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ABSTRACT

Regression loss design is an essential topic for oriented object detection. Due to the
periodicity of the angle and the ambiguity of width and height definition, traditional
L1-distance losses and its variants have been suffered from the metric discontinuity
and the square-like problem. As a solution, the distribution based methods show
significant advantages by representing oriented boxes as distributions. Differing
from exploited the Gaussian distribution to get analytical form of distance measure,
we propose a novel oriented regression loss, Wasserstein Distance(EWD) loss, to
alleviate the square-like problem. Specifically, for the oriented box(OBox) repre-
sentation, we choose a specially-designed distribution whose probability density
function is only nonzero over the edges. On this basis, we develop Wasserstein
distance as the measure. Besides, based on the edge representation of OBox, the
EWD loss can be generalized to quadrilateral and polynomial regression scenar-
ios. Experiments on multiple popular datasets and different detectors show the
effectiveness of the proposed method.

1 INTRODUCTION

Oriented object detection has been a fundamental task in various vision area, such as aerial imagesXia
et al. (2018)Liu et al. (2017b), scene textKaratzas et al. (2015)Yao et al. (2012), facesShi et al. (2018),
and retail scenesChen et al. (2020), it aims to precisely locate the arbitrarily oriented objects in a
single image. Although some methods based on improvements of horizontal object detection have
been used in oriented object detection Yang et al. (2019)Qian et al. (2021a)Yang et al. (2021b)Yang
et al. (2021c)Yang et al. (2018)Liu et al. (2017b) , it is a relatively new direction with many unsolved
problems.

Designing a proper regression loss is essential for training a well-performed oriented detector.
However, due to the periodicity of the angle and the ambiguity of width and height definition, the
regression process has been suffering from metric discontinuity and square-like problems. Recently,
some worksYang et al. (2019)Qian et al. (2021a) try to modify the L1 distance loss in order to
solve these limitations. They either bring in extra regression term or depends on new representation
definition, and the resultant performance is far from satisfactory. Among all the literature on oriented
regression loss design, GWDYang et al. (2021b) and KLDYang et al. (2021c) are the first to propose
representing the OBox as distributions. They convert the OBox to Gaussian distributions and use
Wasserstein distance or Kullback-Leibler Divergence as the regression loss. The distributional
representation elegantly solves the periodic problem of angle and ambiguity problem of width and
height. However, the Gaussian distribution degenerates for squares and thus fails to capture the
angular information as showed in Figure-1(b).Besides, those near square objects will also have trouble
in regressing the angle precisely(shown in Figure-2) as their optimization process is near stopping.
Therefore, we believe that there should be a much more reasonable choice other than the Gaussian
representation to fully exploit the advantage of the distributional representation method. In this paper,
we follow the idea of distributional representation and propose a novel oriented regression loss called
Edge Wasserstein Distance(EWD) loss to solve all the above problems.

In order to better reserve the geometrical information of OBox, we introduce a specially-designed
distribution whose probability density function is only nonzero over the edges as its representation.
In this way, we develop the Wasserstein distance as the loss to regress the distribution between
the ground-truth and prediction. As it is difficult to compute this distribution loss directly, we
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Figure 1: Illustration of oriented bounding box representations. a) Using five parameters (x, y, w, h, θ)
to represent a rotated bounding box. A rotated box can be mapped to two variants in the 5-p vector
space. b) Gaussian representation proposed by GWDYang et al. (2021b). It converts the rotated box
to Gaussian distribution. However, multiple squares are likely to be mapped to one Gaussian. c) Our
proposed edge representation. We use a clockwise(or counter-clockwise) edge sequence to represent
the rotated box. It is not affected by the square-like problem.

introduce several assumptions to simplify the calculation and present a simple approximation of
Edges Wasserstein distance(EWD) as the regression loss. The proposed EWD has several advantages.
First, with the distributional representation, it solves all the limitations of previous work, immune
from both the angular periodicity and ambiguity of width and height. Also the square-like problem
will not exist. Second, by treating the OBox as a whole, the optimization of boxes’ parameters are
dynamically adjusted according to the chosen target. This leads to high performance especially
in high-precision cases. Third, the proposed EWD, along with the edge representation, is more
general compared to other distribution based methods. It is applicable to quadrilateral and polynomial
regression scenarios. In summary, the contributions of this paper are three folds:

1) We introduce edge representation and propose a novel oriented regression loss, Edge Wasserstein
Distance loss, which is simple and general to rectangular, quadrilateral and polynomial regressions.

2) From general to specific, we theoretically develop the formulation of EWD loss on oriented
bounding box occasions. The resultant formulation is simple and turns out to be a generalized form
of horizontal L2-distance in oriented cases.

3) Experimentally, we show that for three datasets and two popular detectors, the EWD loss can
achieve challenging results compared with its peer methods.

2 BACKGROUND

2.1 RELATED WORK

Oriented object detection is an extension to classical horizontal detection. It is widely used in
areas like aerial object detectionHe et al. (2016), scene text detectionZhou et al. (2017)Long et al.
(2018)Liao et al. (2020) where targets need to be more precisely located. To find the orientation,
there are mainly three approaches: the classification based Yang et al. (2021a)Yang & Yan (2020),
segmentation basedWang et al. (2019)Liao et al. (2020) and regression based methodsZhou et al.
(2017)Liu et al. (2017a)Jiang et al. (2017)Qian et al. (2021b). The latter approach is preferred by
most researchers for its simplicity and advantage in getting high-precise localization. However, the
oriented regression has been suffered from discontinuity problem and square-like problem when
using the traditional L1 loss. These two problems are mainly caused by the periodicity of angle
and variations in bounding box definition. As a remedy for L1 loss, SCRDetYang et al. (2019)
proposes IoU-Smooth L1 loss to smooth the boundary of discontinuity by introducing the skew-IoU
factor. RSDetQian et al. (2021a) proposes modulated loss to overcome the discontinuity. Although
they partly solve these problems, the performances are far from satisfactory. Other methods try to
introduce the IoU loss Yu et al. (2016)Zheng et al. (2020)Rezatofighi et al. (2019) in horizontal
detection into oriented detection. They usually approximate the IoU loss as its implementation in
oriented occasions is too complicated. PolarMaskXie et al. (2021) proposes an approximation of
IoU operation. However, it is discrete and cannot be directly used for back propagation. Similar
idea is taken by PIoUChen et al. (2020). The most similar work to our method is GWDYang et al.
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(2021b) and KLDYang et al. (2021c), which both represent the oriented bounding box as Gaussian
distribution. However, the square-like problem still exists. Moreover, they are limited to regressing
the rectangular boxes and can not be generalized to quadrilateral cases.

2.2 ORIENTED BOUNDING BOX REPRESENTATION: A DISTRIBUTIONAL PERSPECTIVE.

For representing a rotated bounding box, the most commonly used method is the 5-p representation as
denoted in Figure-1(a). As has been mentioned, when it is used together with L1 loss, the problem of
metric discontinuity and square-like problems will arise. To avoid the limitations of 5-p representation
and to make the regression more accurate, GWD and KLD are first proposed to represent the rotated
box as Gaussian distribution (µ,Σ), where µ = (x, y), Σ1/2 = RSR⊤ and R is the rotational matrix
defined by θ. It solves the problem of ambiguity between width and height. On this basis, the
boxes’ distance can be calculated via popular distributional distance measure, KL-Divergence or
Wasserstein distance. The distributional representation further promotes high-precision performance
by treating the the bounding box as a whole. In such way, the optimization process of each parameter
is adaptively adjusted. By comparison, the 5-p representation together with L1 loss treat each
parameter independently, thus getting sub-optimal performance.

Following the distributional representation, we find that Gaussian may not be a perfect choice. As
denoted in Figure-1(b), the Gaussian representation degenerates for the squared OBoxs as the rotation
of squares will not change their Gaussian representation. In other words, Gaussian representation is
not a one-to-one mapping. It loses the angular information for squares.

To better represent the OBox, we design a distribution to capture the full geometrical information,
which we call edge representation(shown in Figure-1(c)). Specifically, we use a directional edge
sequence E to represent a rotated box and we design a 2-dimensional distribution which is only
defined on the edges and zero-valued elsewhere. The probability density function of OBox is written
as

p(x, y) =

{
p̃(x, y) (x, y) on E

0 Otherwise
(1)

where p̃ satisfies
∫
E
p̃(x, y) ds = 1. The edge representation is general and can be applied to

quadrilateral and polynomial cases. Next, we will develop the distance measure based on the edge
representation.

3 PROPOSED METHOD

3.1 EDGE WASSERSTEIN DISTANCE

Based on the previous edge representation, we formulate the distance between two OBoxes’ distribu-
tions, p, q by the Wasserstein metric

W(p,q) = inf E(||X−Y||22) (2)

where X and Y are points sampled from p and q. However, as the definition of Wasserstein distance
involves an optimization process, the calculation of Eq-2 is nontrivial. As a simplification, we make
an assumption on the joint distribution of two sampled points X and Y. Suppose Pi and Qi are
corner points of two OBoxes where i ∈ {0, 1, 2, 3} and Xi and Yj are sampled from segment PiPi+1

and QjQj+1 separately. We restrict p(X,Y) by

p(Xi,Yj) =

{
p̃(Xi,Yj) j = π(i)

0 otherwise
(3)

where π denotes a bipartite matching function which maps the edge index i from one OBox to π(i)
of the other. The assumption restricts the distance calculation only between the geometrical edge
counterparts. Thus, the 2 can be simplified as

W(p,q) = inf
p(Xi,Yj)

E
∑
i

∑
j

(||Xi −Yj||22)

= inf
π

∑
i

( inf
p(Xi,Yπ(i))

E||Xi −Yπ(i)||22)
(4)
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The distance calculation of the OBoxes is divided into the distance measure of each segment pair
E||Xi −Yπ(i)||22. For the minimum operation of the bipartite matching function π, as the direction
of the edge sequence has been defined, the number of total matched pairs is equal to the number of
edges. In practice, we traverse all the matches and get the minimum. Further simplification of Eq-4
depends on either the distribution p̃(x, y) of the OBox edge or the joint distribution p̃(Xi,Yj). Here,
we introduce two approximations to simplify the Eq-4 and formulate the Edge Gaussian Wasserstein
Distance(EGWD) and Edge Dense Wasserstein Distance(EDWD).

Edge Gaussian Wasserstein Distance (EGWD) We suppose p̃(x, y) to be a 2-D Gaussian distri-
bution denoted by (µ,Σ), where µ represents the edge’s center point and Σ is the covariance. The
covariance is calculated as Σ1/2 = RSR⊤ where R is the rotation matrix and S = diag(w2 , 0) with
w being the edge length. Following the above derivation, it turns out that the Wasserstein distance
between two consistent edge pair(µ1,Σ1) and (µ2,Σ2) is written asChafaï (2010):

W12 = ||µ1 − µ2||22 + Tr
(
Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
(5)

Thus, the Eq-4 can be written as the summation of each paired distance.

Edge Dense Wasserstein Distance (EDWD) In this part, we further restrict the joint distribution
for p̃(Xi,Yj) by Eq-6. In this way, the optimization problem is avoided and the calculated distance
becomes an upper bound for the exact Wasserstein distance.

p(Xi,Yj) =

{
p̃(Xi,Yj)) j = π(i) and δ(Xi) = δ(Yi)

0 otherwise
(6)

where δ(Xi) = ||XiPi||/||PiPi+1|| representing the normalized position of Xi on the segment. It
means that each point on the edge is matched exactly to its counterparts on the paired edge. As the
sampling process of Xi and Yi becomes fully coupled, the joint distribution p̃(Xi,Yj) degenerates
to the edge’s distribution, which is now a one dimensional distribution. Then Eq-4 can be further
simplified by a line integration. We directly show the final formulation for Eq-2 and leave the
derivation to the appendix.

W(p,q) = inf
π

∑
i

(
||∆ci||2 +

σ2

4
||∆wi||2

)
(7)

where ci denotes center of the segment, ∆ci denotes the vector between paired segments’ center
points, wi denotes the edge vector and ∆wi denotes the vector difference. σ2 denotes the variance of
the designed paired edges’ distribution p̃. The geometrical meaning of this approximation is to force
every point sampled from the edge to be densely aligned to its counterparts. Hence, the regression
can be viewed as a dense alignment process.

3.2 EDGE WASSERSTEIN DISTANCE REGRESSION LOSS FOR ORIENTED BOUNDING BOX

The developed EGWD and EDWD in Eq-12 and Eq-28 are for general polygons. For OBoxes, the
edges are not independent. Thus, we can further bring in the geometrical constraint and develop
EWD for OBox. Without loss of generality, we take the θ-based representation (x, y, w, h, θ) for
OBox.

EGWD for OBox. There are two constraints on the condition of OBox. First, the center points
of each edge can be expressed by the 5-p vector (x, y, w, h, θ). Second, the parallel edges share
identical covariance. By clockwise order, the center points can be written as

µ1 = (x− h

2
sin θ, y − h

2
cos θ)⊤, µ2 = (x+

w

2
cos θ, y − w

2
sin θ)⊤

µ3 = (x+
h

2
sin θ, y +

h

2
cos θ)⊤, µ4 = (x− h

2
sin θ, y +

w

2
cos θ)⊤

(8)

And the two covariance matrices that correspond to w and h are written as:

Σ1/2
w =

(
w
2 cos2 θ w

2 cos θ sin θ
w
2 cos θ sin θ w

2 sin2 θ

)
,Σ

1/2
h =

(
h
2 sin2 θ h

2 cos θ sin θ
h
2 cos θ sin θ h

2 cos2 θ

)
(9)
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Then for a given match π, the summation of the former term of Eq-5 can be simplified into∑
i

||µ1 − µ2||22 = 4||∆o||2 +
1

2
||∆w||2 +

1

2
||∆h||2 (10)

where ∆o = (∆x)2 + (∆y)2 represents the center point distance and ∆w =
||(w1 cos θ1,w1 sin θ1)

⊤ − (w2 cos θ2,w2 sin θ2)
⊤||2 represents the width vector difference. ∆h

is similar to ∆w. Similarly, we develop the simplified expression for the summation of latter term of
Eq-5 as

Tr(...) =
1

2
||∆w||2 +

1

2
||∆h||2 (11)

Thus, we combine Eq-10 and Eq-11 together and get the formulation for EGWD distance measure as

W(p,q) = 4||∆o||2 + ||∆w||2 + ||∆h||2 (12)

The full derivation is left to the appendix. At first glance, we find that the formulation of EGWD is
the generalized form of L2-distance loss.

EDWD for OBox. The simplification process of EDWD is similar to EGWD as they both contain
the summation of edge center difference. On the basis of Eq-10, the Eq-7 can be written as

W(p,q) = 4||∆o||2 +

(
1

2
+

σ2
w

2

)
||∆w||2 +

(
1

2
+

σ2
h

2

)
||∆h||2 (13)

where the σ2
w and σ2

h represent the variances of the single-variate distribution that correspond to the
width and the height. Their values describe the geometrical information of the corresponding edges.
In this work, we design the variance to be w for width and h for the height. In this way, the variance
ratio keeps the OBoxes’ aspect ratio. This special design leads to better performance compared to
directly setting them to a constant value. We will discuss it in the next section.

3.3 OVERALL LOSS FUNCTION DESIGN

Relationship between EGWD and EDWD. EGWD and EDWD have similar formulations. Compar-
ing Eq-12 and Eq-28, we find that the mathematical form of EGWD can be viewed as a special case
of EDWD when setting identical variance σ2

w, σ2
h for each side, although they are developed under

different assumptions. For EDWD, the variance is set according to the length of the edge. We will
show that this property is beneficial to the optimization process in the next part.

Scale Normalization. In object detection, a good regression loss should consider the problem brought
by bounding box’s scales. For L1 loss, the large target will produce much larger penalty than small
targets, which results in the degeneration of performance of small objects. To address this issue, we
normalize both the predicted and target bounding boxes by a certain scale to make the EWD distance
more robust in various scales. Specifically, we normalize the target width and height (wt, ht) to (1, 1)

and use them to scale the predicted (wp, hp) to (
wp

wt
,
hp

ht
). As for the center offset, using either wt or

ht as the denominator is ambiguous, thus we use
√
wtht to scale the offset. We also use this value to

scale the variance of EDWD. Then for gradient with respect to center op = (xp, yp)

∂fEWD(op)

∂op
=

(
2

s2
∆x,

2

s2
∆y

)
(14)

The scale factor s will dynamically adjust the gradient for various scaled boxes. Small targets will
get large gradients which is important as that small deviation will produce much more severe IoU
decrease for small scale targets. Similar analysis can be done for wp and hp.

∂fEWD(wp)

∂wp
= (1 +

wt

ht
)(
wp

wt
− cos∆θ),

∂fEWD(hp)

∂hp
= (1 +

ht

wt
)(
hp

ht
− cos∆θ) (15)

We can see that the gradient of wp and hp are also adjusted by the normalization scale. Smaller
height or width will receive larger gradient. Besides, the gradient is also affected by the θ difference
and aspect ratio. The larger side will get slightly larger gradient compared to smaller side. This is
desirable especially for extremely smaller object where regression is more likely to be affected by
noise. For the gradient of ∆θ, we have

∂fEWD(∆θ)

∂ cos∆θ
= −

(
wp

wt
+

hp

ht
+

wp

ht
+

hp

wt

)
(16)
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(a) Smooth L1 (b) KLD (c) EDWD

Figure 2: Visual comparison between different losses. Ground-truth bboxes are in red, predicted
bboxes are in green.

(a) Smooth L1 (b) KLD (c) EDWD

Figure 3: Smooth L1, KLD and EDWD versus angle when aspect ratio varies.

When wp = wt and hp = ht, then ∂fEWD(∆θ)
∂ cos∆θ = −(2 + wt

ht
+ ht

wt
) ≥ −4, the condition for equality

is that ht = wt. That is the square case. So this makes the model to produce large gradient for angle
when the aspect ratio is large. For the square case, there are still gradient for the angle optimization.
Remind that both KLD and GWD suffers from problem of gradient vanishing in square cases.

Post Function. We find that directly applying the EWD distance as the regression loss is unstable. In
most cases, the regression process failed to converge. This is caused by the squared operation which
is sensitive to large errors. To fix it, we simply apply a squared root operation to the EWD distance.
Note that GWD and KLD also encounter this problem and they use a non-linear mapping function
log(1 + x) or 1

τ+x to modulate the distance. We also tried this techniques and get similar results with
the squared root operation.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We evaluate our method on multiple datasets mainly covering aerial images: DOTAXia et al.
(2018), HRSC2016Liu et al. (2017b), and text detection: ICDAR2015Karatzas et al. (2015), MSRA-
TD500Yao et al. (2012). DOTAXia et al. (2018) is one of the largest data set for multi-class object
detection in aerial images. It contains 15 categories, 2,806 images and 188,282 instances. Images’
scales range from 800× 800 to 4000× 4000 pixels. In the dataset, each object is annotated by an
oriented bounding box (OBox), which can be denoted as (x1, y1, x2, y2, x3, y3, x4, y4) , where (xi, yi)
denotes the i-th vertice of OBox. The dataset is split into training, validation, and test sets with 1/2,
1/6, and 1/3 ratio, respectively. For the short names in Table-2, they are defined as(abbreviation-full
name): BR-Bridge, SV-Small vehicle, LV-Large vehicle, SH-Ship, HA-Harbor, ST-Storage tank,
RA-Roundabout, PL-Plane, BD-Baseball diamond. HRSC2016Liu et al. (2017b) is another aerial
images data set for ship detection. It contains images from two scenarios including ships on sea and
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ships close inshore. HRSC2016 dataset has four ship categories, 1061 images and 2976 samples
in total. It split into training, validation and test set which contains 436 images including 1207
samples, 181 images including 541 samples and 444 images respectively. The image sizes range from
300×300, to 1500×900. ICDAR2015Karatzas et al. (2015) and MSRA-TD500 are both commonly
used for oriented scene text detection and spotting. ICDAR2015 includes 1,000 training images and
500 testing images. MSRA-TD500 consists of 300 training images and 200 testing images. We
perform experiments on these scene text detection datasets in order to verify the scenario generality
of our work.

We mainly choose two types of detectors, RetinanetLin et al. (2017b) and FCOSTian et al. (2020) to
verify our methods. The implementation of the rotated version of them are based on AlpharotateYang
et al. (2021d) and MMRotateZhou et al. (2022). These two detectors are specially chosen as the
representation of anchor-based methods and anchor free methods. We use ResNet-50He et al. (2016)
backbone with FPNLin et al. (2017a) head for all datasets. Training is conducted on single Tesla
P100 GPU with 16GB memory, each with batch size of 2. For each datasets, Stochastic gradient
descent(SGD) is adopted as the optimizer and the base learning rate is set to 0.0025, weight decay
set to 0.0001, momentum set to 0.9. The training details for each dataset is somewhat different. For
DOTA, we use the training split to train the detector 20 epochs and use the validation split to report the
final results. For HRSC, ICDAR2015 and MSRA-TD500, as the these datasets are relatively small,
we set the training step of one epoch to 2190, 5000 and 1500 and total epochs to 12 to ensure that the
detector is fully trained. The base augmentation is simply set as random flip. If other augmentation,
eg, random rotate, is applied, the training length will be increased accordingly.

4.2 COMPARISONS AND ABLATIONS

Post functions. Table-3 compares the performance of different post functions and hyper parameters.
We report the results on HRSC2016 with Retinanet. Other datasets and detectors will result in similar
conclusions. The results show that the EWD without post function gets poor performance. Thus, a
simple

√
x function will improve the performance by a large margin. Using the log(1+x) as the post

function gets the best performance 89.49%. For the post function 1− 1
τ+x proposed by GWDYang

et al. (2021b), we find that the hyper parameter τ hardly affects the performance. In most of the
experiments, we use log(1 + x) as the post function unless explicitly specified.

Scale normalization. Table-1 shows the results with different types of scale normalization. The
results are reported on DOTA-1.0 with Retinanet. We also investigate into the effect of scale
normalization on smooth L1 loss. The results show that the smooth L1 loss without any normalization
gets the worst results, while a simple normalization by either the image size or the anchor size will
largely boost the performance(from 45.3 to 63.1 or 67.2). In practice, we find that the L1 loss without
any normalization will get a large loss value, which will overwhelm the classification loss and thus
deteriorate the training. So normalization by the image size or the anchor size will fix this problem
by means of lowering down the influence of regression loss. Further more, by adopting the scale
normalization by the target box value ht/wt or the minimum/maximum of them, the performance
can still be improved. Normalizing by the target minimum or maximum gets the best results, both for
smooth L1 loss and EWD loss. In all cases, the proposed EWD loss beats the smooth l1 loss. Even
without normalization, EWD loss gets 67.2% thanks to the modulation effect of post functions.

Bounding Box Definition. The bounding box definition refers to the range restriction techniques
for L1 loss(referring to Sec-2.2). In Table-2, we show the results of smooth L1 loss with different
bounding box definitions. We find that the minimum angle definition(restricting the angle to be in
[−45◦, 45◦) shows large advantage over the other two definitions. However, in other two scene text
datasets, we find that the long edge definition usually works best, which is chosen as the baseline.

Square-like problem. In Table-2, we compare the performance on circular targets:storage tank(ST),
roundabout(RA) and square-like targets:plane(PL), baseball diamond(BD). The circular target is a
special kind of square-like target whose angular direction is not defined. It is shown that EWD loss
gets slightly higher results than KLD and GWD for circular objects. They all behave much better than
the smooth L1 loss and its variants. For square-like objects, we report the AP85 on PL and BD. The
AP50 is not chosen because of squares with only angle difference will always get IoU higher than
82%. It is shown that the KLD and GWD methods behaves even worse than Smooth L1 loss while
our method performs the best. Moreover, we visualize the OBox predicted by L1 loss, KLD methods
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and ours. It is shown in Figure-2. For KLD loss, it fails to predict the direction of the square object.
But the L1 loss and ours do not suffer from it. The square-like problem can also be understood by the
distance-angle curve shown in Figure-3. We plot the distance compared by L1-loss, KLD and EWD
on different aspect ratio objects. For square-like objects(aspect r=1, the blue curve), the distance of
KLD is always zero. While L1 and EWD do not have this problem.

Table 1: Ablations of scale normalization on DOTA-1.0. w/o and w/ are short for without and with.
method loss w/o norm w/ norm by

image size anchor size ht / wt min(ht, wt) max(ht, wt)

Retinanet Smooth-L1 45.3 63.1 67.2 67.8 68.2 68.1
EWD 67.2 66.9 68.1 68.8 69.6 69.4

Table 2: Comparisons on DOTA-1.0. Refer to Sec-4.1 for short names. The symbols, †, ◦, □,
represent large aspect ratio, circular and near-square objects respectively. The bold red and blue fonts
indicate the top two performance. The oc, le and min denote the opencv definition(θ ∈ [−90◦, 0◦)) ,
long edge definition and minimum theta definition(θ ∈ [−45◦, 45◦) of oriented bounding box.

detector method Box Def BR† SV † LV † SH† HA† ST ◦ RA◦ PL□
85 BD□

85 5-AP50 AP50 AP75 AP50:95

Retinanet Smooth L1 oc 34.34 55.84 66.88 75.16 55.51 83.42 59.03 27.37 6.85 57.54 63.42 35.95 36.07
le 36.97 63.84 70.99 82.80 59.33 82.70 64.94 24.96 0.91 62.78 65.41 36.14 37.17

min 35.21 65.18 73.02 85.25 58.07 82.23 62.33 40.97 6.13 63.34 67.26 38.29 39.00
IoU-Smooth L1Yang et al. (2019) min 36.44 62.25 74.01 86.43 58.17 81.08 63.01 39.71 6.08 63.46 67.19 38.21 39.14
Modulated LossQian et al. (2021a) - 36.30 64.01 69.33 82.76 61.20 82.53 61.29 35.15 5.73 62.72 66.31 37.32 38.61

GWDYang et al. (2021b) - 41.03 66.30 73.80 83.31 61.76 83.82 63.33 31.03 2.89 65.24 68.61 40.68 40.71
KLDYang et al. (2021c) - 40.97 67.21 76.52 86.20 63.10 84.08 66.01 31.99 3.29 66.8 68.14 44.48 42.15

EGWD - 36.26 66.16 72.15 85.54 61.20 84.02 66.20 33.70 6.15 64.26 69.10 42.62 40.73
EDWD - 39.57 66.95 76.29 87.01 62.01 84.25 66.45 42.20 7.12 66.36 69.61 43.60 41.66

FCOS Smooth L1-Loss min 39.60 67.70 72.91 85.04 60.65 83.03 67.40 22.07 9.40 65.18 68.42 29.46 35.30
GWDYang et al. (2021b) - 42.73 68.12 82.48 87.86 65.90 83.67 67.31 27.03 9.85 69.62 70.00 38.20 39.70
KLDYang et al. (2021c) - 43.52 69.70 81.67 87.41 65.48 84.82 67.87 28.46 8.00 69.56 69.94 39.52 40.93

EGWD - 41.79 68.12 81.79 87.21 67.31 84.95 67.80 31.16 10.86 69.24 69.83 41.38 40.26
EDWD - 42.01 68.52 82.78 88.00 70.73 85.41 68.82 38.04 11.04 70.41 70.91 41.45 41.51

Table 3: Ablations on post functions. The results are AP50 reported on HRSC2016Liu et al. (2017b).

f(W )
1− 1

τ+f(W )

τ = 1 τ = 2 τ = 3 τ = 5
f(W ) = W 60.01 88.78 88.91 88.66 88.51
f(W ) =

√
W 88.27 88.45 87.90 88.21 88.35

f(W ) = log(1 +W ) 89.49 89.21 88.13 87.72 88.21

Table 4: Results of quadrilateral regression on HRSC2016.
method Smooth-L1 Modulated LossQian et al. (2021a) Gliding VertexXu et al. (2020) EDWD
AP50 72.06 88.51 87.23 90.01
mAP50:95 35.13 53.07 50.33 59.62

Comparison with peer methods. In this part, we compare EWD loss with smooth L1 loss, IoU-
Smooth L1 LossYang et al. (2019), Modulated lossQian et al. (2021a), GWDYang et al. (2021b) loss
and KLDYang et al. (2021c) loss. These methods are chosen as they are all designed to solve the
problems for oriented regression. GWD and KLD are most relevant to our method and the comparison
with them is conducted on all datasets and settings. The comparison is conducted on three commonly
used datasets, DOTA-1.0(Table-2), HRSC2016(Table-5 and ICDAR2015(Table-6. We choose two
most representative detectors, Retinanet and FCOS, and implement their rotated version as the base
detectors. The rotated FCOS increases overall baseline performance compared to rotated Retinanet,
but it gets a worse result on high-IoU occasions. Nevertheless, we can see that on all occasions, the
EDWD loss gets the best results. For example, using rotated Retinanet on DOTA-1.0, the EDWD
loss increased the AP50 by 2.35% compared to the best performed Smooth L1 loss. It also beats the
KLD loss by 1.47%.

Large aspect ratio optimization. The EWD loss and KLD are both optimized for large aspect ratio
targets. Mathematically, for fixed angle deviation, larger aspect ratio targets result in much larger
penalty, as shown in Figure-3. While it makes no difference for L1 loss. It is noticed that there is
a sharp turning point on the loss curve of EWD loss for small aspect ratio objects. As long as the
aspect ratio is larger than a certain limit, the turn point vanishes. The turning point is caused by
the infimum operation in Eq-7. It means that when the angle difference is larger than the boundary
value, the current bipartite match has to change in order to get the minimum. In Table-2, we choose

8
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Table 5: Experiments on HRSCLiu et al. (2017b).
Detector Methods Smooth L1 GWD KLD EGWD EDWD
Retinanet AP50 84.28 85.56 87.45 88.87 89.49

AP50:95 47.76 52.89 58.72 56.19 58.80
FCOS AP50 88.30 89.74 89.85 89.70 90.30

AP50:95 51.82 54.12 55.03 53.98 55.32

Table 6: Comparisons on ICDAR2015
No Rotate Aug Rotate AugDetector Method Hmean50 Hmean75 Hmean50:95 Hmean50 Hmean75 Hmean50:95

Smooth L1-Loss 71.52 45.62 41.98 74.18 48.39 43.39
GWD 74.18 46.22 43.23 75.82 49.64 45.53
KLD 74.41 47.05 43.12 76.41 50.41 45.30

EGWD 74.62 46.91 43.45 76.86 50.92 45.69
Retinanet

EDWD 74.77 47.60 43.73 77.49 51.23 46.18
L1 70.71 43.01 41.15 74.01 47.64 43.27

GWD 74.50 44.27 42.19 75.78 48.52 44.61
KLD 74.71 47.37 42.25 76.12 49.31 44.53

EGWD 74.31 45.89 43.72 75.65 47.99 44.70
FCOS

EDWD 74.94 46.29 43.14 76.33 49.28 45.07

Table 7: Comparisons on MSRA-TD500
No Rotate Aug Rotate AugDetector Method Hmean50 Hmean75 Hmean50:95 Hmean50 Hmean75 Hmean50:95

Smooth L1-Loss 64.34 38.86 38.39 70.24 41.94 40.20
GWD 66.47 43.61 39.96 72.66 43.72 42.31
KLD 66.21 46.86 41.94 73.55 45.44 42.14

EGWD 67.10 47.32 42.01 73.98 48.64 44.10
Retinanet

EDWD 67.32 48.65 42.55 74.13 49.14 45.08

several categories that have large aspect ratio to report the performance. We use 5-AP50 to denote
their average. The scene text datasets are also large aspect ratio dominated. It is shown that EWD
loss gets comparable results with KLD loss on these targets. In most times, the EWD loss exhibits
better performance compared with KLD loss.

Polynomial Regression To verify the performance on general polynomial regressions, we design
a polynomial regression head based on FCOSTian et al. (2020). The regression branch regresses
four offset vectors (δx, δy) relative to the anchor point. The other part of the detector is kept
identical to the original FCOS. For comparison, we choose smooth L1 loss, modulated lossQian
et al. (2021a), gliding vertexXu et al. (2020). These methods are chosen for they can also be applied
to the quadrilateral regression occasion. For smooth L1 loss, the regression target is sorted in the
order of top point, right point, bottom point, and left point. Note that gliding vertex regresses a set of
specially designed parameters, horizontal width/height, four gliding offset(referring to the original
paper for details). We follow their setting and modify the regression head correspondingly. The
comparison results are shown in Table-4. From the results, we find that for L1 loss, although the
regression targets are sorted in order, the optimization is still unstable and tend to converge slowly.
The modulated loss gets the second best results and the proposed EWD loss gets the best, even higher
mAP(59.62vs55.32) than in the oriented case.

5 CONCLUSION

In this paper, we propose a novel distance measure based on the Wasserstein distance of bounding
box’s edges. By making some assumptions, we develop a novel loss function for oriented object
detection, aka, Edge Wasserstein Distance loss (EWD). It is applicable to the general polynomial
regression case, including the commonly seen oriented bonding box regression and quadrilateral
regression. Interestingly, we find that for the oriented bounding box, the EWD loss turns out to be
a generalized form of L2-distance loss. To verify the proposed method, extensive experiments are
conducted on aerial images and scene text images. It demonstrates that the proposed method gets
satisfactory results.
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A APPENDIX

A.1 FULL DERIVATION OF EDGE GAUSSIAN WASSERSTEIN DISTANCE

The Wasserstein distance between two Gaussian distributions is written as:
W12 = ||µ1 − µ2||22 + Tr

(
Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
(17)

where µi is the edge center point and Σi is the covariance matrix and is defined as

Σi = RiS
2
i Ri

⊤

=

(
cos θi − sin θi
sin θi cos θi

)(
w2

i

4 0
0 0

)(
cos θi sin θi
− sin θi cos θi

)
=

(
w2

i

4 cos2 θi
w2

i

4 cos θi sin θi
w2

i

4 cos θi sin θi
w2

i

4 sin2 θi

) (18)

where w represents the edge’s length and θi represents the angle of the edge. Then, for the latter form
of Eq-17, it can be simplified by

Tr(...) = Tr(Σ1) + Tr(Σ2)− 2 ∗ Tr((Σ1/2
1 Σ2Σ

1/2
1 )1/2)

=
w2

1

4
+

w2
2

4
− 2 ∗ Tr((Σ1/2

1 Σ2Σ
1/2
1 )1/2)

(19)

Then, for the term ((Σ
1/2
1 Σ2Σ

1/2
1 )1/2, note that Σ1/2

i = RiSiR
⊤
i , we have

(Σ
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(20)
Finally, the trace term is developed as

Tr(...) =
w2

1

4
+

w2
2

4
− 1

2
w1w2 cos∆θ

=
1

4
||∆w||2

(21)

Hence, we get the simplified version of EGWD for a single edge pair as

W12 = ||∆µ||2 + 1

4
||∆w||2 (22)

There are two constraints on the condition of OBox. First, the center points of each edge can be
expressed by the 5-p vector (x, y, w, h, θ). Second, the parallel edges share identical covariance. We
use o to denote the box’s center point, µ to denote the edge’s center point, w to denote the vector
corresponding to width and h to denote the vector corresponding to height. By clockwise order, the
center points of each edge can be written as

µ1 = o− h

2
, µ2 = o+

w

2

µ3 = o+
h

2
, µ4 = o− w

2

(23)

Then, the EGWD can be developed as

W(p, q) = ||∆(o− h

2
)||2 + ||∆(o+

w

2
)||2 + ||∆(o+

h

2
)||2 + ||∆(o− w

2
)||2

+
1

2
||∆w||2 + 1

2
||∆h||2

= 4||∆o||2 + ||∆w||2 + ||∆h||2

(24)
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A.2 FULL DERIVATION OF EDGE DENSE WASSERSTEIN DISTANCE

We denote the edge center point as c, the edge vector as w. For a pair of edge, suppose two sampled
points X1, X2 from two edges can be denoted as

Xi = c+ x
wi

2
(25)

where x ∈ [−1, 1] Then the two edge’s distance can be written as

W12 =

∫
x

p(x)||∆c+ x
∆w

2
||2dx

= ||∆c||2 +
∫
x

p(x)x2 ||∆w||2

4
dx+

∫
x

p(x)x∆c∆wdx

(26)

In this paper, we choose the probability density function p(x) to be axial symmetric around the edge
center. Thus, the last term of Eq-26 is zero. Note that

∫
x
p(x)x2dx represents the variance of the

distribution, which we can use σ2 to denote it. Finally, the expression can be written as

W12 = ||∆c||2 + σ2

4
||∆w||2 (27)

Combining Eq-23 and Eq-27, we get the formulation for OBox

W(p,q) = 4||∆o||2 +

(
1

2
+

σ2
w

2

)
||∆w||2 +

(
1

2
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σ2
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2
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||∆h||2 (28)
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