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ImageScope: Unifying Language-Guided Image Retrieval via
Large Multimodal Model Collective Reasoning

Anonymous Author(s)

Abstract
With the proliferation of images in online content, language-guided
image retrieval (LGIR) has emerged as a research hotspot over the
past decade, encompassing a variety of subtasks with diverse input
forms. While the development of large multimodal models (LMMs)
has significantly facilitated these tasks, existing approaches often
address them in isolation, requiring the construction of separate
systems for each task. This not only increases system complexity
and maintenance costs, but also exacerbates challenges stemming
from language ambiguity and complex image content, making it
difficult for retrieval systems to provide accurate and reliable results.
To this end, we propose ImageScope, a training-free, three-stage
framework that leverages collective reasoning to unify LGIR tasks.
The key insight behind the unification lies in the compositional
nature of language, which transforms diverse LGIR tasks into a gen-
eralized text-to-image retrieval process, along with the reasoning
of LMMs serving as a universal verification to refine the results.
To be specific, in the first stage, we improve the robustness of the
framework by synthesizing search intents across varying levels of
semantic granularity using chain-of-thought (CoT) reasoning. In
the second and third stages, we then reflect on retrieval results by
verifying predicate propositions locally, and performing pairwise
evaluations globally. Experiments conducted on six LGIR datasets
demonstrate that ImageScope outperforms competitive baselines.
Comprehensive evaluations and ablation studies further confirm
the effectiveness of our design.

CCS Concepts
• Information systems → Information retrieval; Retrieval
models and ranking; Users and interactive retrieval.

Keywords
Language-Guided Image Retrieval, Large Multimodal Model, Col-
lective Reasoning
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1 Introduction
The past decade have witnessed an explosion of multimodal infor-
mation on the internet, particularly with images emerging as one of
the most prevalent mediums for online information sharing. Numer-
ous image-centric platforms have proliferated, such as Instagram,
Flickr, and Pinterest. To extract valuable information from the vast
amount of images available on the web, image retrieval [15, 33] has
evolved into a rapidly developing technology that underpins various
applications in real life, especially in fields like e-commerce [11, 69]
and search engines [61]. The traditional content-based image re-
trieval [24, 45, 57] and tag-based image retrieval [19, 54, 60] have
achieved remarkable efforts, laying the foundation for the wide-
spread adoption of text-to-image retrieval (TIR) [10] inmostmodern
search engines. In recent years, TIR has been greatly boosted with
Vision-Language Models (VLMs) [39, 40, 49, 53, 66] based on Trans-
former [55], which aligns visual and linguistic modalities within a
joint latent space through pre-training on large-scale image-text
pairs, providing advancements in retrieval accuracy and relevance.

Although these steady progress has been made, TIR falls short
in capturing user’s search intent in an interactive manner. Conse-
quently, new tasks such as Composed Image Retrieval (CIR) [6, 13,
27, 46, 56] and Chat-based Image Retrieval (Chat-IR) [17, 37, 38]
have been introduced. To be more specific, CIR enables users to
refine search results through language feedback based on a pro-
vided reference image. As illustrated in Figure 1 (b), a user may
wish to modify specific visual elements (e.g., objects, attributes, and
environments) of the given reference image, and she/he can provide
language feedback to guide the system in retrieving images that
align with the desired changes. In contrast, Chat-IR, as depicted in
Figure 1 (c), focuses on progressively narrowing down the search re-
sults through multiple rounds of dialog interaction, especially when
the user’s retrieval intent is initially vague or evolves throughout
the retrieval process. For instance, a user might start with a broad
query like “A man walking on the street” and later specify a pref-
erence for visual elements such as “rainy day” or “cityscape” after
reviewing initial results. Both CIR and Chat-IR allow for continuous
refinement of results to accommodate the dynamic nature of user
needs. Tasks like these, including text-to-image retrieval (TIR), all
rely on user-provided textual input, and these tasks are generally
termed as Language-Guided Image Retrieval (LGIR) [13, 25, 28]. The
research on LGIR has evolved rapidly, making remarkable progress
across various tasks [7, 20, 26, 35, 37, 38].

Despite these task-specific advances, a fundamental challenge
remains: existing methods tend to address each task in isolation,
focusing on optimizing for specific input modalities or interac-
tion styles without providing a unified framework that generalizes
across LGIR tasks. This fragmented approach limits the ability to
integrate information from diverse inputs, such as combining refer-
ence images and multi-turn dialog, which is critical for handling
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A man is walking on a street.

Here are the images I find …

(a) Text to Image Retrieval

Change the image at night and
with cars nearby.

I find the following images for you.

(b) Composed Image Retrieval

A man is walking on a street.

(c) Chat-based Image Retrieval

Here are the images.
Tell me more details about the image.

In a rainy day.

Understood!

Focus on cityscape.

No Problem!

Figure 1: Illustration of three language-guided image retrieval tasks: text-to-image retrieval, composed image retrieval and
chat-based image retrieval.

ambiguous queries and enhancing user’s search experience. More-
over, the inherent ambiguity of natural language, combined with
the complexity of real-world image content, makes it difficult to
fully capture user intent and refine retrieval results. Accurately
identifying subtle visual details remains particularly challenging
for current methods, and the issue could be further amplified when
user feedback is incomplete or imprecise.

To achieve this goal, in this paper, we propose a unified three-
stage framework, named ImageScope, for LGIR, leveraging the ad-
vantages of multimodal collective reasoning to fully harness the
potential of Large Multimodal Models (LMMs). The general idea
underlying the unification is grounded in the compositional nature
of language, allowing for the conversion of diverse LGIR tasks into
a standardized text-to-image retrieval process. Moreover, the rea-
soning capacities of LMMs act as a universal means of verification
to improve the precision of results. To establish a unified frame-
work, we utilize LMM to generate textual descriptions for both
input reference image and images in database. We set the semantic
composition in the language domain, using Large Language Model
(LLM) to synthesize the user’s various forms of textual feedback
into a coherent description of the target image. Then the retrieval
is transformed into a text-to-image retrieval process, which can be
executed by a pretrained VLM. Subsequently, a carefully designed
reflective assessment incorporating a verification-evaluation para-
digm is introduced to enhance the refinement of the results.

More specifically, the ImageScope framework consists of three
stages. (1) Stage 1: Semantic Synthesis. To thoroughly analyze
operations on visual elements referenced in the textual feedback,
we define five distinct instruction types within a carefully tailored
prompt: addition, removal, modification, comparison and retention.
The LLM-based reasoner utilizes chain-of-thought (CoT) reason-
ing to integrate these operations, generating target image descrip-
tions at three levels of granularity: core elements, enhanced details,
and full synthesis, to address potential ambiguities in the user’s
feedback. Following this, a pre-trained VLM conducts dual-path
retrieval for both text-to-image and text-to-text tasks to ensure
robustness. (2) Stage 2: Predicate Verification. To overcome the
limitations of pre-trained VLMs in capturing fine details, we pro-
pose a local semantic validation method based on predicate logic.
The reasoner, guided by carefully crafted prompts, generates a se-
ries of verifiable propositions derived from the operations in the
first stage. An LMM is then employed as a verifier to check the
candidate images against these propositions. Additionally, we in-
troduce a relaxation strategy to quantify the number of satisfied
propositions, using this count to prioritize and rank the candidate

images. (3) Stage 3: Overall Evaluation. In this stage, we perform
a holistic evaluation to determine whether the retrieved images
fully meet the user’s instructions, particularly in scenarios involv-
ing comparisons with a reference image. Another LMM, serving as
an evaluator, is employed to iteratively narrow down the candidate
images through pairwise comparisons, until the image that best
satisfies the user’s requirements is identified.

In our method, these multimodal models collaborate across dif-
ferent stages of reasoning, a cohesive three-stage framework. Ad-
ditionally, the proposed ImageScope framework is highly flexible,
and seamlessly compatible with various models without additional
training. The outputs from each stage are user-friendly and offer a
degree of interpretability.

To sum up, our main contributions are threefold:

• This paper presents a novel framework, ImageScope, designed
to address language-guided image retrieval (LGIR) tasks. To the
best of our knowledge, ImageScope is the first unified frame-
work capable of handling various LGIR tasks without requiring
additional training.

• We propose a reflection method called verification-evaluation
for image retrieval task that accounts for both local and global
semantics. This method combines predicate proposition with
pairwise comparison, significantly improving retrieval perfor-
mance.

• The experimental results on six prevalent LGIR datasets show
that our framework achieves state-of- the-art performance. Abla-
tion studies and in-depth analysis further validate the effective-
ness and generality of ImageScope.

2 Related Work
2.1 Language-Guided Image Retrieval
Unlike traditional content-based [24, 45, 57] or tag-based image [19,
54, 60] retrieval methods, language-guided image retrieval (LGIR)
encompasses a range of language-centric tasks, such as text-to-
image retrieval, composed image retrieval (CIR), and chat-based
image retrieval (Chat-IR), offering a retrieval paradigm that allows
flexible language feedback. Early traditional CIR methods treat
textual instructions as modifications to a reference image [7, 13,
46, 56], relying heavily on expensive annotated triplets for train-
ing data. Zero-shot CIR [6, 51] has been recently introduced to
alleviate such reliance, which can be broadly classified into two cat-
egories: text inversion [41, 51] and LLM editing [34, 63]. In contrast,
Chat-IR originally stemmed from visual dialogue [17] and visual
question-answering (VQA) tasks [4, 22], where multiple rounds of
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conversation revolve around a specific image to answer visual ques-
tions [18, 48]. Recent studies have designed a questioner to askmore
discriminative questions [37, 38], aiding in better retrieval, and used
LLM-based approaches to combine semantics for retrieval. How-
ever, these studies tend to address each LGIR task independently,
lacking a unified modeling. In contrast, our framework adopts a
training-free method to handle LGIR tasks in a unified manner,
which significantly distinguishes it from previous approaches.

2.2 Large Models and Reasoning
In recent years, large language models (LLMs) [2, 50, 62, 67] and
large multimodal models (LMMs) [5, 14, 43] have demonstrated
remarkable capabilities across various tasks, particularly in gener-
ation, understanding, and planning. Researchers have found that
step-by-step reasoning [58] and in-context learning can signifi-
cantly enhance the performance of LLMs. Some studies have ex-
plored the impact of different reasoning structures on performance,
such as chain [12], tree [64], and graph [8] structures. Addition-
ally, given the known susceptibility of LLMs to hallucinations [30],
some research attempts to mitigate errors in the reasoning process
through validation mechanisms, either via the model’s own feed-
back [47] or external feedback [21]. By contrast, another line of
research focuses on decomposing complex problems for more effec-
tive solutions. The Least-to-Most [70] approach breaks problems
down top-down into subproblems, while QDMR [29] decomposes
them into directed acyclic graphs. These studies further promote
advancements in areas like external tool usage [52] and multimodal
question answering tasks [68]. Our work differs from these studies
by designing a general reflection mechanism for LGIR tasks, which
leverages the reasoning capabilities of LLMs and LMMs to refine
retrieval results and enhance accuracy.

3 Methodology
In this section, we first formalize the LGIR task (§3.1), followed
by an explanation of the unification approach to LGIR tasks as
illustrated in Figure 2 (§3.2). Finally, we elaborate each stage of our
proposed framework (§3.3, §3.4, §3.5).

3.1 Problem Definition
Let us define the image database D, which consists of a set of
images {𝐼𝑖 }𝑁𝑖=1. The goal of LGIR is to establish a scoring func-
tion S = Ψ(T , 𝐼𝑟 ,D), where T represents the input text, 𝐼𝑟 de-
notes the input reference image, and S denotes the correspond-
ing image scores. Then the images can be ranked according to
their scores to produce the retrieval results. Based on this, text-
to-image retrieval can be defined as S = Ψ(Tdesc, ∅,D), where
Tdesc represents the text description and ∅ indicates no reference
image input. Similarly, given a reference image 𝐼𝑟 and a textual
instruction Tinst, composed image retrieval can be expressed
as S = Ψ(Tinst, 𝐼𝑟 ,D). Furthermore, given a conversation history
Tdial = {𝑑1, 𝑑2, . . . }, chat-based image retrieval can be repre-
sented as S = Ψ(Tdiag, ∅,D).

3.2 Unified Framework
Achieving a unified framework for LGIR is inherently difficult due
to the diverse nature of modalities and input types, each with its

own unique semantic structures. Bridging these differences to en-
able coherent image retrieval requires advanced reasoning across
multiple input forms. To address these complexities, in ImageScope,
we use a language-centric semantic synthesis approach. The core
insight behind this framework is the compositional nature of lan-
guage—leveraging language descriptions to combine semantics
from various input types and modalities. Recent advancements
in LLMs, particularly in content understanding and reasoning, of-
fer a promising foundation for semantic composition within the
language space. This motivates us to translate visual content into
language descriptions. To bridge vision with language, we employ
an LMM as a captioner to convert visual inputs into textual descrip-
tions. Simultaneously, a pre-trained VLM transforms both images
from the image database D and their corresponding textual de-
scriptions into vector representations.

𝑇1, . . . ,𝑇𝑁 = CaptionerLMM (D), (1)
𝑽𝑇 = 𝑣𝑡1, . . . , 𝑣𝑡𝑁 = VLM(𝑇1, . . . ,𝑇𝑁 ), (2)
𝑽 𝐼 = 𝑣𝑖1, . . . , 𝑣𝑖𝑁 = VLM(𝐼1, . . . , 𝐼𝑁 ), (3)

where𝑇1, . . . ,𝑇𝑁 are corresponding text description of images, 𝑽𝑇 ∈
R𝑁×𝑑 and 𝑽 𝐼 ∈ R𝑁×𝑑 are vector representation of captions and
images respectively, 𝑑 is the dimension decided by the VLM.

Following this, a reasoner based on an LLM synthesizes the se-
mantics of different tasks within the language space, ultimately
generating textual descriptions of the target image. Specifically,
• For TIR, we synthesize the semantics of the textual description

with a blank image.
• For CIR, we synthesize the semantics of reference image descrip-

tion with textual instruction.
• For Chat-IR, we synthesize the semantics of previous round’s

image description with the current round’s textual feedback.
In this way, reasoner generates textual descriptions for the desired
target image, transforming the LGIR query into text-to-image re-
trieval. Then the query can be process by the pre-trained VLM.

3.3 Stage 1: Semantic Synthesis
Next, we delve into the details and elaborate on the three stages of
the proposed ImageScope framework. As previously mentioned, the
entire framework consists of three stages, each designed to address
specific challenges in LGIR tasks: ambiguity in language feedback,
local semantic validation, and overall evaluation. As illustrated
in Figure 2 (a), a user’s language feedback may exhibit ambiguity
and uncertainty, potentially failing to fully capture all relevant
visual elements, which could lead to misunderstandings. Moreover,
a single textual description may involve multiple operations on
visual elements. Therefore, effectively understanding and parsing
user instructions is crucial in LGIR tasks. To address this challenge,
we propose a semantic composition strategy based on chain-of-
thought (CoT) reasoning in the first stage of our approach.

Specifically, we define five types of atomic instructions on vi-
sual elements (including objects and attributes), namely: addition,
removal, modification, comparison, and retention. As shown in Fig-
ure 2 (a), the given textual instruction can be decomposed into one
or a combination of these atomic instructions 𝑂 = {𝑜𝑖 }𝑀𝑖=1. Based
on this decomposition, we generate target image descriptions at
different levels of semantic granularity:

3
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Change the image at night and with cars nearby.

A man is walking on a street.

A black and a brown dogs is sitting beside a gray fridge
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Only one black dog, a woman in black shirt is cooking on
a stove.

2.

4.
CE: A woman in black shirt is cooking on a
stove and a black dog is sitting nearby.
ED: A woman in black shirt is cooking on a
stove in the kitchen and a black dog is
sitting nearby.
CS: A woman in black shirt is cooking on a
stove in the kitchen and a black dog is 
sitting near a gray fridge.

Addition: Add a woman in black shirt.

Addition: Make the woman cooking.

Removal: Remove the brown dog.

Retention: Keep the black dog.

1. There is a woman in black shirt.

2. The woman is cooking.

3. There is not a brown dog.

4. There is a black dog.

1. Is there a woman in black shirt? | True.

2. Is the woman cooking? | True.

3. Is there a brown dog? | False.

4. Is there a black dog? | True.
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Figure 2: Illustration of the proposed ImageScope framework.

• Core Elements𝑇CE: Includes only the elements mentioned in the
textual instruction.

• Enhanced Details 𝑇ED: Includes elements from the textual in-
struction and necessary adjectives from the reference image.

• Comprehensive Synthesis 𝑇CS: Includes the elements from tex-
tual instruction and relevant elements from reference image with
necessary adjectives.

This process can be illustrated as:

𝑇𝑟 = CaptionerLLM (𝐼𝑟 ) (4)
𝑂,𝑇CE,𝑇ED,𝑇CS = ReasonerLLM (T ,𝑇𝑟 , Prompt1), (5)

where𝑇𝑟 is the description of reference image 𝐼𝑟 and T is the input
textual instruction. The Prompt1 we use is shown in Figure 10. For
TIR, we set 𝑇𝑟 as a blank image, and for Chat-IR, 𝑇𝑟 represents the
last round information.

By synthesizing descriptions at multiple semantic granularities,
we can more comprehensively capture the user’s intent for the
retrieval target. These descriptions are then encoded into embed-
dings through the text encoder of VLM. Both text-to-image retrieval
and text-to-text retrieval are performed to enhance robustness. We
introduce a parameter 𝜏 to control the weight between these two
retrieval modes. The overall process is represented as follows:

𝑣CE, 𝑣ED, 𝑣CS = VLM(𝑇CE,𝑇ED,𝑇CS), (6)

𝒔 =
1
3

∑︁
𝑔∈{CE,ED,CS}

(𝜏 · sim(𝑣𝑔, 𝑽𝑇 )︸            ︷︷            ︸
text-to-text

+ (1 − 𝜏) · sim(𝑣𝑔, 𝑽 𝐼 )︸                   ︷︷                   ︸
text-to-image

), (7)

where 𝒔 ∈ R1×𝑁 is the similarity scores vector of the query, and
sim(·, ·) indicates cosine similarity. Finally, based on similarity
scores, we obtain an initial ranking list of candidate images:

{𝐶11,𝐶12, . . . ,𝐶1𝑁 } = argsort↓ (𝒔), (8)

where argsort↓ (·) represents sorting in descending order based on
the scores, {𝐶11,𝐶12, . . . ,𝐶1𝑁 } denotes the image retrieval results
of the first stage.

3.4 Stage 2: Predicate Verification
While the first stage typically yields relatively reliable results, cer-
tain retrieval outcomes may not accurately reflect user intent due
to limitations in pre-trained VLMs in capturing nuanced details. In-
spired by the reflection mechanisms in LLM reasoning, we propose
a local semantic verification method based on predicate proposi-
tion to further refine the retrieval process, as depicted in Figure 2
(b). Leveraging the decomposed atomic instructions from the first
stage, we employ a CoT strategy to guide reasoner in sequentially
generating propositions 𝑃 = {𝑝𝑖 }𝑀𝑖=1, question forms 𝑄 = {𝑞𝑖 }𝑀𝑖=1,
and corresponding truth values 𝑉 = {𝑣𝑖 }𝑀𝑖=1. The question form
represents interrogative sentence, which can be answered by the
verifier with a single Yes or No. The truth value represents the
correct attribute reflected in the user’s statement.

Building upon this foundation, the verifier addresses each can-
didate image by answering the question form 𝑄 of proposition 𝑃 .
This process enables the determination of the correctness of each
proposition. Ideally, candidate images meeting the retrieval criteria
should satisfy conjunctive form

∧𝑀
𝑖=1 𝑝𝑖 ↔ 𝑣𝑖

1. However, con-
sidering the performance limitations of the verifier and potential
issues with images, requiring every proposition to be true may be
overly stringent. Thus, we use a relaxation that allows for partial
non-fulfillment of propositions, aiming to satisfy as many propo-
sitions as possible rather than demanding strict adherence to all.
Specifically, for each candidate image𝐶1𝑗 , we calculate the number
of propositions in the conjunctive form

∧𝑀
𝑖=1 𝑝𝑖 ↔ 𝑣𝑖 that satisfy

(𝑝𝑖 ↔ 𝑣𝑖 ), denoted as 𝑐 𝑗 = VerifierLMM (∧𝑀
𝑖=1 𝑝𝑖 ↔ 𝑣𝑖 ,𝐶1𝑗 ), which

is used to count the number of correct answers and where 𝑐 𝑗 ∈ R is
the value for the 𝑗-th candidate image. Finally, candidate images are
ranked according to the count value, where a higher count value
indicates that the image better matches the user’s retrieval intent.
In the implementation, we use an LMM as the verifier to check
the top-𝑘 candidate images from the first stage {𝐶11,𝐶12, . . . ,𝐶1𝑁 }.
During ranking, a stable sorting algorithm is employed to ensure

1𝑝𝑖 ↔ 𝑣𝑖 = (𝑝𝑖 ∧ 𝑣𝑖 ) ∨ (¬𝑝𝑖 ∧ ¬𝑣𝑖 ) , i.e., 𝑝𝑖 and 𝑣𝑖 have the save value.
4
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that images with higher similarity scores are prioritized when count
values are equal. This process can be represented as follows:

𝑃,𝑄,𝑉 = ReasonerLLM (𝑂, Prompt2), (9)

𝒄 = {𝑐 𝑗 }𝑘𝑗=1 = VerifierLMM

(
𝑀∧
𝑖=1

𝑝𝑖 ↔ 𝑣𝑖 ,𝐶1𝑗

)
𝑗 = 1, · · · , 𝑘, (10)

{𝐶21,𝐶22, . . . ,𝐶2𝑘 } = argsort↓ (𝒄), (11)

where 𝑂 represents atomic instructions from the output of the first
stage, 𝐶1𝑗 is the candidate image from the first stage, 𝒄 ∈ R1×𝑘

denotes the count value vector. The Prompt2 we use is shown
in Figure 11. Then we can derive the refined retrieved images
{𝐶21, · · · ,𝐶2𝑘 } of the second stage.

3.5 Stage 3: Overall Evaluation
In the second stage, we focus on verifying the local semantics of
the retrieved images. In contrast, the third stage involves an overall
evaluation of candidate images, particularly in scenarios requiring
comparison with reference images. To achieve this, we introduce an
additional LMM as an evaluator. The evaluator’s task is to perform
pairwise comparisons between the reference image and top-ranked
candidate images from the second stage. By integrating image con-
tent and textual feedback, the evaluator determines whether the
candidate images approximately meet the user’s needs, providing
binary results (Yes or No) along with necessary justifications. This
process sequentially assesses each candidate until one meets the cri-
teria or the threshold 𝛼 is reached, which is the maximum number
of images to evaluate. If a suitable candidate is found, it is re-ranked
to the top. We also consider different forms of user feedback, e.g.,
descriptions of desired changes or direct preferences for images,
which are encoded into carefully designed prompt. This stage can
be illustrated as:

𝒇 = {𝑓 }𝛼𝑖=1 = Evaluator(𝐼𝑟 ,𝐶2𝑗 , Prompt3) 𝑗 = 1, 2, · · · , 𝛼, (12)
{𝐶31,𝐶32, · · · ,𝐶3𝛼 } = argsort↓ (𝒇 ), (13)

where𝒇 is the binary results for candidate images, {𝐶31,𝐶32, · · · ,𝐶3𝛼 }
represents the final ranking of images of the third stage. The Prompt3
is shown in Figure 12.

By combining local verificationwith global evaluation, ImageScope
leverages multimodal collective reasoning to ensure the top-ranked
image satisfies user intents both in detail and overall.

4 Experiments
4.1 Experiment Setup

Benchmark andMetrics. We evaluate our framework for LGIR on
six prevalent LGIR datasets. Specically, for CIR, we use CIRR [46],
CIRCO [6] and FashionIQ [59]. CIRR is the first natural image
dataset for CIR. It also designs a subset retrieval task with a group
candidates from the image database. CIRCO expands the image
database’s scale and provides multiple ground truth annotations to
mitigate false negative issue. FashionIQ focuses on fashion-domain,
encompassing three categories: dress, shirt, and toptee. We adhere
to the original benchmarks, employing Recall@k as the metric
for CIRR and FashionIQ, and mean average precision (mAP@k)
for CIRCO. For TIR, we use the widely adopted Flickr30K [65]

Table 1: Benchmark details.
Dataset Split Type # Queries # Images

Flickr30K [65] Test TIR 5,000 1,000
MSCOCO [42] Test TIR 25,010 5,000
CIRR [46] Test CIR 4,148 2,316
CIRCO [6] Test CIR 800 123,403
FashionIQ-Shirt [59] Val. CIR 2,038 6,346
FashionIQ-Dress [59] Val. CIR 2,017 3,817
FashionIQ-Toptee [59] Val. CIR 1,961 5,373
VisDial [17] Val. Chat-IR 2,064 × 10 50,000

and MSCOCO [42] datasets, both evaluated with Recall@k. For
Chat-IR, we use VisDial [17] dataset and measure the multi-round
performance with Hits@k [37, 38]. The details of these benchmarks
are shown in Table 1.

Baselines. We compare ImageScope with various strong baseline
methods. Given the training-free nature of ImageScope, our focus
is primarily on zero-shot methods for a fair comparison. (1) For
CIR, the baseline algorithms include PALAVRA [16], Pic2Word [51],
SEARLE [6], iSEARLE [1], CIReVL [34], LDRE [63], HyCIR [32],
LinCIR [23], and FIT4CIR [41]. (2) For TIG, we compare CLIP [49]
and OpenCLIP [31] to demonstrate the performance improvement
of the framework. (3) For Chat-IR, we evaluate against different
versions of CLIP and PlugIR [37] method to assess its effectiveness.

Implementation Details. We implement our method using Py-
Torch [3], with vLLM [36] serving as the inference engine for
both LLMs and MLLMs. The default models used for VLM, cap-
tioner, reasoner, verifier, and evaluator are CLIP-ViT-L/14 [31],
LLaVA-v1.6-7B [44], LLaMA3-8B [2], PaliGemma-3B-mix-224 [9],
and InternVL2-8B [14], respectively. Moreover, we further analyze
the performance of different models in the discussion section. The
temperature and top-p of sampling are set to 0 and 1 to ensure
deterministic outputs. The weight 𝜏 in stage 1 is set to 0.15. The
number of candidate images to verify in stage 2, i.e., 𝑘 is set to
20. The number of images to evaluate in stage 3 𝛼 is set to 3. All
experiments are conducted on a server equipped with A100-40G.

4.2 Performance Evaluation

Composed Image Retrieval. Table 2 presents the numerical re-
sults on CIRCO and CIRR test set, and average results of FashionIQ
validation set. We group these methods based on different VLM con-
figurations. As seen, it is evident that our ImageScope demonstrates
remarkable performance across various CIR datasets. On CIRCO
and CIRR datasets, it achieves state-of-the-art (SOTA) performance
compared to numerous competitive methods. With CLIP-ViT-L/14
as the VLM backbone, ImageScope brings an absolute improvement
of 5.01% on the mAP@5 metric for CIRCO, as well as absolute im-
provements of 12.84% and 15.93% on Recall@1 and Recallsubset@1
for CIRR, respectively, highlighting the framework’s significant
effectiveness. Regarding FashionIQ dataset, ImageScope still shows
competitive performance compared to strong baselines, achieving
the best or second-best metrics on the average result. Furthermore,
from the table, we also have the following observations:
• The VLM remains the foundation for most methods. When scal-

ing up the size of VLM from ViT-B/32 to ViT-L/14, almost all
5
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Table 2: Performance comparison of CIR on CIRCO test set, CIRR test set and FashionIQ validation set. We report average
results of three splits for FashionIQ. The best results are in boldface, and the second best results of baselines are underlined. “∗”
means using CLIP weights from [49]. “-” denotes results are not reported in the original papers. The complete experimental
results are presented in Tables 4 and 5.

VLM Method
CIRCO CIRR FashionIQ Avg.
mAP@k Recall@k RecallSubset@k Recall@k

k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=50 k=1 k=2 k=3 k=10 k=50

CL
IP
-V
iT
-B
/3
2 iSEARLE [1] 10.58 11.24 12.51 13.26 25.23 55.69 68.05 90.82 - - - 24.40 44.80

iSEARLE-OTI [1] 10.31 10.94 12.27 13.01 26.19 55.18 68.05 90.65 - - - 25.06 44.79
CIReVL [34] 14.94 15.42 17.00 17.82 23.94 52.51 66.00 86.95 60.17 80.05 90.19 28.29 49.35
LDRE [63] 17.96 18.32 20.21 21.11 25.69 55.13 69.04 89.90 60.53 80.65 90.70 24.81 45.63
ImageScope* 22.36 22.19 23.03 23.83 34.36 60.58 71.40 88.41 74.63 87.93 93.83 22.42 38.03
ImageScope 25.26 25.82 27.15 28.11 38.43 66.27 76.96 91.83 75.93 89.21 94.63 31.42 50.80

CL
IP
-V
iT
-L
/1
4

SEARLE [6] 11.68 12.73 14.33 15.12 24.24 52.48 66.29 88.84 53.76 75.01 88.19 25.56 46.23
SEARLE-OTI [6] 10.18 11.03 12.72 13.67 24.87 52.32 66.29 88.58 53.80 74.31 86.94 27.61 47.91
iSEARLE [1] 12.50 13.61 15.36 16.25 25.28 54.00 66.72 88.80 - - - 27.52 48.96
iSEARLE-OTI [1] 11.31 12.67 14.46 15.34 25.40 54.05 67.47 88.92 - - - 29.24 49.54
CIReVL [34] 18.57 19.01 20.89 21.80 24.55 52.31 64.92 86.34 59.54 79.88 89.69 28.55 48.57
LDRE [63] 23.35 24.03 26.44 27.50 26.53 55.57 67.54 88.50 60.43 80.31 89.90 28.51 50.54
HyCIR [63] 18.91 19.67 21.58 22.49 25.08 53.49 67.03 89.85 53.83 75.06 87.18 - -
LinCIR [23] 12.59 13.58 15.00 15.85 25.04 53.25 66.68 - 57.11 77.37 88.89 26.28 46.48
FIT4CIR [41] 15.05 16.32 18.06 19.05 25.90 55.61 67.66 89.66 55.21 75.88 87.98 29.42 50.88
ImageScope* 25.39 25.82 27.07 27.98 34.99 61.35 71.49 88.84 74.94 88.24 94.00 25.54 41.22
ImageScope 28.36 29.23 30.81 31.88 39.37 67.54 78.05 92.94 76.36 89.40 95.21 31.36 50.78

methods exhibit significant improvements. The pre-aligned fea-
ture space of VLMs plays a crucial role in these methods and
directly impacts the results.

• ImageScope compensates for the limitations of VLMs to some
extent. Generally, it is unsurprising that smaller VLMs perform
poorly. However, ImageScope shows strong performance even
with smaller-scale CLIP-ViT-B/32. We give credit to the verifica-
tion in Stage 2 and the evaluation in Stage 3, which refine the
top retrieval results, thereby enhancing the retrieval accuracy.

Text-to-Image Retrieval and Chat-based Image Retrieval. Ta-
ble 3 shows the comparison between the original VLMs and cor-
responding ones with ImageScope. We compare two versions of
CLIP [31, 49] with different scales. We can observe consistent and
significant improvements in different metrics across both datasets,
indicating the superiority of our framework. Both the top-ranked
R@1 and the overall ranking R@10 clearly outperform CLIP by
a notable margin. This significant improvement is attributed to
the verification in the second stage and the evaluation in the third
stage, which together ensure that the retrieved results meet the
requirements of the textual input. Figure 3 presents the comparison
of Chat-IR on VisDial. Across various dialogue rounds, ImageScope
consistently demonstrates superior retrieval performance, showing
significant improvements over both CLIP and PlugIR. Additionally,
CLIP’s performance is constrained by the maximum length of its
text input, resulting in subtle variations from the 7th round on-
ward. Although PlugIR is capable of handling dialogue inputs, it
remains suboptimal compared to our framework. The results of
CIR, TIR, and Chat-IR demonstrate that ImageScope is capable of
handling various LGIR tasks by accommodating different types of

1 2 3 4 5 6 7 8 9 10
# Rounds

50
55
60
65
70
75
80
85

53.44

60.90
64.73

67.78
69.91

72.4873.7474.9575.9777.03

VisDial (Hits@10) CLIP-ViT-B/32

1 2 3 4 5 6 7 8 9 10
# Rounds

50
55
60
65
70
75
80
85

57.32

63.23
65.21

69.04
71.90

73.69
75.8777.0378.05

79.89

VisDial (Hits@10) CLIP-ViT-L/14

Zero-shot CLIP PlugIR ImageScope

Figure 3: Performance of Chat-IR on VisDial [17] compared
with Zero-shot CLIP [31] and PlugIR [37]. Complete results
are shown in Table 6.

input and interaction forms, achieving effective performance in a
training-free manner.

4.3 Ablation Study

Stage Ablation. To further investigate the impact of each designed
stage of ImageScope, we conduct ablation study with on four LGIR
datasets with different stages. "Stage1" means only including "Se-
mantic Synthesis" stage, while "Stage2" means we add "Verification"
after stage 1, and "Stage3" means we add "Evaluation" after Stage 2.
As depicted in Figure 4, both Stage 2 "Verification" and Stage 3 "Eval-
uation" contribute to the improvement of top-retrieved results. We
observe a significant improvement in the second stage compared to
the first stage across different VLM scales. Moreover, despite only
conducting pairwise evaluations on the top-3 candidate images in
the third stage, the improvements in R@1 and H@1 are remarkable,
especially on MSCOCO, CIRR, and VisDial datasets. This further
validates the effectiveness of the evaluation stage design. These
findings clearly highlight the critical role of both the verification
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Table 3: Performance comparison of TIR on Flickr30K and MSCOCO test sets. “∗” means using CLIP weights from [49].

Method Flickr30K (1K test set) MSCOCO (5K test set) Average
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-B/32∗ 61.60 85.60 91.20 32.10 56.70 67.60 46.85 71.15 79.40
ImageScope∗ 76.08 89.74 92.67 46.37 66.75 73.87 61.22 (+14.37) 78.24 (+7.09) 83.27 (+3.87)

CLIP-ViT-L/14∗ 68.70 90.60 95.20 34.60 59.40 69.80 51.65 75.00 82.50
ImageScope∗ 77.18 92.06 94.82 49.46 70.55 77.67 63.32 (+11.67) 81.31 (+6.31) 86.25 (+3.75)

CLIP-ViT-B/32 66.56 88.16 93.02 39.45 65.51 75.65 53.01 76.83 84.33
ImageScope 78.84 92.66 95.64 51.23 73.32 80.79 65.04 (+12.03) 82.99 (+6.16) 88.22 (+3.89)

CLIP-ViT-L/14 75.72 92.96 96.00 46.46 71.10 79.78 61.09 82.03 87.89
ImageScope 81.10 94.02 96.82 53.73 75.96 83.50 67.42 (+6.33) 84.99 (+2.96) 90.16 (+2.27)
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Figure 4: Ablation study of each designed stage on five LGIR datasets. We show the results two scales of CLIP.
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Figure 5: Impact of parameter 𝜏 in Stage 1, 𝑘 in Stage 2 and
𝛼 in Stage 3 on three datasets. We highlight the best metrics
and corresponding values with numbers and dotted lines.

and evaluation stages in enhancing performance and their pivotal
impact on the final results.

Impact of Parameters. We take a further step and examine the
impact of hyperparameters at each stage, i.e., the weight 𝜏 in Stage
1, the number of candidate images 𝑘 in Stage 2 verification, and the
number of paired evaluations 𝛼 in Stage 3. As shown in Figure 5,
we report the evaluation results of corresponding stages for a clear
comparison. The first row of results regarding 𝜏 clearly shows a
consistent trend of initial increase followed by a decline. Consider-
ing that when 𝜏 is set to 0, only text-to-image retrieval is performed,
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Figure 6: Inference efficiency analysis. The left figure shows
the average inference latency, and the right one shows the
overall inference time. Numbers are shown in Tab. 7 and 8.

this indicates that incorporating text-to-text retrieval helps improve
performance. However, the value of 𝜏 , representing the weight of
text-to-text retrieval, should not be too large, as all datasets show
that the optimal performance is achieved at 0.1 or 0.15. The results
in the second and third rows represent the number of candidate
images 𝑘 for verification and 𝛼 for evaluation, respectively. Both
exhibit an initial sharp improvement followed by a plateau, sug-
gesting that incorporating more candidate images could enhance
performance. These findings further confirm the effectiveness of
each stage of the framework.

4.4 Discussion
4.4.1 Efficiency Analysis. Considering the use of LLMs and LMMs,
we further explore the efficiency of ImageScope framework. Figure 6
illustrates the latency proportion at different stages for each query
across various datasets, as well as the overall inference time. It can
be observed that the inference time per query across all datasets is
approximately 1 second. In the second stage, the verifier consumes
over 50% of the time, with the CIRR dataset showing the highest
proportion at 69.37%, as it requires more propositions to be verified
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4 kids playing, one in a red dress one in a 
pink shirt, one in a white shirt and a little 
boy with his arm through a green toy.

(a) Text to Image Retrieval

Add a large dog and have them 
sitting outside facing one another.

(b) Composed Image Retrieval

the hot dog is in the tray that the man holds

(c) Chat-based Image Retrieval

Tell me more details about the image.
Can you see the man's face?

no, you can't actually see a man

white

Stage 1
Step 1 1. Addition: Add 4 kids playing.

2. Addition: Add a kid in a red dress.

Step 2 CE: Four kids are playing.
ED: (same as the textual input, omitted)
CS: (same as the textual input, omitted)

Stage 2
Step 1

Step 2

1. There are 4 kids playing.
2. There is a kid in a red dress.

1. Are there four kids playing ? | True.

Stage 3

Stage 1
Step 1 1. Addition: Add a large dog.

2. Modification: Make the dogs sit outside 
facing one another.

Step 2 CE: A large dog and a small brown dog sit 
outside facing each other.
ED: A large dog and a small brown dog with a 
black nose sit outside facing each other.
CS: A large dog and a small brown dog with 
a black nose sit outside facing each other, 
with a green plastic ball.

Stage 2
Step 1

Step 2

1. There is a large dog.

2. The dogs are sitting outside facing one 
another.

1. Is there a large dog? | True.
2. Are the dogs sitting outside facing one 

another? | True.

Stage 3

3. Addition: Add a kid in a pink shirt.

4. Addition: Add a kid in a white shirt.

5. Addition: Add a little boy with his arm 
through a green toy.

3. There is a kid in a pink shirt.
4. There is a kid in a white shirt.
5. There is a little boy with his arm through a 

green toy.

(Other questions are similar with answer True, omitted)

Stage 1
Step 1 1. Removal: The man's face is not visible.
Step 2 CS: The image shows the hot dog in the tray that the man 

holds, but the man's face is not visible.
Stage 3

What color is the tray?

Stage 1
Step 1 1. Modification: The tray is white.
Step 2 CS: The image shows the hot dog in a white tray that 

the man holds, but the man's face is not visible.

Stage 3

Anyone else with him?

there are no people in the picture

Stage 1
Step 1 1. Removal: There are no people in the picture.
Step 2 CS: The image shows the hot dog in a white tray, but 

there are no people in the picture.

Stage 3

does the hot dog have stuff on it?

it looks like melted cheese, and chili

Stage 1
Step 1 1. Addition: The hot dog has melted cheese and chili on it.
Step 2 CS: The image shows the hot dog in a white tray with 

melted cheese and chili on it.
Stage 3
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Figure 7: Qualitative results. The underlined question in Chat-IR is from VisDial [17]. We show top-5 retrieved images and
highlight the ground truth images with black borders.

R@1 R@2 R@3
80

85

90

95

80
.3

0

87
.9

8 90
.7

6

81
.0

4

88
.3

6

91
.4

8

81
.1

0

88
.3

4 91
.0

2

81
.3

4

88
.9

6 91
.7

6

Flickr30K (R@k)

mAP@5 mAP@10 mAP@25
26

28

30

32

34

26
.3

2

26
.5

3

28
.2

0

27
.3

6

27
.9

8 29
.3

6

28
.3

6 29
.2

3

30
.8

1

29
.8

9

30
.3

5

32
.1

3

CIRCO (mAP@k)

GLM4-9B Qwen2-7B LLama3-8B Gemma2-9B
R@1 R@2 R@5

40

50

60

70

36
.9

2

48
.4

8

64
.9

2

37
.3

7

49
.5

4

66
.3

9

39
.3

7

51
.4

2

67
.5

4

39
.8

6

52
.6

3

68
.4

3

CIRR (R@k)
Reasoner

R@1 R@2 R@3
80

85

90

95

80
.7

6

87
.0

0

90
.2

0

81
.1

0

88
.3

4 91
.0

2

82
.8

4

89
.6

8 92
.3

2

81
.7

8

88
.9

4 91
.7

6

Flickr30K (R@k)

mAP@5 mAP@10 mAP@25
26

28

30

32

34

26
.9

3 27
.9

1

29
.7

0

28
.3

6 29
.2

3

30
.8

1

28
.6

9

29
.3

2

30
.8

6

29
.1

7

29
.7

0

31
.2

5

CIRCO (mAP@k)

InternVL2-1B PaliGemma-mix-224 PaliGemma-mix-448 MiniCPM_V_2

R@1 R@2 R@5

40

50

60

70

80

37
.1

6

48
.5

1

64
.5

5

39
.3

7

51
.4

2

67
.5

4

39
.1

6

51
.3

7

66
.8

9

39
.8

6

52
.0

7

67
.5

9

CIRR (R@k)
Verifier

Figure 8: Analysis of different reasoners and verifiers.
for each query on average. Additionally, verifier perform verifica-
tion on each proposition for 𝑘 candidate images individually, with
𝑘 set to 20. Therefore, considering the impact of 𝑘 as shown in
Figure 5, reducing 𝑘 appropriately can provide a trade-off between
performance and efficiency.

4.4.2 Generality of LLM and LMM. We conduct an investigation
into the generality of the framework, particularly focusing on the
crucial components, i.e., the reasoner and verifier. As shown in
Figure 8, we select various mainstream LLMs and LMMs. These
results clearly demonstrate that ImageScope seamlessly integrates
with different large models. Compared to the results of strong base-
lines in Tables 2 and 3, the results from various large models still
show an advantage, further validating the generality and effective-
ness of our framework. Moreover, it can be observed that more
powerful LLMs (such as Gemma2) enhance reasoning, which in

turn improves retrieval performance. The results from the verifier
indicate that increasing resolution (224 to 448) or model scale could
also lead to further improvements in performance.

4.4.3 Qualitative Results. Finally, to more intuitively understand-
ing the advantages of the proposed framework, we conduct an
in-depth qualitative analysis. As shown in Figure 7, cases from
various LGIR tasks are presented. In TIR task, ImageScope decom-
poses the user’s input into a series of operations and propositions,
successfully retrieving the correct image after the verification and
evaluation stages. In the CIR task, ImageScope similarly reasons
through feedback and retrieves images that largely meet the re-
quirements. The evaluation in the third stage successfully retrieves
the correct image, as evaluator performs pairwise comparison al-
lows for better integration of reference images for reasoning. In
Chat-IR task, it is evident that the user’s intent has shifted, partic-
ularly regarding the presence of a "man." The qualitative analysis
demonstrates that ImageScope can accurately understand the user’s
intent in multi-turn dialogues.

5 Conclusion
In this paper, we introduce ImageScope, a novel training-free frame-
work designed to unify Language-Guided Image Retrieval (LGIR)
tasks by harnessing the collective reasoning capabilities of large
multimodal models. Additionally, to address the challenges posed
by natural language ambiguity and complex image content, we
propose a reflective method, termed verification-evaluation, for
image retrieval. This method locally verifies predicate propositions
and globally conducts pairwise evaluations. Experimental results
on six widely-used LGIR datasets demonstrate the efficacy of the
proposed framework. Ablation studies and comprehensive analysis
underscore the generalizability of ImageScope.
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A man in a blue shirt speaking on a 
loudspeaker to a large group of people 
on bicycles.

(a) Text to Image Retrieval

Remove all but a few dogs and have a 
man standing with them looking at the 
camera with a sign in the back.

(b) Composed Image Retrieval

a man sitting on a motorcycle in the middle of the street

(c) Chat-based Image Retrieval

Tell me more details about the image.
is there more people than the rider?

no

black

Stage 1
Step 1 1. Addition: Add a man in a blue shirt.

2. Addition: Add a loudspeaker.

Step 2 CE: A man in a blue shirt is speaking on a 
loudspeaker.
ED: A man in a blue shirt is speaking on a 
loudspeaker to a large group of people on 
bicycles.
CS: A man in a blue shirt is speaking on a 
loudspeaker to a large group of people on 
bicycles, with a crowd of people.

Stage 2
Step 1

Step 2

1. There is a man in a blue shirt.
2. There is a loudspeaker.

1. Is there a man in a blue shirt? | True.

Stage 3

Stage 1
Step 1 1. Removal: Remove all but a few dogs.

2. Addition: Add a man standing with the 
dogs looking at the camera.

Step 2 CE: A man stands with a few dogs looking at 
the camera with a sign in the back.
ED: A man stands with a few dogs in a snowy 
landscape looking at the camera with a sign in 
the back.
CS: A man stands with a few dogs in a snowy 
landscape looking at the camera with a sign 
in the back, riding a horse-drawn sleigh.

Stage 2
Step 1

Step 2

1. There are only a few dogs.

2. A man is standing with the dogs looking at 
the camera.

1. Are there only a few dogs? | True.

2. Is a man standing with the dogs looking at 
the camera? | True.

Stage 3

3. Addition: Add a large group of people on 
bicycles.

4. Addition: The man is speaking on the 
loudspeaker to the group of people.

3. There is a large group of people on bicycles.
4. The man is speaking on the loudspeaker to 

the group of people.

(Other questions are similar with answer True, omitted)

Stage 1
Step 1 1.

Retention: The number of people is the same as 
the rider.

Step 2 CS: The image shows a man sitting on a motorcycle in the 
middle of the street, with the same number of the rider.

Stage 3

color of the motorcycle?

Stage 1
Step 1 1. Modification: The motorcycle is black.
Step 2 CS: The image shows a man sitting on a black

motorcycle in the middle of the street, with the same 
number of the rider.

Stage 3

what type building behind him?

looks like a store

Stage 1
Step 1

1. Addition: There is a building behind him that 
looks like a store.

Step 2 CS: The image shows a man sitting on a black motorcycle 
in the middle of the street, with the same number of the 
rider, and a building behind him that looks like a store.

Stage 3

is he wearing a helmet?

No, long hair

Stage 1
Step 1

1. Removal: The man is not wearing a helmet.

Step 2 CS: The image shows a man sitting on a black motorcycle in 
the middle of the street, with the same number of people as 
the rider, and a building behind him that looks like a store, 
and he is not wearing a helmet, with sort of long hair.

Stage 3

0.329 0.306 0.299

#1 #2 #3 #4 #5

0.297 0.297

#1 #2 #3 #4 #5

#1 #2 #3 #4 #5

2 2 2 1 1

#1 #2 #3 #4 #5

0.322 0.265 0.257 0.254 0.249

#1 #2 #3 #4 #5

4 3 3 3 2

#1 #2 #3 #4 #5

#1 #2 #3 #4 #5

#1 #2 #3 #4 #5

#1 #2 #3 #4 #5

2. Is there a loudspeaker? | True

#1 #2 #3 #4 #5

3. Addition: Add a sign in the back.

3. There is a sign in the back.

3. Is a man standing with the dogs looking at 
the camera? | True.

2. Modification: The hair is sort of long.

Figure 9: More qualitative results. We show top-5 retrieved images and highlight the ground truth images with black borders.

Table 4: Performance comparison on CIRCO and CIRR test set. The best results are in bold, and the second best are underlined.
∗ means using CLIP weights from [49].

VLM Method
CIRCO CIRR
mAP@k Recall@k RecallSubset@k

k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=50 k=1 k=2 k=3

CL
IP
-V
iT
-B
/3
2

PALAVRA [16] 4.61 5.32 6.33 6.80 16.62 43.49 58.51 83.95 41.61 65.30 80.95
SEARLE [6] 9.35 9.94 11.13 11.84 24.00 53.42 66.82 89.78 54.89 76.60 88.19
SEARLE-OTI [6] 7.14 7.38 8.99 9.60 24.27 53.25 66.10 88.84 54.10 75.81 87.33
iSEARLE [1] 10.58 11.24 12.51 13.26 25.23 55.69 68.05 90.82 - - -
iSEARLE-OTI [1] 10.31 10.94 12.27 13.01 26.19 55.18 68.05 90.65 - - -
CIReVL [34] 14.94 15.42 17.00 17.82 23.94 52.51 66.00 86.95 60.17 80.05 90.19
LDRE [63] 17.96 18.32 20.21 21.11 25.69 55.13 69.04 89.90 60.53 80.65 90.70
ImageScope∗ 22.36 22.19 23.03 23.83 34.36 60.58 71.40 88.41 74.63 87.93 93.83
ImageScope 25.26 25.82 27.15 28.11 38.43 66.27 76.96 91.83 75.93 89.21 94.63

CL
IP
-V
iT
-L
/1
4

Pic2Word [51] 8.72 9.51 10.64 11.29 23.90 51.70 65.30 87.80 - - -
SEARLE [6] 11.68 12.73 14.33 15.12 24.24 52.48 66.29 88.84 53.76 75.01 88.19
SEARLE-OTI [6] 10.18 11.03 12.72 13.67 24.87 52.32 66.29 88.58 53.80 74.31 86.94
iSEARLE [1] 12.50 13.61 15.36 16.25 25.28 54.00 66.72 88.80 - - -
iSEARLE-OTI [1] 11.31 12.67 14.46 15.34 25.40 54.05 67.47 88.92 - - -
CIReVL [34] 18.57 19.01 20.89 21.80 24.55 52.31 64.92 86.34 59.54 79.88 89.69
LDRE [63] 23.35 24.03 26.44 27.50 26.53 55.57 67.54 88.50 60.43 80.31 89.90
HyCIR [32] 18.91 19.67 21.58 22.49 25.08 53.49 67.03 89.85 53.83 75.06 87.18
LinCIR [23] 12.59 13.58 15.00 15.85 25.04 53.25 66.68 - 57.11 77.37 88.89
FIT4CIR [41] 15.05 16.32 18.06 19.05 25.90 55.61 67.66 89.66 55.21 75.88 87.98
ImageScope∗ 25.39 25.82 27.07 27.98 34.99 61.35 71.49 88.84 74.94 88.24 94.00
ImageScope 28.36 29.23 30.81 31.88 39.37 67.54 78.05 92.94 76.36 89.40 95.21
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Prompt1: Stage 1 Reasoner

# Task Description
You are given a description of Image Retrieval. The task is to combine information from both textual instruction and reference
image or information to accurately retrieve images. You need to follow two steps to derive "what does the target image look like".

## Step 1: Instruction Classification and Impact Analysis
Classify the given instruction into the following types and identify how it affects the reference image. For each type, determine the
specific elements or attributes of the reference image that are impacted. The instruction types are:

(1) Addition: Introduces new elements or features to the reference image. Identify which existing element the addition relates
to or where it should be placed.

(2) Removal: Eliminates certain elements from the reference image. Identify which existing element is removed.
(3) Modification: Alters attributes of existing elements in the reference image. Determine which specific element is being

modified and how.
(4) Comparison: Contrasts elements in the reference image using terms like "different," "same," "more," or "less.". Identify

elements and attributes being compared.
(5) Retention: Specifies certain existing elements in the reference image to remain unchanged. Ensure these elements are noted

for inclusion in the target image.

## Step 2: Target Image Description
Describe what the target image should look like based on the instruction and reference image analysis. Provide three sentences,
each focusing on a different semantic aspect:

(1) Core Elements: Mention only the elements that appear in the instruction without necessary adjectives.
(2) Enhanced Details: Mention the elements in the instruction with necessary adjectives from the reference image.
(3) Comprehensive Synthesis: Mention both the elements in the instruction and relevant elements in the reference image with

necessary adjectives.

The instruction and reference image description will be given to you to solve the task. Refer to the following examples and the
final output should in JSON format.
—
Here is an example:
### Query

- Instruction: has the person holding a baby
- Reference Image: A woman with dark hair is smiling under a gray umbrella with a white flower hanging from it.

### Solve
1. **Step 1.** Based on the instruction:

- Addition: Make the woman holding a baby.

2. **Step 2.** Based on step 1, the target image should be like:
- A woman holds a baby.
- A woman with dark hair holds a baby under an umbrella.
- A woman with dark hair holds a baby and is smiling, under a gray umbrella.

—
(In-context examples)
—
Below is the query you need to solve:
### Query

- Instruction: [[INSTRUCTION]]
- Reference Image: [[REF_IMAGE_DESC]]

Figure 10: The prompt we use for reasoner in the first stage. [[INSTRUCTION]] and [[REF_IMAGE_DESC]] are placeholders
that can be replaced by a input query.
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Prompt2: Stage 2 Reasoner

# Task Description
The task of Atomic Proposition Generation involves breaking down a instruction into multiple simple, verifiable propositions, each
having a unique answer that is either True (Yes) or False (No). Based on the provided instruction and a target image description,
you need to break down the instruction into several atomic propositions and corresponding answers, following the two steps
below.

## Step 1: Statement Sentence Conversion
Convert each atomic instruction into statement sentence. There are five types of atomic instruction: addition, removal, modification,
comparison and retention.

## Step 2: Question Form Conversion
Convert each statement sentence into questions, also provide the ground truth answer based on the given instruction.

The instruction and atomic instructions will be given to you to solve the task.
—
Here is an example:

### Query
- Instruction: has the person holding a baby
- Atomic Instructions:

(1) Addition: Make the woman holding a baby.

### Solve
1. **Step 1.** Based on the atomic instructions, the statements are:

(1) There is a woman holding a baby.

2. **Step 2.** Based on step 1, the questions and answers are:
(1) Q: Is there a woman holding a baby? A: Yes. (True)

—
(In-context examples)
—
Below is the query you need to solve:

### Query
- Instruction: [[INSTRUCTION]]
- Atomic Instructions: [[ATOMIC_INST]]

Figure 11: The prompt we use for reasoner in the second stage. [[INSTRUCTION]] and [[ATOMIC_INST]] are placeholders.
[[INSTRUCTION]] is replaced by language feedback of a query, and [[ATOMIC_INST]] is replaced by the output from step 1 of
the first stage.
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Prompt3: Stage 3 Evaluator

Your task is to evaluate and determine if the right candidate image reflects the change described in the <INSTRUCTION>
"[[INSTRUCTION]]". The instruction may describe:
1. A change from the left reference image to the right candidate image, or
2. The direct desired appearance of the right candidate image itself.

Steps:
1. For change-based instructions:

a. Analyze the left reference image as the starting point.
b. Examine the right candidate image for the described change.

2. For direct description instructions:
a. Focus solely on the right candidate image.
b. Determine if it matches the instruction’s description.

3. Provide your answer as follows:
ANSWER: [Yes/No]
Where:
- ’Yes’ if the candidate image correctly matches the <INSTRUCTION>.
- ’No’ if it fails to match the <INSTRUCTION> .

4. After the ANSWER line, briefly explain how the candidate image does or does not match the <INSTRUCTION>.

Important notes:
- Base your analysis SOLELY on the <INSTRUCTION> and relevant image(s).
- Ignore elements irrelevant to the <INSTRUCTION> .
- Do not introduce criteria beyond the <INSTRUCTION> .

Always start with the ANSWER line, followed by your explanation on a new line.

Figure 12: The prompt we use for evaluator in the third stage. [[INSTRUCTION]] is a placeholder, which is replaced by language
feedback of a query.

14



1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

ImageScope: Unifying Language-Guided Image Retrieval via Large Multimodal Model Collective Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 5: Performance comparison on FashionIQ validation set. The best results are in bold, and the second best are underlined.
∗ means using CLIP weights from [49].

VLM Method Shirt Dress Toptee Avg.
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

CL
IP
-V
iT
-B
/3
2

PALAVRA [16] 21.49 37.05 17.25 35.94 20.55 38.76 19.76 37.25
SEARLE [6] 24.44 41.61 18.54 39.51 25.70 46.46 22.89 42.53
SEARLE-OTI [6] 25.37 41.32 17.85 39.91 24.12 45.79 22.45 42.34
iSEARLE [1] 25.81 43.52 20.92 42.19 26.47 48.70 24.40 44.80
iSEARLE-OTI [1] 27.09 43.42 21.27 42.19 26.82 48.75 25.06 44.79
CIReVL [34] 28.36 47.84 25.29 46.36 31.21 53.85 28.29 49.35
LDRE [63] 27.38 46.27 19.97 41.84 27.07 48.78 24.81 45.63
ImageScope∗ 24.29 37.49 18.00 35.20 24.99 41.41 22.42 38.03
ImageScope 31.65 50.15 26.82 46.31 35.80 55.94 31.42 50.80

CL
IP
-V
iT
-L
/1
4

Pic2Word [51] 26.20 43.60 20.00 40.20 27.90 47.40 24.70 43.73
SEARLE [6] 26.89 45.58 20.48 43.13 29.32 49.97 25.56 46.23
SEARLE-OTI [6] 30.37 47.49 21.57 44.47 30.90 51.76 27.61 47.91
iSEARLE [1] 28.75 47.84 22.51 46.36 31.31 52.68 27.52 48.96
iSEARLE-OTI [1] 31.80 50.20 24.19 45.12 31.72 53.29 29.24 49.54
CIReVL [34] 29.49 47.40 24.79 44.76 31.36 53.65 28.55 48.57
LDRE [63] 31.04 51.22 22.93 46.76 31.57 53.64 28.51 50.54
LinCIR [23] 29.10 46.81 20.92 42.44 28.81 50.18 26.28 46.48
FTI4CIR [41] 31.35 50.59 24.49 47.84 32.43 54.21 29.42 50.88
ImageScope∗ 27.82 41.76 20.18 37.48 28.61 44.42 25.54 41.22
ImageScope 32.87 51.07 26.17 46.15 35.03 55.12 31.36 50.78

Table 6: Performance comparison on VisDial validation set. We re-implement PlugIR [37] with LLaMA3-8B [2] and CLIP [31]
for a fair comparison. We report H@1 and H@10 in the following table.

VLM Method VisDial #Round (Hits@1)
1 2 3 4 5 6 7 8 9 10

CLIP-ViT-B/32
Zero-shot CLIP [31] 22.53 26.55 28.73 29.84 31.49 32.41 33.33 33.62 33.72 33.77
PlugIR [37] 22.75 25.55 27.70 30.72 32.80 34.54 36.05 37.55 38.37 39.49
ImageScope 22.67 31.54 36.72 40.50 44.04 47.53 49.76 51.45 53.54 55.18

CLIP-ViT-L/14
Zero-shot CLIP [31] 29.51 33.14 35.32 36.87 38.13 39.24 40.16 40.36 40.60 40.60
PlugIR [37] 29.53 33.62 35.90 39.24 41.28 43.07 44.33 45.16 45.98 47.24
ImageScope 26.74 35.80 42.10 47.04 49.66 52.71 55.14 56.49 58.28 59.40

VLM Method VisDial #Round (Hits@10)
1 2 3 4 5 6 7 8 9 10

CLIP-ViT-B/32
Zero-shot CLIP [31] 50.53 55.04 57.61 59.11 60.85 62.11 62.79 63.18 63.32 63.37
PlugIR [37] 50.64 55.57 58.72 61.29 63.32 65.07 66.42 67.64 68.60 69.82
ImageScope 53.44 60.90 64.73 67.78 69.91 72.48 73.74 74.95 75.97 77.03

CLIP-ViT-L/14
Zero-shot CLIP [31] 55.91 60.51 62.98 64.78 66.18 67.01 67.73 68.12 68.22 68.27
PlugIR [37] 56.23 60.69 62.94 65.79 67.64 69.53 70.78 71.85 72.67 73.84
ImageScope 57.32 63.23 65.21 69.04 71.90 73.69 75.87 77.03 78.05 79.89
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Table 7: Numerical results of average inference latency (second) per query on LGIR datasets.

Stage MSCOCO Flickr30K CIRCO CIRR F-Dress F-Shirt F-Toptee FashionIQ Avg. VisDial

Stage1 Reasoner 0.109 0.117 0.114 0.122 0.139 0.111 0.113 0.121 0.097
Stage1 VLM 0.091 0.035 0.118 0.075 0.046 0.045 0.045 0.045 0.035
Stage2 Reasoner 0.091 0.103 0.086 0.089 0.110 0.108 0.113 0.110 0.086
Stage2 Verifier 0.651 0.715 0.695 1.146 0.929 0.837 0.898 0.889 0.444
Stage3 Evaluator 0.200 0.192 0.204 0.220 0.196 0.198 0.202 0.199 0.187
Total Latency 1.141 1.163 1.217 1.652 1.420 1.299 1.371 1.364 0.850

Table 8: Numerical results of overall inference time (second) on LGIR datasets.

Stage MSCOCO Flickr30K CIRCO CIRR F-Dress F-Shirt F-Toptee FashionIQ Avg. VisDial

Stage1 Reasoner 2728 587 92 505 280 226 221 243 1724
Stage1 VLM 907 175 95 311 92 93 89 91 718
Stage2 Reasoner 2263 516 68 369 223 220 221 221 1360
Stage2 Verifier 16291 3571 557 4803 1879 1703 1757 1780 9057
Stage3 Evaluator 6010 1177 278 1899 730 652 678 687 7591
Total Time 28199 6027 1089 7888 3204 2894 2967 3022 20450
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