 449 2021). Moreover, a number of papers have studied the learning dynamics of model-free RL: in the
 450 overparametrized linear settings (Xiao et al., 2021); in neural settings for single (Cai et al., 2019)
 451 and multiple layers (Wai et al., 2020); to analyze generalization behavior (Lyle et al., 2022) with
 452 linear and second-order approximations. It should be noted that the aforementioned do not focus on
 453 probabilistic descriptions of posterior distributions in the NTK regime. In contrast, our work provides
 454 probabilistic closed-form solutions for this setting with semi-gradient TD learning. In practice, the
 455 use of deep ensembles is common in RL, with applications ranging from efficient exploration (Osband
 456 et al., 2016; Chen et al., 2017; Osband et al., 2019; Nikolov et al., 2019; Zanger et al., 2024) to
 457 off-policy or offline RL (An et al., 2021; Chen et al., 2021; Lee et al., 2021) and conservative or safe
 458 RL (Lütjens et al., 2019; Lee et al., 2022; Hoel et al., 2023). Single model methods that aim to reduce
 459 the computational burden of ensemble methods typically operate as myopic uncertainty estimators
 460 (Burda et al., 2019; Pathak et al., 2017; Lahlou et al., 2021; Zanger et al., 2025) and require additional
 461 mechanisms (O’Donoghue et al., 2018; Janz et al., 2019; Zhou et al., 2020; Luis et al., 2023).

462 7 LIMITATIONS AND DISCUSSION

464 In this work, we introduced universal value-function uncertainties (UVU), an efficient single-model
 465 method for uncertainty quantification in value functions. Our method measures uncertainties as
 466 prediction error between a fixed, random target network and an online learner trained with a tem-
 467 poral difference (TD) loss. This induces prediction errors that reflect long-term, policy-dependent
 468 uncertainty rather than myopic novelty. One of our core contributions is a thorough theoretical
 469 analysis of this approach via neural tangent kernel theory, which, in the limit of infinite network
 470 width, establishes an equivalence between UVU errors and the variance of ensembles of universal
 471 value functions. Empirically, UVU achieves performance comparable and sometimes superior to
 472 sizeable deep ensembles and other baselines in challenging offline task-rejection settings, while
 473 offering substantial computational savings.

474 We believe our work opens up several avenues for future research: Although our NTK analysis
 475 provides a strong theoretical backing, it relies on idealized assumptions, notably the limit of infinite
 476 network width (a thoroughgoing exposition of our approximations is provided in Appendix A.3).
 477 Our experiments suggest UVU’s performance is robust in practical finite-width regimes (Figure 4),
 478 yet bridging this gap between theory and practice remains an area for future work. On a related
 479 note, analysis in the NTK regime typically eludes feature learning. Combinations of UVU with
 480 representation learning approaches such as self-predictive auxiliary losses (Schwarzer et al., 2020;
 481 Guo et al., 2022; Fujimoto et al., 2023) are, in our view, a very promising avenue for highly
 482 challenging exploration problems. Furthermore, while our approach estimates uncertainty for given
 483 policies, it does not devise a method for obtaining diverse policies and encodings thereof. We thus
 484 believe algorithms from the unsupervised RL literature (Touati and Ollivier, 2021; Zheng et al., 2023)
 485 naturally integrate with our approach. In conclusion, we believe UVU provides a strong foundation for
 future developments in uncertainty-aware agents that are both capable and computationally feasible.

486 REFERENCES
487

488 G. An, S. Moon, J.-H. Kim, and H. O. Song. Uncertainty-based offline reinforcement learning with
489 diversified q-ensemble. *Advances in neural information processing systems*, 34:7436–7447, 2021.

490 J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.

491 M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-based
492 exploration and intrinsic motivation. *Advances in neural information processing systems*, 29, 2016.

493 R. Bellman. A Markovian decision process. *Journal of mathematics and mechanics*, 6, 1957.

494 J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
495 J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
496 Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

497 Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov. Exploration by random network distillation. In
498 *International conference on learning representations, ICLR*, 2019.

499 Q. Cai, Z. Yang, J. D. Lee, and Z. Wang. Neural temporal-difference learning converges to global
500 optima. *Advances in Neural Information Processing Systems*, 32, 2019.

501 R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman. UCB exploration via Q-ensembles. *arXiv preprint*
502 *arXiv:1706.01502*, 2017.

503 X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double Q-learning: Learning fast
504 without a model. *arXiv preprint arXiv:2101.05982*, 2021.

505 M. Chevalier-Boisvert, B. Dai, M. Towers, R. Perez-Vicente, L. Willems, S. Lahou, S. Pal, P. S.
506 Castro, and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement learning
507 environments for goal-oriented tasks. In *Advances in Neural Information Processing Systems 36*,
508 *New Orleans, LA, USA*, December 2023.

509 F. D’Angelo and V. Fortuin. Repulsive deep ensembles are bayesian. *Advances in Neural Information
510 Processing Systems*, 34:3451–3465, 2021.

511 R. Dearden, N. Friedman, S. Russell, et al. Bayesian Q-learning. *Aaai/iaai*, 1998:761–768, 1998.

512 T. G. Dietterich. Ensemble methods in machine learning. In *Multiple classifier systems: First
513 international workshop, MCS*. Springer, 2000.

514 Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with gaussian processes. In *Proceedings
515 of the 22nd international conference on Machine learning*, pages 201–208, 2005.

516 M. Fellows, K. Hartikainen, and S. Whiteson. Bayesian Bellman operators. *Advances in neural
517 information processing systems*, 34, 2021.

518 S. Fujimoto, W.-D. Chang, E. Smith, S. S. Gu, D. Precup, and D. Meger. For sale: State-action
519 representation learning for deep reinforcement learning. *Advances in neural information processing
520 systems*, 36:61573–61624, 2023.

521 M. Gallici, M. Fellows, B. Ellis, B. Pou, I. Masmitja, J. N. Foerster, and M. Martin. Simplifying deep
522 temporal difference learning. *arXiv preprint arXiv:2407.04811*, 2024.

523 S. Gershgorin. Über die abgrenzung der eigenwerte einer matrix. *Izvestija Akademii Nauk SSSR,
524 Serija Matematika*, 7(3):749–754, 1931.

525 M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar. Bayesian reinforcement learning: A survey.
526 *Foundations and trends in machine learning*, 8, 2015.

527 Z. Guo, S. Thakoor, M. Pisljar, B. Avila Pires, F. Altché, C. Tallec, A. Saade, D. Calandriello, J.-B.
528 Grill, Y. Tang, et al. BYOL-Explore: Exploration by bootstrapped prediction. *Advances in neural
529 information processing systems*, 35:31855–31870, 2022.

530 H. Hasselt. Double Q-learning. *Advances in neural information processing systems*, 23, 2010.

540 B. He, B. Lakshminarayanan, and Y. W. Teh. Bayesian deep ensembles via the neural tangent kernel.
 541 *Advances in neural information processing systems*, 33, 2020.

542

543 K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-
 544 formance on Imagenet classification. In *Proceedings of the IEEE international conference on*
 545 *computer vision*, 2015.

546 C.-J. Hoel, K. Wolff, and L. Laine. Ensemble quantile networks: Uncertainty-aware reinforcement
 547 learning with applications in autonomous driving. *IEEE Transactions on intelligent transportation*
 548 *systems*, 2023.

549 A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
 550 networks. *Advances in neural information processing systems*, 31, 2018.

551

552 D. Janz, J. Hron, P. Mazur, K. Hofmann, J. M. Hernández-Lobato, and S. Tschiatschek. Successor
 553 uncertainties: Exploration and uncertainty in temporal difference learning. *Advances in neural*
 554 *information processing systems*, 32, 2019.

555 C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient? *Advances in*
 556 *neural information processing systems*, 31, 2018.

557

558 C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with linear
 559 function approximation. In *Conference on learning theory*, pages 2137–2143. PMLR, 2020.

560 A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
 561 learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.

562

563 S. Lahlou, M. Jain, H. Nekoei, V. I. Butoi, P. Bertin, J. Rector-Brooks, M. Korablyov, and Y. Bengio.
 564 Deup: Direct epistemic uncertainty prediction. *arXiv preprint arXiv:2102.08501*, 2021.

565 B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
 566 estimation using deep ensembles. *Advances in neural information processing systems*, 30, 2017.

567

568 J. Lee, J. Sohl-dickstein, J. Pennington, R. Novak, S. Schoenholz, and Y. Bahri. Deep neural networks
 569 as gaussian processes. In *International conference on learning representations*, 2018.

570 J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide
 571 Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent. *Journal of*
 572 *Statistical Mechanics: Theory and Experiment*, 2020, Dec. 2020.

573

574 K. Lee, M. Laskin, A. Srinivas, and P. Abbeel. Sunrise: A simple unified framework for ensemble
 575 learning in deep reinforcement learning. In *International Conference on Machine Learning*, pages
 576 6131–6141. PMLR, 2021.

577

578 S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin. Offline-to-online reinforcement learning via balanced
 579 replay and pessimistic q-ensemble. In *Conference on Robot Learning*, pages 1702–1712. PMLR,
 2022.

580 C. Liu, L. Zhu, and M. Belkin. On the linearity of large non-linear models: when and why the tangent
 581 kernel is constant. *Advances in Neural Information Processing Systems*, 33:15954–15964, 2020.

582

583 C. E. Luis, A. G. Bottero, J. Vinogradska, F. Berkenkamp, and J. Peters. Model-based uncertainty
 584 in value functions. In *International Conference on Artificial Intelligence and Statistics*, pages
 585 8029–8052. PMLR, 2023.

586 B. Lütjens, M. Everett, and J. P. How. Safe reinforcement learning with model uncertainty estimates.
 587 In *2019 International Conference on Robotics and Automation (ICRA)*, pages 8662–8668. IEEE,
 588 2019.

589

590 C. Lyle, M. Rowland, W. Dabney, M. Kwiatkowska, and Y. Gal. Learning dynamics and generalization
 591 in reinforcement learning. *arXiv preprint arXiv:2206.02126*, 2022.

592

593 V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
 594 miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
 595 learning. *Nature*, 518, 2015.

594 M. S. A. Nadeem, J.-D. Zucker, and B. Hanczar. Accuracy-rejection curves (arcs) for comparing
 595 classification methods with a reject option. In *Machine Learning in Systems Biology*, pages 65–81.
 596 PMLR, 2009.

597 N. Nikolov, J. Kirschner, F. Berkenkamp, and A. Krause. Information-directed exploration for deep
 598 reinforcement learning. In *International conference on learning representations, ICLR*, 2019.

600 I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped DQN.
 601 *Advances in neural information processing systems*, 29, 2016.

603 I. Osband, B. Van Roy, D. J. Russo, Z. Wen, et al. Deep exploration via randomized value functions.
 604 *Journal of machine learning research*, 20, 2019.

605 B. O’Donoghue, I. Osband, R. Munos, and V. Mnih. The uncertainty Bellman equation and explo-
 606 ration. In *International conference on machine learning*. PMLR, 2018.

608 D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-supervised
 609 prediction. In *International conference on machine learning*. PMLR, 2017.

610 T. Rashid, B. Peng, W. Böhmer, and S. Whiteson. Optimistic exploration even with a pessimistic
 611 initialisation. *Proceedings of ICLR 2020*, 2020.

613 T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In
 614 *International conference on machine learning*, pages 1312–1320. PMLR, 2015.

616 S. Schmitt, J. Shawe-Taylor, and H. van Hasselt. Exploration via epistemic value estimation. In
 617 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, 2023.

618 M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman. Data-efficient
 619 reinforcement learning with self-predictive representations. *arXiv preprint arXiv:2007.05929*,
 620 2020.

622 D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
 623 I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
 624 networks and tree search. *nature*, 529(7587):484–489, 2016.

625 A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. Pac model-free reinforcement
 626 learning. In *Proceedings of the 23rd international conference on Machine learning*, pages 881–888,
 627 2006.

629 A. Touati and Y. Ollivier. Learning one representation to optimize all rewards. *Advances in Neural
 630 Information Processing Systems*, 34:13–23, 2021.

631 N. Tsilivis and J. Kempe. What can the neural tangent kernel tell us about adversarial robustness?
 632 *Advances in Neural Information Processing Systems*, 35:18116–18130, 2022.

634 P. R. Van der Vaart, M. T. Spaan, and N. Yorke-Smith. Epistemic Bellman operators. In *Proceedings
 635 of the AAAI Conference on Artificial Intelligence*, 2025.

636 O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
 637 T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
 638 learning. *nature*, 575(7782):350–354, 2019.

640 H.-T. Wai, Z. Yang, Z. Wang, and M. Hong. Provably efficient neural gtd for off-policy learning.
 641 *Advances in Neural Information Processing Systems*, 33:10431–10442, 2020.

642 C. Xiao, B. Dai, J. Mei, O. A. Ramirez, R. Gummadi, C. Harris, and D. Schuurmans. Understanding
 643 and leveraging overparameterization in recursive value estimation. In *International Conference on
 644 Learning Representations*, 2021.

646 G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
 647 gradient independence, and neural tangent kernel derivation. *arXiv preprint arXiv:1902.04760*,
 2019.

648 Z. Yang, C. Jin, Z. Wang, M. Wang, and M. Jordan. Provably efficient reinforcement learning with
649 kernel and neural function approximations. *Advances in Neural Information Processing Systems*,
650 33:13903–13916, 2020.

651 Y. Yue, R. Lu, B. Kang, S. Song, and G. Huang. Understanding, predicting and better resolving
652 q-value divergence in offline-rl. *Advances in Neural Information Processing Systems*, 36:60247–
653 60277, 2023.

654 M. A. Zanger, W. Böhmer, and M. T. Spaan. Diverse projection ensembles for distributional
655 reinforcement learning. In *International conference on learning representations*, 2024.

656 M. A. Zanger, P. R. Van der Vaart, W. Böhmer, and M. T. Spaan. Contextual similarity distillation:
657 Ensemble uncertainties with a single model. *arXiv preprint arXiv:2503.11339*, 2025.

658 C. Zheng, R. Salakhutdinov, and B. Eysenbach. Contrastive difference predictive coding. *arXiv
659 preprint arXiv:2310.20141*, 2023.

660 Q. Zhou, H. Li, and J. Wang. Deep model-based reinforcement learning via estimated uncertainty and
661 conservative policy optimization. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
662 2020.

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A THEORETICAL RESULTS**
 703

704 This section provides proofs and further theoretical results for universal value-function uncertainties
 705 (UVU).
 706

707 **A.1 LEARNING DYNAMICS OF UVU**
 708

709 We begin by deriving learning dynamics for general functions with temporal difference (TD) losses
 710 and gradient descent, before analyzing the post training distribution of deep ensembles and prediction
 711 errors of UVU.

712 **A.1.1 LINEARIZED LEARNING DYNAMICS WITH TEMPORAL DIFFERENCE LOSSES**
 713

714 We analyze the learning dynamics of a function trained using semi-gradient temporal difference (TD)
 715 losses on a fixed dataset of transitions $\mathcal{X}, \mathcal{X}'$. Let $f(x, \theta_t)$ denote a NN of interest with depth L and
 716 widths $n_1, \dots, n_{L-1} = n$.

717 **Proposition 1.** *In the limit of infinite width $n \rightarrow \infty$ and infinite time $t \rightarrow \infty$, the function $f(x, \theta_t)$
 718 converges to*

720
$$f(x, \theta_\infty) = f(x, \theta_0) - \Theta_{xx} (\Theta_{\mathcal{X}\mathcal{X}} - \gamma \Theta_{\mathcal{X}'\mathcal{X}})^{-1} (f(\mathcal{X}, \theta_0) - (\gamma f(\mathcal{X}', \theta_0) + r)), \quad (13)$$

721 where $\Theta_{xx'}$ is the neural tangent kernel of f .
 722

723 *Proof.* We begin by linearizing the function f around its initialization parameters θ_0 :

724
$$f_{\text{lin}}(x, \theta_t) = f(x, \theta_0) + \nabla_{\theta} f(x, \theta_0)^{\top} (\theta_t - \theta_0). \quad (14)$$

725 We assume gradient descent updates with infinitesimal step size and a learning rate α on the loss

726
$$\mathcal{L}(\theta_t) = \frac{1}{2} \|\gamma f_{\text{lin}}(\mathcal{X}', \theta_t)_{\text{sg}} + r - f_{\text{lin}}(\mathcal{X}, \theta_t)\|_2^2, \quad (15)$$

727 yielding the parameter evolution

728
$$\frac{d}{dt} \theta_t = -\alpha \nabla_{\theta} \mathcal{L}(\theta_t). \quad (16)$$

729 Setting $w_t = \theta_t - \theta_0$ and find the learning dynamics:

730
$$\frac{d}{dt} w_t = -\alpha \nabla_{\theta} f(\mathcal{X}, \theta_0) (f_{\text{lin}}(\mathcal{X}, \theta_t) - (\gamma f_{\text{lin}}(\mathcal{X}', \theta_t) + r)). \quad (17)$$

731 Thus, the evolution of the linearized function is given by

732
$$\frac{d}{dt} f_{\text{lin}}(x, \theta_t) = -\alpha \nabla_{\theta} f(x, \theta_0)^{\top} \nabla_{\theta} f(\mathcal{X}, \theta_0) (f_{\text{lin}}(\mathcal{X}, \theta_t) - (\gamma f_{\text{lin}}(\mathcal{X}', \theta_t) + r)). \quad (18)$$

733 Letting $\delta_{\text{TD}}(\theta_t) = f_{\text{lin}}(\mathcal{X}, \theta_t) - (\gamma f_{\text{lin}}(\mathcal{X}', \theta_t) + r)$, we obtain the differential equation

734
$$\frac{d}{dt} \delta_{\text{TD}}(\theta_t) = -\alpha (\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0}) \delta_{\text{TD}}(\theta_t), \quad (19)$$

735 where $\Theta_{xx'}^{t_0} = \nabla_{\theta} f(x, \theta_0)^{\top} \nabla_{\theta} f(x', \theta_0)$ is the (empirical) tangent kernel of $f_{\text{lin}}(x, \theta_t)$. Since the
 736 linearization $f_{\text{lin}}(x, \theta_t)$ has constant gradients $\nabla_{\theta} f(x, \theta_0)$, the above differential equation is linear
 737 and solvable so long as the matrix $\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0}$ is positive definite. With an exponential ansatz,
 738 we obtain the solution

739
$$\delta_{\text{TD}}(\theta_t) = e^{-\alpha t (\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0})} \delta_{\text{TD}}(\theta_0), \quad (20)$$

740 where e^X is a matrix exponential. Reintegrating yields the explicit evolution of predictions

741
$$f_{\text{lin}}(x, \theta_t) = f(x, \theta_0) + \int_0^t \frac{d}{dt'} f_{\text{lin}}(x, \theta_{t'}) dt' \quad (21)$$

742
$$= f(x, \theta_0) - \Theta_{\mathcal{X}\mathcal{X}}^{t_0} (\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0})^{-1} \left(e^{-\alpha t (\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0})} - I \right) \delta_{\text{TD}}(\theta_0). \quad (22)$$

743 Jacot et al. (2018) show that in the limit of infinite layer widths of the neural network, the NTK
 744 $\Theta_{xx'}^{t_0}$ becomes deterministic and constant $\Theta_{xx'}^{t_0} \rightarrow \Theta_{xx'}$. As a consequence, the linear approximation
 745 $f_{\text{lin}}(x; \theta_t)$ becomes exact w.r.t. the original function $\lim_{\text{width} \rightarrow \infty} f_{\text{lin}}(x; \theta_t) = f(x, \theta_t)$ (Lee et al.,
 746 2020).

747

□

756 **Remark on the constancy of the NTK in TD learning.** We note here, that our proof assumed the
 757 results by Jacot et al. (2018) to hold for the case of semi-gradient TD updates, namely that the NTK
 758 becomes deterministic and constant $\Theta_{xx'}^{t_0} \rightarrow \Theta_{xx'}$ in the limit of infinite width under the here shown
 759 dynamics. First, the determinacy of the NTK at initialization follows from the law of large numbers
 760 and applies in our case equally as in the least squares case. The constancy of the NTK throughout
 761 training is established by Theorem 2 in Jacot et al. (2018), which we restate informally below.

762 **Theorem 2.** [Jacot et al. (2018)] *In the limit of infinite layer widths $n \rightarrow \infty$ and $n_1, \dots, n_L = n$,
 763 the kernel $\Theta_{xx'}^{t_0}$ converges uniformly on the interval $t \in [0, T]$ to the constant neural tangent kernel*

$$765 \quad \Theta_{xx'}^{t_0} \rightarrow \Theta_{xx'} ,$$

766 provided that the integral $\int_0^T \|d_t\|_2 dt$ stays bounded. Here, $d_t \in \mathbb{R}^{N_D}$ is the training direction of
 767 the parameter evolution such that $\frac{d}{dt} \theta_t = -\alpha \nabla_{\theta} f(\mathcal{X}, \theta) d_t$

770 In the here studied case of semi-gradient TD learning, the parameter evolution (as outlined above in
 771 Eq. (17)) is described by the gradient $\nabla_{\theta} f(\mathcal{X}, \theta_0)$ and the training direction d_t according to

$$772 \quad \frac{d}{dt} \theta_t = -\alpha \nabla_{\theta} f(\mathcal{X}, \theta_0) \underbrace{(f_{\text{lin}}(\mathcal{X}, \theta_t) - (\gamma f_{\text{lin}}(\mathcal{X}', \theta_t) + r))}_{d_t} , \quad (23)$$

775 where the training direction is given by $d_t = f_{\text{lin}}(\mathcal{X}, \theta_t) - (\gamma f_{\text{lin}}(\mathcal{X}', \theta_t) + r) = \delta_{TD}(\theta_t)$. Provided
 776 that the matrix $\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0}$ is positive definite, the norm of the training direction $\|d_t\|_2$ decays
 777 exponentially by Eq. 20. This implies

$$779 \quad \|d_t\|_2 < \|d_0\|_2 e^{-t\lambda_{\min}} , \quad (24)$$

780 where λ_{\min} is the smallest eigenvalue of $\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0}$. Assuming $\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0}$ is positive
 781 definite, λ_{\min} is positive and as a consequence, we have

$$783 \quad \int_0^{\infty} \|d_t\|_2 dt < \int_0^{\infty} \|d_0\|_2 e^{-t\lambda_{\min}} dt < \infty , \quad (25)$$

786 bounding the required integral of Theorem 2 for any T and establishing $\Theta_{xx'}^{t_0} \rightarrow \Theta_{xx'}$ uniformly on
 787 the interval $[0, \infty)$ (see Theorem 2 in Jacot et al. (2018) for detailed proof for the last statement).

788 We note, however, that the condition for $\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0}$ to be positive definite is, for any $\gamma > 0$,
 789 stronger than in the classical results for supervised learning with least squares regression. While
 790 $\Theta_{\mathcal{X}\mathcal{X}}$ can be guaranteed to be positive definite for example by restricting \mathcal{X} to lie on a unit-sphere,
 791 $x_i \in \mathcal{X}$ to be unique, and by assuming non-polynomial nonlinearities in the neural network (so as to
 792 prevent rank decay in the network expressivity), the condition is harder to satisfy in the TD learning
 793 setting. Here, the eigenspectrum of $\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0}$ tends to depend on the transitions $\mathcal{X} \rightarrow \mathcal{X}'$
 794 themselves and thus is both dependent on the discount γ as well as the interplay between gradient
 795 structures of the NTK and the MDP dynamics.

796 We note here, that this is not primarily a limitation of applying NTK theory to TD learning, but is
 797 reflected in practical experience: TD learning can, especially in offline settings, indeed be unstable
 798 and diverge. Instability of this form is thus inherent to the learning algorithm rather than an artifact
 799 of our theoretical treatment. Informally, one approach towards guaranteeing positive definiteness
 800 of $\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0}$ is by enforcing diagonal dominance, appealing to the Gershgorin circle theorem
 801 (Gershgorin, 1931). For a matrix $A = [a_{ij}]$, every real eigenvalue λ must lie in

$$802 \quad a_{ii} - R_i \leq \lambda \leq a_{ii} + R_i , \quad (26)$$

804 where $R_i = \sum_{i \neq j} |a_{ij}|$ is the sum of off-diagonal elements of a row i . In other words, a lower bound
 805 on the smallest real eigenvalue can be increased by increasing diagonal entries a_{ii} while decreasing
 806 off-diagonal elements a_{ij} . In the TD learning setting, this translates to gradient conditioning, e.g., by
 807 ensuring $\|\nabla_{\theta} f(x, \theta)\|_2 = \|\nabla_{\theta} f(x', \theta)\|_2 = C$ for any pair x, x' , guaranteeing cross-similarities to
 808 be smaller than self-similarities. Indeed several recent works pursue similar strategies to stabilize
 809 offline TD learning (Yue et al., 2023; Gallici et al., 2024) and rely on architectural elements like layer
 normalization (Ba et al., 2016) to shape gradient norms.

810 A.1.2 POST TRAINING FUNCTION DISTRIBUTION WITH TEMPORAL DIFFERENCE DYNAMICS
811

812 We now aim to establish the distribution of post-training functions $f(x, t_\infty)$ when initial parameters
813 θ_0 are drawn randomly i.i.d. For the remainder of this section, we will assume the infinite width limit,
814 s.t. $f_{\text{lin}}(x, \theta_\infty) = f(x, \theta_\infty)$ and $\Theta_{xx'}^{t_0} = \Theta_{xx'}$. The post-training function $f(x, \theta_\infty)$ is given by

$$815 \quad 816 \quad f(x, \theta_\infty) = f(x, \theta_0) - \Theta_{x\mathcal{X}} (\Theta_{\mathcal{X}\mathcal{X}}^{t_0} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}^{t_0})^{-1} (f(\mathcal{X}, \theta_0) - (\gamma f(\mathcal{X}', \theta_0) + r)), \quad (27)$$

817 and is thus a deterministic function of the initialization θ_0 .

818 **Theorem 1.** *Let $f(x, \theta_t)$ be a NN with L hidden layers of width $n_1, \dots, n_L = n$ trained with
819 gradient flow to reduce the TD loss $\mathcal{L}(\theta_t) = \frac{1}{2} \|\gamma[f(\mathcal{X}', \theta_t)]_{\text{sg}} + r - f(\mathcal{X}, \theta_t)\|_2^2$. In the limit of
820 infinite width $n \rightarrow \infty$ and time $t \rightarrow \infty$, the distribution of predictions $f(\mathcal{X}_T, \theta_\infty)$ on a set of test
821 points \mathcal{X}_T converges to a Gaussian with mean and covariance given by*

$$822 \quad \mathbb{E}_{\theta_0} [f(\mathcal{X}_T, \theta_\infty)] = \Theta_{\mathcal{X}_T\mathcal{X}} \Delta_{\mathcal{X}}^{-1} r, \\ 823 \quad \text{Cov}_{\theta_0} [f(\mathcal{X}_T, \theta_\infty)] = \kappa_{\mathcal{X}_T\mathcal{X}_T} - (\Theta_{\mathcal{X}_T\mathcal{X}} \Delta_{\mathcal{X}}^{-1} \Lambda_{\mathcal{X}_T} + \text{h.c.}) + (\Theta_{\mathcal{X}_T\mathcal{X}} \Delta_{\mathcal{X}}^{-1} (\Lambda_{\mathcal{X}} - \gamma \Lambda_{\mathcal{X}'}) \Delta_{\mathcal{X}}^{-1 \top} \Theta_{\mathcal{X}\mathcal{X}_T}),$$

824 where $\Theta_{xx'}$ is the NTK, $\kappa_{xx'}$ is the NNGP kernel, h.c. denotes the Hermitian conjugate, and

$$825 \quad \Delta_{\tilde{\mathcal{X}}} = \Theta_{\mathcal{X}\tilde{\mathcal{X}}} - \gamma \Theta_{\mathcal{X}'\tilde{\mathcal{X}}}, \quad \text{and} \quad \Lambda_{\tilde{\mathcal{X}}} = \kappa_{\mathcal{X}\tilde{\mathcal{X}}} - \gamma \kappa_{\mathcal{X}'\tilde{\mathcal{X}}}.$$

830 *Proof.* We begin by introducing a column vector of post-training function evaluations on a set of test
831 points \mathcal{X}_T , and the training data \mathcal{X} and \mathcal{X}' . Moreover, we introduce the shorthand

$$832 \quad \Delta_{\mathcal{X}} = \Theta_{\mathcal{X}\mathcal{X}} - \gamma \Theta_{\mathcal{X}'\mathcal{X}}, \quad (28)$$

833 and similarly $\Delta_{\mathcal{X}'} = \Theta_{\mathcal{X}\mathcal{X}'} - \gamma \Theta_{\mathcal{X}'\mathcal{X}'}$. The vector can then be compactly described in block matrix
834 notation by

$$835 \quad \underbrace{\begin{pmatrix} f(\mathcal{X}_T, \theta_\infty) \\ f(\mathcal{X}, \theta_\infty) \\ f(\mathcal{X}', \theta_\infty) \end{pmatrix}}_{f^\infty} = \underbrace{\begin{pmatrix} I & -\Theta_{\mathcal{X}_T\mathcal{X}} \Delta_{\mathcal{X}}^{-1} & \gamma \Theta_{\mathcal{X}_T\mathcal{X}} \Delta_{\mathcal{X}}^{-1} \\ I & -\Theta_{\mathcal{X}\mathcal{X}} \Delta_{\mathcal{X}}^{-1} & \gamma \Theta_{\mathcal{X}\mathcal{X}} \Delta_{\mathcal{X}}^{-1} \\ I & -\Theta_{\mathcal{X}'\mathcal{X}} \Delta_{\mathcal{X}}^{-1} & \gamma \Theta_{\mathcal{X}'\mathcal{X}} \Delta_{\mathcal{X}}^{-1} \end{pmatrix}}_A \underbrace{\begin{pmatrix} f(\mathcal{X}_T, \theta_0) \\ f(\mathcal{X}, \theta_0) \\ f(\mathcal{X}', \theta_0) \end{pmatrix}}_{f^0} + \underbrace{\begin{pmatrix} \Theta_{\mathcal{X}_T\mathcal{X}} \Delta_{\mathcal{X}}^{-1} r \\ \Theta_{\mathcal{X}\mathcal{X}} \Delta_{\mathcal{X}}^{-1} r \\ \Theta_{\mathcal{X}'\mathcal{X}} \Delta_{\mathcal{X}}^{-1} r \end{pmatrix}}_b. \quad (29)$$

836 Lee et al. (2018) show that neural networks with random Gaussian initialization θ_0 (including
837 NTK parametrization) are described by the neural network Gaussian process (NNGP) $f(\mathcal{X}_T, \theta_0) \sim$
838 $\mathcal{N}(0, \kappa_{\mathcal{X}_T\mathcal{X}_T})$ with $\kappa_{\mathcal{X}_T\mathcal{X}_T} = \mathbb{E}[f(\mathcal{X}_T, \theta_0)f(\mathcal{X}_T, \theta_0)^\top]$. By extension, the initializations f^0 are
839 jointly Gaussian with zero mean and covariance matrix

$$840 \quad \text{Cov}[f^0] = \underbrace{\begin{pmatrix} \kappa_{\mathcal{X}_T\mathcal{X}_T} & \kappa_{\mathcal{X}_T\mathcal{X}} & \kappa_{\mathcal{X}_T\mathcal{X}'} \\ \kappa_{\mathcal{X}\mathcal{X}_T} & \kappa_{\mathcal{X}\mathcal{X}} & \kappa_{\mathcal{X}\mathcal{X}'} \\ \kappa_{\mathcal{X}'\mathcal{X}_T} & \kappa_{\mathcal{X}'\mathcal{X}} & \kappa_{\mathcal{X}'\mathcal{X}'} \end{pmatrix}}_K. \quad (30)$$

841 As the post-training function evaluations f^∞ given in Eq. (29) are affine transformations of the
842 multivariate Gaussian random variables $f^0 \sim \mathcal{N}(0, K)$, they themselves are multivariate Gaussian
843 with distribution $f^\infty \sim \mathcal{N}(b, AKA^\top)$.

844 We are content with obtaining an expression for the distribution of $f(\mathcal{X}_T, \theta_\infty)$ and thus in the
845 following focus on the top-left entry of the block matrix $(AKA^\top)_{11}$. For notational brevity, we
846 introduce the following shorthand notations

$$847 \quad \Lambda_{\tilde{\mathcal{X}}} = \kappa_{\mathcal{X}\tilde{\mathcal{X}}} - \gamma \kappa_{\mathcal{X}'\tilde{\mathcal{X}}} \quad (31)$$

848 After some rearranging, one obtains the following expression for the covariance $\text{Cov}(f_{\mathcal{X}_T}^\infty)$

$$849 \quad \text{Cov}_{\theta_0} [f(\mathcal{X}_T, \theta_\infty)] = \kappa_{\mathcal{X}_T\mathcal{X}_T} - (\Theta_{\mathcal{X}_T\mathcal{X}} \Delta_{\mathcal{X}}^{-1} \Lambda_{\mathcal{X}_T} + \text{h.c.}) + (\Theta_{\mathcal{X}_T\mathcal{X}} \Delta_{\mathcal{X}}^{-1} (\Lambda_{\mathcal{X}} - \gamma \Lambda_{\mathcal{X}'}) \Delta_{\mathcal{X}}^{-1 \top} \Theta_{\mathcal{X}\mathcal{X}_T}).$$

850

□

864 A.1.3 DISTRIBUTION OF UVU PREDICTIVE ERRORS
865

866 We now aim to find an analytical description of the predictive errors as generated by our approach.
867 For this, let $u(x, \vartheta_t)$ denote the predictive (online) network and $g(x; \psi_0)$ the fixed target network.
868 We furthermore denote $\epsilon(x, \vartheta_t, \psi_0) = u(x, \vartheta_t) - g(x, \psi_0)$ the prediction error between online and
869 target network.

870 **Corollary 1.** *Under the conditions of Theorem 1, let $u(x, \vartheta_\infty)$ be a converged online predictor
871 trained with synthetic rewards generated by the fixed target network $g(x, \psi_0)$ with $r_g^z = g(\mathcal{X}, \psi_0) -$
872 $\gamma g(\mathcal{X}', \psi_0)$. Furthermore denote the variance of converged universal Q-functions $\mathbb{V}_{\theta_0}[Q(x, \theta_\infty)]$.
873 Assume u , g , and Q are architecturally equal and parameters are drawn i.i.d. $\theta_0, \vartheta_0, \psi_0 \sim \mathcal{N}(0, 1)$.
874 The expected squared prediction error coincides with Q-function variance*

$$875 \mathbb{E}_{\vartheta_0, \psi_0} \left[\frac{1}{2} \epsilon(x, \vartheta_\infty, \psi_0)^2 \right] = \mathbb{V}_{\theta_0}[Q(x, \theta_\infty)], \quad (11)$$

876 where the l.h.s. expectation and r.h.s. variance are taken over random initializations $\vartheta_0, \psi_0, \theta_0$.
877

878 *Proof.* Since our algorithm uses semi-gradient TD losses to train $u(x, \vartheta_t)$, the linearized dynamics
879 of Theorem (1) apply. However, we consider a fixed target network $g(x; \psi_0)$ to produce synthetic
880 rewards according to

$$882 r_g = g(x, \psi_0) - \gamma g(x', \psi_0). \quad (32)$$

883 With the post training function as described by Eq. 27, the post-training prediction error in a query
884 point x for this reward is given by

$$885 u(x, \vartheta_\infty) - g(x, \psi_0) = \\ 886 u(x, \vartheta_0) - g(x, \psi_0) - \Theta_{x\mathcal{X}} \Delta_{\mathcal{X}}^{-1} (u(\mathcal{X}, \vartheta_0) - (\gamma u(\mathcal{X}', \vartheta_0) + g(\mathcal{X}, \psi_0) - \gamma g(\mathcal{X}', \psi_0))). \quad (33)$$

888 We again use the shorthand $\epsilon^t = (\epsilon(\mathcal{X}_T, \vartheta_t, \psi_0), \epsilon(\mathcal{X}, \vartheta_t, \psi_0), \epsilon(\mathcal{X}', \vartheta_t, \psi_0))^\top$ and reusing the block
889 matrix A from Eq. 29, we can write

$$890 \epsilon^\infty = A \epsilon^0. \quad (34)$$

892 By assumption, $u(x, \vartheta_0)$ and $g(x, \psi_0)$ are architecturally equivalent and initialized i.i.d., and ϵ^0 is
893 simply the sum of two independent Gaussian vectors with covariance $\text{Cov}[\epsilon^0] = 2K$. We conclude
894 that prediction errors ϵ^∞ are Gaussian with distribution $\epsilon^\infty \sim \mathcal{N}(0, 2AKA_1^\top)$. Taking the diagonal
895 of the covariance matrix AKA_1^\top , we obtain

$$896 \mathbb{E}_{\vartheta_0, \psi_0} \left[\frac{1}{2} \epsilon(x, \vartheta_\infty, \psi_0)^2 \right] = \mathbb{V}_{\theta_0}[Q(x, \theta_\infty)], \quad (35)$$

898 where

$$899 \mathbb{V}_{\theta_0}[Q(x, \theta_\infty)] = \kappa_{xx} - (\Theta_{x\mathcal{X}} \Delta_{\mathcal{X}}^{-1} \Lambda_x + h.c.) + (\Theta_{x\mathcal{X}} \Delta_{\mathcal{X}}^{-1} (\Lambda_{\mathcal{X}} - \gamma \Lambda_{\mathcal{X}'}) \Delta_{\mathcal{X}}^{-1\top} \Theta_{x\mathcal{X}}). \quad (36)$$

901 \square

902 A.2 MULTIHEADED UVU
903

905 We now show results concerning the equivalence of multiheaded UVU prediction errors and finite
906 ensembles of Q-functions. We first outline proofs for two results by Lee et al. (2018) and Jacot et al.
907 (2018), which rely on in our analysis.

908 A.2.1 NEURAL NETWORK GAUSSIAN PROCESS PROPAGATION AND INDEPENDENCE
909

910 Consider a deep neural network f with L layers. Let $z_i^l(x)$ denote the i -th output of layer $l = 1, \dots, L$,
911 defined recursively as:

$$913 z_i^l(x) = \sigma_b b_i^l + \frac{\sigma_w}{\sqrt{n_{l-1}}} \sum_{j=1}^{n_{l-1}} w_{ij}^l x_j^l(x), \quad x_j^l(x) = \phi(z_j^{l-1}(x)), \quad (37)$$

916 where n_l is the width of layer l with $n_0 = n_{\text{in}}$ and $x^0 = x$. Further, σ_w and σ_b are constant variance
917 multipliers, weights w^l and biases b^l are initialized i.i.d. with $\mathcal{N}(0, 1)$, and ϕ is a Lipschitz-continuous
918 nonlinearity. The i -th function output $f_i(x)$ of the NN is then given by $f_i(x) = z_i^L(x)$.

918 **Proposition 2** (Lee et al. (2018)). *At initialization and in the limit $n_1, \dots, n_{L-1} \rightarrow \infty$, the i -th*
 919 *output at layer l , $z_i^l(x)$, converges to a Gaussian process with zero mean and covariance function κ_{ii}^l*
 920 *given by*

$$\kappa_{ii}^l(x, x') = \frac{\sigma_w^2}{n_0} x^\top x' + \sigma_b^2, \quad \text{and} \quad k_{ij}^l = 0, \quad i \neq j. \quad (38)$$

$$\kappa_{ii}^l(x, x') = \sigma_b^2 + \sigma_w^2 \mathbb{E}_{z_i^{l-1} \sim \mathcal{GP}(0, \kappa_{ii}^{l-1})} [\phi(z_i^{l-1}(x)) \phi(z_i^{l-1}(x'))]. \quad (39)$$

$$(40)$$

925 *and*

$$\kappa_{ij}^l(x, x') = \mathbb{E}[z_i^l(x) z_j^l(x')] = \begin{cases} \kappa^l(x, x') & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases} \quad (41)$$

930 *Proof.* The proof is done by induction. The induction assumption is that if outputs at layer $l - 1$
 931 satisfy a GP structure

$$z_i^{l-1} \sim \mathcal{GP}(0, \kappa_{ii}^{l-1}), \quad (42)$$

934 with the covariance function defined as

$$\kappa_{ii}^{l-1}(x, x') = \mathbb{E}[z_i^{l-1}(x) z_i^{l-1}(x')] = k_{ii}^{l-1}(x, x'), \quad \forall i, j, \quad (43)$$

$$\kappa_{ij}^{l-1}(x, x') = \mathbb{E}[z_i^{l-1}(x) z_j^{l-1}(x')] = 0, \quad \text{for } i \neq j, \quad (44)$$

938 then, outputs at layer l follow

$$z_i^l(x) \sim \mathcal{GP}(0, \kappa_{ii}^l), \quad (45)$$

940 where the kernel at layer l is given by:

$$\kappa_{ii}^l(x, x') = \mathbb{E}[z_i^l(x) z_i^l(x')] = \kappa_{jj}^l(x, x'), \quad \forall i, j, \quad (46)$$

$$\kappa_{ij}^l(x, x') = \mathbb{E}[z_i^l(x) z_j^l(x')] = 0, \quad \text{if } i \neq j. \quad (47)$$

944 with the recursive definition

$$\kappa_{ii}^l(x, x') = \sigma_b^2 + \sigma_w^2 \mathbb{E}_{z_i^{l-1} \sim \mathcal{GP}(0, \kappa_{ii}^{l-1})} [\phi(z_i^{l-1}(x)) \phi(z_i^{l-1}(x'))]. \quad (48)$$

947 *Base case* ($l = 1$). At layer $l = 1$ we have:

$$z_i^1(x) = \frac{\sigma_w}{\sqrt{n_0}} \sum_{j=1}^{n_0} w_{ij}^1 x_j + \sigma_b b_i^1. \quad (49)$$

951 This is an affine transform of Gaussian random variables; thus, $z_i^1(x)$ is Gaussian distributed with

$$z_i^1(x) \sim \mathcal{GP}(0, \kappa_{ii}^1), \quad (50)$$

954 with kernel

$$\kappa_{ii}^1(x, x') = \frac{\sigma_w^2}{n_0} x^\top x' + \sigma_b^2, \quad \text{and} \quad \kappa_{ij}^1 = 0, \quad i \neq j. \quad (51)$$

957 *Induction step* $l > 1$. For layers $l > 1$ we have

$$z_i^l(x) = \sigma_b b_i^l + \frac{\sigma_w}{\sqrt{n_{l-1}}} \sum_{j=1}^{n_{l-1}} w_{ij}^l x_j^l(x), \quad x_j^l(x) = \phi(z_j^{l-1}(x)). \quad (52)$$

962 By the induction assumption, $z_j^{l-1}(x)$ are generated by independent Gaussian processes. Hence,
 963 $x_i^l(x)$ and $x_j^l(x)$ are independent for $i \neq j$. Consequently, $z_i^l(x)$ is a sum of independent random
 964 variables. By the Central Limit Theorem (as $n_1, \dots, n_{L-1} \rightarrow \infty$) the tuple $\{z_i^l(x), z_i^l(x')\}$ tends to
 965 be jointly Gaussian, with covariance given by:

$$\mathbb{E}[z_i^l(x) z_i^l(x')] = \sigma_b^2 + \sigma_w^2 \mathbb{E}_{z_i^{l-1} \sim \mathcal{GP}(0, \kappa_{ii}^{l-1})} [\phi(z_i^{l-1}(x)) \phi(z_i^{l-1}(x'))]. \quad (53)$$

968 Moreover, as z_i^l and z_j^l for $i \neq j$ are defined through independent rows of the parameters w^l, b^l and
 969 independent pre-activations $x^l(x)$, we have

$$\kappa_{ij}^l = \mathbb{E}[z_i^l(x) z_j^l(x')] = 0, \quad i \neq j, \quad (54)$$

971 completing the proof. \square

972 A.2.2 NEURAL TANGENT KERNEL PROPAGATION AND INDEPENDENCE
973974 We change notation slightly from the previous section to make the parametrization of $f_i(x, \theta^L)$ and
975 $z_i^l(x; \theta^l)$ explicit with

976
977
$$z_i^l(x, \theta^l) = \sigma_b b_i^l + \frac{\sigma_w}{\sqrt{n_{l-1}}} \sum_{j=1}^{n_{l-1}} w_{ij}^l x_j^l(x), \quad x_j^l(x) = \phi(z_j^{l-1}(x; \theta^{l-1})), \quad (55)$$

978

979 where θ^l denotes the parameters $\{w^1, b^1, \dots, w^l, b^l\}$ up to layer l and $f_i(x, \theta^L) = z_i^L(x; \theta^L)$. Let
980 furthermore ϕ be a Lipschitz-continuous nonlinearity with derivative $\dot{\phi}(x) = \frac{d}{dx} \phi(x)$.
981982 **Proposition 3** (Jacot et al. (2018)). *In the limit $n_1, \dots, n_{L-1} \rightarrow \infty$, the neural tangent kernel
983 $\Theta_{ii}^l(x, x')$ of the i -th output $z_i^l(x, \theta^l)$ at layer l , defined as the gradient inner product*

984
$$\Theta_{ii}^l(x, x') = \nabla_{\theta^l} z_i^l(x, \theta^l)^\top \nabla_{\theta^l} z_i^l(x', \theta^l), \quad (56)$$

985

986 is given recursively by

987
$$\Theta_{ii}^1(x, x') = \kappa_{ii}^1(x, x') = \frac{\sigma_w^2}{n_0} x^\top x' + \sigma_b^2, \quad \text{and} \quad \Theta_{ij}^1(x, x') = 0, \quad i \neq j. \quad (57)$$

988

989
$$\Theta_{ii}^l(x, x') = \Theta_{ii}^{l-1}(x, x') \dot{\kappa}_{ii}^{l-1}(x, x') + \kappa_{ii}^l(x, x'), \quad (58)$$

990

991 where

992
$$\dot{\kappa}_{ii}^l(x, x') = \sigma_w^2 \mathbb{E}_{z_i^{l-1} \sim \mathcal{GP}(0, \kappa_{ii}^{l-1})} [\dot{\phi}(z_i^{l-1}(x)) \dot{\phi}(z_i^{l-1}(x'))] \quad (60)$$

993

994 and

995
$$\Theta_{ij}^l(x, x') = \nabla_{\theta^l} z_i^l(x, \theta^l)^\top \nabla_{\theta^l} z_j^l(x', \theta^l) = \begin{cases} \Theta^l(x, x') & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases} \quad (61)$$

996

997 *Proof.* We again proceed by induction. The induction assumption is that if gradients satisfy at layer
998 $l-1$

1000
$$\Theta_{ij}^{l-1}(x, x') = \nabla_{\theta^{l-1}} z_i^{l-1}(x, \theta^{l-1})^\top \nabla_{\theta^{l-1}} z_j^{l-1}(x', \theta^{l-1}) = \begin{cases} \Theta^{l-1}(x, x') & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases} \quad (62)$$

1001

1002 then at layer l we have

1003
$$\Theta_{ii}^l(x, x') = \Theta_{ii}^{l-1}(x, x') \dot{\kappa}_{ii}^l(x, x') + \kappa_{ii}^l(x, x') \quad (63)$$

1004

1005 and

1006
$$\Theta_{ij}^l(x, x') = \nabla_{\theta^l} z_i^l(x, \theta^l)^\top \nabla_{\theta^l} z_j^l(x', \theta^l) = 0 \quad \text{if } i \neq j. \quad (64)$$

1007

1008 *Base Case* ($l = 1$). At layer $l = 1$, we have

1009
$$z_i^1(x) = \sigma_b b_i^1 + \frac{\sigma_w}{\sqrt{n_0}} \sum_j w_{ij}^1 x_j, \quad (65)$$

1010

1011 and the gradient inner product is given by:

1012
$$\nabla_{\theta^1} z_i^1(x, \theta^1)^\top \nabla_{\theta^1} z_i^1(x', \theta^1) = \frac{\sigma_w^2}{n_0} x^\top x' + \sigma_b^2 = \kappa_{ii}^1(x, x'). \quad (66)$$

1013

1014 *Inductive Step* ($l > 1$). For layers $l > 1$, we split parameters $\theta^l = \theta^{l-1} \cup \{w^l, b^l\}$ and split the inner
1015 product by

1016
$$\Theta_{ii}^l(x, x') = \underbrace{\nabla_{\theta^{l-1}} z_i^l(x, \theta^l)^\top \nabla_{\theta^{l-1}} z_i^l(x', \theta^l)}_{l.h.s.} + \underbrace{\nabla_{\{w^l, b^l\}} z_i^l(x, \theta^l)^\top \nabla_{\{w^l, b^l\}} z_i^l(x', \theta^l)}_{r.h.s.}. \quad (67)$$

1017

1018 Note that the *r.h.s.* involves gradients w.r.t. last-layer parameters, i.e. the post-activation outputs of
1019 the previous layer, and by the same arguments as in the NNGP derivation of Proposition 2, this is a
1020 sum of independent post activations s.t. in the limit $n_{l-1} \rightarrow \infty$

1021
$$\nabla_{\{w^l, b^l\}} z_i^l(x, \theta^l)^\top \nabla_{\{w^l, b^l\}} z_j^l(x', \theta^l) = \begin{cases} k_{ii}^l(x, x'), & i = j, \\ 0, & i \neq j. \end{cases} \quad (68)$$

1022

1026 For the *l.h.s.*, we first apply chain rule to obtain
 1027

$$1028 \nabla_{\theta^{l-1}} z_i^l(x, \theta^l) = \frac{\sigma_w}{\sqrt{n_{l-1}}} \sum_j^{n_{l-1}} w_{ij}^l \dot{\phi}(z_j^{l-1}(x, \theta^{l-1})) \nabla_{\theta^{l-1}} z_j^{l-1}(x, \theta^{l-1}). \quad (69)$$

1030 The gradient inner product of outputs i and j thus reduces to
 1031

$$1032 \nabla_{\theta^{l-1}} z_i^l(x, \theta^l)^\top \nabla_{\theta^{l-1}} z_j^l(x', \theta^l) = \\ 1033 \\ 1034 \frac{\sigma_w^2}{n_{l-1}} \sum_k^{n_{l-1}} w_{ik}^l w_{jk}^l \dot{\phi}(z_k^{l-1}(x, \theta^{l-1})) \dot{\phi}(z_k^{l-1}(x', \theta^{l-1})) \Theta_{kk}^{l-1}(x, x'). \quad (70)$$

1035 By the induction assumption $\Theta_{kk}^{l-1}(x, x') = \Theta^{l-1}(x, x')$ and again by the independence of the rows
 1036 w_i^l and w_j^l for $i \neq j$, the above expression converges in the limit $n_{l-1} \rightarrow \infty$ to an expectation with
 1037

$$1038 \Theta_{ij}^l(x, x') = \begin{cases} \Theta^{l-1}(x, x') k_{ii}^l(x, x') + \kappa_{ii}^l(x, x') & i = j, \\ 0 & i \neq j. \end{cases} \quad (71)$$

1039 This completes the induction. \square
 1040

1041 A.2.3 MULTIHEADED UVU: FINITE SAMPLE ANALYSIS

1042 We now define multiheaded predictor with M output heads $u_i(x, \vartheta_t)$ for $i = 1, \dots, M$ and a
 1043 fixed multiheaded target network $g_i(x_t; \psi_0)$ of equivalent architecture as u with the corresponding
 1044 prediction error $\epsilon_i(x, \vartheta_t, \psi_0)$ accordingly. Let $u_i(x, \vartheta_t)$ be trained such that each head runs the same
 1045 algorithm as outlined in Section 3 independently.

1046 **Corollary 2.** *Under the conditions of Theorem 1, consider online and target networks with M
 1047 independent heads u_i, g_i , $i = 1, \dots, M$, each trained to convergence with errors $\epsilon_i(x, \vartheta_\infty, \psi_0)$. Let
 1048 $\frac{1}{2}\bar{\epsilon}(x, \vartheta_\infty, \psi_0)^2 = \frac{1}{2M} \sum_{i=1}^M \epsilon_i(x, \vartheta_\infty, \psi_0)^2$ be the sample mean squared prediction error over M
 1049 heads. Moreover, consider $M + 1$ independent converged Q -functions $Q_i(x; \theta_\infty)$ and denote their
 1050 sample variance $\bar{\sigma}_Q^2(x, \theta_\infty) = \frac{1}{M} \sum_{i=1}^{M+1} (Q_i(x; \theta_\infty) - \bar{Q}(x; \theta_\infty))^2$, where \bar{Q} is the sample mean.
 1051 The two estimators are identically distributed according to a scaled Chi-squared distribution*

$$1052 \frac{1}{2}\bar{\epsilon}(x, \vartheta_\infty, \psi_0)^2 \stackrel{D}{=} \bar{\sigma}_Q^2(x, \theta_\infty), \quad \bar{\sigma}_Q^2(x, \theta_\infty) \sim \frac{\sigma_Q^2}{M} \chi^2(M), \quad (12)$$

1053 with M degrees of freedom and $\sigma_Q^2(x, \theta_\infty) = \mathbb{V}_{\theta_0}[Q(x, \theta_\infty)]$ is the analytical variance of converged
 1054 Q -functions given by Theorem 1.

1055 *Proof.* By Corollary 1, the prediction error of a single headed online and target network
 1056 $\epsilon(x, \vartheta_t, \psi_0) = u(x, \vartheta_t) - g(x, \psi_0)$ converges in the limit $n_1, \dots, n_{L-1} \rightarrow \infty$ and $t \rightarrow \infty$ to a
 1057 Gaussian with zero mean and variance $\epsilon(x, \vartheta_\infty, \psi_0) \sim \mathcal{N}(0, 2\sigma_Q^2)$ where
 1058

$$1059 \sigma_Q^2 = \mathbb{V}_{\theta_0}[Q(x, \theta_\infty)] = \kappa_{xx} - (\Theta_{xx} \Delta_x^{-1} \Lambda_x + h.c.) + (\Theta_{xx} \Delta_x^{-1} (\Lambda_x - \gamma \Lambda_{x'}) \Delta_x^{-1 \top} \Theta_{xx}). \quad (72)$$

1060 By Propositions 2 and 3, the NNGP and NTK associated with each online head $u_i(x, \vartheta_\infty)$ in the
 1061 infinite width and time limit are given by
 1062

$$1063 \kappa_{ij}(x, x') = \mathbb{E}[u_i(x, \vartheta_\infty) u_j(x', \vartheta_\infty)] = \begin{cases} \kappa(x, x') & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases} \quad (73)$$

$$1064 \Theta_{ij}(x, x') = \nabla_{\vartheta} u_i^l(x, \vartheta_\infty)^\top \nabla_{\vartheta} u_j^l(x', \vartheta_\infty) = \begin{cases} \Theta(x, x') & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases} \quad (74)$$

1065 Due to the independence of the NNGP and NTK for different heads u_i , prediction errors
 1066 $\epsilon_i(x_t; \vartheta_\infty, \psi_0)$ are i.i.d. draws from a zero mean Gaussian with variance equal as given in Eq. 72.
 1067 Note that this is despite the final feature layer being shared between the output functions. The
 1068 empirical mean squared prediction errors are thus Chi-squared distributed with M degrees of freedom
 1069

$$1070 \frac{1}{M} \sum_{i=1}^M \frac{1}{2} \epsilon_i(x_t; \vartheta_\infty, \psi_0)^2 \sim \frac{\sigma_Q^2}{M} \chi^2(M) \quad (75)$$

Now, let $\{Q_i(x; \theta_t)\}_{i=1}^{M+1}$ be a deep ensemble of $M + 1$ Q-functions from independent initializations. By Corollary 1, these Q-functions, too, are i.i.d. draws from a Gaussian, now with mean $\Theta_{\mathcal{X}\mathcal{X}}\Delta_{\mathcal{X}}^{-1}r$ and variance as given in Eq. 72. The sample variance of this ensemble thus also follows a Chi-squared distribution with M degrees of freedom

$$\frac{1}{M} \sum_{i=1}^{M+1} \frac{1}{2} (Q_i(x; \theta_\infty) - \bar{Q}(x; \theta_\infty))^2 \sim \frac{\sigma_Q^2}{M} \chi^2(M), \quad (76)$$

where $\bar{Q}(x; \theta_\infty) = \frac{1}{M+1} \sum_i^{M+1} Q_i(x; \theta_\infty)$ is the sample mean of $M + 1$ universal Q-functions, completing the proof. \square

A.3 LIMITATIONS AND ASSUMPTIONS

In this section, we detail central theoretical underpinnings and idealizations upon which our theoretical analysis is built.

A central element of our theoretical analysis is the representation of neural network learning dynamics via the Neural Tangent Kernel (NTK), an object in the theoretical limit of infinite network width. The established NTK framework, where the kernel is deterministic despite random initialization and constant throughout training, typically applies to fully connected networks with NTK parameterization, optimized using a squared error loss (Jacot et al., 2018). Our framework instead accommodates a semi-gradient TD loss, and thereby introduces an additional prerequisite for ensuring the convergence of these dynamics: the positive definiteness of the matrix expression $\Theta_{\mathcal{X}\mathcal{X}} - \gamma\Theta_{\mathcal{X}'\mathcal{X}}$. This particular constraint is more a characteristic inherent to the TD learning paradigm itself than a direct consequence of the infinite-width abstraction. Indeed, the design of neural network architectures that inherently satisfy such stability conditions for TD learning continues to be an active area of contemporary research (Yue et al., 2023; Gallici et al., 2024). The modeling choice of semi-gradient TD losses moreover does not incorporate the use of target networks, where bootstrapped values do not only stop gradients but are generated by a separate network altogether that slowly moves towards the online learner. Our analysis moreover considers the setting of *offline policy evaluation*, that is, we do not assume that additional data is acquired during learning and that policies evaluated for value learning remain constant. The assumption of a fixed, static dataset diverges from the conditions of online reinforcement learning with control, where the distribution of training data $(\mathcal{X}, \mathcal{X}')$ typically evolves as the agent interacts with its environment, both due to its collection of novel transitions and due to adjustments to the policy, for example by use of a Bellman optimality operator. Lastly, our theoretical model assumes, primarily for simplicity, that learning occurs under gradient flow with infinitesimally small step sizes and with updates derived from full-batch gradients. Both finite-sized gradient step sizes and stochastic minibatching has been treated in the literature, albeit not in the TD learning setting (Jacot et al., 2018; Lee et al., 2020; Liu et al., 2020; Yang, 2019). We believe our analysis could be extended to these settings without major modifications.

B EXPERIMENTAL DETAILS

We provide details on our experimental setup, implementations and additional results. This includes architectural design choices, algorithmic design choices, hyperparameter settings, hyperparameter search procedures, and environment details.

B.1 IMPLEMENTATION DETAILS

All algorithms are self-implemented and tuned in JAX (Bradbury et al., 2018). A detailed exposition of our design choices and parameters follows below.

Environment Setup. We use a variation of the GoToDoor environment of the minigrid suite (Chevalier-Boisvert et al., 2023). As our focus is not on partially observable settings, we use fully observable 35-dimensional state descriptions with $\mathcal{S} = \mathbb{R}^{35}$. Observation vectors comprise the factors:

$$o = (o_{\text{agent-pos}}^\top, o_{\text{agent-dir}}^\top, o_{\text{door-config}}^\top, o_{\text{door-pos}}^\top)^\top, \quad (77)$$

1134 where $o_{\text{agent-pos}} \in \mathbb{R}^2$ is the agent position in x, y -coordinates, $o_{\text{agent-dir}} \in \mathbb{R}$ is a scalar integer
 1135 indicating the agent direction (takes on values between 1 and 4), $o_{\text{door-config}} \in \mathbb{R}^{24}$ is the door
 1136 configuration, comprising 4 one-hot encoded vectors indicating each door’s color, and $o_{\text{door-pos}} \in \mathbb{R}^8$
 1137 is a vector containing the x, y -positions of the four doors. The action space is discrete and four-
 1138 dimensional with the following effects
 1139

$$a_{\text{effect}} = \begin{cases} \text{turn left} & \text{if } a = 0, \\ \text{turn right} & \text{if } a = 1, \\ \text{go forward} & \text{if } a = 2, \\ \text{open door} & \text{if } a = 3. \end{cases} \quad (78)$$

1140 Tasks are one-hot encodings of the target door color, that is $z \in \mathbb{R}^6$ and in the online setting are
 1141 generated such that they are achievable. The reward function is an indicator function of the correct
 1142 door being opened, in which case a reward of 1 is given to the agent and the agent position is reset
 1143 to a random location in the grid. Episodes terminate only upon reaching the maximum number of
 1144 timesteps (50 in our experiments).
 1145

1146 In the task rejection setting described in our evaluation protocol, an agent in a start state s_0 is
 1147 presented a list of tasks, which may or may not be attainable, and is allowed to reject a fixed number
 1148 of tasks from this list. In our experiments, the agent is allowed to reject 4 out of 6 total tasks at the
 1149 beginning of each episode.
 1150

1151 **Data Collection.** Our offline datasets are recorded replay buffers from a DQN-agent deployed to
 1152 the GoToDoor environment with an ϵ -greedy exploration strategy and a particular policy: When the
 1153 door indicated by the task encoding z provided by the environment lies at the south or west wall, the
 1154 regular policy by the online DQN agent is executed. If the target door lies at the north or east wall,
 1155 however, actions are generated by a fixed random Q -network. This mixture policy emulates a policy
 1156 that exhibits expert performance on certain combinations of tasks and states, but suboptimal behavior
 1157 for other combinations. The replay buffer does, however, contain most combinations of states and
 1158 tasks, albeit some with trajectories from suboptimal policies. Hyperparameter details of the online
 1159 agent are provided in section B.2.
 1160

1161 **Algorithmic Details.** All tested algorithms
 1162 and experiments are based on DQN agents (Mnih
 1163 et al., 2015) which we adapted for the task-
 1164 conditioned universal value function (Schaul
 1165 et al., 2015) setting. While our theoretical
 1166 analysis considers full-batch gradient descent, in
 1167 practice we sample minibatches from offline
 1168 datasets with $\mathcal{X}_{mb} = \{(s_i, a_i, z_i)\}_{i=1}^{N_{mb}}$, $\mathcal{X}'_b =$
 1169 $\{(s'_i, a'_i, z_i)\}_{i=1}^{N_b}$, where next-state actions are
 1170 generated $a'_i = \text{argmax}_{a \in \mathcal{A}} Q(s'_i, a, z_i, \theta_t)$ and
 1171 rewards are $r = \{r_i\}_{i=1}^{N_{mb}}$. Moreover, we deviate
 1172 from our theoretical analysis and use target
 1173 networks in place of the stop-gradient operation.
 1174 Here, a separate set of parameters $\tilde{\theta}_t$ is used to
 1175 generate bootstrap targets in the TD loss which
 1176 is in practice given by
 1177

$$\mathcal{L}(\theta_t) = \frac{1}{2} \|\gamma Q(\mathcal{X}'_{mb}, \tilde{\theta}_t) + r - Q(\mathcal{X}_{mb}, \theta_t)\|_2^2. \quad (79)$$

1178 The parameters $\tilde{\theta}_t$ are updated towards the on-
 1179 line parameters θ_t at fixed intervals through
 1180 polyak updating, as is common. We use this
 1181 basic algorithmic pipeline for all tested algo-
 1182 rithms, including the online agent used for data
 1183 collection.
 1184

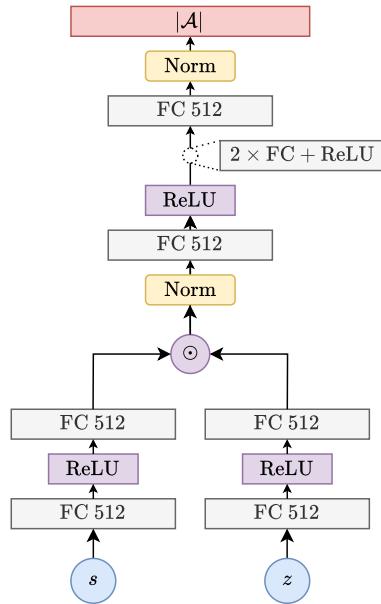


Figure 5: Illustration of the used architecture. \odot indicates elementwise multiplication.

1188 **Architectural Details.** We use a hypernet-
 1189 work MLP architecture adapted to the DQN setting, as depicted in Fig. 5. Specifically, this means we
 1190 pass states s and task encodings z through single-layer encoders, which are then joint by elementwise
 1191 multiplication. The resulting vector is normalized by its l^2 norm, $x' = \frac{x}{\|x\|_2}$. This joint vector is
 1192 passed through a 3-layer MLP with network width 512, again normalized by its l^2 norm and finally
 1193 passed through a fully-connected layer to obtain a vector of dimension $\mathbb{R}^{|\mathcal{A}|}$. Although our experi-
 1194 ments are conducted in the offline RL setting, preliminary experiments showed no benefits of using
 1195 ensemble-based pessimism (An et al., 2021) or conservative Q -updates (Kumar et al., 2020). Instead,
 1196 our normalization pipeline appears to sufficiently address overestimation issues as is suggested by
 1197 several recent works (Yue et al., 2023; Gallici et al., 2024).
 1198

1199 **Independent Bootstrapping.** For the ensemble-based BDQNP baseline and our UVU model, we
 1200 perform independent bootstrapping in the TD loss computation. By this, we mean that both the
 1201 bootstrapped value and actions are generated by individual Q -functions. In the case of BDQNP, this
 1202 means we compute Loss 79 for each model Q_k , indexed by $k \in [1, \dots, K]$ with $\mathcal{X}_{mb,k} = \mathcal{X}_{mb}$ and
 1203 bootstraps are generated as

$$1204 \mathcal{X}'_{mb,k} = \{(s'_i, a'_{ik}, z_i)\}_{i=1}^{N_{mb}}, \quad \text{and} \quad a'_{ik} = \text{argmax}_{a \in \mathcal{A}} Q_k(s'_i, a, z_i, \theta_t). \quad (80)$$

1205 Note, that this procedure is established (Osband et al., 2016) and serves the purpose of maintaining
 1206 independence between the models in the ensemble. In order to conduct the same procedure in our
 1207 UVU method, where we have access to only one Q -function, we generate K distinct Q -estimates by
 1208 computing
 1209

$$1210 Q_k^{UVU}(s, a, z, \theta_t) := Q(s, a, z, \theta_t) + \epsilon_k(s, a, z, \theta_t, \psi_0), \quad (81)$$

1211 that is, by adding the UVU error of the k -th output head. Bootstraps are then generated according to
 1212 Eq. 80.
 1213

1214 **Intrinsic reward priors.** Intrinsic reward priors are a trick suggested by Zanger et al. (2024) to
 1215 address a shortcoming of propagation methods used for intrinsic reward methods like RND(Burda
 1216 et al., 2019; O’Donoghue et al., 2018). The issue is that while learning a Q -function with intrinsic
 1217 rewards can, with the right choice of intrinsic reward, provide optimistic estimates of the value
 1218 function, but only for state-action regions covered in the data. A potential underestimation of the
 1219 optimistic bound, however, counteracts its intention, a phenomenon also described by Rashid et al.
 1220 (2020). Intrinsic reward priors are a heuristic method to address this issue by adding local, myopic
 1221 uncertainty estimates automatically to the forward pass of the intrinsic Q -function, leading to a “prior”
 1222 mechanism that ensures a
 1223

$$1224 \hat{Q}_{intr}(s, a, z, \theta_t) = Q_{intr}(s, a, z, \theta_t) + \frac{1}{2}\epsilon_{rnd}(s, a, z, \theta_{rnd})^2$$

1225 where $\epsilon_{rnd}(s, a, z, \theta_{rnd})$ denotes a local RND error as an example. The altered function
 1226 $\hat{Q}_{intr}(s, a, z, \theta_t)$ is trained as usual with Loss 79 and intrinsic rewards $\frac{1}{2}\epsilon_{rnd}(s, a, z, \theta_{rnd})^2$.
 1227

1228 B.2 HYPERPARAMETER SETTINGS

1229 To ensure a consistent basis for comparison across our findings, all experimental work was carried out
 1230 using a shared codebase. We adopted standardized modeling approaches, including uniform choices
 1231 for elements like network architectures and optimization algorithms, where appropriate. Specifically,
 1232 every experiment employed the same architecture as detailed in Appendix B.1. Key hyperparameters,
 1233 encompassing both foundational and algorithm-specific settings, were tuned through a grid search on
 1234 the 10×10 variation of the *GoToDoor* environment. The search grid and final hyperparameters are
 1235 provided in Tables 2 and 3 respectively. DQN in Table 3 refers to the online data collection agent.
 1236

1237 B.3 ADDITIONAL EXPERIMENTAL RESULTS

1238 We report additional results of the illustrative experiment shown in Section 3. Fig. 6 shows different
 1239 uncertainty estimates in the described chain environment. The first row depicts *myopic* uncertainty
 1240 estimates or, equivalently, RND errors. The second and third row show propagated local uncertainties
 1241 with and without the intrinsic reward prior mechanism respectively. This result shows clearly the

Table 2: Hyperparameter search space

Hyperparameter	Values
Q Learning rate (all)	$[1 \cdot 10^{-6}, 3 \cdot 10^{-6}, 1 \cdot 10^{-5}, 3 \cdot 10^{-5}, 1 \cdot 10^{-4}, 3 \cdot 10^{-4}, 1 \cdot 10^{-3}]$
Prior function scale (BDQNP)	$[0.1, 0.3, 1.0, 3.0, 10.0]$
RND Learning rate (RND, RND-P)	$[1 \cdot 10^{-6}, 3 \cdot 10^{-6}, 1 \cdot 10^{-5}, 3 \cdot 10^{-5}, 1 \cdot 10^{-4}, 3 \cdot 10^{-4}, 1 \cdot 10^{-3}]$
UVU Learning rate (UVU)	$[1 \cdot 10^{-6}, 3 \cdot 10^{-6}, 1 \cdot 10^{-5}, 3 \cdot 10^{-5}, 1 \cdot 10^{-4}, 3 \cdot 10^{-4}, 1 \cdot 10^{-3}]$

Table 3: Hyperparameter settings for *GoToDoor* experiments.

Hyperparameter	DQN	BDQNP	DQN-RND	DQN-RND+P	UVU
Adam Q -Learning rate	$3 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$3 \cdot 10^{-4}$
Prior function scale	n/a	1.0	n/a	n/a	n/a
N-Heads 1	1	1	1 / 512	1 / 512	1 / 512
Ensemble size	n/a	3 / 15	n/a	n/a	n/a
MLP hidden layers			3		
MLP layer width			512		
Discount γ			0.9		
Batch size			512		
Adam epsilon			0.005 / batch size		
Initialization			He uniform (He et al., 2015)		
Double DQN			Yes (Hasselt, 2010)		
Update frequency			1		
Target lambda			1.0		
Target frequency			256		

Table 4: GoToDoor Environment Settings

Parameter	Value
State space dim	35
Action space dim	3
Task space dim	6
N Task Rejections	4
Max. Episode Length	50

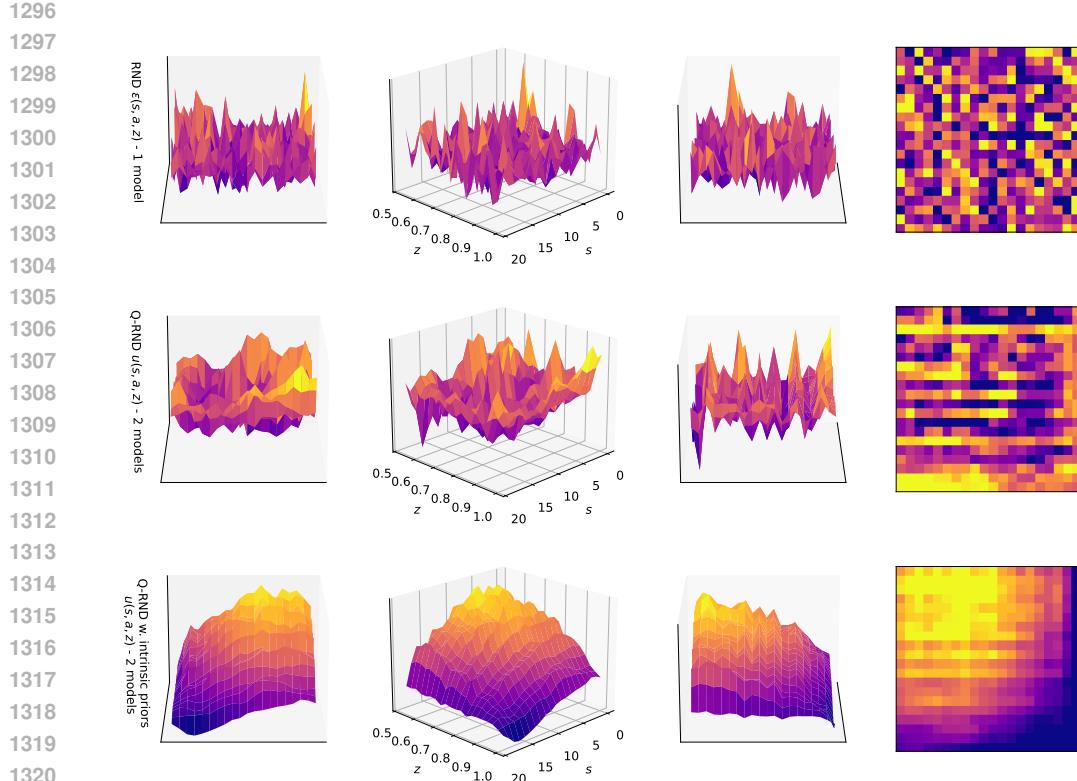


Figure 6: *Top Row*: RND errors. *2nd Row*: Value uncertainty as measured by an intrinsic Q -function. *3rd Row*: Value uncertainty as measured by an intrinsic Q -function with intrinsic reward priors.

shortcoming of the standard training pipeline for intrinsic rewards: in a standard training pipeline, the novelty bonus of RND is given only for transitions (s_i, a_i, z_i, s'_i) already present in the dataset and is never evaluated for OOD-actions. To generate reliable uncertainty estimates, RND requires, in addition to the RND network and the additional intrinsic Q -function, an algorithmic mechanism such as the *intrinsic reward priors* or even more sophisticated methods as described by Rashid et al. (2020).

USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used to assist in the preparation of this paper. Their usage was limited to refining sentence structure and verifying grammar, punctuation, and general language usage. No content or substantive research contributions were generated by LLMs.