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Abstract

Document image translation (DIT) aims to
translate text embedded in images from one
language to another. It is a challenging task
that needs to understand visual layout with
text semantics simultaneously. However, ex-
isting methods struggle to capture the crucial
visual layout in real-world complex document
images. In this work, we make the first attempt
to incorporate layout knowledge into DIT in
an end-to-end way. Specifically, we propose
a novel Layout-aware end-to-end Document
Image Translation (LayoutDIT) with multi-
step conductive decoder. A layout-aware en-
coder is first introduced to model visual lay-
out relations with raw OCR results. Then a
novel multi-step conductive decoder is unified
with hidden states conduction across three step-
decoders to achieve the document translation
step by step. Benefiting from the layout-aware
end-to-end joint training, our LayoutDIT out-
performs state-of-the-art methods with better
parameter efficiency. Besides, we create a
new multi-domain document image translation
dataset to validate the model’s generalization.
Extensive experiments show that LayoutDIT
has a good generalization in diverse and com-
plex layout scenes.

1 Introduction

Document image translation (DIT) aims to trans-
late text embedded in scanned documents from one
language to another. Automated DIT is a crucial
research area for business and academic values.
Different from plain text translation, texts on doc-
ument images are arranged with certain layouts.
It requires the model to understand the visual lay-
outs and text semantics simultaneously. Figure 1
showcases visual layout plays a vital role in DIT.
Missing or error layout information could result in
subsequent translation failure.
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Figure 1: The role of layout in DIT. Words on the
document image are arranged with certain visual layouts
critical for translation. Either a missing or error layout
would negatively affect the subsequent translation.

However, existing works struggle to capture the
visual layout with a logical reading order on docu-
ment images (Sable et al., 2023; Long et al., 2022;
Hinami et al., 2021; Afli and Way, 2016; Chen
et al., 2015; Du et al., 2011). As shown in Fig-
ure 2, given a sequence of word pieces extracted
by Optical Character Recognition (OCR), existing
cascade methods (Hinami et al., 2021) get the ratio-
nal translation through four separate processes:(1)
layout parsing, (2) logical order detection, (3) sen-
tence segmentation, and (4) translation. They are
handled as isolated individuals and optimized inde-
pendently, which leads to severe error propagation.
Another problem is that it ignores the semantic
correlation shared in different modules.

To address the above problems, in this work,
we propose a unified end-to-end trainable Layout-
aware Document Image Translation (LayoutDIT)
network to map a document image processed by
OCR to its document translation. LayoutDIT could
simultaneously achieve layout understanding, read-
ing order detection, sentence segmentation, and
translation, and share computation and semantic
information among these complementary tasks.
Specifically, LayoutDIT comprises a layout-aware
encoding phase and a multi-step conductive decod-
ing phase. The layout-aware encoding phase aims
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Figure 2: DIT methods overview. Given a document
image with words and word bounding boxes extracted
by OCR, DIT aims to generate the document-level trans-
lation in the target language. Different from the tradi-
tional cascade framework, LayoutDIT goes beyond with
layout-aware end-to-end modeling, showing conceptual
conciseness and model compactness.

to model document image’s texts with layouts by
jointly embedding text tokens and their 2D lay-
outs. The multi-step conductive decoding phase
is to capture the reading logic and to get rational
translation results. The decoding phase identifies
a chain of three decoding sub-processes: reading
order decoding, sentence boundary decoding, and
translation decoding. It decodes intermediate in-
ferences for each sub-process to approach the final
document translation step by step. Each interme-
diate decoding step is fulfilled dedicatedly with a
step-decoder. All step-decoders are unified into
a multi-step decoder with the conduction of hid-
den states across them, thus enabling LayoutDIT’s
sub-module interaction and end-to-end training.

We evaluate LayoutDIT’s strong ability on
the public ReadingBank (Wang et al., 2021) for
general-domain document image translation. In
addition, we create a new multi-domain Docu-
ment Image Translation dataset (DITrans), which
covers three different document domains to test
LayoutDIT’s domain-specific capacity. Experi-
mental results show that the proposed LayoutDIT
can achieve state-of-the-art translation performance
with better parameter efficiency. Further analysis
demonstrates LayoutDIT’s great power in cross-
domain adaptation and few-shot learning, indicat-
ing its superiority in these practical DIT scenarios.
The contributions of this work are summarized as
follows:

• We propose a layout-aware end-to-end doc-
ument translation framework named Layout-
DIT. To the best of our knowledge, this is the
first work that incorporates layout information
into DIT in an end-to-end way, which shows

conceptual conciseness and better parameter
efficiency.

• We devise a novel layout-aware encoder and
multi-step conductive decoder to enable lay-
out awareness and sub-module interactions si-
multaneously, which could share computation
among four complementary tasks, including
layout parsing, reading order detection, sen-
tence segmentation, and translation.

• A new multi-domain DIT dataset named DI-
Trans is created to evaluate LayoutDIT. Ex-
tensive experiments1 and analysis on public
benchmark and our dataset show LayoutDIT’s
better overall performances and superior capa-
bility, especially for low-resource DIT.

2 Layout-aware Document Image
Translation

In this section, we describe in detail our model ar-
chitecture, as seen in Figure 3. LayoutDIT consists
of a layout-aware encoding phase and a multi-step
conductive decoding phase. The former employs a
layout-aware encoder for document image under-
standing by producing its layout-aware represen-
tations; the latter generates the document transla-
tion following a “divide-and-conquer” philosophy.
Concretely, a multi-step conductive decoder is pro-
posed to divide the decoding phase into a chain of
three sub-processes and conquers them with dedi-
cated step-decoders, one by one:

• Decoding Step 1 (Reading order decoding).
Given an OCR document image with out-of-
order words and word bounding boxes, a re-
ordering step-decoder decodes each word’s
reading order index based on the layout-aware
representations.

• Decoding Step 2 (Sentence boundary decod-
ing). Given an in-order word sequence, a seg-
mentation step-decoder decodes each word’s
sentence boundary tag to find the begging/end
of each sentence.

• Decoding Step 3 (Translation decoding). A
translation decoder decodes the target lan-
guage translation for each sentence.

The final document translation can be obtained
by concatenating all sentences’ translations.

1Code will be released at https://github.com/zhangzhiyang-
2020/LayoutDIT.

https://github.com/zhangzhiyang-2020/LayoutDIT
https://github.com/zhangzhiyang-2020/LayoutDIT
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Figure 3: Proposed DIT framework LayoutDIT. During the layout-aware encoding phase, it jointly encodes a
document image’s visual layouts and text semantics. During the multi-step conductive decoding phase, it generates
the document translation step by step with a chain of decoding sub-processes: reading order decoding, sentence
boundary decoding, and translation decoding. Each decoding step is achieved with a function-specific step-decoder.
With the conduction of hidden states, all three step-decoders are unified into one multi-step conductive decoder,
enabling LayoutDIT’s sub-module interaction and end-to-end training.

2.1 Document Image and Recognized Words

We normalize image’s [width, height] to
[1, 000, 1, 000] pixels and use off-the-shelf
OCR engine2 for word recognition. Each word
wi is identified by text si and bounding box
bi = (xmin, ymin, xmax, ymax)i. (xmin, ymin)i
and (xmax, ymax)i are coordinates of the top-left
and bottom-right corners of i-th word’s bounding
box. The recognized words are arranged “left-to-
right, top-to-bottom” and are tokenized to form the
input token sequence T = {ti|i ∈ [1, L]}, where L
is the total number with a max length limit of 512.

2https://learn.microsoft.com/en-us/azure/applied-ai-
services/form-recognizer/?view=form-recog-3.0.0

2.2 Layout-Aware Encoder

Similar to Xu et al. (2021), the i-th token ti’s em-
bedding xi ∈ RH consists of token embedding
xtexti , 1D position embedding xposi , and 2D layout
embedding xlayouti :

xi = LayerNorm(xtexti + xposi + xlayouti ) (1)

Text Embedding & 1D Position Embedding. The
look-up table and absolute position are used for
each token’s text and 1D position embedding:

xtexti = EmbText(ti); xposi = Emb1D(i) (2)

2D Layout Embedding. We introduce a 2D lay-
out representation xlayouti ∈ RH that encodes i-th

https://learn.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/?view=form-recog-3.0.0
https://learn.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/?view=form-recog-3.0.0


token’s visual layout:

xlayouti = Linear([(Embx(xmin, xmax, w)i;

Emby(ymin, ymax, h)i)])
(3)

where [·; ·] is the concatenation operator, Linear(·)
is a linear projection layer to map embedding di-
mension to H . w and h are word bounding box’s
width and height. For a word tokenized into mul-
tiple sub-word tokens, we assign its bounding box
to each token as an approximation due to OCR’s
inability for sub-word recognition.

The layout-aware encoder (LAE) is based on
Transformer (Zhao et al., 2023; Vaswani et al.,
2017) encoder architecture and produces layout-
aware representations x∗i = LAE(xi) for each to-
ken.

2.3 Multi-Step Conductive Decoder
Three step-decoders are unified through the con-
duction of hidden states to form the multi-step con-
ductive decoder and fulfill the decoding chain in a
three-step end-to-end manner.

2.3.1 Reordering Step-Decoder
With layout-aware representations x∗ as context
memory and previously generated reading order
indexes, the reordering step-decoder (RSD) autore-
gressively produces hidden states hrsdi and reading
order index ˆIdxi of current input token ti:

hrsdi = RSD(x∗, t<i) (4)

P rsd
i = Softmax(Linear(hrsdi )) (5)

ˆIdxi = Argmax(P rsd
i ) (6)

where P rsd
i is the classification probability for ti’s

reading order index over L (input length) index
classes, meaning that the ˆIdxi-th token of input
sequence should be “read” at i-th decoding step.

The reordering step-decoder is based on Trans-
former (Zhao et al., 2023; Vaswani et al., 2017)
decoder architecture. Similar to the layout-aware
encoder, it encodes tokens’ bounding boxes at the
embedding layer to make use of the 2D layout fea-
ture.

2.3.2 Segmentation Step-Decoder
The hidden states hrsd outputted by RSD can be
viewed as the semantic representations of an in-
order token sequence. Therefore, they are utilized
to segment sentences from the decoded token se-
quence in a sequence-labeling manner. Specifically,

LayoutDIT’s segmentation step-decoder (SSD) em-
ploys a lightweight Transformer (Zhao et al., 2023;
Vaswani et al., 2017) encoder for context encoding
and a linear projection for token-level tagging:

hssdi = SSD(hrsdi ) (7)

P ssd
i = Softmax(Linear(hssdi )) (8)

B̂i = Argmax(P ssd
i ) (9)

where P ssd
i is i-th token’s classification probabil-

ity over pre-defined 2 sentence boundary classes -
{BOS, IOS}, which represents the beginning and
inside of a sentence, respectively.

Based on the decoded sentence boundary tags
{B̂i}Li=1, the representation sequence {hrsdi }Li=1 is
segmented into M sub-sequences {hsentk }Mk=1:

hsentk = R({hrsdi }Li=1, {B̂i}Li=1, k) (10)

where R(·) is the sentence segmentation rule that
searches for BOSk and BOSk+1 within {B̂i}Li=1

and extracts sub-sequence hsentk from {hrsdi }Li=1

between [BOSk, BOSk+1).

2.3.3 Translation Step-Decoder
Taking hsentk as the context memory of the k-th
source sentence, the translation step-decoder (TSD)
generates each sentence’s translation autoregres-
sively. Specifically, at the j-th decoding step of
k-th source sentence, we have:

htsdk,j = TSD(hsentk , y<j) (11)

P tsd
k,j = softmax(Linear(htsdk,j )) (12)

Ŷk,j = BeamSearch(P tsd
k,j , P

tsd
k,<j , Ŷk,<j) (13)

TSD is based on the Transformer (Zhao et al., 2023;
Vaswani et al., 2017) decoder architecture. Trans-
lations of all source sentences are generated in par-
allel to promote training and inference efficiency.

The final document translation can be obtained
by concatenating all sentences’ translations.

2.4 Optimization
LayoutDIT is optimized with supervision from all
three decoding steps as follows:

Lrsd =

L∑
i=1

CE(Idxi, P
rsd
i )/L (14)

Lssd =
L∑
i=1

FocalLoss(Bi, P
ssd
i )/L (15)
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Figure 4: Dataset samples. (a) (b) (c) (d) (e) (f): From DITrans. (a) (b): Political report. (c) (d): Newspaper. (e)
(f): Advertisement. (g) (h): From ReadingBank.

Dataset ReadingBank DITrans

Domain General Political Report Newspaper Advertisement

# Page 410K 902 396 377

# Word Avg. 196 245 219 123

# Sent. Avg. 21 24 16 16

Train/Test (# Page) 400K/10K 790/112 347/49 330/47

Train/Test (# Sent.) 8,467K/211K 19,210/2,698 5,501/929 5,303/815

Table 1: Datasets Statistics. # Word/Sent. Avg. means
average # word/sentence of each document image.

Ltsd =
M∑
k=1

|Yk|∑
j=1

CE(Yk,j , P
tsd
k,j )/

M∑
k=1

|Yk|∑
j=1

j (16)

Here Idxi, Bi, Yk,j refer to the ground-truth la-
bels of the reading order index, sentence bound-
ary class, and target-language token, respectively.
CE(·) refers to CrossEntropy. FocalLoss(·) (Lin
et al., 2017) is introduced to alleviate the class-
imbalance issue. Sum of these loss functions forms
LayoutDIT’s total training loss:

Ltol = Lrsd + Lssd + Ltsd (17)

3 Multi-Domain DIT Dataset

To the best of our knowledge, there is only one
publicly available dataset named ReadingBank
(Wang et al., 2021) that consists of web-crawled

general-domain document images with pseudo la-
bels. Therefore, we first manually annotate a multi-
domain DIT dataset named DITrans to test Layout-
DIT’s domain-specific capability. DITrans contains
sophisticatedly selected images of three domains:
political report, newspaper, and advertisement. We
hire 35 professional annotators to label the reading
order and sentence boundaries and 30 translators
for document translation. Translators are shown a
document image with reading order and sentence
boundaries and are required to produce correct and
fluent translations for them in Chinese. In addition,
We hire 8 professional annotators to sample and
check the annotated instances for quality control.
We annotate 1,675 instances in total with 34,456
parallel sentence pairs. Figure 4 presents document
image examples from our DITrans and the public
ReadingBank. Table 1 gives a cursory review of
the two datasets.

4 Experiments

4.1 Datasets and Evaluation Protocal

Experiments are conducted on ReadingBank and
our DITrans for the en-zh DIT task. The original
split of ReadingBank is Train: Test = 400K:50K.
As shown in Table 1, we sample 10K from its 50K
test examples as the testset. For DITrans, each



domain is split with the ratio Train: Test = 7:1.
We evaluate model performance with average

page-level BLEU (Papineni et al., 2002) that refers
to the micro-average precision of n-gram over-
laps within a page between model prediction and
ground-truth reference.

4.2 Settings
We use Transformer’s encoder/decoder layer to
build LayoutDIT’s components. Concretely,
LayoutDIT’s LAE/RSD/SSD/TSD consists of
6/6/1/6 layers, respectively. Each layer has 768-
dimensional hidden sizes, 12 attention heads, and
3,072 feed-forward hidden units.

We continue training LayoutDIT on DITrans’
experiments after pretraining it on the large-scale
ReadingBank. Adam optimizer (Kingma and Ba,
2015) is applied for training with β1 = 0.9, β2 =
0.98. The learning rate is 7 × 10−5 with a linear
schedule strategy. Both the dropout rate and label
smoothing value are set to 0.1. The training of
LayoutDIT lasts for 5 epochs with a batch size of
30 for all training runs.

4.3 Baselines
We consider existing cascade methods as baselines:

• DocHandler (Sable et al., 2023).
DocHandler-1: It enhances DocHan-
dler’s OCR-Translation cascade by inserting
a rule-based reading order detector (“left-
to-right, top-to-bottom”) & an unsupervised
sentence segmenter (Kiss and Strunk, 2006)
between them. DocHandler-2: It replaces
DocHandler-1’s sentence segmenter with
a supervised Transformer-based sequence
labeler.

• MGTrans (Hinami et al., 2021). It employs a
layout parser for layout boxes detection and
equips a rule-based reading order detector,
sentence segmenter, and translator. We em-
ploy two SOTA layout parsing frameworks: 1)
Convolution-based Cascade-RCNN (Cai and
Vasconcelos, 2018), denoted as MGTrans-
Conv. 2) Transformer-based DETR (Zhu
et al., 2020), denoted as MGTrans-DETR.

We also build two strong end-to-end baselines to
compare with our proposed LayoutDIT.

• LayoutLM-Dec. LayoutLM (Xu et al., 2020),
a multi-modal document image understanding
model that is pre-trained on large-scale IIT-
CDIP (LEWIS et al., 2006) document images,

# Method End-to-End # Params (M) BLEU

1
DocHandler-1
(Sable et al., 2023)

- 142 30.47

2
DocHandler-2
(Sable et al., 2023)

- 172 37.75

3 LayoutLM-Dec ✓ 232 45.54

4 LiLT-Dec ✓ 250 45.79

5 LayoutDIT-Cascade - 293 48.29

6 LayoutDIT ✓ 206 48.20

Table 2: Results on ReadingBank. LayoutDIT signif-
icantly outperforms exsiting cascades and end-to-end
baselines. It also achieves competitive results with a
lighter model architecture compared with its cascade
variant LayoutDIT-Cascade.

is employed as the encoder and is equipped
with a text decoder for translation.

• LiLT-Dec. It replaces LayoutLM with the
dual-stream LiLT (Wang et al., 2022) encoder
that shows stronger document image under-
standing ability.

For fair comparisons, the numbers of en-
coder/decoder layers for LayoutLM-Dec and LiLT-
Dec are 12 and share the same # hidden size, #
attention head and # feed-forward unit as that of
LayoutDIT. All the training hyperparameters (batch
size, training epochs, learning rate, etc) are kept
the same as LayoutDIT. We also continue training
all baselines on DITrans’ experiments after pre-
training them on ReadingBank.

4.4 Main Results
On ReadingBank. The results are shown in Ta-
ble 2. Since ReadingBank has no layout annota-
tions for training a layout parser, we exclude MG-
Trans in this experiment. LayoutDIT-Cascade is
LayoutDIT’s cascade variant that explicitly out-
puts all intermediate results (tokens or tags) during
decoding sub-processes. It also replaces Layout-
DIT’s translation decoder with an encoder-decoder
to encode tokens, thus increasing model parame-
ters. Our proposed LayoutDIT significantly out-
performs existing methods by improving BLEU
from 37.75 to 48.20. Compared with LayoutDIT-
Cascade, LayoutDIT achieves competitive results
with a lightweight model size (87M fewer param-
eters), demonstrating its parameter efficiency be-
cause training and maintaining a cascade is costly.

On DITrans. The following two experimental
settings are conducted on DITrans to verify Lay-
outDIT’s effectiveness.



# Method End-to-End # Params (M) Multi-Domain Learning Zero-Shot Cross-Domain Transfer

Political Report Newspaper Advertisement Political Report (SD) Newspaper (TD.1) Advertisement (TD.2)

1 DocHandler-1 (Sable et al., 2023) - 142 21.47 26.28 23.14 21.80 16.87 13.55

2 DocHandler-2 (Sable et al., 2023) - 172 24.80 27.34 24.99 25.19 16.88 13.60

3 MGTrans-DETR (Hinami et al., 2021) - 212 28.30 27.61 25.76 27.34 16.26 13.09

4 MGTrans-Conv (Hinami et al., 2021) - 238 28.99 28.84 25.63 29.51 17.78 14.07

5 LayoutLM-Dec ✓ 232 45.86 40.66 36.90 45.71 27.56 21.40

6 LiLT-Dec ✓ 250 46.11 40.37 36.22 46.61 23.71 18.14

7 LayoutDIT-Cascade - 293 36.78 34.56 35.36 39.85 21.89 16.62

8 LayoutDIT ✓ 206 46.97 38.82 45.72 46.70 29.01 29.46

Table 3: Results on DITrans. SD/TD means source/target domain. For DITrans’ three domains, LayoutDIT shows
the best results compared with existing cascade methods. Despite a lightweight model size, it also achieves better or
competitive results compared with end-to-end baselines, in both multi-domain learning and cross-domain transfer.

# Model BLEU

1 LayoutDIT 48.20

2a w/o 2D layout Embedding 43.87
2b w/o 1D position Embedding 39.40

3a w/o reading order decoding loss 3.15
3b w/o decoding processes decomposition 13.99

4 w/ SSD’s hidden states as context memory 45.85

Table 4: Ablation study of our model on ReadingBank.

1) Multi-Domain Learning. In this setting,
models are trained on DITrans’ all three domains
and tested on each domain. As shown in Table 3,
our proposed LayoutDIT achieves the best results,
outperforming previous cascade methods by a sub-
stantial margin. Moreover, It also shows better or
comparable results than end-to-end baselines with
a lighter architecture, demonstrating its excellent
capability in domain-specific DIT conditions.

2) Zero-Shot Cross-Domain Transfer. In this
setting, models are trained only on political report
and are tested on each domain. As shown in Table
3, LayoutDIT achieves state-of-the-art results for
all three domains, demonstrating that it can better
transfer knowledge from the seen domain to the
unseen domain in zero-shot DIT scenarios.

4.5 Ablation Study

To investigate the effectiveness of different compo-
nents, we further compare LayoutDIT with several
variants in Table 4.

On the Input Embedding. Removing Layout-
DIT’s 2D layout embedding or 1D position embed-
ding results in model #2a/#2b. Comparing #1, #2a,
#2b shows that: 1) 2D layout is useful for Layout-
DIT to understand document layouts for translation
improvement from model #2a’s 43.87 to model
#1’s 48.20. 2) Incorporating 2D layouts and text
semantics w/o. 1D position can give an accept-

able translation performance (39.40) as model #2b
shows, which may be because the 2D layout can
guide LayoutDIT to generate a reasonably good
reading order. However, the performance drop
from model #1’s 48.20 to model #2b’s 39.40 in-
dicates the requirement of 1D position for the trans-
lation step-decoder. Combining the three features
produces the best results.

On the Multi-Step Conductive Decoding and
Step-Decoder Supervision. Model #3a abandons
the supervision from the reordering step-decoder
during training. Model #3b disables the multi-
step conductive decoding paradigm and utilizes
a Vallina encoder-decoder to directly transform the
out-of-order source word sequence to document
translation. Compared with model #1, the drastic
performance drops of model #3a and #3b prove the
effectiveness of LayoutDIT’s multi-step conductive
decoding and multi-task learning strategy.

On the Translation Context Memory. Layout-
DIT’s translation context memory is from reorder-
ing step-decoder (RSD) hidden states instead of
segmentation step-decoder (SSD). Our conjecture
for this is that RSD’s hidden states are for token in-
dex prediction while SSD’s are for sentence bound-
ary classification. So the former is closer to source
text understanding and should act as the translation
context memory. This assumption is empirically
confirmed by comparing model #1 and #4.

4.6 Low-Resource DIT

Benefiting from the joint optimization of compo-
nents, end-to-end models have always shown su-
periority (Bansal et al., 2018; Tu et al., 2019) than
cascades in low-resource conditions, which is par-
ticularly challenging for DIT due to the expensive
annotation of document images. Therefore, we
compare LayoutDIT’s few-shot learning ability on
DITrans political report with the cascade method
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Figure 5: Comparison of few-shot learning.

Method ReadingBank En-De ReadingBank En-Fr

DocHandler-2 17.15 18.23
LiLT-Dec 30.60 36.00

LayoutDIT 33.25 40.09

Table 5: Results on En-De and En-Fr DIT tasks. Evalu-
ation metric is BLEU.

MGTrans-Conv.
As shown in Figure 5, LayoutDIT-Cascade con-

stantly outperforms MGTrans by a large mar-
gin. Notably, LayoutDIT-Cascade achieves almost
equivalent performance (28.05) using 25 samples
than MGTrans does (28.07) using 500 samples.
LayoutDIT brings further improvement on top of
LayoutDIT-Cascade, showing great superiority in
low-resource DIT conditions.

4.7 Evaluation on More Languages

We further evaluate LayoutDIT on English-German
(En-De) and English-French (En-Fr) document im-
age translation. We first use document images
downloaded from ReadingBank (Wang et al., 2021)
to construct the synthetic translation labels with
Google Translate API, resulting in the En-De and
En-Fr versions of ReadingBank. All models are
trained for 80K steps with a batch size of 10. Table
5 shows the results of our proposed LayoutDIT on
these two language pairs. Again we observe that
our model substantially outperforms the cascaded
DocHandler-2 by 16.10/21.86 BLEU and the end-
to-end LiLT-Dec by 2.65/4.09 BLEU on En-De and
En-Fr directions, respectively.

4.8 Case Analysis

To further reveal LayoutDIT’s advantages, we
provide a translation example of LayoutDIT and
MGTrans-Conv in Figure 6. As shown in (a), MG-

Trans misrecognizes several small layout boxes to
be a large layout (red box). This falsely parsed
layout disrupts the overall box-level reading or-
der. Moreover, as shown in (b), because of MG-
Trans’ “left-to-right, top-to-bottom” reading order
within a layout box, some words are placed in
the wrong position, causing further errors prop-
agated to sentence segmenter. The accumulated er-
rors ultimately cause mis-segmented, semantically-
confusing source sentences and a failed translation,
as shown in (c). On the contrary, by incorporating
layout information, our LayoutDIT correctly cap-
tures the reading logic of words. The subsequent
sentence boundary decoding and translation decod-
ing also exhibit better results, validating the effec-
tiveness of layout incorporation in LayoutDIT’s
layout-aware encoder and joint optimization of its
step-decoders for minimal error accumulation.

5 Related Work

Sentence Image Translation. Sentence Image
Translation (SIT) aims to translate an image with
a single embedded sentence from one language to
another. It is typically achieved by joining the OCR
and translator. Recently, end-to-end models (Ma
et al., 2023a; Ma et al., 2023b; Ma et al., 2023c;
Ma et al., 2022; Chen et al., 2022; Chen et al.,
2021) have been proposed to address cascades’ er-
ror propagation and parameter redundancy. One
approach is taking the recognition model for SIT
like TRBA (Baek et al., 2019). To alleviate the
end-to-end data scarcity, multi-task learning (Ma
et al., 2022; Chen et al., 2021; Su et al., 2021) is
leveraged to incorporate external OCR/MT datasets
for training end-to-end models. MHCMM (Chen
et al., 2022) further enhances feature representa-
tion through cross-modal mimic learning with ad-
ditional MT data.

Although end-to-end SIT models have shown ac-
ceptable performance compared with their cascade
counterparts, all of them presuppose that the sen-
tence bounding boxes of a document image are pro-
vided by annotation and only focus on the cropped
sentence images translation, leaving the more prac-
tical document image translation under-explored.
Document Image Translation. Existing DIT
methods (Sable et al., 2023; Hinami et al., 2021;
Shekar et al., 2021; Afli and Way, 2016) are scarce
and are almost cascade methods, suffering layout-
unaware and error propagation problems. The first
attempt (Jain et al., 2021) at constructing an image-



HIGHLIGHTS INCLUDE: || [£273m] || 
to develop smart systems || £273m 
and transform construction ||  [60+] || 
businesses pledged to take 60+ 
clean growth action during Green 
GB week || [£320m] || government 
funding for low || £320m carbon 
heating, matched by industry

HIGHLIGHTS INCLUDE: || 
£273m || to develop smart systems 
and transform construction ||  60+ || 
businesses pledged to take clean 
growth action during Green GB 
week || £320m || government 
funding for low carbon heating, 
matched by industry

  (1)  亮点 包括
  (2)  2.73 亿英镑
  (3)  开发 智能 系统 ，改造 建筑
  (4)  60 +
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  (1)  亮点 包括 开发 智能 系统 
  (2)  在 绿色 GB 周 期间 , 273 万英镑 
的 转型 和 建筑 企业 承诺 采取 60 多名 
清洁 增长 行动
  (3)  政府 对 低收入者 的 资助
  (4)  按 行业 匹配 , 3.2 亿英镑 的 碳 供
暖

  (1)  亮点 包括 2730 万英镑
  (2)  开发 智能 系统 和 改变 建设
  (3)  60 +
  (4)  企业 承诺 在 绿色 GB 周 期间 采
取 清洁 的 增长 行动
  (5)  3.2 亿英镑
  (6)  政府 对 低 碳 加热 的 资金 ，与 
行业 匹配

Translation References

(a) 

(b) 

(c) 

(e) 
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(g) (d) 

Figure 6: A political report translation example of MGTrans-Conv and LayoutDIT. (a): Parsed layout boxes
and reading order produced by MGTrans. Red color denotes MGTrans’ errors. (b): Segmented sentences from the
red box in (a). Red color denotes MGTrans’ errors of word order and sentence boundaries “||”. Blue color means
ground-truth labels. (c): MGTrans’ translation results. (d): Reading order decoded by LayoutDIT. For clarity, we
post-process LayoutDIT’s word-level reading order to box-level. (e): Sentence boundaries decoded by LayoutDIT. It
only misses one sentence boundary denoted in blue. (f): LayoutDIT’s translation results. (g): Translation references.

to-translation end-to-end DIT model is based on
a Vanilla visual-encoder-decoder framework and
only focuses on one-column regular-layout docu-
ment images. It requires massive data for training
and fails to handle real-world complex-layout doc-
ument images.

Different from them, LayoutDIT goes beyond
and pursues the end-to-end translation of arbitrary-
layout document images, effectively and efficiently.

6 Conclusion

DIT has been shown unsatisfactory performance
due to the struggling layout incorporation and cas-
cade sub-module isolation of existing methods. In
this work, we propose LayoutDIT to alleviate these
two issues. It utilizes a layout-aware encoder for
layout-text joint understanding and a multi-step
conductive decoder for step-by-step translation de-
coding. Benefiting from the layout-aware end-to-
end modeling, LayoutDIT significantly surpasses
previous approaches and promotes DIT to a higher
performance level. In the future, we will explore in-
corporating OCR and images’ vision features into
our framework to realize a more efficient and pow-
erful DIT.

Limitations

Since our model involves an additional step of
OCR, its model size could be further compressed
to achieve OCR-free DIT with the incorporation
of OCR models, which will be our future explo-
ration. Besides, our model leaves the document
image’s vision information to be exploited, which
is an important clue for better document image un-
derstanding. We will conduct experiments with
LayoutLMv2/v3 for image feature incorporation in
our future works.
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