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ABSTRACT

Vision-language models have showcased impressive zero-shot classification capa-
bilities when equipped with suitable text prompts. Previous studies have shown
the effectiveness of test-time prompt tuning; however, these methods often require
per-image prompt adaptation during inference, which is computationally inten-
sive and limits scalability and deployment. To address this issue, we introduce a
novel framework: Self-supervised learning for efficient Test-time Prompt Tuning
(Self-TPT). The key feature of Self-TPT is its shift to efficient predefined class
adaptation through self-supervised learning, thereby avoiding the computation-
heavy per-image adaptation at inference. Self-TPT starts by co-training the
self-supervised and supervised tasks using source data, then applies the self-
supervision exclusively for new class understanding before making predictions.
Specifically, we propose Contrastive Prompt Learning (CPT) as the core task for
self-supervision. CPT is designed to minimize the intra-class distances while en-
hancing inter-class distinguishability via contrastive learning. Empirical evidence
suggests that CPT can partially mimic supervised learning in terms of gradients,
providing a plausible explanation for its effectiveness. Motivated by this find-
ing, we introduce a gradient matching loss to explicitly enhance gradient sim-
ilarity. We evaluated Self-TPT across three challenging zero-shot benchmarks.
The results consistently show that Self-TPT not only significantly reduces infer-
ence costs but also achieves state-of-the-art performance, effectively balancing the
efficiency-efficacy trade-off.

1 INTRODUCTION

Open-set image classification is a fundamental yet challenging task in computer vision. Recently,
Vision-Language Models (VLMs) (Jia et al., 2021; Li et al., 2022; Alayrac et al., 2022; Fang et al.,
2023) have shown promising capabilities in this field. A prominent model, CLIP (Radford et al.,
2021), encodes both images and language into a unified embedding space, allowing classification
by measuring similarities between image representations and textual class descriptions.

Effective prompts for input classes are essential (Radford et al., 2021), but manually crafting them
is time-consuming (Zhou et al., 2022b). Inspired by NLP advancements (Shin et al., 2020; Zhong
et al., 2021), researchers have explored using continuous vectors as soft prompts, optimizing them
with a few labeled data (source data). These methods can automatically obtain task-specific prompts,
thereby improving performance (Zhou et al., 2022b; Zhu et al., 2024). However, the source data is
unlikely to encompass all possible classes, resulting in suboptimal open-set performance.

Test-time adaptation (TTA) (Liang et al., 2020a; Wang et al., 2020; Niu et al., 2023) has recently
gained attention for adapting models to new data distributions during the test phase. In this context,
TPT (Shu et al., 2022) was proposed to tune prompts for new classes at test time, thereby improving
open-set generalization. As depicted in Fig. 1(a), TPT first learns prompts from source data (stage
1). It then adjusts these prompts for each test sample (stage 2) and uses the sample-tailored
prompts for predicting (stage 3). Despite its effectiveness, TPT requires a substantial compu-
tational budget. For each test sample, it takes multiple forward and backward passes through the
entire model and needs to retain the full computational graph, resulting in substantial latency and
memory usage. As shown in Fig. 1(c), TPT operates at∼7 FPS while consuming∼5GB of graphics
memory. The latest TPT-based method, PromptAlign (Samadh et al., 2023), operates at ∼5 FPS
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Figure 1: TPT versus Self-TPT. (a) TPT learns prompts from source data (stage 1), then adapts
them to individual samples for prediction (stages 2&3). (b) Self-TPT employs text-oriented self-
supervised learning (SSL) for joint training (stage 1) and for new class adaptation (stage 2),
followed by direct predictions for each image (stage 3). (c) We present the frame per second
(FPS) and graphics memory usage for each method when applied to CLIP-B/16 using the same
A100-80G GPU. The y-axis represents the average cross-dataset accuracy.

with ∼11GB of graphics memory. These heavy computational demands pose challenges for scaling
TPT to larger VLMs and deploying it on resource-limited platforms.

In this paper, we study the question: Can we harness TTA’s generalizability while bypassing its
huge computational overhead? We observed that, at inference, while images come sequentially, the
candidate class names are typically predetermined. Motivated by this, we introduce Self-TPT, an
efficient Test-time Prompt Tuning framework that employs text-oriented Self-supervised learning
(SSL). The idea is depicted in Fig. 1(b): the adaptation process (stage 2) of Self-TPT operates
solely on the predefined class names, allowing for directly predicting any image without the need
for prompt updates (stage 3), thereby effectively bypassing the substantial computational load.

For the SSL component, we propose using contrastive learning. The intuition is that effective clas-
sification requires embeddings of the same class to align closely, while those from different classes
remain distinct, ensuring clear inter-class separability. To achieve this, we introduce a novel ap-
proach called Contrastive Prompt Tuning (CPT). In CPT, we vary the insertion points of the class
token within prompt sequences as data augmentation to create positive pairs. Negative pairs are built
by contrasting a class against all others, thereby explicitly reinforcing the dissimilarity among class
embeddings. Initially, we integrate CPT with supervised learning (stage 1) and subsequently rely
exclusively on CPT for new class adaptation (stage 2).

Our empirical analysis shows that CPT and supervised learning consistently exhibit a positive gra-
dient correlation in nearly all cases. This suggests that both tasks drive the model’s optimization
in similar directions, allowing CPT to potentially serve as a proxy for supervised learning during
the adaptation phase. This evidence plausibly explains the effectiveness of CPT. Inspired by this,
we introduce a gradient matching (GM) loss designed to enhance this positive correlation explicitly.
The GM loss operates on the gradients derived from both supervised and CPT losses and aims to
maximize their cosine similarities.

We evaluated Self-TPT’s performance on three challenging zero-shot benchmarks: cross-dataset
generalization, base-to-new generalization, and domain generalization. Our findings reveal that Self-
TPT consistently surpasses the prior state-of-the-art, PromptAlign, improving by 0.93%, 1.59%, and
1.82% on these benchmarks, respectively. Notably, Self-TPT significantly enhances efficiency, as
shown in Fig. 1(c), achieving a 25-fold increase in inference speed and reducing memory usage by
30-fold compared to PromptAlign. Our experiments also verify that Self-TPT is data-efficient and
generalizes well across different backbones, scales, and VLMs.

2 RELATED WORK

Vision-Language Models. Recent advances in computer vision and natural language processing
have spurred significant interest in vision-language models (VLMs) (Radford et al., 2021; Jia et al.,
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2021; Li et al., 2022; Zhai et al., 2022; Alayrac et al., 2022; Fang et al., 2023). These models excel
in various multi-modal tasks by leveraging massive datasets of image-text pairs to develop robust
representations that span different modalities. Notably, CLIP (Radford et al., 2021) has demon-
strated exceptional open-vocabulary capabilities, enabling effective performance in image classifi-
cation (Zhou et al., 2022b; Zhu et al., 2024), video recognition (Weng et al., 2023; Huang et al.,
2024), and object detection (Du et al., 2022; Minderer et al., 2022), etc. A key aspect of deploy-
ing VLMs successfully involves crafting effective text prompts. In this paper, we introduce a novel
framework that optimizes prompt adaptation for better class comprehension during testing.

Prompt Learning. Recent advancements in NLP have inspired approaches like CoOp (Zhou et al.,
2022b; Chen et al., 2022b; Lu et al., 2022), which treats prompts for VLMs as continuous vectors.
However, CoCoOp (Zhou et al., 2022a) highlighted a significant flaw: these learned prompts often
overfit to seen classes, compromising performance on new ones. To mitigate this, recent studies
have introduced additional learnable components (Zhu et al., 2024; Zhou et al., 2022a; Khattak et al.,
2023a; Zang et al., 2022; Wang et al., 2023c; Singha et al., 2023) or specialized strategies (Lee et al.,
2023; Xu et al., 2023b; Long et al., 2023; Shi & Yang, 2023; Kan et al., 2023; Wang et al., 2023a) to
enhance prompt generalization. Techniques like distillation and regularization (Yao et al., 2023; Zhu
et al., 2022; Khattak et al., 2023b; Xu et al., 2023a; Bulat & Tzimiropoulos, 2023) are also employed
to integrate task-specific knowledge and hand-crafted priors. Despite progress, achieving prompts
that generalize across all possible classes remains challenging. Consequently, this paper shifts focus
to test-time adaptation strategies, dynamically adjusting prompts during testing to address open-
world application challenges.

Test-Time Adaptation was developed to address shifts in data distribution between training and
testing phases by dynamically adjusting the model at inference. Numerous methods have emerged,
including entropy minimization (Liang et al., 2020a; Wang et al., 2020; Niu et al., 2023), batch-
normalization activation (Wang et al., 2020; Zhao et al., 2023; Niu et al., 2023), pseudo label-
ing (Chen et al., 2022a; Liang et al., 2020b; Wang & Wibisono, 2022), feature alignment (Liu et al.,
2021; Wang et al., 2023b; Wang & Aitchison, 2022), and test-time training (Sun et al., 2020; Liu
et al., 2021; Huang et al., 2021; Chen et al., 2023; Gandelsman et al., 2022). Recently, test-time
prompt tuning (TPT) (Shu et al., 2022) for VLMs has gained attention. TPT optimizes prompts by
reducing prediction entropy and uses image augmentation to create prediction diversity. Techniques
like DiffTPT (Feng et al., 2023) employ Stable Diffusion (Rombach et al., 2022) to boost augmented
image diversity, while SwapPrompt (Ma et al., 2023) and PromptAlign (Samadh et al., 2023) focus
on maximizing prediction agreement and aligning token statistics, respectively. Despite their ef-
fectiveness, these approaches often entail high computational costs, posing challenges for practical
deployment. This study introduces a more efficient TPT framework, aiming to balance effectiveness
with real-world applicability.

3 METHOD

3.1 PRELIMINARIES

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) encodes image x and a
set of class descriptions {ti}Ci=1 into a joint vision-language embedding space using two encoders:
the image encoder f(·) and the text encoder g(·). Here, C denotes the number of candidate classes.
This space ensures conceptually similar inputs are closely aligned. In this way, the classification
problem can be formulated as an image-text matching problem. Specifically, CLIP computes the
encoded image feature e and the encoded text features {wi}Ci=1. The probability for the i-th class is
calculated as:

p (yi | x) =
exp (cos (wi, e) /τ)∑C
j=1 exp (cos (wj , e) /τ)

, (1)

where τ is a temperature parameter.

Prompt Learning (Zhou et al., 2022b;a; Yao et al., 2023; Zhu et al., 2022) aims to optimize soft
prompts P ∈ RM×d to replace manually designed prompts (e.g., “a photo of a [CLASS]”):

ti = [P ]1[P ]2 . . . [P ]M [CLASS]i. i = 1, . . . , C (2)
Here, [CLASS]i are the word embeddings for the i-th class and d is the word embedding dimension of
CLIP. The parameters of P, represented as θp, are shared across all classes. The training dataset (i.e.,
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Figure 2: Overview of Self-TPT. Self-TPT operates in three stages. Stage 1: Conduct prompt
learning on a source dataset, co-trained with a self-supervised loss. Stage 2: Perform test-time
adaptation (TTA) for new class understanding via the self-supervised loss. Stage 3: Directly
predicting the target dataset without further prompt adjustment.

source data), denoted as S =
(
X (s),Y(s),M(s)

)
, includes imagesX (s), candidate class namesY(s),

and a ground-truth mappingM(s) between them. Training employs a cross-entropy loss function:

min
θp

Lce

(
X (s),Y(s),M(s);P, f, g

)
. (3)

During this training phase, the image and text encoders from CLIP are kept frozen.

Test-time Prompt Tuning (TPT) (Shu et al., 2022; Feng et al., 2023; Samadh et al., 2023) aims to
dynamically adapt prompts to unlabeled test data T =

(
X (t),Y(t)

)
, where X (t),Y(t) represent the

target images and candidate class names, respectively. TPT involves three stages: Initially, training
prompts on source data. Then, using the prompts from first stage, TPT employs an unsupervised
loss, such as entropy minimization Lent, to tailor these prompts for each specific test sample X (t)

i :

min
θp

Lent

(
X (t)

i ,Y(t);P, f, g
)
. (4)

Subsequently, predictions are made for each sample using these tailored prompts. Despite their ef-
fectiveness, these methods are computationally intensive during inference. Each test sample requires
multiple model passes and retention of a full computational graph, leading to increased latency
and significant memory demands. These limitations make deployment challenging, particularly in
resource-constrained environments, and hinder scalability to larger VLMs.

3.2 PIPELINE OF SELF-TPT

To leverage TTA’s generalizability while bypassing the huge computational overhead, we propose
Self-TPT, an efficient Test-time Prompt Tuning method based on Self-supervised learning. Given
the source data S and target data T with a potentially disjoint class set, our objective is to obtain
prompts for VLMs to well-classify the images in T . Self-TPT acquires task-specific knowledge
from the source data and adapts these learned prompts to new classes at test time, without directly
assessing the specific images from T . The overall pipeline of Self-TPT, as depicted in Fig. 2,
comprises three stages: prompt learning, test-time adaptation, and direct prediction. In Stage 1,
we co-train the self-supervised task and the classification task:

min
θp,θh

Lce

(
X (s),Y(s),M(s);P, f, g

)
+ Lssl

(
Y(s);P, g, h

)
, (5)

where h(·) is a SSL projection head, and θh denotes its parameters. In Stage 2, given the class
set Y(t) of T , we adapt using a text-oriented SSL task, decoupling the test-time adaptation from
specific test samples X (t)

i :

min
θp

Lssl

(
Y(t);P, g, h

)
. (6)

The prompts refined through Eq. 6 are directly applied to predict samples in T without further ad-
justments, thereby streamlining the test-time adaptation into a pre-processing step and significantly
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(a) Contrastive Prompt Tuning. Class token “[CLS]”
is inserted at the end, front, and middle of the prompt se-
quences to generate positive pairs for contrastive learning.
An additional hand-made prompt is incorporated as regu-
larization.
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(b) Cosine similarity between CPT and the clas-
sification task gradients across 11 datasets. A pos-
itive correlation can be observed between the two
tasks. This correlation can be further enhanced by
the gradient matching (GM) loss.

Figure 3: Contrastive prompt tuning and gradient similarity analysis.

reducing computational costs. In Sec. 3.3, we will detail the specific SSL task used in our Self-TPT
framework, and in Sec. 3.4, we will empirically demonstrate how this SSL task facilitates improved
classification performance.

3.3 CONTRASTIVE PROMPT TUNING

Within the Self-TPT framework, the core design is its self-supervised component. As indicated by
Sun et al. (2020), the auxiliary task (in this case, the SSL task) should have a strong correlation with
the main task (in this case, the classification task) to maintain effectiveness. In the realm of self-
supervised learning, contrastive learning methods (Chen et al., 2020; He et al., 2020) have yielded
impressive classification outcomes, even through the linear probing of frozen visual representations.
This underscores a positive connection between contrastive tasks and classification tasks, thereby
motivating our prioritization of contrastive learning in the SSL task design.

To construct the contrastive task, we adhere to the nature of classification that embeddings from the
same class should align closely, while those from different classes should remain distinct to ensure
inter-class distinguishability. To this end, we introduce a novel task named Contrastive Prompt Tun-
ing (CPT). This task varies the insertion points of the class token “[CLS]” within prompt sequences
to generate positive pairs. As depicted in Fig. 3a, CPT strategically places the “[CLS]” token at the
end, front, and middle of the learnable prompts:

tk = [P ]1[P ]2 . . . [P ]M [CLS]k,

tC+k = [CLS]k[P ]1[P ]2 . . . [P ]M , k = 1, . . . , C

t2C+k = [P ]1 . . . [P ]M
2
[CLS]k[P ]M

2 +1 . . . [P ]M .

(7)

Furthermore, Zhu et al. (2022) suggests that a simple, hand-crafted prompt (e.g., “a photo of
a”) embodies the general knowledge acquired during pre-training and can mitigate overfitting. With
this insight, we incorporate such prompt into CPT to regulate the contrastive learning process:

t3C+k = [a][photo][of][a][CLS]k. k = 1, . . . , C (8)

Eq. 7 and Eq. 8 establish four distinct views for each class. Let i ∈ {1, . . . , 4C} denote the index
of a specific view from any class. We define the index set of its three other views as P(i) ≡ {i mod
C, i mod C + C, i mod C + 2C, i mod C + 3C} \ {i}. The CPT loss is then formulated as:

LCPT = −
4C∑
i=1

log

∑
j∈P(i)

exp (zi · zj/τ)∑4C
j=1,j ̸=i exp (zi · zj/τ)

. (9)

Here, z denotes the text feature after projection, computed as zi = h(g(ti)), and τ is a scaling
temperature parameter, defaulting to 0.07.
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Table 1: Comparing inference computational costs. “FPS” denotes frames per second. All tests
are conducted on the same single A100 GPU and performed on ImageNet with a batch size of 1.
Self-TPT-v is introduced in Implementation Details.

Method Venue
CLIP-B/16 CLIP-L/14

FPS (↑) Memory (↓) FPS (↑) Memory (↓)
TPT (Shu et al., 2022) NeurIPS’22 7.1 5.2GB 3.3 8.5GB

DiffTPT (Feng et al., 2023) ICCV’23 2.2 5.2GB 1.0 8.5GB
PromptAlign (Samadh et al., 2023) NeurIPS’23 5.3 11.2GB 2.1 31.5GB

Self-TPT – 146.7 0.32GB 81.6 0.86GB
Self-TPT-v – 29.3 0.66GB 7.9 1.41GB

3.4 GRADIENT MATCHING

A pertinent question arises: how does CPT benefit classification during adaptation? To uncover
the underlying reasons, we conducted an empirical analysis by measuring the cosine similarity of
gradients between the classification loss and the CPT loss during optimization, expressed as:

cos(∇Lce
,∇LCPT

), (10)

where ∇ denotes the gradients corresponding to each loss. ∇Lce is computed as the average over
all images in the dataset to ensure statistical significance. The resulting similarity scores, depicted
as blue triangles in Fig. 3b, show positive correlations in 10 out of the 11 datasets examined. The
direction of these gradients suggests that CPT can effectively align with the optimization pathways
of the classification task during test-time adaptation, even in the absence of ground-truth labels.

Inspired by this finding, we propose a Gradient Matching (GM) loss to explicitly improve gradient
similarity between the two tasks. During training, we noted that ∇Lce exhibits sensitivity to small
batch sizes. To obtain the stable optimization direction of classification, we employ exponential
moving average (EMA) (Heckert & Filliben, 2003) to integrate both past and current gradient trends:

∇̃Lce
= αT∇0

Lce
+ αT−1(1− α)∇1

Lce
+ . . .+ (1− α)∇T

Lce
. (11)

Here, α is the decay rate, ∇Lcet denotes the gradient of the cross-entropy loss at step t, and T
represents the current step index. The GM loss is subsequently calculated as:

LGM = 1− cos(∇̃Lce
,∇LCPT

). (12)

Employing the GM loss, as observed in orange dots in Fig. 3b, yields notable increases in gradient
similarity across 8 of the 11 datasets, indicating a strengthened correlation between the two tasks.
In Sec. 4.3, we will demonstrate how this increase in similarity benefits downstream performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use 11 datasets covering a diverse set of recognition tasks: ImageNet (Deng et al.,
2009) and Caltech101 (Fei-Fei et al., 2004) for generic object recognition, OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013), OxfordFlowers (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014) and FGVCAircraft (Maji et al., 2013) for fine-grained classification,
SUN397 (Xiao et al., 2010) for scene recognition, DTD (Cimpoi et al., 2014) for texture classifica-
tion, EuroSAT (Helber et al., 2019) for satellite recognition, and UCF101 (Soomro et al., 2012) for
action recognition. Besides, four ImageNet variant datasets are involved: ImageNetV2 (Recht et al.,
2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b) and ImageN-
etR (Hendrycks et al., 2021a).

Evaluation settings. We use three benchmarks for evaluation and report the top-1 accuracy: (i)
Cross-data generalization: ImageNet is used as the source dataset, while the remaining 10 datasets
serve as target datasets. (ii) Base-to-new generalization: Each dataset is divided equally into two
subsets, base classes and new classes. The base subset is used as the source dataset, and the new
subset is used as the target dataset for evaluation. (iii) Domain generalization: ImageNet is used as
the source dataset, and 4 variant datasets are used as target datasets.
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Table 2: Cross-dataset generalization. 16-shot ImageNet is used as the source dataset. We report
top-1 accuracy (%) for each method across 10 target datasets. The best and second-best perfor-
mances are highlighted in bold red and blue underline, respectively.

Method Calt
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Pets Car
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s

Foo
d1

01
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ft

SU
N39

7

DTD

Eur
oS

AT

UCF10
1

Avg
.

CLIP (Radford et al., 2021) 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.58
Prompt learning methods
CoOp (Zhou et al., 2022b) 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp (Zhou et al., 2022a) 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
KgCoOp (Yao et al., 2023) 93.92 89.83 65.41 70.01 86.36 22.51 66.16 46.35 46.04 68.50 65.51
LASP (Bulat & Tzimiropoulos, 2023) 94.50 89.36 66.20 71.74 86.40 23.03 67.00 45.54 48.50 68.24 66.05
MaPLe (Khattak et al., 2023a) 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
PromptSRC (Khattak et al., 2023b) 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
LLM based methods
VisDesc (Menon & Vondrick, 2022) 94.60 88.85 64.08 70.85 85.05 24.30 67.99 44.98 54.84 67.12 66.27
WaffleCLIP (Roth et al., 2023) 94.02 89.95 63.57 72.35 86.68 25.39 67.23 45.21 55.07 67.19 66.67
Test-time adaptation methods
TPT (Shu et al., 2022) 94.16 87.79 66.87 68.98 84.67 24.78 65.50 47.75 42.44 68.04 65.10
CoOp+TPT 93.75 88.93 67.06 68.25 83.82 25.89 66.40 47.15 48.78 66.53 65.66
MaPLe (Zhou et al., 2022b)+TPT 93.59 90.72 66.50 72.37 86.64 24.70 67.54 45.87 47.80 69.19 66.50
DiffTPT (Feng et al., 2023) 92.49 88.22 67.01 70.10 87.23 25.60 65.74 47.00 43.13 68.22 65.47
PromptAlign (Samadh et al., 2023) 94.01 90.76 68.50 72.39 86.65 24.80 67.54 47.24 47.86 69.47 66.92
Self-TPT 94.09 91.83 66.66 72.60 86.89 25.41 67.75 49.02 52.94 70.05 67.72
Self-TPT-v 94.71 91.26 68.81 71.79 85.41 27.57 68.18 49.35 51.91 69.50 67.85

Table 3: Base-to-new generalization. The 16-shot base subset of each dataset is used as the source
dataset. We report top-1 accuracy (%) on each new subset to evaluate the model’s zero-shot perfor-
mance to unseen classes. †: CoOp is reproduced under an identical experimental setup as ours.
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CLIP (Radford et al., 2021) 68.14 94.00 97.26 74.89 77.80 91.22 36.29 75.35 59.90 64.05 77.50 74.22
Prompt learning methods
CoOp† (Zhou et al., 2022b) 70.32 94.10 97.88 73.29 72.34 91.69 33.65 75.77 54.59 65.26 74.78 73.06
CoCoOp (Zhou et al., 2022a) 70.43 93.81 97.69 73.59 71.75 91.29 23.71 76.86 56.00 60.04 73.45 71.69
ProDA (Lu et al., 2022) 70.23 93.23 97.83 71.20 68.68 88.57 34.13 76.93 56.48 66.00 71.97 72.30
KgCoOp (Yao et al., 2023) 69.96 94.39 97.76 75.04 74.73 91.70 33.55 76.53 54.99 64.34 76.67 73.61
LoGoPrompt (Shi & Yang, 2023) 70.83 93.78 96.32 72.39 76.52 91.41 34.67 78.12 60.14 69.44 73.07 74.24
LASP (Bulat & Tzimiropoulos, 2023) 70.95 94.24 97.93 71.60 74.00 91.70 30.57 78.60 58.60 77.78 78.03 74.91
RPO (Lee et al., 2023) 71.57 94.37 97.50 75.53 76.67 90.83 34.20 77.80 62.13 68.97 75.43 75.00
CoOp+SHIP (Wang et al., 2023c) 69.95 95.20 97.87 73.90 74.40 91.03 32.33 75.27 56.88 66.87 76.85 73.69
MaPLe (Khattak et al., 2023a) 70.54 94.36 97.76 74.00 72.46 92.05 35.61 78.70 59.18 73.23 78.66 75.14
PromptSRC (Khattak et al., 2023b) 70.73 94.03 97.30 74.97 76.50 91.53 37.87 78.47 62.97 73.90 78.80 76.10
LLM based methods
VisDesc (Menon & Vondrick, 2022) 69.84 94.54 96.53 74.45 77.52 90.49 34.55 78.48 57.97 72.44 75.34 74.74
WaffleCLIP (Roth et al., 2023) 70.36 94.31 97.32 73.39 78.87 91.77 36.13 78.03 59.04 73.38 75.73 75.30
Test-time adaptation methods
TPT (Shu et al., 2022) 70.78 94.65 96.31 75.39 77.73 91.17 34.73 77.58 63.04 65.82 76.91 74.92
CoOp+TPT 72.58 94.87 97.65 75.15 72.34 91.73 36.95 77.05 58.82 64.90 69.44 73.77
MaPLe+TPT 72.24 94.29 97.37 75.20 72.10 92.03 35.81 79.18 59.91 68.96 77.34 74.95
PromptSRC+TPT 72.49 93.78 97.43 77.86 76.45 92.07 38.32 79.43 62.08 70.44 78.48 76.26
PromptAlign (Samadh et al., 2023) 72.59 94.50 97.56 75.71 72.34 92.68 37.27 79.48 60.55 72.71 79.30 75.88
Self-TPT 71.20 95.20 97.93 75.89 78.32 92.09 36.81 79.41 63.81 75.55 80.87 77.01
Self-TPT-v 73.40 95.49 97.15 78.08 77.99 91.46 38.33 79.92 65.14 74.74 80.49 77.47

Implementation details. Self-TPT is built on CoOp (Zhou et al., 2022b) and is implemented on
CLIP-B/16 for evaluation. All results are averaged over three seeds. We set the number of prompts
M to 4. In stage 1, we use SGD as the optimizer with a learning rate of 0.002 and a batch
size of 4. The prompts are trained on the source dataset in 16-shot manner. For the base-to-new
setting, we train prompts for 10 epochs. For the cross-dataset and domain generalization setting,
prompts are trained for 5 epochs. In stage 2, we update the prompts for 10 steps, using SGD as
the optimizer with a learning rate of 0.1. Existing TPT-based methods utilize the input image and its
63 augmented views as input. To ensure a fair comparison, we also incorporate the 63 augmented
images and perform an output ensemble. We refer to this specific approach as Self-TPT-v.

4.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

We compare Self-TPT with three kinds of methods: i) prompt learning methods that optimize
prompts on a source dataset, ii) test-time prompt learning methods that adjust prompts at test time,
iii) methods that leverage LLM (e.g., GPT-3 (Brown et al., 2020)) to produce class descriptions.

Computational costs. Tab. 1 presents a comparison of the inference cost between Self-TPT and
other TPT-based methods. Self-TPT achieves inference speeds 25 times faster than PromptAlign
and 65 times faster than DiffTPT on CLIP-B/16, along with a significant reduction in graphics
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Table 5: Ablation study of Self-TPT. “G.”, “F.”, and “S.” represent “Generic”, “Fine-Grained”, and
“Specialized” datasets, respectively. The default setting is colored grey .

(a) Main components analysis.

CPT TTA GM G. F. S.
81.8 73.8 67.6

✓ 82.3 74.9 70.5
✓ ✓ 82.9 75.8 73.3
✓ ✓ ✓ 83.2 76.2 74.9

(b) Augmented views in CPT.
Views G. F. S.
All four views 83.2 76.2 74.9
w/o front 83.0 75.8 74.4
w/o mid 83.1 76.1 73.9
w/o hand 83.1 75.9 73.7
w/o hand-craft 82.9 75.9 73.6

(c) Study on Gradient Matching.
EMA Matching G. F. S.

83.1 76.1 73.4
MSE 82.8 75.6 72.2

✓ MSE 83.1 76.1 73.9
Cosine 82.9 76.1 73.9

✓ Cosine 83.2 76.2 74.9

memory usage. Despite the use of an additional 63 augmented images, Self-TPT-v maintains a five-
fold speed advantage and reduces memory usage by 15 times relative to PromptAlign. Given the
rapid expansion of foundation models, the efficiency of Self-TPT highlights its potential for scalable
stability in larger VLMs.

Cross-dataset generalization. In Tab. 2, we comapre the performance of Self-TPT with existing
state-of-the-art methods in the cross-dataset setting. Our method outperforms the previously best
method on 8 out of 10 datasets, yielding an average improvement of 0.93% over PromptAlign. Note
that simply combining prompt learning with test-time adaptation doesn’t always yield optimal out-
comes. For instance, MaPLe+TPT shows only a slight improvement of 0.2% over MaPLe alone, sug-
gesting that TPT may not consistently deliver significant performance improvements. Conversely,
despite not being exposed to specific test images, Self-TPT still demonstrates superior performance,
highlighting the effectiveness of our proposed framework.

Base-to-new generalization. In the base-to-new setting (Tab. 3), our method consistently outper-
forms others on 9 out of 11 datasets, achieving an average improvement of 1.37% over the previ-
ous best method, PromptSRC. Interestingly, while CoOp+TPT records a 0.71% improvement over
CoOp, MaPLe+TPT shows a decline of 0.19%, again highlighting the potential unstable perfor-
mance gains of TPT. Moreover, LLMs-based methods tend to fall short in complex scenarios requir-
ing high-level understanding, e.g., UCF101, which demands intricate human action comprehension.

Table 4: Domain generalization. ImageNet is
used as source data. “Aug” indicates the original
image is augmented 63 times and input jointly.

Method Aug IN-V2 IN-Sk. IN-A IN-R Avg.
CLIP 60.86 46.09 47.87 73.98 57.20
TPT ✓ 63.45 47.94 54.77 77.06 60.81
CoOp+TPT ✓ 66.83 49.29 57.95 77.27 62.84
MaPLe+TPT ✓ 64.87 48.16 58.08 78.12 62.31
DiffTPT ✓ 65.10 46.80 55.68 75.00 60.65
CoOp+DiffTPT ✓ 66.80 49.50 58.09 73.90 62.07
PromptAlign ✓ 65.29 50.23 59.37 79.33 63.56
Self-TPT-v ✓ 66.55 51.72 63.48 79.76 65.38

Domain generalization. We present Self-
TPT’s results on four ImageNet variant datasets
with domain shifts in Tab. 4. Remarkably, Self-
TPT set new state-of-the-art records on three of
these datasets, demonstrating its robustness to
domain shifts and adaptability to varying im-
age distributions. Although Self-TPT was out-
performed by CoOp+TPT and CoOp+DiffTPT
on ImageNet-V2, we speculate this is because
ImageNet-V2’s data distribution closely aligns
with that of ImageNet, the source dataset. CoOp is well-known for overfitting on source data.

4.3 ABLATION STUDY

Main components analysis. In developing Self-TPT based on CoOp, we made three key progress.
First, we integrated CPT during the source prompt learning phase. This integration aims to cultivate
more robust and generalizable feature representations. Second, we applied CPT during test-time
adaptation, improving the understanding of the new class prior to the prediction phase. Lastly, we
incorporated the GM loss in the source prompt learning stage to explicitly strengthen the gradient
correlation between CPT and the classification task. The effectiveness of each component is quan-
titatively assessed in Tab. 5a. The results demonstrate that each component of Self-TPT contributes
to consistent performance improvements across the board.

Study on different views in CPT. As shown in Fig. 3a, Self-TPT employs four distinct views per
class for contrastive learning. In Tab. 5b, we conduct an ablation study by sequentially removing
one view at a time. This results in a consistent decline in performance. Notably, removing the
handcrafted view causes the most significant drop, as adapting the CLIP text branch independently
without regularization may lead to misalignment with the visual branch. These findings suggest that
incorporating multiple views enhances the effectiveness of the contrastive prompt tuning task.
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Figure 4: Study on source data quality: Is it better to have more classes or more shots?

Table 6: Study on model versatility.
(a) Self-TPT generalizes to different scales and architectures.

ResNet VisionTransformer
Model RN50 RN101 B/32 B/16 L/14
CLIP (Radford et al., 2021) 68.72 69.90 71.80 74.22 80.34
CoOp (Zhou et al., 2022b) 66.75 68.98 70.26 73.06 78.97
WaffleCLIP (Roth et al., 2023) 69.04 70.06 72.30 75.30 81.12
Self-TPT 70.90 71.94 73.83 77.01 82.13

(b) Self-TPT generalizes to a different VLM.
Method Acc.
EVA-CLIP (Sun et al., 2023) 77.33
EVA-CLIP + CoOp (Zhou et al., 2022b) 75.68
EVA-CLIP + PromptSRC (Khattak et al., 2023b) 78.68
EVA-CLIP + VisDesc (Menon & Vondrick, 2022) 78.12
EVA-CLIP + WaffleCLIP (Roth et al., 2023) 78.59
EVA-CLIP + Self-TPT 79.81

Study on gradient matching. Tab. 5c presents the results of the ablation study on the gradient
matching (GM) loss. We replaced the cosine similarity loss with mean square error (MSE) in Eq. 12
and observed a performance decrease. This indicates that enforcing exact numerical equality of
gradients from two different tasks may not be suitable. Additionally, we assessed the impact of
using EMA and found consistent improvements, underscoring that maintaining a robust gradient
direction is critical for the effectiveness of GM loss.

Table 7: Model performance
with reduced data quantity.
Method 25% 50% 75% 100%
CoOp 71.63 72.43 72.69 73.06
MaPLe 70.58 72.70 73.63 74.95
PromptSRC 73.20 74.30 74.76 75.96
Self-TPT 74.40 75.33 75.98 77.01

Study on source data quantity and quality. Source data is piv-
otal in both prompt learning and TPT-based methods. In Tab. 7,
we examine the impact of reducing data quantity on model per-
formance. The analysis encompasses 25%, 50%, 75%, and 100%
of the default data volume. Our findings indicate that Self-
TPT maintains robust performance even with limited source data,
highlighting its efficiency in data utilization. Furthermore, we in-
vestigate a critical question: Is it more beneficial to have more classes or more instances per class?
This inquiry involves varying both the number of shots per class and the number of classes. We
present the performance of four methods under this variation in Fig. 4. The results reveal a sig-
nificant performance decline with a reduced number of classes, underscoring the importance of
prioritizing class diversity over per-class instance quantity in data collection for real-world applica-
tions.

Study on model versatility. In Table 6a, we adapt Self-TPT to various backbone architectures, in-
cluding ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2020), across different scales. Notably,
Self-TPT consistently delivers performance improvements across all tested backbones, demonstrat-
ing its robust effectiveness. Furthermore, we extend the application of Self-TPT and several compet-
itive methods to another VLM, EVA-CLIP (Sun et al., 2023), as illustrated in Table 6b. Once again,
Self-TPT demonstrates distinct advantages over competing methods. In the context of rapid itera-
tion in foundational models today, we believe Self-TPT can be seamlessly integrated with updated
models to enhance their performance on downstream tasks.

5 CONCLUSION

In this paper, we introduce Self-TPT, a novel framework for efficient test-time prompt tuning. Self-
TPT addresses the inefficiencies in inference found in existing TPT-based methods by using text-
oriented self-supervised learning for new class adaptation, transforming per-image adaptation into
a preprocessing step. We also introduce a novel contrastive prompt tuning (CPT) task for self-
supervision. Empirical results show that CPT has a positive gradient correlation with classification
tasks, highlighting its effectiveness. Based on this finding, we propose a gradient-matching loss to
further enhance this correlation. Extensive experiments confirm the efficiency, effectiveness, and
versatility of our method.
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A ADDITIONAL DETAILS

Datasets Details. Tab. 8 presents an overview of the 14 datasets utilized in the main paper. In
line with CoOp (Zhou et al., 2022b), the classes “BACKGROUND Google” and “Faces easy” are
excluded from the Caltech101 dataset. As for the video dataset UCF101, we use the middle frame
of each video as the input.

Table 8: Datasets statistics.
Dataset Classes Train Validation Test
ImageNet (Deng et al., 2009) 1,000 1.28M N/A 50,000
Caltech101 (Fei-Fei et al., 2004) 100 4,128 1,649 2,465
OxfordPets (Parkhi et al., 2012) 37 2,944 736 3,669
StanfordCars (Krause et al., 2013) 196 6,509 1,635 8,041
Flowers102 (Nilsback & Zisserman, 2008) 102 4,093 1,633 2,463
Food101 (Bossard et al., 2014) 101 50,500 20,200 30,300
FGVCAircraft (Maji et al., 2013) 100 3,334 3,333 3,333
SUN397 (Xiao et al., 2010) 397 15,880 3,970 19,850
DTD (Cimpoi et al., 2014) 47 2,820 1,128 1,692
EuroSAT (Helber et al., 2019) 10 13,500 5,400 8,100
UCF101 (Soomro et al., 2012) 101 7,639 1,898 3,783

ImageNetV2 (Recht et al., 2019) 1,000 N/A N/A 10,000
ImageNet-Sketch (Wang et al., 2019) 1,000 N/A N/A 50,889
ImageNet-A (Hendrycks et al., 2021b) 200 N/A N/A 7,500
ImageNet-R (Hendrycks et al., 2021a) 200 N/A N/A 30,000

Additional Implementation Details. The learnable prompts are initialized with pre-trained CLIP
word embeddings of “a photo of a” at the beginning of stage 1. To eliminate the need for an
additional validation set, we opt to select the model at the last step of both stage 1 and stage
2. Consistent with prior research (Zhou et al., 2022b;a; Zhu et al., 2022; Khattak et al., 2023a),
training at stage 1 includes techniques such as random resized cropping and flipping. We also
implement a warm-up strategy where the learning rate is initially set at 1e − 5 for the first epoch,
and then it follows a cosine annealing schedule starting from 2e − 3. For the projection head, we
employ a nonlinear projection similar to (Chen et al., 2020; Khosla et al., 2020), which incorporates
an additional hidden layer with ReLU activation. By default, the projection dimension is set to 128.
We initialize the weights of the projection head using the Xavier (Glorot & Bengio, 2010) and set
the bias to 0. All experiments are conducted on a single A100 GPU.

B ADDITIONAL STUDIES

Study on hyperparameter sensitivity. In Fig. 5, we present a sensitivity analysis of Self-TPT by
exploring variations in the number of update steps and learning rates during the test-time adaptation
phase. Notably, Self-TPT maintained robust performance across various adaptation steps, with a
preference for higher learning rates to optimize its effectiveness.
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Figure 5: Study on Hyperparameter Sensitivity.

Error bar analysis. Error bar analysis was performed across both cross-dataset and base-to-new
settings using three different seeds. The mean and standard deviation values are presented in Tab. 9
and Tab. 10. It was observed that, in most datasets, Self-TPT demonstrates a minimal performance
divergence. Notably, EuroSAT, which has a limited number of classes, exhibited significant sensi-
tivity in performance outcomes.
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Table 9: Error Bar on cross-dataset generalization.
Method Caltech Pets Cars Flowers Food101

CLIP 93.35 88.25 65.48 67.44 83.65
CoOp 93.70 89.14 64.51 68.71 85.30
Self-TPT 94.09±0.17 91.83±0.26 66.66±0.38 72.60±0.29 86.89±0.10

Method Aircraft SUN397 DTD EuroSAT UCF101 Avg.

CLIP 23.67 62.59 44.27 42.01 65.13 63.58
CoOp 18.47 64.15 41.92 46.39 66.55 63.88
Self-TPT 25.41±0.45 67.75±0.04 49.02±0.29 52.94±2.42 70.05±0.06 67.73±0.18

Table 10: Error Bar on base-to-new generalization.
Method ImageNet Caltech Pets Cars Flowers Food101

CLIP 68.14 94.00 97.26 74.89 77.80 91.22
CoOp 70.32 94.10 97.88 73.29 72.34 91.69
Self-TPT 71.20±0.02 95.20±0.18 97.93±0.20 75.89±0.62 78.32±0.44 92.09±0.20

Method Aircraft SUN397 DTD EuroSAT UCF101 Avg.

CLIP 36.29 75.35 59.90 64.05 77.50 74.22
CoOp 33.65 75.77 54.59 65.26 74.78 73.06
Self-TPT 36.81±0.14 79.41±0.28 63.81±0.41 75.55±0.82 80.87±0.42 77.01±0.11

Visualization of CPT. We employ t-SNE to visualize text embeddings and observe that embeddings
generated using CPT demonstrate a distinct manifold structure, which is not apparent in the original
embeddings. Additionally, an analysis of cosine distances between text embeddings indicates that
CPT significantly enhances differentiation between classes.

t-SNE on ImageNet
w/o CPT
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0.0
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Figure 6: Visualization of text embeddings. We present a t-SNE visualization on the ImageNet
dataset, consisting of 1000 classes, and compute the cosine distance between text embeddings from
EuroAST and DTD. Darker colors indicate a greater distance.

Extending Self-TPT to zero-shot video recognition We assess the performance of Self-TPT in
the realm of zero-shot video recognition. Following Open-VCLIP (Weng et al., 2023), we evaluate
our model using the full UCF101 (Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011) test
sets, along with three selected subsets of Kinetics-600 (Carreira et al., 2018), as segmented by Chen
& Huang (2021). Similar to Open-VCLIP, we incorporate neighbor-frame attention to model the
temporal dynamics and train the CLIP image encoder on Kinetics-400 (Kay et al., 2017). It is
important to note that the three subsets of Kinetics-600 have distinct class sets compared to Kinetics-
400. For text prompts, we employ Self-TPT’s prompts optimized on 16-shot ImageNet and then
adapt them to the action classes at test time. The evaluation results are summarized in Tab. 11.
Remarkably, Self-TPT surpasses the performance of the state-of-the-art Open-VCLIP by margins of
0.9%, 2.0%, and 0.7% across the respective datasets.

C LIMITATIONS AND FUTURE WORK

Although existing TTA techniques show promise and effectiveness, their computational costs hinder
their deployment in real-world scenarios. Self-TPT takes a stride forward by turning specific-sample
adaptation into a pre-processing step. However, the extra costs brought by the nature of test-time
adaptation still exist. There is a risk for Self-TPT degrading to vanilla TPT scenarios when the
samples come with different class sets. In the future, our objectives include refining the Self-TPT
framework to better align with practical applications. We also intend to investigate the potential of
test-time prompt tuning across various other fields, such as more intricate visual-language tasks (Liu
et al., 2024; Zhu et al., 2023).
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Table 11: Extending Self-TPT to zero-shot video recognition.

Method UCF101 HMDB51 Kinetics-600

CLIP (Radford et al., 2021) 74.2 46.3 68.1±1.1
ActionCLIP (Wang et al., 2021) 77.4 48.0 62.5±1.2
Text4Vis (Wu et al., 2023) 76.4 44.5 60.1±0.5
AdapterFormer (Chen et al., 2022c) 80.5 50.5 67.0±0.4
AIM (Yang et al., 2023) 79.0 49.5 66.7±0.5
ST-Adapter (Pan et al., 2022) 77.9 50.3 60.2±1.8
Open-VCLIP (Weng et al., 2023) 83.5 53.2 73.0±0.8
Self-TPT 84.4 55.2 73.7±0.8

D PSEUDO CODE

In Algo. 1, we present the pseudo-code for Self-TPT. The definitions of the symbols are consistent
with those in the main paper.

Algorithm 1 Self-TPT: Test-time Prompt Tuning with Self-supervision

Input: Source data S =
(
X (s),Y(s),M(s)

)
, target data T =

(
X (t),Y(t)

)
Output: Label index I = (I1, I2, . . . )

# Stage 1: Prompt Learning
for T = 1, 2, . . . do

Sample batch
(
X (s)

i ,M(s)
i

)
∼

(
X (s),M(s)

)
t← Y(s),P # combine class token with prompts
e← f

(
X (s)

i

)
, w ← g (t), z ← h (w) # compute image and text features

Lce ← Lce

(
cos (e,w),M(s)

i

)
# supervised loss

LCPT ← LCPT (z) # self-supervised loss
∇LT

ce
← ∂Lce/∂θp,∇LCPT

← ∂LCPT /∂θp # gradients w.r.t. prompts
if T == 0 then
∇̃Lce

← ∇LT
ce

else
∇̃Lce

← α∇̃Lce
+ (1− α)∇LT

ce
# exponential moving average

end if
LGM = 1− cos

(
∇̃Lce ,∇LCPT

)
# gradient matching loss

θ ← θ − ϵ
(
∇LT

ce
+∇LCPT

+∇LGM

)
# update model parameters

end for
# Stage 2: Test-time adaptation
for T = 1, 2, . . . do

t← Y(t),P # combine class token with prompts
z ← h (g (t)) # compute text features
LCPT ← LCPT (z) # self-supervised loss
θp ← θp − ϵ (∂LCPT /∂θp) # update prompt parameters

end for
# Stage 3: Make predictions
t← Y(t),P # combine class token with prompts
w ← g (t) # pre-compute text features
for each X (t)

i ∼ X (t) do
e← f

(
X (t)

i

)
# compute image feature

Ii ← argmax e ·w # directly make prediction
end for
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