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ABSTRACT

The embeddings from CNNs pretrained on Imagenet classification are de-facto
standard image representations for assessing GANs via FID, Precision and Re-
call measures. Despite broad previous criticism of their usage for non-Imagenet
domains, these embeddings are still the top choice in most of the GAN literature.
In this paper, we advocate using state-of-the-art self-supervised representations to
evaluate GANs on the established non-Imagenet benchmarks. These representa-
tions, typically obtained via contrastive or clustering-based approaches, provide
better transfer to new tasks and domains, therefore, can serve as more universal
embeddings of natural images. With extensive comparison of the recent GANs
on the standard datasets, we demonstrate that self-supervised representations pro-
duce a more reasonable ranking of models in terms of FID/Precision/Recall, while
the ranking with classification-pretrained embeddings often can be misleading.
Furthermore, using self-supervised representations often improves the sample-
efficiency of FID, which makes it more reliable in limited-data regimes.

1 INTRODUCTION

Generative adversarial networks (GANs) are an extremely active research direction in machine
learning. The intensive development of the field requires established quantitative measures to assess
constantly appearing models. While a large number of evaluation protocols were proposed (Borji,
2019; Xu et al., 2018; Zhou et al., 2019; Naeem et al., 2020), there is still no consensus regarding the
best evaluation measure. Across the existing measures, the Fréchet Inception Distance (FID) (Heusel
et al., 2017) and Precision/Recall (Kynkäänniemi et al., 2019) are the most widely adopted due to
their simplicity and decent consistency with human judgments. FID and Precision/Recall quantify
the discrepancy between distributions of real and generated images. Since these distributions are
complicated to describe in the original RGB space, the images are represented by embeddings, typ-
ically extracted with CNNs pretrained on the Imagenet classification (Deng et al., 2009). While
FID computed with these embeddings was shown to correlate with human evaluation (Heusel et al.,
2017), these observations were mostly obtained on datasets, semantically close to Imagenet. Mean-
while, on non-Imagenet datasets, FID can result in inadequate evaluation, as widely reported in the
literature (Rosca et al., 2017; Barratt & Sharma, 2018; Zhou et al., 2019).

In this work, we propose to employ the state-of-the-art self-supervised models (Chen et al., 2020a;
He et al., 2020; Caron et al., 2020) to extract image embeddings for GAN evaluation. These models
were shown to produce features that transfer better to new tasks, hence, they become a promising
candidate to provide a more universal representation. Intuitively, classification-pretrained embed-
dings by design can suppress the information, irrelevant for the Imagenet class labels, which, how-
ever, can be crucial for other domains, like human faces. On the contrary, self-supervised models,
mostly trained via contrastive or clustering-based learning, do not have such a bias since their main
goal is typically to learn invariances to common image augmentations.
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To justify the usage of self-supervised embeddings, we perform a thorough comparison of the re-
cent GAN models trained on the five most common benchmark datasets. We demonstrate that
classification-pretrained embeddings can lead to incorrect ranking in terms of FID, Precision, and
Recall, which are the most popular metrics. On the other hand, self-supervised representations pro-
duce more sensible ranking, advocating their advantage over “classification-oriented” counterparts.
Since all the checkpoints needed to compute self-supervised embeddings are publicly available,
they can serve as a handy instrument for GAN comparison, consistent between different papers.
We release the code for the “self-supervised” GAN evaluation along with data and human labeling
reported in the paper online1. To sum up, the contributions of this paper are as follows:

1. To the best of our knowledge, our work is the first to employ self-supervised image repre-
sentations to evaluate GANs trained on natural images.

2. By extensive experiments on the standard non-Imagenet benchmarks, we demonstrate that
the usage of self-supervised representations provides a more reliable GAN comparison.

3. We show that the FID measure computed with self-supervised representations often has
higher sample-efficiency and analyze the sources of this advantage.

2 RELATED WORK

GAN evaluation measures. Over the last years, a variety of quantitative GAN evaluation methods
have been developed by the community, and the development process has yet to converge since
all the measures possess specific weaknesses (Borji, 2019; Xu et al., 2018). The Inception Score
(Salimans et al., 2016) was the first widely adopted measure but was shown to be hardly applicable
for non-Imagenet domains (Barratt & Sharma, 2018). The Fréchet Inception Distance (FID) (Heusel
et al., 2017) quantifies dissimilarity of real and generated distributions, computing the Wasserstein
distance between their Gaussian approximations, and is currently the most popular scalar measure
of GAN’s quality. Several recent measures were proposed (Sajjadi et al., 2018; Kynkäänniemi et al.,
2019; Naeem et al., 2020) that separately evaluate fidelity and diversity of GAN-produced images.
All of them mostly use the embeddings produced by the Imagenet classification CNN. A recent work
(Zhou et al., 2019) has introduced a human-in-the-loop measure, which is more reliable compared
to automated ones but cannot be used, e.g., for monitoring the training process. We focus on three
the most widely used measures: FID, Precision, and Recall, which are discussed briefly below.

Fréchet Inception Distance quantifies the discrepancy between the distributions of real and gener-
ated images, denoted by pD and pG. Both pD and pG are defined on the high-dimensional image
space forming nontrivial manifolds, which are challenging to approximate by simple functions. To
be practical, FID operates in the lower-dimensional space of image embeddings. Formally, the em-
beddings are defined by a map f : RN → Rd, where N and d correspond to the dimensionalities of
the images and embeddings spaces, respectively. By design, FID measures the dissimilarity between
the induced distributions fpD, fpG as follows. First, fpD and fpG are approximated by Gaussian
distributions. Then the Wasserstein distance between these distributions is evaluated. As was shown
in (Dowson & Landau, 1982), for distributions defined by the means µD, µG and the covariance
matrices ΣD,ΣG, this quantity equals to ‖µD − µG‖22 + tr(ΣD + ΣG − 2(ΣDΣG)

1
2 ). Lower FID

values correspond to higher similarity between pG and pD; hence, can be used to evaluate the per-
formance of generative models. As a common practice in the FID computation, one typically uses
the activations from the InceptionV3 (Szegedy et al., 2016) pretrained on Imagenet classification.

Precision and Recall. When assessing generative models, it is important to quantify both the visual
quality of generated images and the model diversity, e.g., to diagnose mode collapsing. However, the
scalar FID values were shown (Sajjadi et al., 2018; Kynkäänniemi et al., 2019) to sacrifice diversity
in favor of visual quality, therefore FID cannot serve as the only sufficient metric. To this end,
(Sajjadi et al., 2018) introduced Precision and Recall, which aim to measure the image realism and
the model diversity, respectively. A recent follow-up (Kynkäänniemi et al., 2019) elaborates on these
metrics and proposes a reasonable procedure to quantify both precision and recall based only on the
image embeddings. In a nutshell, (Kynkäänniemi et al., 2019) assumes that the visual quality of a
particular sample is high if its embedding is neighboring for the embeddings of the real images. On

1https://github.com/stanis-morozov/self-supervised-gan-eval
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the other hand, a given real image is considered covered by the model if its embedding belongs to
the neighborhood of embeddings of the generated images.

Self-supervised representations. Self-supervised learning is currently attracting much research
attention, especially to contrastive learning and clustering-based methods (Chen et al., 2020a; He
et al., 2020; Caron et al., 2020). The common idea behind these methods is to construct representa-
tions that are invariant to a wide range of common image augmentations. The recent self-supervised
methods were shown to provide more transferrable (He et al., 2020; Caron et al., 2020) and ro-
bust (Hendrycks et al., 2019) features, which implies their usage as more universal representations.
In this paper, we show them being a better alternative compared to established classifier-produced
embeddings in the context of GAN assessment.

3 GAN EVALUATION

Here we systematically compare the publicly available GANs to highlight the cases of mislead-
ing comparison with classification-pretrained embeddings. Our goal is to demonstrate that self-
supervised embeddings are a better alternative in these cases, while in other cases, the rankings with
both types of embeddings are mostly consistent. We examine open-sourced GAN models2 trained
on five popular benchmarks:

• CelebaHQ 1024x1024 (Karras et al., 2017) with the following GAN models: StyleGAN with
truncation 0.7 (Karras et al., 2019a) and without it, MSG (Karnewar & Wang, 2020) with trunca-
tion 0.6 and without it, PGGAN (Karras et al., 2017). To compute the metrics, we use 30k real
and synthetic images;

• FFHQ 1024x1024 (Karras et al., 2019a) with the following GAN models: StyleGAN (Karras
et al., 2019a), StyleGAN2 (Karras et al., 2019b), MSG (Karnewar & Wang, 2020) with truncation
0.6 and without it. To compute the metrics, we use 30k real and synthetic images;

• LSUN Bedroom 256x256 (Yu et al., 2015) with the following GAN models: StyleGAN (Karras
et al., 2019a) with truncation 0.7 and without it, PGGAN (Karras et al., 2017), COCO-GAN (Lin
et al., 2019), RPGAN (Voynov & Babenko, 2019), RPGAN with high diversity (RPGAN div.).
RPGAN generates 128x128 images, so we upscale them to 256x256. To compute the metrics, we
use 30k real and synthetic images;

• LSUN Church 256x256 (Yu et al., 2015) with the models: StyleGAN2 (Karras et al., 2019b) with
truncation 0.5 and without it, MSG (Karnewar & Wang, 2020) with truncation 0.6 and without it,
PGGAN (Karras et al., 2017), SNGAN (Miyato et al., 2018). SNGAN generates 128x128 images,
so we upscale them to 256x256. To compute the metrics, we use 100k real and synthetic images;

• Imagenet 128x128 (Deng et al., 2009) with the following GAN models: BigGAN (Brock et al.,
2019), BigGAN-deep (Brock et al., 2019) (both with truncation 2.0), S3GAN (Lucic et al., 2019),
Your Local GAN (YLG) (Daras et al., 2020). To compute the metrics, we use 50k images (50
per class). We include this dataset to demonstrate that for Imagenet, the proposed self-supervised
representations provide consistent ranking with commonly used InceptionV3 embeddings.

To compute image embeddings, we use the following publicly available models:

• InceptionV3 (Szegedy et al., 2016) pretrained on the ILSVRC-2012 task (Deng et al., 2009);
• Resnet50 (He et al., 2016) pretrained on the ILSVRC-2012 task. We include this model since

self-supervised models employ Resnet50, therefore, it is important to demonstrate that better GAN
ranking comes from the training objective rather than the deeper architecture;

• Imagenet21k (Kolesnikov et al., 2019) pretrained on the multi-label classification task on approx-
imately 14M images from the full Imagenet. Kolesnikov et al. (2019) have shown that supervised
pretraining on huge datasets provides more transferrable features, therefore, Imagenet21k can
also potentially provide more universal representations. The model architecture is Resnet50;

• SwAV (Caron et al., 2020) is the state-of-the-art self-supervised image representation model
trained on ILSVRC-2012. The idea of SwAV is to simultaneously cluster the images while en-
forcing consistency between cluster assignments produced for different augmentations of the same
image. The model architecture is Resnet50;

2The URLs for all models are provided in Appendix.
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Table 1: FID values computed with different embeddings. The ‘*’ symbol indicates models with
truncation. The inconsistencies between InceptionV3 and SwAV rankings are highlighted in color.

CELEBAHQ FFHQ

InceptionV3 StyleGAN MSG PGGAN StyleGAN* MSG* StyleGAN2 MSG StyleGAN MSG*

5.958 7.041 7.747 12.761 18.845 3.355 6.560 6.896 22.552

Resnet50 StyleGAN MSG PGGAN StyleGAN* MSG* StyleGAN2 MSG StyleGAN MSG*

5.981 7.427 9.395 13.650 19.048 3.813 7.252 8.230 25.076

Imagenet21k MSG StyleGAN PGGAN StyleGAN* MSG* StyleGAN2 MSG StyleGAN MSG*

295.3 301.3 451.6 635.5 874.4 177.7 334.7 389.1 1092

SwAV MSG StyleGAN StyleGAN* MSG* PGGAN StyleGAN2 MSG StyleGAN MSG*

1.206 1.304 1.473 1.832 1.898 0.634 1.275 1.482 2.461

DeepClusterV2 MSG StyleGAN StyleGAN* PGGAN MSG* StyleGAN2 MSG StyleGAN MSG*

1.847 2.255 2.680 2.865 2.935 0.978 1.890 2.076 3.926

MoCoV2 MSG StyleGAN PGGAN StyleGAN* MSG* StyleGAN2 MSG StyleGAN MSG*

0.008 0.009 0.012 0.016 0.023 0.005 0.009 0.010 0.035

LSUN-BEDROOM

InceptionV3 StyleGAN PGGAN StyleGAN* COCO-GAN RPGAN RPGAN div.
2.986 8.658 9.655 18.612 37.924188 40.165

Resnet50 StyleGAN PGGAN StyleGAN* COCO-GAN RPGAN RPGAN div.
6.263 17.689 20.042 34.045 44.850 51.850

Imagenet21k StyleGAN StyleGAN* PGGAN COCO-GAN RPGAN div. RPGAN
321.7 633.3 940.6 1270 1589 1593

SwAV StyleGAN StyleGAN* PGGAN RPGAN COCO-GAN RPGAN div.
1.475 1.776 4.160 5.608 6.289 6.460

DeepClusterV2 StyleGAN StyleGAN* PGGAN RPGAN COCO-GAN RPGAN div.
2.095 2.958 5.855 8.757 9.151 10.13

MoCoV2 StyleGAN StyleGAN* PGGAN RPGAN RPGAN div. COCO-GAN
0.012 0.031 0.037 0.072 0.083 0.085

LSUN-CHURCH

InceptionV3 StyleGAN2 MSG PGGAN MSG* StyleGAN2* SNGAN
3.652 5.009 6.296 13.854 24.966 32.661

Resnet50 StyleGAN2 MSG PGGAN MSG* StyleGAN2* SNGAN
6.650 9.673 10.850 22.670 55.571 56.114

Imagenet21k StyleGAN2 MSG PGGAN MSG* SNGAN StyleGAN2*

558.1 856.8 946.0 1305.3 1715 2165

SwAV StyleGAN2 PGGAN MSG MSG* StyleGAN2* SNGAN
1.898 3.233 3.578 4.062 5.194 6.043

DeepClusterV2 StyleGAN2 PGGAN MSG MSG* SNGAN StyleGAN2*

2.599 4.149 4.586 5.395 7.830 8.612

MoCoV2 StyleGAN2 MSG PGGAN MSG* SNGAN StyleGAN2*

0.019 0.030 0.030 0.048 0.067 0.083

• DeepClusterV2 (Caron et al., 2020) is another self-supervised model obtained by alternating
between pseudo-labels generation via k-means clustering and training the network with a classifi-
cation loss supervised by these pseudo-labels. The model architecture is Resnet50;

• MoCoV2 (Chen et al., 2020b) is the state-of-the-art contrastive learning approach, which training
objective enforces the closeness of representations produced for different augmentations of the
same image while pushing apart the representations of unrelated images. The model architecture
is Resnet50.

Three self-supervised models listed above outperform supervised pretraining on a number of transfer
tasks (He et al., 2020; Caron et al., 2020), which implies that their embeddings capture more infor-
mation relevant for these tasks, compared to supervised models pretrained on Imagenet. Below, for
a large number of publicly available GANs, we present the values of FID, Precision, and Recall met-
rics computed with different embeddings. For the cases where the GANs ranking is inconsistent, we
aim to show that the ranking obtained with the self-supervised representations is more reasonable.
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Table 2: Prediction accuracy of CelebaHQ attributes from InceptionV3 and SwAV embeddings.

Model Mouth Slightly Open No Beard High Cheekbones Smiling
InceptionV3 0.802 0.906 0.811 0.837

SwAV 0.868 0.938 0.851 0.893

3.1 FRÉCHET INCEPTION DISTANCE

The FID values for the non-Imagenet datasets computed with different embeddings are shown in
Table 1. The cases of inconsistent ranking with supervised InceptionV3 and self-supervised SwAV
embeddings are highlighted in color. The key observations are listed below:

(a) On CelebaHQ, SwAV ranks StyleGAN* higher, while InceptionV3/Resnet50 prefer PGGAN.
Figure 1 shows random samples from both StyleGAN* and PGGAN and clearly demonstrates the
superiority of StyleGAN*. To investigate the reasons why SwAV produces a more adequate rank-
ing compared to Inception/Resnet50, we perform two additional experiments. (I) First, we verify
that SwAV embeddings capture more information relevant for face images. The Celeba dataset (Liu
et al., 2018) provides labels of 40 attributes for each image, describing various person properties
(gender, age, hairstyle, etc.). For each attribute, we train 4-layer feedforward neural network with
2048 neurons on each layer with cross-entropy loss, which learns to predict the attribute from the
SwAV/Inception embedding. For all attributes, the predictions from SwAV embeddings appear to
be more accurate compared to InceptionV3 (several examples are given in Table 2). It confirms
the intuition that InceptionV3 representations partially suppress the information about small facial
details, which, however, is critical to identify more realistic images. (II) As a qualitative experiment,
we compare SwAV and supervised Resnet50 embeddings visually via a recent technique described
in Rombach et al. (2020). In a nutshell, this technique reveals the invariances learned by the par-
ticular representation model: for a given image, it visualizes several images having approximately
the same embedding. By inspecting these images, one can analyze what factors of variations are not
captured in the embedding (see the details in Section A.2). Two illustrative examples of such visu-
alization for SwAV and Resnet50 are shown in Figure 2, demonstrating that Resnet50 embeddings
are more invariant to sensitive information, like gender or race, compared to SwAV. Such ignorance
of sensitive information makes supervised embeddings less appealing to use as universal representa-
tions. One of the key ingredients of the visualization method is an autoencoder, which is expected to
capture all relevant information from an image. However, we argue that autoencoder representations
are not well-suited for evaluating generative models and elaborate on this in detail in Section D.

(b) On Bedroom, there are two inconsistencies in InceptionV3 and SwAV ranking. The first is that
SwAV ranks StyleGAN higher than PGGAN and the second is that SwAV ranks RPGAN higher
than COCO-GAN. Figure 3 shows the samples from StyleGAN, PGGAN, RPGAN, and COCO-
GAN and demonstrates that the ranking according to SwAV embeddings is more adequate. Namely,
the quality of StyleGAN-generated images is substantially higher. Also, it is difficult to identify
a favorite among RPGAN and COCO-GAN visually, while InceptionV3 embeddings claim strong
superiority of the COCO-GAN model. On the other hand, self-supervised embeddings consider
these models as comparable, which is better aligned with human perception.

(c) There are also cases of the inconsistent ranking of MSG and PGGAN on Church, and StyleGAN
and MSG on CelebaHQ. But since the difference of the FID values are small for both InceptionV3
and SwAV, we do not consider it as a strong disagreement.

StyleGAN-CelebaHQ PGGAN-CelebaHQ

Figure 1: Samples generated by StyleGAN* and PGGAN trained on CelebaHQ. The quality of
images generated by StyleGAN* is substantially higher.
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Resnet50 SwAV Resnet50 SwAV

Figure 2: The reference image is top-left denoted by a green frame, while 8 others constitute a
diverse sample of images that have approximately the same embeddings as the reference one.

(d) The rankings with the supervised InceptionV3/Resnet50 embeddings are consistent with each
other while being different from the rankings with the self-supervised ones. It indicates that the
model architecture does not affect GAN ranking, and it is the training objective that matters.

(e) Imagenet21k corrects some cases of misleading ranking with InceptionV3, but not all of them.
Namely, it correctly ranks StyleGAN and PGGAN on Bedroom while being wrong on CelebaHQ.

(f) SwAV and DeepClusterV2 have minimal inconsistencies in the ranking of MSG* vs PGGAN on
CelebaHQ and StyleGAN2* vs SNGAN on Church, but the differences in the absolute values of the
FID metric are negligible, so we consider these embedding models as mostly consistent.

(g) MoCoV2 fixes some ranking mistakes with InceptionV3, but not all of them. While it fixes the
ranking of StyleGAN and PGGAN on Bedroom and reduces the gap between RPGAN and COCO-
GAN, the ranking of PGGAN and StyleGAN on CelebaHQ is still incorrect. Overall, the most
reasonable rankings are obtained using SwAV/DeepCluster, which have significantly higher transfer
performance compared to MoCoV2. In further experiments, we focus on the most transferable
SwAV/DeepCluster models.

Overall, self-supervised embeddings provide a more reasonable FID ranking across existing non-
Imagenet benchmarks. For completeness, we also report the FID values for the Imagenet dataset in
Table 6. In this case, rankings with all embeddings are the same, which confirms that the SwAV
representations can be used for Imagenet as well, while it is not the main focus of our work.

3.2 PRECISION

The values of the Precision metric are reported in Table 3. The main observations are listed below:

StyleGAN-Bedroom PGGAN-Bedroom

RPGAN-Bedroom COCO-GAN-Bedroom

Figure 3: Samples generated by StyleGAN*, PGGAN, RPGAN and COCO-GAN trained on Bed-
room. The quality of images generated by StyleGAN* is substantially higher, while the quality of
the images generated by RPGAN and COCO-GAN is approximately the same.
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Table 3: Precision (k=5) for different embedding models. The ‘*’ symbol indicates models with
truncation. Inconsistencies between InceptionV3 and SwAV models are highlighted in color.

CELEBAHQ FFHQ

InceptionV3 MSG* StyleGAN* StyleGAN MSG PGGAN MSG* StyleGAN2 StyleGAN MSG
0.894 0.882 0.803 0.7963 0.778 0.843 0.778 0.778 0.776

Resnet50StyleGAN* MSG* StyleGAN MSG PGGAN MSG* StyleGAN2 StyleGAN MSG
0.921 0.916 0.857 0.839 0.839 0.865 0.821 0.807 0.789

Imagenet21kStyleGAN* MSG* PGGAN StyleGAN MSG StyleGAN2 MSG* StyleGAN MSG
0.923 0.912 0.904 0.896 0.868 0.883 0.875 0.871 0.851

SwAV MSG* StyleGAN* MSG StyleGANPGGAN MSG* StyleGAN StyleGAN2 MSG
0.935 0.928 0.879 0.875 0.851 0.911 0.905 0.889 0.870

DeepClusterV2 MSG* StyleGAN* StyleGAN PGGAN MSG MSG* StyleGAN StyleGAN2 MSG
0.945 0.937 0.892 0.890 0.887 0.920 0.908 0.882 0.873

LSUN-BEDROOM

InceptionV3StyleGAN* StyleGAN PGGAN COCO-GANRPGAN div.RPGAN
0.799 0.649 0.541 0.443 0.092 0.086

Resnet50StyleGAN* StyleGAN PGGAN COCO-GANRPGAN div.RPGAN
0.849 0.722 0.646 0.596 0.545 0.515

Imagenet21kStyleGAN* StyleGANCOCO-GAN PGGAN RPGAN div.RPGAN
0.723 0.653 0.622 0.434 0.171 0.114

SwAVStyleGAN* StyleGAN PGGAN COCO-GANRPGAN div.RPGAN
0.849 0.760 0.732 0.725 0.540 0.440

DeepClusterV2StyleGAN* StyleGAN PGGAN COCO-GANRPGAN div.RPGAN
0.817 0.728 0.722 0.706 0.540 0.423

LSUN-CHURCH

InceptionV3StyleGAN2* MSG* MSG PGGAN StyleGAN2SNGAN
0.909 0.837 0.698 0.692 0.689 0.193

Resnet50StyleGAN2* MSG* MSG StyleGAN2 PGGAN SNGAN
0.910 0.828 0.679 0.672 0.639 0.403

Imagenet21kStyleGAN2* StyleGAN2 MSG* MSG PGGAN SNGAN
0.567 0.492 0.458 0.448 0.399 0.183

SwAVStyleGAN2* MSG* StyleGAN2 PGGAN MSG SNGAN
0.929 0.647 0.619 0.533 0.491 0.465

DeepClusterV2StyleGAN2* MSG* StyleGAN2 MSG PGGAN SNGAN
0.936 0.779 0.630 0.593 0.589 0.438

(a) As with FID, all supervised InceptionV3/Resnet50 embeddings provide the same ranking, except
minor differences between MSG with truncation and StyleGAN on CelebaHQ, and StyleGAN2 and
PGGAN on Church. Self-supervised SwAV and DeepClusterV2 are also consistent except for the
negligible difference in the ranking of PGGAN and MSG on CelebaHQ and Church;

(b) The most notable inconsistency between supervised and self-supervised embeddings is revealed
on LSUN-Church, where InceptionV3 considers MSG to be comparable to StyleGAN2, while
SwAV ranks StyleGAN2 significantly higher. (I) To analyze which ranking of two GANs is more
reasonable, we perform the following. On the synthetic data from the first GAN, we train a classifier
that aims to distinguish between real and synthetic images. This classifier is then evaluated on the
synthetic data from the second GAN. Concretely, we train a classifier to detect synthetic images on
real LSUN-Church and the images generated by MSG. Then we evaluate this model on hold-out
real images and images produced by StyleGAN2. Intuitively, if a model was trained on high-quality
synthetic samples, it will easily detect lower-quality ones. On the other hand, if the model learns to
detect only low-quality synthetics, it will be harder to discriminate real images from the high-quality
ones. In this experiment, we employ a Resnet50 classifier with a binary cross-entropy loss. The re-
sults for Church are provided in Table 4, meaning that the StyleGAN2 images are of higher quality,
therefore, the SwAV ranking is more reasonable. (II) We also conduct a human study to determine
which of the generative models gives more realistic images in terms of human perception. For each
generative model, we show ten assessors a real or randomly generated (fake) image and ask them to
choose whether it is real or fake. The error rate reflects the visual quality of the generative model.
For both models, MSG and StyleGAN2, we demonstrate to assessors 500 images, and the error rate
is 0.4% for MSG and 2.8% for StyleGAN2, which clearly shows the superiority of StyleGAN2.
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Table 5: Recall (k=5) for different GAN and embedding models. The ‘*’ symbol indicates models
with truncation. Inconsistencies between InceptionV3 and SwAV models are highlighted in color.

CELEBAHQ FFHQ

InceptionV3 MSG StyleGAN PGGAN StyleGAN* MSG* StyleGAN2 MSG StyleGANMSG*

0.477 0.405 0.398 0.281 0.276 0.632 0.538 0.474 0.339

Resnet50 MSG StyleGAN PGGAN StyleGAN* MSG* StyleGAN2 MSG StyleGANMSG*

0.502 0.419 0.330 0.284 0.277 0.624 0.547 0.456 0.299

Imagenet21k MSG StyleGAN MSG* StyleGAN* PGGAN StyleGAN2 MSG StyleGANMSG*

0.546 0.414 0.321 0.315 0.287 0.688 0.551 0.452 0.335

SwAV MSG StyleGAN MSG* StyleGAN* PGGAN StyleGAN2 MSG StyleGANMSG*

0.151 0.061 0.055 0.035 0.027 0.399 0.193 0.095 0.063

DeepClusterV2 MSG MSG* StyleGANStyleGAN* PGGAN StyleGAN2 MSG StyleGANMSG*

0.185 0.074 0.072 0.042 0.039 0.409 0.220 0.132 0.078
LSUN-BEDROOM

InceptionV3StyleGAN PGGAN COCO-GAN StyleGAN* RPGANRPGAN div.
0.592 0.516 0.476 0.397 0.190 0.110

Resnet50StyleGAN PGGAN StyleGAN* COCO-GANRPGANRPGAN div.
0.519 0.352 0.304 0.258 0.058 0.030

Imagenet21kStyleGANStyleGAN* PGGAN COCO-GANRPGANRPGAN div.
0.498 0.293 0.240 0.157 0.008 0.003

SwAVStyleGANStyleGAN* PGGAN COCO-GANRPGANRPGAN div.
0.153 0.069 0.015 0.003 0.0003 0.00003

DeepClusterV2StyleGANStyleGAN* PGGAN COCO-GANRPGANRPGAN div.
0.210 0.109 0.039 0.009 0.001 0.0

LSUN-CHURCH

InceptionV3StyleGAN2 MSG PGGANMSG* SNGAN StyleGAN2*

0.519 0.491 0.461 0.271 0.090 0.071

Resnet50StyleGAN2PGGAN MSG MSG* SNGAN StyleGAN2*

0.460 0.413 0.406 0.182 0.038 0.021

Imagenet21kStyleGAN2 MSG PGGANMSG* StyleGAN2* SNGAN
0.350 0.260 0.251 0.105 0.013 0.010

SwAVStyleGAN2PGGAN MSG MSG* StyleGAN2* SNGAN
0.073 0.019 0.008 0.002 0.0014 0.0002

DeepClusterV2StyleGAN2PGGAN MSG MSG* SNGAN StyleGAN2*

0.112 0.058 0.031 0.009 0.002 0.002

Table 4: The accuracy of fake images detection on
Church. The rows correspond to GANs producing
the train synthetics, while the columns correspond
to GANs producing the test.

Train/Test MSG StyleGAN2
MSG 0.999 0.610

StyleGAN2 0.967 0.979

(c) Imagenet21k ranks GANs less reliably com-
pared to SwAV. The most notable mistake is a
ranking of COCO-GAN and PGGAN on Bed-
room, where PGGAN produces more visually
appealing images, see Figure 3. Another case is
comparison on CelebaHQ, where Imagenet21k
ranks PGGAN higher than the more powerful
MSG, see samples in Section B.

3.3 RECALL

The values of the Recall metric are shown in Table 5, and the main observations are provided below:

(a) As in previous experiments, there are only minor inconsistencies between supervised Incep-
tionV3 and Resnet50 models, namely, StyleGAN vs COCO-GAN on Bedroom and MSG vs PG-
GAN on Church. The only insignificant difference between the self-supervised methods is the rank-
ing of StyleGAN with truncation vs SNGAN on Church, however, Recall values for both models
are negligible. In terms of Recall, Imagenet21k ranking always coincides with the ranking obtained
by self-supervised methods, except for the negligible discrepancy between MSG and PGGAN on
Church;
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(b) The absolute Recall values for SwAV/DeepClusterV2 are smaller compared to Incep-
tionV3/Resnet50. We attribute this behavior to the fact that GANs tend to simplify images omitting
the details (Bau et al., 2019), e.g., people in front of buildings, cars, fences, etc. The classifier-
pretrained embeddings are less sensitive to these details since they are not crucial for correct classi-
fication. In contrast, self-supervised embeddings are more susceptible to small details (see Figure 2
and Table 4), hence, more images are considered “not covered”. Figure 6 in Section C shows exam-
ples of real LSUN-Church images that are “definitely covered” by StyleGAN2 from the standpoint
of InceptionV3 embeddings, but are “not covered” if SwAV embeddings are used. More formally,
we say that a real image is covered by a synthetic one with the neighborhood size k, if the distance
between their embeddings does not exceed the distance from the embedding of the synthetic image
to its k-th nearest neighbor in the set of all synthetic embeddings. The images from Figure 6 are
covered by at least 10 synthetic images with neighborhood size 5 with InceptionV3 embeddings,
while being not covered even by the neighborhood of size 100 for SwAV embeddings. These im-
ages possess many small details, such as monuments, cars, people, branches in the foreground, and
so on, that GANs usually omit to generate.

0 20000 40000 60000 80000 100000
1.0

1.2

1.4

1.6

1.8

2.0 SwAV
InceptionV3

Figure 4: FID values for different sample
sizes for StyleGAN2 on Church. Since FID
values for SwAV and InceptionV3 have dif-
ferent scales, they normalized by the FID
value computed for a sample of size 100k.

(c) Interestingly, the Precision values for SwAV are
quite high, therefore, SwAV considers the state-
of-the-art generative models being able to produce
high-fidelity images, but failing to generate diverse
images with small details.

(d) There are two significant inconsistencies in rank-
ings based on InceptionV3 and SwAV. First, on
CelebaHQ, SwAV prefers MSG* over PGGAN. Sec-
ond, on LSUN-Bedroom, InceptionV3 ranks PG-
GAN higher than StyleGAN. Since StyleGAN is a
more powerful model compared to PGGAN, we also
consider it as a case of a more reliable ranking with
SwAV, even though it is difficult to confirm quan-
titatively due to the lack of an “oracle” measure of
generation diversity.

3.4 SAMPLE EFFICIENCY OF SWAV-BASED FID
As an additional practical advantage of SwAV, we highlight that computing FID becomes more
sample-efficient compared to InceptionV3. Namely, to obtain a reliable estimation of FID values,
one requires much fewer samples when using SwAV embeddings. We illustrate this effect in Fig-
ure 4, which plots FID values w.r.t. sample size for StyleGAN2 trained on Church. Since the FID
values for SwAV and InceptionV3 have different typical scales, we normalize both curves by the
corresponding FID value computed for a sample of size 100k. FID based on SwAV embeddings
converges faster, i.e., using SwAV always achieves more reliable FID estimates for a fixed sample
size.

We attribute this benefit of SwAV to the fact that its representations capture more information needed
to distinguish between real and fake distributions. Intuitively, the covariance matrices for real and
synthetic data computed from SwAV embeddings are more dissimilar compared to InceptionV3-
based ones. Quantitatively, the magnitude of the covariance term in FID tr(CR + CS − 2

√
CRCS)

is larger for SwAV, which leads to smaller relative errors of its stochastic estimates. We elaborate
on this issue more rigorously in Section E.

4 CONCLUSION

In this paper, we have investigated if the state-of-the-art self-supervised models can produce more
appropriate representations for GAN evaluation. With extensive experiments, we have shown
that using these representations often corrects the cases of misleading ranking obtained with
classification-pretrained embeddings. Overall, self-supervised representations provide a more ad-
equate GAN comparison on the four established non-Imagenet benchmarks of natural images. Of
course, we do not claim that they should be used universally for all areas, e.g., for spectrograms
or medical images. But our work indicates that obtaining good representations needed for proper
GAN evaluation does not require supervision, therefore, domain-specific self-supervised learning
becomes a promising direction for further study.
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A APPENDIX

A.1 IMAGENET

Table 6: FID values for GANs on Imagenet.
IMAGENET

InceptionV3 BigGAN-deep BigGAN S3GAN YLG
6.923 7.659 10.85 20.64

Resnet50 BigGAN-deep BigGAN S3GAN YLG
11.22 19.50 20.05 34.11

Imagenet21k BigGAN-deep BigGAN S3GAN YLG
334.8 601.5 1202 1697

SwAV BigGAN-deep BigGAN S3GAN YLG
2.374 4.162 4.282 5.965

DeepClusterV2 BigGAN-deep BigGAN S3GAN YLG
3.937 6.240 6.555 9.101

A.2 THE DETAILS OF THE VISUALIZATION TECHNIQUE IN SECTION 3.1

The technique from Rombach et al. (2020) proposes to construct the embedding visualization in
the following way. Let us have an autoencoder A(x), whose latent representations are denoted by
z. It is assumed that a latent representation z=A(x) captures all the information from the image
x, since the autoencoder’s goal is to fully reconstruct x from z. Let us denote the embedding
model we want to study by E(x). For a particular image x, Rombach et al. (2020) compute an
autoencoder representation z = A(x) and aims to disentangle the information contained in the
autoencoder representation z into the information contained in the image embedding e = E(x) and
the information v to which the embedding model E(x) is invariant. To this end, an invertible neural
network (INN) is trained, which predicts the invariant part v = INN(z, e) based on the autoencoder
representation and embedding. Moreover, it is trained in such a way that the invariant part has
a normal distribution v ∼ N (0, 1). Finally, a bunch of images having the same e but different
invariant parts v are produced. Namely, several samples of invariant parts v̂ are produced from
N (0, 1) and the corresponding latent representations are computed from v̂ and embedding e, that is
ẑ = INN.reverse(v, e). Then ẑ can be decoded into an image using the autoencoder. As a result,
for a given embedding model E(x) and a given image x, it allows to obtain a set of images with
approximately the same embeddings but varying invariant part. For the CelebaHQ dataset, we use
ALAE autoencoder (Pidhorskyi et al., 2020) and train INN with the hyperparameters provided in
(Rombach et al., 2020).

B CELEBAHQ SAMPLES

MSG-CelebaHQ PGGAN-CelebaHQ

Figure 5: Random sample of images generated by MSG without truncation and PGGAN trained on
CelebaHQ dataset. One can see that the quality of images generated by MSG is substantially higher.
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C CHURCH IMAGES

Figure 6: Examples of real images that are confidently covered by StyleGANv2 in terms of Incep-
tionV3 embeddings, but not covered in terms of SwAV.

D AUTOENCODER EMBEDDINGS

  

Query SwAV ALAE

Figure 7: Examples of nearest neighbors in terms of SwAV and ALAE representations.

In this section, we compare SwAV and ALAE autoencoder (Pidhorskyi et al., 2020) embeddings.
ALAE was trained on Celeba (Liu et al., 2018) dataset, therefore, is expected to work correctly
for the ranking of generative models on CelebaHQ. To investigate what information is important
for each of the embeddings, we build a dataset containing 30k real images from CelebaHQ and
30k synthetic images generated by PGGAN. Then we select 1.5k real and 1.5k synthetic images as
queries and leave the remaining 57k pictures as a database. For each query, we compute three nearest
neighbors from the database. Typical examples of the nearest neighbors are shown on Figure 7.
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One can see that ALAE places a strong emphasis on the exact spatial arrangement, while sparsely
sampled manifolds rarely include near-exact matches in terms of spatial structure (Kynkäänniemi
et al., 2019). This makes ALAE embeddings poor for GAN evaluation, for instance, via Precision
and Recall metrics. We also perform real/fake classification of queries using 1-NN classification
on the constructed database. The classification accuracy is 0.729 for ALAE embeddings and 0.839
for SwAV. Overall, the distance in the space of the autoencoder’s embeddings is less informative to
distinguish between the real/fake distributions.

E ON THE ESTIMATE OF FID VALUES

Let us denote CR the covariance matrix for real data, CS for synthetic data and C̃R and C̃S their
estimates with a finite number of samples. We also denote

d(CR, CS) = tr(CR + CS − 2
√
CRCS) (1)

In (Dowson & Landau, 1982) it was shown that d(CR, CS) defines a metric on the space of all
covariance matrices of order n. Our goal is to assess the relative error of the FID estimate. Under
the assumption that the means of real and synthetic data distributions are estimated quite accurately
(which is the case already for a few thousand of samples) we need to estimate only∣∣∣d(CR, CS)− d

(
C̃R, C̃S

)∣∣∣
d(CR, CS)

(2)

Due to the metric properties

d
(
C̃R, C̃S

)
≤ d

(
C̃R, CR

)
+ d (CR, CS) + d

(
CS , C̃S

)
(3)

Then
d
(
C̃R, C̃S

)
− d(CR, CS)

d(CR, CS)
≤
d
(
C̃R, CR

)
+ d

(
C̃S , CS

)
d(CR, CS)

(4)

Due to the symmetry the same inequality can be obtained with the opposite sign and as the result we
get ∣∣∣d(C̃R, C̃S

)
− d(CR, CS)

∣∣∣
d(CR, CS)

≤
d
(
C̃R, CR

)
+ d

(
C̃S , CS

)
d(CR, CS)

, (5)

where the numerator corresponds to the accuracy of the estimation of covariance matrices and the
denominator corresponds to the distance between covariance matrices for real and synthetic data.
Thus, larger values of d(CR, CS) result in a smaller relative error of the FID estimation. Experi-
mentally, we compute the distances d(CR, CS) = tr(CR + CS − 2

√
CRCS) based on SwAV and

InceptionV3 embeddings for StyleGAN2 trained on the Church dataset.3 We obtain 0.083 for SwAV
and 0.028 for InceptionV3, which confirms the validity of calculations above and explains the better
sample-efficiency of SwAV presented in Figure 4.

F HUMAN EVALUATION

As an additional evidence that inter-image distances induced by SwAV are better aligned with human
perception compared to InceptionV3, we perform two crowdsourcing experiments. All the data and
labellings are released on the GitHub.4.

SwAV-based Precision and Recall have higher agreement with human judgements. The key
step of computing Recall is checking, if for a given real embedding r there exists a generated em-
bedding g that is closer to r than its k-th real neighbor. To verify, if a particular embedding agrees
well with human perception, we perform the following procedure. We form a triplet of an anchor

3Since the absolute values of d(CR, CS) depend on the scale of SwAV/InceptionV3 activations, we nor-
malize them by the geometric mean of norms CR and CS .

4https://github.com/stanis-morozov/self-supervised-gan-eval
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CELEBAHQ, StyleGAN* CELEBAHQ, PGGAN
Precision Recall Precision Recall

InceptionV3 0.396 0.497 0.399 0.482
SwAV 0.418 0.525 0.482 0.479

LSUN-Bedroom, StyleGAN* LSUN-Bedroom, PGGAN
Precision Recall Precision Recall

InceptionV3 0.417 0.522 0.375 0.444
SwAV 0.450 0.530 0.446 0.429

LSUN-Church, MSG LSUN-Church, PGGAN
Precision Recall Precision Recall

InceptionV3 0.386 0.473 0.400 0.449
SwAV 0.477 0.497 0.445 0.458

Table 7: Human evaluation of the precision and recall agreement with different embeddings (higher
is better).

real image Ianchor that contributes to the Recall value, its 5-th closest neighbor among the real im-
ages I5th and the generated image Igen that appears to be closer to Ianchor in terms of the considered
embedding. A human assessor is then asked to choose an image between Igen and I5th that is
more similar to Ianchor. Once the assessor chooses the generated one, we consider it as a case of
agreement with the embedding. The embeddings with higher agreement rate are more suitable for
computing Recall.

For Precision, we similarly form the triplets consisting of a generated image, its 5-th neighbor among
the generated images and a real image Ireal closer to it Ianchor, I5th, Ireal. Once an assessor answers
that Ireal is more similar to Ianchor then I5th, we consider this is as an agreement with the embedding.

Here we always use the same real and generated samples as for the evaluation of the metrics in
Section 3. We label three datasets with two GAN models for each. For each pair of a dataset and
a generator, we label 200 different triplets, each by ten different assessors. An assessor is also able
to choose the options “equally similar” or “both completely dissimilar”. Once the “equally similar”
is chosen, we suppose that the agreement happens with the probability 0.5. The user interface is
illustrated on Figure 8 (left). All the labeling was performed in Yandex Toloka 5. The results are
presented on Table 7 and confirm that SwAV emebddings mostly have higher agreement with human
perception.

Quality of neighbors. As a more simple experiment, we also ask human assessors to compare
quality of top-5 neighbors produced by InceptionV3 and SwAV embeddings. Namely, we take a set
of N real images I, same as in Section 3. For a given real image r ∈ I we form two lists of its
5 nearest neighbors BIV3 ⊂ I and BSwAV ⊂ I based on InceptionV3 and SwAV embeddings. An
assessor is asked to assign r either to BIV3 or to BSwAV. Same as above, the assessor may also label
it as “equal” which is treated as an equal probability of each set to be chosen. The user interface
is illustrated on Figure 8 (right). For each dataset we form 500 different triplets r,BSwAV,BIV3,
each labeled by ten different assessors. Table 8 presents probabilities that assessors prefer a SwAV-
based set of neighbors, indicating that SwAV-induced distances better capture perceptual similarity
compared to InceptionV3.

InceptionV3 SwAV
CELEBAHQ 0.37 0.63

LSUN-Bedroom 0.39 0.61
LSUN-Church 0.41 0.59

Table 8: Comparison of top-5 neighbor lists quality based on SwAV/InceptionV3 representations.

5https://toloka.ai
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Figure 8: User interface for precision / recall agreement labeling (left) and top-5 neighbours labeling
(right).

model source truncation
CELEBAHQ

StyleGAN https://github.com/NVlabs/stylegan -
StyleGAN* https://github.com/NVlabs/stylegan 0.7
MSG https://github.com/akanimax/msg-stylegan-tf -
MSG* https://github.com/akanimax/msg-stylegan-tf 0.6
PGGAN https://github.com/tkarras/progressive_growing_

of_gans
-

FFHQ
StyleGAN2 https://github.com/NVlabs/stylegan2 -
StyleGAN https://github.com/rosinality/style-based-gan-

pytorch
-

MSG https://github.com/akanimax/msg-stylegan-tf -
MSG* https://github.com/akanimax/msg-stylegan-tf 0.6

LSUN-Bedroom
StyleGAN https://github.com/NVlabs/stylegan -
StyleGAN* https://github.com/NVlabs/stylegan 0.7
PGGAN https://github.com/tkarras/progressive_growing_

of_gans
-

RPGAN https://github.com/anvoynov/RandomPathGAN,
model: generator_lsun_2

-

RPGAN-div https://github.com/anvoynov/RandomPathGAN,
model: generator_lsun_high_diversity

-

COCO-GAN https://github.com/hubert0527/COCO-GAN/tree/
12b90e26e23214c2072c9701644e9724e052743c,
model: LSUN_256x256_N2M2S128

-

LSUN-Church
StyleGAN2 https://github.com/NVlabs/stylegan2 -
StyleGAN2* https://github.com/NVlabs/stylegan2 0.5
PGGAN https://github.com/tkarras/progressive_growing_

of_gans
-

MSG https://github.com/akanimax/msg-stylegan-tf -
MSG* https://github.com/akanimax/msg-stylegan-tf 0.6
SNGAN Submission authors implementation -

Table 9: The URLs with GAN checkpoints and truncation levels used in our experiments.
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Representation Dim URL Checkpoint

InceptionV3 2048 https://github.
com/mseitzer/
pytorch-fid

https://github.com/
mseitzer/pytorch-fid/
releases/download/fid_
weights/pt_inception-2015-
12-05-6726825d.pth

Resnet-50 2048 https://pytorch.
org/docs/stable/
torchvision/
models.html

https://download.pytorch.
org/models/resnet50-
19c8e357.pth

Imagenet21k 2048 https://tfhub.
dev/google/bit/m-
r50x1/1

https://tfhub.dev/google/
bit/m-r50x1/1

SwAV 2048 https://
github.com/
facebookresearch/
swav

https://dl.fbaipublicfiles.
com/deepcluster/swav_800ep_
pretrain.pth.tar

DeepClusterV2 2048 https://
github.com/
facebookresearch/
swav

https://dl.fbaipublicfiles.
com/deepcluster/
deepclusterv2_800ep_
pretrain.pth.tar

MoCoV2 2048 https://
github.com/
facebookresearch/
moco

https://dl.fbaipublicfiles.
com/moco/moco_checkpoints/
moco_v2_800ep/moco_v2_
800ep_pretrain.pth.tar

Table 10: The URLs with checkpoints used in our experiments.
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https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://download.pytorch.org/models/resnet50-19c8e357.pth
https://download.pytorch.org/models/resnet50-19c8e357.pth
https://download.pytorch.org/models/resnet50-19c8e357.pth
https://tfhub.dev/google/bit/m-r50x1/1
https://tfhub.dev/google/bit/m-r50x1/1
https://tfhub.dev/google/bit/m-r50x1/1
https://tfhub.dev/google/bit/m-r50x1/1
https://tfhub.dev/google/bit/m-r50x1/1
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://dl.fbaipublicfiles.com/deepcluster/deepclusterv2_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/deepclusterv2_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/deepclusterv2_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/deepcluster/deepclusterv2_800ep_pretrain.pth.tar
https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco
https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
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