
Fine Feature Reconstruction in Point Clouds by Adversarial Domain
Translation

Prashant Raina* Tiberiu Popa Sudhir Mudur

Department of Computer Science and Software Engineering
Concordia University

ABSTRACT

Point cloud neighborhoods are unstructured and often lacking in fine
details, particularly when the original surface is sparsely sampled.
This has motivated the development of methods for reconstructing
these fine geometric features before the point cloud is converted
into a mesh, usually by some form of upsampling of the point
cloud. We present a novel data-driven approach to reconstructing
fine details of the underlying surfaces of point clouds at the local
neighborhood level, along with normals and locations of edges.
This is achieved by an innovative application of recent advances in
domain translation using GANs. We “translate” local neighborhoods
between two domains: point cloud neighborhoods and triangular
mesh neighborhoods. This allows us to obtain some of the benefits
of meshes at training time, while still dealing with point clouds at the
time of evaluation. By resampling the translated neighborhood, we
can obtain a denser point cloud equipped with normals that allows
the underlying surface to be easily reconstructed as a mesh. Our
reconstructed meshes preserve fine details of the original surface
better than the state of the art in point cloud upsampling techniques,
even at different input resolutions. In addition, the trained GAN can
generalize to operate on low resolution point clouds even without
being explicitly trained on low-resolution data. We also give an
example demonstrating that the same domain translation approach
we use for reconstructing local neighborhood geometry can also be
used to estimate a scalar field at the newly generated points, thus
reducing the need for expensive recomputation of the scalar field on
the dense point cloud.

Index Terms: Computing methodologies—Computer graphics—
Shape modeling—Point-based models; Computing methodologies—
Machine learning—Machine learning approaches—Neural networks

1 INTRODUCTION

Point clouds and meshes are two representations of 3D surfaces that
have long coexisted in the fields of computer graphics and computer
vision. Point clouds are easier to acquire from the real world. How-
ever, they lack most of the geometric information which makes 3D
meshes indispensable. The connectivity information provided by
meshes allows one to easily calculate normals, curvatures and other
geometric properties of the underlying surface. They can also be
remeshed, or resampled to arbitrary precision. This gap between
point clouds and meshes has traditionally been bridged by fitting
parametric or implicit surfaces to point cloud neighborhoods. How-
ever, recent advances in deep learning have now made it possible to
propose data-driven approaches to transforming data between these
two domains.

We present here a simple and elegant approach to reconstructing
fine features of surfaces sampled as point clouds. By “fine features”,
we refer specifically to features smaller than the separation between

*e-mail: prashantraina2005@gmail.com

Figure 1: A sparse point cloud (red points) sampled from a detailed
surface. Fine features such as the eye that lie between the sampled
points are challenging to reconstruct.

sampled points (an example would be the eye in Figure 1). Naturally,
it is impossible to recover all fine features in the general case, as
undersampling causes information to be lost. However, the field
of deep learning enables us to train a machine learning model on
a large dataset and obtain a learned prior which will allow us to
“hallucinate” fine details that would be expected from the underlying
distribution of the dataset.

Our approach leverages generative adversarial networks (GANs)
for domain translation. GANs are a class of deep neural networks
which has shown great potential in synthesizing realistic novel im-
ages that appear to be sampled from a particular domain of image
data. One variant of the GAN architecture which is particularly inter-
esting to us is the conditional GAN architecture. Conditional GANs
have been successfully applied to domain translation, i.e. transform-
ing images between two very different but related domains [11].
Some examples of domain translation include translating sketches
of handbags to photographs of handbags, street maps to satellite
images, or summer landscape photographs to winter landscape pho-
tographs. We tackle the fine feature reconstruction problem at the
local neighborhood level, by framing it as a domain translation prob-
lem between two kinds of local heightmaps: “sparse” heightmaps,
which are sampled from point clouds, and “dense” heightmaps,
which are sampled from meshes using raycasting. This is a very
unique and atypical domain translation problem because quantita-
tive accuracy is extremely important. By contrast, the results in the
aforementioned traditional domain translation problems need only
appear qualitatively plausible.

Our main contribution is in adapting existing work on domain
translation to the problem of reconstructing fine features from low-
resolution point clouds. Our feature reconstruction results are supe-
rior to the state-of-the-art methods [22, 28]. These methods use a
completely different patch-based approach along with much more
complex neural network architectures. Our method runs in signifi-
cantly less time than the most recent state-of-the-art method [22].

 

 
Graphics Interface Conference 2020 
28-29 May 
Copyright held by authors. Permission granted to  
CHCCS/SCDHM to publish in print and digital form, and  
ACM to publish electronically.	

							
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 



Furthermore, our method generalizes well to low-resolution point
clouds, even when all the training inputs are sampled from high-
resolution point clouds. This highlights the robustness of our domain
translation approach. The implications of this method go beyond
point positions, and we show that it can easily be extended to in-
terpolate values of a scalar field at the newly created points in the
dense point cloud. As a bonus, we can also easily obtain normals at
the points in a dense heightmap.

Our paper is organized as follows: Section 2 recaps the most
relevant related work in point cloud consolidation, as well as domain
translation. Section 3 describes in detail how we generate the two
types of heightmaps and perform domain translation. Section 4
shows the surface reconstruction results we obtain from applying
heightmap domain translation to point cloud neighborhoods. A
detailed quantitative evaluation of the results and comparison with
previous methods is given in Section 5. We briefly describe an
application to upsampling of a scalar field in Section 6, before
giving our conclusions in Section 7. There are also two appendices,
A and B, which give neural network training details and additional
figures of results.

2 RELATED WORK

Image-to-image translation using deep learning has gained a lot
of attention since Isola et al published their seminal work [11] on
using conditional adversarial networks for translating between image
domains given a training set of paired examples. This quickly led
to more work on unpaired image translation [31], as well as image
translation between more than two domains [2]. There have also
been attempts to bring GAN-based domain translation methods to
other domains such as natural language text [27], audio [9] and
voxel-based 3D data [4]. Some recent work on point clouds such
as FoldingNet [26] and AtlasNet [6] can also, in some sense, be
regarded as precursors to domain translation between point clouds
and explicit surfaces.

Reconstructing fine features from point clouds can take different
forms depending on how the point cloud is sampled. In some cases,
the points are essentially pixels obtained from a depth image [10,23],
which means that the points have a 2D grid structure that can be
treated as a Euclidean domain for discrete convolution. Further-
more, depth images are almost invariably accompanied by color or
intensity images, which provide vital information that is exploited
in past work. In our work, we focus on the more general problem
of reconstructing detailed surfaces from completely unstructured
point clouds by first increasing the density of the point clouds before
attempting to reconstruct the surface. This is most closely related to
the problem of point cloud consolidation, where the goal is to obtain
a point cloud representation from which an accurate 3D mesh can
be reconstructed [7]. A variety of procedural point cloud consolida-
tion methods have been proposed, including LOP [15], WLOP [7],
EAR [8] and deep points consolidation [24]. All of these methods
involve fitting local geometry to point clouds, and WLOP and EAR
have been incorporated into popular geometry processing libraries.

Recent years have seen a wave of interest in applying deep learn-
ing to point clouds, sparked by the success of PointNet [16] and
its multi-scale variant, PointNet++ [17], in the field of point cloud
classification and semantic segmentation. This has led to point
cloud consolidation [20] and upsampling [30] approaches based on
PointNet, as well as a family of point cloud upsampling techniques
based on PointNet++ that includes PU-Net [29], EC-Net [28] and
3PU [22]. Li et al have concurrently developed a GAN-based point
cloud upsampling method [14] which uses generator and discrimina-
tor architectures loosely based on PU-Net and 3PU. By contrast, our
work uses local heightmaps, much like Roveri et al [20]. However,
Roveri et al focus on consolidation of already dense point clouds
with 50 thousand points, while we are mainly interested in recon-
structing fine features from much sparser point clouds (5000 points

Figure 2: Heightmaps sampled from the fandisk model. The sparse
and dense heightmaps have different color maps to reflect the fact
that sparse heightmaps are not occupied at all pixels. Top row:
sparse heightmaps obtained from the point cloud. Middle row:
dense heightmaps predicted by our GAN. Bottom row: ground truth
heightmaps obtained by casting rays onto the original mesh.

or less). Moreover, they do not use domain translation, since their
ground truth data is also obtained from point clouds. We compare
our work to the publicly available implementations of EC-Net [28]
and 3PU [22], since they are the most recently published state-of-
the-art works. 3PU is claimed to have superior results to all previous
point cloud upsampling work.

3 HEIGHTMAP DOMAIN TRANSLATION

The key idea behind our method is that reconstructing fine features
of point cloud neighborhoods can be reduced to an image-to-image
translation problem between two kinds of local heightmaps (exam-
ples shown in Figure 2):

1. Sparse heightmaps, which are sampled from point clouds. By
“sparse”, we mean that not all pixels in the heightmap are occu-
pied. This follows naturally from the fact that point clouds have
gaps between points. In practice, we also set an upper limit
on the number of points contributing to a sparse heightmap,
which makes our method more robust while also speeding up
computation of the sparse heightmaps. Therefore, they are
also sparse in the conventional sense that there are O(1) points
represented in the heightmap.

2. Dense heightmaps, which are sampled from meshes. Since
the mesh is typically defined in a continuous manner over a
neighborhood, we can obtain a heightmap by casting rays onto
the mesh. It is worth noting that this raycasting approach can
easily be modified to obtain other kinds of local “maps”, such
as scalar or vector fields defined over the mesh.

In this section, we first explain how these two types of heightmaps
are computed (Section 3.1). We then describe how we translate
heightmaps from sparse to dense, using a well-known image-to-
image translation approach that exploits a conditional GAN (Section
3.2). We finally show how our overall approach has additional
benefits for estimating normals (Section 3.3).

3.1 Local Heightmap Computation
Some aspects of heightmap computation are common to both the
sparse and dense local heightmaps. The heightmap is assigned a
size of k× k pixels, where we generally select k = 64. The side
of the heightmap corresponds to a length of 2r in the space of the
input shape, where r is the search radius used to collect nearest
neighbors from the point cloud. The local coordinate frame of the



neighborhood is centered on a particular point of the point cloud,
which has a corresponding oriented normal n. The horizontal and
vertical directions of the local frame are given by an arbitrary tangent
t and its corresponding bitangent b = n× t. In our experiments, the
tangents are randomly rotated in the tangent plane at both training
and testing time, so that there is no bias introduced by the choice of
tangent direction.

3.1.1 Sparse Heightmap Computation
For computing sparse heightmaps from point clouds, we adapt a
simple and efficient representation used in earlier works [19, 20]. A
random set of neighboring points (limited to 100) is chosen from
within the search radius r. Since our sampled points have consistent
associated normals, we can omit neighbors with back-facing normals.
The neighborhood is scaled by a factor of 1/r to reduce dependence
on scale. These points are then projected orthogonally onto the local
tangent plane, i.e. the plane of the heightmap image. For each pixel
in the heightmap image, we can easily compute the corresponding
pixel center in the local coordinate frame of the neighborhood. We
can then compute the intensity of each pixel as the weighted average
of the signed distances of nearby projected points from their original
positions. The unnormalized weights have a Gaussian falloff wi =

exp(− d2
i

2σ 2 ), where di are the distances of the projected points from
the pixel center in the image plane (we set σ = 5r/k). A constant
value 1 is added to all projection heights, so that the value 0 is
reserved for unoccupied pixels. As shown in section 6, the same
approach can also be used to generate a sparse map, not for height,
but for a scalar field.

3.1.2 Dense Heightmap Computation
Given a point on a surface represented by a mesh (which need not
be a vertex), and its corresponding normal, we can use raycasting to
generate a dense heightmap. We first transform the center of each
heightmap pixel to the space of the mesh, using the local tangent
frame mentioned earlier. From each pixel center, we shoot two rays
in opposite directions perpendicular to the tangent plane. If both
rays intersect the mesh, we chose the nearer intersection point. The
intensity of the pixel is the signed distance of the pixel center to the
intersection point, or a fixed large value (10) in the event that neither
ray intersects the mesh. These raycasting operations are performed
efficiently using the Embree raycasting framework [21], which also
provides us with the intersected triangle ID and the barycentric
coordinates of the intersection point. This additional information
can be used to interpolate scalar or vector fields previously computed
on the vertices of the mesh, in order to generate other kinds of dense
local maps.

3.2 Image-to-Image Translation
We use a conditional generative adversarial network (cGAN) to
perform image-to-image translation between our two heightmap
domains, following the approach by Isola et al [11]. The outputs of
both the generator G(x,z) and discriminator D(x,y) are conditioned
on the input image x. The discriminator does not attempt to classify
the entire input image as real or fake, but rather classifies individual
patches (8×8 in the case of our dense heightmaps). The generator
must minimize two losses:

1. The GAN loss, Ex,y[D(x,y)]+Ex,z[1−D(G(x,z))], which pre-
serves high-frequency similarities between G(x,z) and the cor-
responding ground-truth image y.

2. The `1 loss, Ex,y,z |y − G(x,z) |1, which preserves low-
frequency similarities with the ground truth.

In practice, the noise vector z is introduced implicitly by random
dropout of neurons with 50% probability. It is worth noting that the
sparse heightmaps we use contain incomplete information which

Figure 3: Examples of training models from SketchFab.

Figure 4: a) Ground truth head model. b) 5000 points sampled to act
as testing input. c) Poisson reconstruction of the input point cloud,
showing the loss of features due to undersampling.

could imply multiple different dense heightmaps. We therefore have
the option of enabling neuron dropout at the time of evaluating the
network, in order to obtain a stochastic output.

3.3 Prediction of Normals
The regular grid structure of a heightmap provides us the additional
benefit that it allows easy computation of normals at each point on
the heightmap. Given a dense heightmap, we can use backward dif-
ferences to estimate gradients in the tangent and bitangent directions.
This gives us the approximate normal at each point as the direction
of the vector ( ∂h

∂x ,
∂h
∂y ,

2r
k ). This approximate normal map proved to

be sufficient for our purposes, although it could also be refined using
a neural network.

4 FINE FEATURE RECONSTRUCTION

We trained our GAN on local neighborhoods sampled from a set
of 90 meshes of statues obtained from SketchFab. The meshes are
identical to the training set used by Wang et al [22] for training 3PU.
These meshes were generated by 3D-scanning statues of people
and animals (Figure 3). Training details such as hyperparameters
are given in Appendix A. For evaluation, we used a separate set of
16 meshes of statues from SketchFab. These include all 13 testing
meshes used by Wang et al [22], as well as 3 additional meshes
that we procured. All ground truth meshes have several hundred
thousand vertices.

To obtain a sparse set of points for reconstructing fine geometric
features, we randomly sample a fixed number of points from a
test mesh using Poisson disk sampling (using the implementation
available in the VCG library [1]). Figure 4 shows an example of
sampling these points. Normals for these points are estimated using
PCA, based on 30 nearest neighbors from the sparse point cloud.

After generating 64× 64 sparse heightmaps for these sampled
points using the method described in section 3.1.1, we use our
trained model to suggest a plausible 64×64 dense heightmap. Given



Figure 5: Our domain translation and reconstruction results for the
5000 points in Figure 4.b, using different modes. a, c and e correspond
to the detailed, superdense and even modes listed in Section 4. b,
d and f are their respective reconstructions using screened Poisson
surface reconstruction.

the search radius as well as the normal and tangent vectors used
to obtain the sparse heightmap, we can easily transform pixels of
the dense heightmap back into points in the space of the original
point cloud. Rather than converting all 4096 pixels into points, we
take points from an 8× 8 or 16× 16 square in the middle of the
generated heightmap. The rationale for this is that the conditional
GAN is transforming heightmaps at the local level with no global
information, and therefore we cannot expect the extremities of the
newly generated heightmap to be accurate, even if it appears to be a
plausible translation of the given sparse heightmap. Once normals
are computed using the method in Section 3.3, the surface can then
be easily reconstructed using a conventional surface reconstruction
algorithm. In our case, we use screened Poisson reconstruction [12].

We experimented with different combinations of heightmap
search radius, size of the central square, and stride (a stride of
2 implies taking every alternate row and column). Note that δ is
the median distance between a point and its nearest neighbor in the
input point cloud, which we use as a measure of scale. Out of these
combinations, we found three to be interesting:

1. detailed mode: Radius 4δ , central 8×8, stride 2 (16x upsam-
pling). This mode produces the most detailed looking mesh

Figure 6: Results for the statue Cupid Fighting, reconstructed from a
sample of 5000 points from the ground truth mesh.

when screened Poisson reconstruction is applied.

2. superdense mode: Radius 4δ , central 16×16, stride 1 (256x
upsampling). This mode produces an extremely dense point
cloud, from which a reasonably accurate mesh can be recon-
structed.

3. even mode: Radius 8δ , central 8× 8, stride 2 (16x upsam-
pling). The high-resolution point cloud obtained with this
mode appears to be the most evenly sampled.

Figure 5 compares the results for the three modes, after processing
the sampled points from Figure 4.b.

4.1 Reconstruction Results
Examples of our surface reconstruction results are shown in Figures
6 to 8. Note that there were no post-processing operations such as
smoothing in any of our figures. In Figures 6 and 7, we can see that
our method is able to reconstruct fine details such as facial features
from a sample of only 5000 points. In Figure 7, we can see that the



Figure 7: Reconstruction results for the statue Lion Étouffant Un Serpent. The 5000 input points are overlaid on the ground truth mesh.

Figure 8: Reconstruction results for an extremely low-resolution sample of 625 points (in red) from Cupid Fighting. We compare against the best
results we were able to obtain for 3PU, across multiple random samplings of 625 points.



eye of the lion from Figure 1 has been reconstructed, along with
other fine features such as the teeth. Figure 8 shows an extreme
example where we upsample a set of only 625 points, while still
being able to reconstruct features such as the wings on the helmet.
For comparison, we show the corresponding result using the latest
state-of-the-art method by Wang et al [22], informally called 3PU.
This method has already been shown to be superior to state-of-the-
art approaches such as EC-Net [28] and PU-Net [29]. Additional
results can be found in Appendix B.

During our experiments on extremely low resolution point clouds,
we naturally found that different random samplings of 625 input
points for the same testing mesh give slightly different resulting
meshes. We found that our method produced fairly consistent results
across different random samplings. This variation is much larger for
the PointNet++-based approaches. Therefore, we have selected the
best result we obtained for 3PU [22] to compare with our result in
Figure 8. Figure 14 in Appendix B compares our results with 3PU
for multiple different random samplings of 625 input points.

5 EVALUATION

We evaluate our surface reconstruction results quantitatively based
on three metrics:

1. Distance of each point in the high-resolution point cloud to the
ground truth mesh (D2M).

2. Hausdorff distance (HD): the maximum distance between a
point on the reconstructed mesh and its nearest neighbor on
the ground truth mesh:

max
(

max
p∈P

min
q∈Q
‖p−q‖2,max

q∈Q
min
p∈P
‖p−q‖2

)
(1)

3. Chamfer distance (CD) [5]: the mean distance between a point
on the reconstructed mesh and its nearest neighbor on the
ground truth mesh:

1
2

(
1
|P| ∑

p∈P
min
q∈Q
‖p−q‖2 +

1
|Q| ∑

q∈Q
min
p∈P
‖p−q‖2

)
(2)

We used Meshlab [3] to automate computation of all three metrics.
The Hausdorff distance and Chamfer distance can be computed
simultaneously by first randomly sampling a large number of points
from the vertices, edges and faces of one mesh. The number of points
sampled is equal to the number of vertices on the sampled mesh
(several hundred thousand). We then find the mean and maximum
distances between these points and the nearest vertices on the other
mesh. Pairs of points are discarded if their separation is greater than
5% of the diagonal of the bounding box. The above procedure is
then repeated in the opposite direction, giving us two maximums
and two means. The Hausdorff distance is the maximum of the
two maximums and the Chamfer distance is the mean of the two
means.Note that for performing screened Poisson reconstruction on
point clouds upsampled using EC-Net and 3PU, we estimate normals
using PCA based on 30 nearest neighbors. This is not necessary for
our method, since we obtain normals from the dense heightmap as
mentioned in Section 3.3.

In Table 1, we compare the results for the three modes for sam-
pling our dense heightmaps, as defined in section 4.1. To have a
sense of the scale, note that the point coordinates were normalized to
lie within a unit cube. We first consider the detailed and even modes,
which both produce 16 times the number of input points. Although
the detailed mode produces the best reconstructed mesh, it is note-
worthy that the even mode is not far behind, and even surpasses the
detailed mode for very low resolution point clouds. Those seeking
to apply our method to obtain a point cloud, and not a mesh, have

Mode D2M HD CD
Detailed – 5000 points 3.42E-04 3.24E-02 1.03E-03
Even – 5000 points 3.96E-04 3.48E-02 1.42E-03
Superdense – 5000 points 5.89E-04 3.35E-02 1.37E-03
Detailed – 2500 points 4.00E-04 3.66E-02 1.53E-03
Even – 2500 points 4.38E-04 4.08E-02 2.11E-03
Superdense – 2500 points 8.39E-04 4.00E-02 2.25E-03
Detailed – 625 points 1.16E-03 5.20E-02 3.86E-03
Even – 625 points 1.10E-03 5.03E-02 5.25E-03
Superdense – 625 points 2.93E-03 5.81E-02 6.23E-03

Table 1: Quantitative comparison of reconstruction results using our
three modes for domain translation of input point clouds with 5000,
2500 and 625 points. Note that the superdense mode produces 256
times the number of points, while the others increase the density by a
factor of 16.

Size of point clouds D2M HD CD
>300K: 5000 points 3.42E-04 3.24E-02 1.03E-03
5K: 5000 points 8.04E-04 3.26E-02 1.30E-03
625: 5000 points 1.17E-03 3.38E-02 1.54E-03
>300K: 2500 points 4.00E-04 3.66E-02 1.53E-03
5K: 2500 points 9.63E-04 3.72E-02 1.90E-03
625: 2500 points 1.46E-03 3.96E-02 2.17E-03
>300K: 625 points 1.16E-03 5.20E-02 3.86E-03
5K: 625 points 1.09E-03 5.04E-02 4.32E-03
625: 625 points 1.97E-03 5.54E-02 4.58E-03

Table 2: Quantitative comparison of using different point cloud sizes
when training: all mesh vertices (over 300K points), 5000 points
sampled using Poisson disk sampling, or 625 points. The resulting
metrics are compared for input point clouds with 5000, 2500 and 625
points.

Method D2M HD CD
EC-Net – 5000 points 3.42E-04 6.30E-02 3.89E-03
3PU – 5000 points 2.91E-04 3.63E-02 1.32E-03
Ours – 5000 points 3.42E-04 3.24E-02 1.03E-03
EC-Net – 2500 points 6.56E-04 6.57E-02 5.80E-03
3PU – 2500 points 3.16E-04 4.86E-02 2.13E-03
Ours – 2500 points 4.00E-04 3.66E-02 1.53E-03
EC-Net – 625 points 1.85E-03 5.84E-02 8.12E-03
3PU – 625 points 1.31E-03 5.55E-02 4.96E-03
Ours – 625 points 1.16E-03 5.20E-02 3.86E-03

Table 3: Quantitative comparison of reconstructed surfaces after 16x
upsampling using EC-Net, 3PU and our detailed mode for point clouds
with 5000, 2500 and 625 points.

Method D2M HD CD
3PU – 5000 points 0.081 1.83 0.440
Ours, Detailed – 5000 points 0.066 1.26 0.426
Ours, Even – 5000 points 0.113 1.36 0.443
3PU – 2500 points 0.161 2.77 0.485
Ours, Detailed – 2500 points 0.112 1.71 0.442
Ours, Even – 2500 points 0.181 1.88 0.478
3PU – 625 points 0.593 8.13 0.902
Ours, Detailed – 625 points 0.325 3.48 0.599
Ours, Even – 625 points 0.492 4.03 0.756

Table 4: Quantitative comparison of reconstructed surfaces after 16x
upsampling using 3PU, our detailed mode and our even mode on the
ABC dataset [13], for point clouds with 5000, 2500 and 625 points.



Figure 9: Two examples of reconstruction results obtained on the
ABC dataset [13], after upsampling samples of 2500 points. Top row:
ground truth. Bottom row: our results using the detailed mode.

a choice between using our even mode, or alternatively performing
Poisson disk sampling on the mesh produced using our detailed
mode. The superdense mode, which produces 256 times the number
of input points, suffers a bit when it comes to the distance to the
ground truth mesh. However, it is not far behind the other modes
when it comes to the Hausdorff and Chamfer distances.

A unique feature of our method is that we can obtain good results
on low resolution point clouds, even after training on high-resolution
point clouds. Our training meshes are very dense, and each has over
300 thousand vertices. They can also be randomly downsampled to
a lower resolution such as 5000 or 625 points during training. We
have therefore investigated how different resolutions of the training
point clouds affect the surface reconstruction results. After all, the
resolution of the training point clouds does affect the variety of the
sparse heightmaps that will be seen during training. Table 2 shows
that using the entire set of mesh vertices during training usually
produces the best results. Even in the case where the testing point
clouds have 625 points, it is a GAN trained on a higher resolution
(5000 points) which gives the best results. This is likely due to
a combination of two factors: i) we use raycasting onto meshes
to obtain our ground truth dense heightmaps, and ii) we randomly
sample only 100 points from each local neigborhood to contribute to
the sparse heightmap, thereby making our domain translation more
robust.

Table 3 compares the accuracy of the meshes produced by apply-
ing screened Poisson reconstruction on the dense output point cloud
of our domain translation method, as well as other recent methods
for point cloud upsampling. We choose the detailed mode of domain
translation for comparison, since it upsamples point clouds by 16
times (thereby allowing a fair comparison with 3PU), and it also
produces the most accurate reconstructed meshes. We compare our
work with the results obtained using EC-Net [28], as well as the
recent state-of-the-art method called 3PU by Wang et al [22]. Wang
et al claim that 3PU gives better results than all previous work for
16x upsampling of point clouds. In order to upsample point clouds
16x using EC-Net, we apply 4x upsampling with EC-Net twice in
succession, as recommended by Yu et al to Wang et al [22]. As
mentioned earlier, we use the same training data as Wang et al. We
do not retrain EC-Net, as we do not have edge annotations in our
training data, which are required by EC-Net. From Table 3, we can

see that across all three metrics, our quantative results are clearly
superior to those of EC-Net. Our results are also superior to 3PU
for the Hausdorff distance and Chamfer distance metrics, while still
being competitive for the D2M metric.

We have additionally performed a large-scale quantative eval-
uation of our method on the first 1,000 OBJ files in the ABC
dataset [13], whose results are summarized in Table 4. Figure 9
shows examples of our results on this dataset. We did not re-train
our GAN or the 3PU network on this dataset, but rather used the
same networks which were already trained on the aforementioned
90 models from SketchFab. The 3D models in the ABC dataset are
densely sampled triangular meshes obtained from parametric CAD
models. For models containing multiple connected components,
only the largest connected component was used for the evaluation.
The coordinates of these models are not normalized. Therefore,
in order to make a fair aggregation of the results, we divided the
computed distance metrics for each model by the average distance
between pairs of neighboring mesh vertices. We also compute the
median of each metric over all 1,000 models, to reduce the effect
of outlier cases where the point clouds produced by 3PU do not
work well with the normal estimation method (there were no such
cases among the SketchFab testing models). The results show that
our method gives reconstructed surfaces that are more accurate than
those obtained using 3PU. Furthermore, the worst-case error given
by the Hausdorff distance is comparable to the normalized distance
of 1 between nearest neighbors in the ground-truth dense mesh,
while the average-case errors are significantly smaller than 1.

We also found our method to be extremely fast, taking only 3
minutes to upsample a large point cloud of 160K points with an
unoptimized implementation. By contrast, the far more complicated
neural network of 3PU took 214 minutes to perform the same task
using the code provided by the authors. We note, however, that both
methods have comparable speed for small point clouds. For instance,
they both take around 20 seconds to upsample 5000 points.

The aforementioned state-of-the-art point cloud upsampling meth-
ods are ultimately based on PointNet++ [17]. It is therefore worth
noting that all upsampling methods based on PointNet++ share cer-
tain weaknesses:

1. They are not invariant to permutations of the point cloud.
This is because they all rely on farthest-point sampling as
an initial step for their neural networks (see [25]). Our sparse
heightmaps, on the other hand, are completely invariant to
permutations of the points in the local neighborhood.

2. They rely on large and complicated neural network architec-
tures, which affects the computational efficiency. By contrast,
we use a simple convolutional U-Net architecture for the GAN.

3. They do not perform well in regions with unusually dense
sampling. This is because after the farthest-point sampling
step in each set abstraction layer, K-nearest neighbors are
taken as representatives of the local neighborhood. Therefore,
regions of high density will result in too many neighbors that
are very close to the center point, thus giving a skewed picture
of the local neighborhood. In our case, having many points
mapping to the same pixels of the sparse heightmap will not
significantly affect the pixel intensities.

6 SCALAR FIELD UPSAMPLING

Our method also has the potential for using the conditional GAN to
predict values of a scalar or vector field corresponding to the dense
heightmap at a given point. As an example, we show an application
to the sharpness field defined by Raina et al [18, 19]. The feature-
aware smoothing method described in [19] is mainly concerned
with the local maxima of the field, which are scale-invariant. This



Figure 10: Sharpness field sampled from the fandisk model. Top
row: sparse sampling of the sharpness field precomputed on the
point cloud. Middle row: dense sharpness field predicted by our GAN.
Bottom row: ground truth sharpness field obtained by casting rays
onto the original mesh.

makes it simple to apply our GAN to locally predict the value of
the sharpness field of a point cloud. If values of the sharpness field
are pre-computed for the low-resolution point cloud, we can obtain
a sparse image of the sharpness values simultaneously with the
sparse heightmap (top row of Figure 10). By obtaining ground truth
sharpness fields on meshes, we can then train a separate conditional
GAN to predict the values of the sharpness field corresponding to
all points of the dense heightmap (middle row of Figure 10).

In order to predict values of the sharpness field at the dense output
points from our domain translation method, we trained a separate
GAN to predict sharpness field values at the output points, using the
same training procedure and data augmentation as the heightmap
translation GAN. The only difference is that we obtained better
results with a larger patch size of 16×16 for the discriminator. The
training data is a set of meshes of simple geometric shapes, whose
sharpness fields are computed using dihedral angles as described
in [19]. We then pre-computed the sharpness field of the blade point
cloud (80K points) using the CNN with a spatial transformer as
recommended in [19], before performing domain translation using
the even mode. The results we have obtained (Figure 11) show
that our GAN gives a sharpness field with similar properties to a
sharpness field computed from scratch on the dense point cloud
after domain translation. Furthermore, the entire domain translation
procedure along with the sharpness field estimation takes around 7
minutes, compared to 20 minutes if the sharpness field is recomputed
from scratch on the dense point cloud. The combination of the dense
heightmap, the normal map and the sharpness field together provide
all the information necessary for downstream methods to accurately
reconstruct the surface along with sharp features. We believe that
our domain translation approach to upsampling has the potential for
extension to other scalar fields and vector fields.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we have applied GAN-based domain translation to
enable us to reconstruct fine features of low-resolution point clouds.
We have obtained results superior to the state of the art, while pro-
viding a very different approach from previous PointNet++-based
work. We have also given a simple example demonstrating that
the same method has the potential to be extended to upsampling
of scalar fields. Our work demonstrates that tangible benefits can
be obtained by applying the domain translation paradigm to 3D
geometry problems, and not merely the typical domains associated
with GAN-based domain translation.

While our method is good at reconstructing low-level details, it

Figure 11: Upsampling results for the blade model, along with its
sharpness field. Left: using our GAN to estimate the sharpness field.
Right: recomputing the sharpness field from scratch on the dense
point cloud.

has a slight tendency to add unnecessary detail in undersampled
regions. Since we are performing domain translation, the GAN is
forced to hallucinate a realistic-looking dense heightmap even in the
presence of insufficient data. This problem opens up possibilities
for future work.

In our problem, we are able to obtain paired training data from
the two domains. The same approach can be extended to unpaired
data in domains where it is difficult to align the data of multiple
domains (e.g. heightmaps obtained from depth cameras and from
laser scanners). The raycasting-based approach to generating ground
truth data also opens up the possibility of obtaining training data
from implicit or parametric surfaces such as CAD models, instead
of meshes. There is also scope for extending our method to estimate
other scalar or vector fields in tandem with upsampling.

REFERENCES

[1] VCG library. http://vcg.isti.cnr.it/vcglib/index.html,
2004. Accessed: 2019-03-08.

[2] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan:
Unified generative adversarial networks for multi-domain image-to-
image translation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8789–8797, June 2018.

[3] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia. MeshLab: an Open-Source Mesh Processing Tool. In
V. Scarano, R. D. Chiara, and U. Erra, eds., Eurographics Italian
Chapter Conference. The Eurographics Association, 2008. doi: 10.
2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

[4] N. Dehmamy, L. Stornaiuolo, and M. Martino. Vox2net: From 3D
shapes to network sculptures. In NeurIPS Workshop on Machine
Learning for Creativity and Design, December 2018.

[5] H. Fan, H. Su, and L. J. Guibas. A point set generation network for
3D object reconstruction from a single image. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR),
pp. 605–613, 2017.

[6] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. A
papier-mâché approach to learning 3D surface generation. In The IEEE

http://vcg.isti.cnr.it/vcglib/index.html
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136


Conference on Computer Vision and Pattern Recognition (CVPR), pp.
216–224, June 2018.

[7] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or. Consoli-
dation of unorganized point clouds for surface reconstruction. ACM
transactions on graphics (TOG), 28(5):176, 2009.

[8] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R. Zhang.
Edge-aware point set resampling. ACM transactions on graphics
(TOG), 32(1):9, 2013.

[9] S. Huang, Q. Li, C. Anil, X. Bao, S. Oore, and R. B. Grosse. Tim-
bretron: A wavenet (cyclegan (cqt (audio))) pipeline for musical timbre
transfer. In International Conference on Learning Representations
(ICLR), p. To appear., May 2019.

[10] T.-W. Hui, C. C. Loy, and X. Tang. Depth map super-resolution by
deep multi-scale guidance. In European conference on computer vision
(ECCV), pp. 353–369. Springer, 2016.

[11] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pp.
1125–1134, 2017.

[12] M. Kazhdan and H. Hoppe. Screened poisson surface reconstruction.
ACM Transactions on Graphics (ToG), 32(3):29, 2013.

[13] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, and D. Panozzo. ABC: A big CAD model dataset
for geometric deep learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 9601–9611, 2019.

[14] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. PU-GAN: A
point cloud upsampling adversarial network. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 7203–7212,
2019.

[15] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer. Parameterization-
free projection for geometry reconstruction. In ACM Transactions on
Graphics (TOG), vol. 26, p. 22. ACM, 2007.

[16] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning
on point sets for 3D classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 652–660, 2017.

[17] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 5099–5108, 2017.

[18] P. Raina, S. Mudur, and T. Popa. MLS2: Sharpness field extraction
using CNN for surface reconstruction. In Proceedings of Graphics
Interface 2018, GI 2018, pp. 66–75. Canadian Human-Computer Com-
munications Society, 2018.

[19] P. Raina, S. Mudur, and T. Popa. Sharpness fields in point clouds using
deep learning. Computers & Graphics, 78:37–53, 2019.

[20] R. Roveri, A. C. Öztireli, I. Pandele, and M. Gross. Pointpronets:
Consolidation of point clouds with convolutional neural networks. In
Computer Graphics Forum, vol. 37, pp. 87–99. Wiley Online Library,
2018.

[21] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. Embree:
A kernel framework for efficient cpu ray tracing. ACM Trans. Graph.,
33(4):143:1–143:8, July 2014. doi: 10.1145/2601097.2601199

[22] Y. Wang, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung.
Patch-based progressive 3D point set upsampling. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5958–5967, 2019.

[23] Y. Wen, B. Sheng, P. Li, W. Lin, and D. D. Feng. Deep color guided
coarse-to-fine convolutional network cascade for depth image super-
resolution. IEEE Transactions on Image Processing, 28(2):994–1006,
2019.

[24] S. Wu, H. Huang, M. Gong, M. Zwicker, and D. Cohen-Or. Deep
points consolidation. ACM Transactions on Graphics (ToG), 34(6):176,
2015.

[25] J. Yang, Q. Zhang, B. Ni, L. Li, J. Liu, M. Zhou, and Q. Tian. Model-
ing point clouds with self-attention and gumbel subset sampling. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3323–3332, 2019.

[26] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point cloud
auto-encoder via deep grid deformation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.

206–215, June 2018.
[27] Z. Yang, Z. Hu, C. Dyer, E. P. Xing, and T. Berg-Kirkpatrick. Unsu-

pervised text style transfer using language models as discriminators.
In Advances in Neural Information Processing Systems (NeurIPS), pp.
7298–7309, December 2018.

[28] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. Ec-net: an edge-
aware point set consolidation network. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 386–402, September
2018.

[29] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. Pu-net: Point
cloud upsampling network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2790–2799,
June 2018.

[30] W. Zhang, H. Jiang, Z. Yang, S. Yamakawa, K. Shimada, and L. B.
Kara. Data-driven upsampling of point clouds. CoRR, abs/1807.02740,
2018.

[31] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE International Conference on Computer Vision (CVPR), pp.
2223–2232, 2017.

APPENDIX A TRAINING DETAILS

A.1 Generator architecture
The generator used in our GAN has a U-Net architecture with the
following layers:

1. 4× 4 convolution, stride 2, 64 kernels, leaky ReLU(slope=
0.2)

2. 4×4 convolution, stride 2, 128 kernels, instance norm., leaky
ReLU(slope= 0.2)

3. 4×4 convolution, stride 2, 256 kernels, instance norm., leaky
ReLU(slope= 0.2)

4. 4×4 convolution, stride 2, 512 kernels, instance norm., leaky
ReLU(slope= 0.2), 50% dropout

5. 4×4 convolution, stride 2, 512 kernels, instance norm., leaky
ReLU(slope= 0.2), 50% dropout

6. 4×4 convolution, stride 2, 512 kernels, leaky ReLU(slope=
0.2), 50% dropout

7. 4×4 transposed convolution, stride 2, 512 kernels, instance
norm., ReLU, 50% dropout

applied to concatenated output of layers 5 and 6.

8. 4×4 transposed convolution, stride 2, 512 kernels, instance
norm., ReLU, 50% dropout

applied to concatenated output of layers 4 and 7.

9. 4×4 transposed convolution, stride 2, 256 kernels, instance
norm., ReLU

applied to concatenated output of layers 3 and 8.

10. 4×4 transposed convolution, stride 2, 128 kernels, instance
norm., ReLU

applied to concatenated output of layers 2 and 9.

11. 4× 4 transposed convolution, stride 2, 64 kernels, instance
norm., ReLU

applied to concatenated output of layers 1 and 10.

12. 2x upsampling

13. 4× 4 convolution with bias, stride 1 with zero padding, 1
kernel, Tanh

https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
http://arxiv.org/abs/1807.02740
http://arxiv.org/abs/1807.02740
http://arxiv.org/abs/1807.02740
http://arxiv.org/abs/1807.02740
http://arxiv.org/abs/1807.02740
http://arxiv.org/abs/1807.02740


A.2 Discriminator architecture
Our discriminator uses the PatchGAN architecture proposed by Isola
et al:

1. 4× 4 convolution with bias, stride 2, 512 kernels, leaky
ReLU(slope= 0.2)

2. 4× 4 convolution with bias, stride 2, 1024 kernels, instance
norm., leaky ReLU(slope= 0.2)

3. 4× 4 convolution with bias, stride 2, 2048 kernels, instance
norm., leaky ReLU(slope= 0.2)

4. 4×4 convolution, stride 1 with zero padding, 1 kernel, linear
activation

We use a patch size of 8×8 for our heightmap domain translation
experiments. For scalar field domain translation, we obtained better
results with 16×16 patches, therefore layer 3 is omitted.

A.3 Training hyperparameters
The following hyperparameters are identical for both the generator
and the discriminator:

batch size = 16

optimizer: Adam

learning rate = 3×10−4

momentum: β1 = 0.5,β2 = 0.999

The discriminator loss is the mean squared error of classifying
each patch as real or fake. The generator has to maximize the dis-
criminator loss, while also minimizing the `1 error of the predicted
image. The `1 error is given a weight of 10 for heightmap domain
translation, and 0.5 in the case of scalar field domain translation.

APPENDIX B ADDITIONAL RESULTS

The following pages contain figures of additional results on testing
shapes. Figures 12 and 13 show results obtained on inputs of 5000
sampled points. Figure 12 compares the reconstructed meshes, while
Figure 13 shows the point clouds. As mentioned in Section 5 of the
main paper, if the final objective is to consume a point cloud and not
a mesh, our best results are obtained by either using the even mode,
or by performing Poisson disk sampling on the mesh reconstructed
using the detailed mode.

In Figure 14, we have also shown an example of how multiple
random samplings of 625 points give slightly different reconstructed
surfaces. Our results are compared with 3PU, which we found to
produce less consistent results. We have omitted examples where
PCA failed to give good enough normals for the 3PU output point
cloud, resulting in failure of the screened Poisson reconstruction.
Our method provides normals for output points, so no additional
normal estimation step is required, and our computed normals never
caused screened Poisson reconstruction to fail in our experiments.



Figure 12: Additional results for surface reconstruction using our detailed mode domain translation, compared with 3PU and EC-Net.



Figure 13: Dense point clouds obtained using domain translation using the even mode, compared with state-of-the-art point cloud upsampling
methods. The last column shows results from Poisson disk sampling of our reconstructed surface, using the detailed mode.



Figure 14: Comparison of surface reconstruction results obtained from multiple random samplings of 625 points of the Cupid Fighting model.


	Introduction
	Related Work
	Heightmap Domain Translation
	Local Heightmap Computation
	Sparse Heightmap Computation
	Dense Heightmap Computation

	Image-to-Image Translation
	Prediction of Normals

	Fine Feature Reconstruction
	Reconstruction Results

	Evaluation
	Scalar Field Upsampling
	Conclusion, Limitations and Future Work
	Appendix Training Details
	Generator architecture
	Discriminator architecture
	Training hyperparameters

	Appendix Additional Results

