
Under review as a conference paper at ICLR 2024

STABILIZED E(N)-EQUIVARIANT GRAPH NEURAL
NETWORKS-ASSISTED GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to its simplicity and computational efficiency, the E(n)-equivariant graph neu-
ral network (EGNN) [Satorras, et al., ICML, 2021] has been used as the backbone
of equivariant normalizing flows (ENF), equivariant diffusion model (EDM), and
beyond for Euclidean equivariant generative modeling. Nonetheless, it has been
observed that ENF and EDM can be unstable; in this paper, we investigate the
source of their instability by performing a sensitivity analysis of their backpropa-
gation. Based on our theoretical analysis, we propose a regularization to stabilize
and improve ENF and EDM. Experiments on benchmark datasets demonstrate
that the regularized ENF outperforms the baseline model in terms of stability and
computational efficiency by a remarkable margin. Furthermore, our results show
that the proposed regularization can stabilize EDM and improve its performance.

1 INTRODUCTION

Graph neural networks (GNNs) have achieved remarkable success in various areas of molecular
science, including molecular property prediction [14; 6; 4], molecular dynamics simulation [2; 30],
and molecule generation [20; 40; 11; 39; 27; 28]. The core of GNNs are twofold: (1) to represent
the input using a graph, e.g., encode a molecule as a graph with nodes and edges representing atoms
and chemical bonds, respectively, and (2) to harness message passing on graphs for feature learning.
Another crucial aspect is the preservation of 3D Euclidean symmetries such as translations, rotations,
and reflection, collectively referred to as the 3D Euclidean group E(3).

Existing symmetry-aware GNNs under E(3) can be categorized based on the complexity of fea-
ture propagation. Invariant models like SchNet [37], DimeNet [10], and SphereNet [23] propagate
features that remain invariant to E(3) transformations. Alternatively, equivariant models, e.g., the
E(n)-equivariant GNN (EGNN) [36], update features that are equivariant to E(3) transformations
during message passing. This equips them with the capability to capture the molecular dynamics
under E(3) transformations. Additionally, steerable models [41; 8; 7; 22; 3] are a subset of equivari-
ant models tailored to learn geometric and physical tensors. Among these symmetry-aware models,
EGNN stands out due to its computational efficiency and capability to capture both molecular
properties and dynamics, making EGNN appealing for molecular generative modeling; see, e.g.,
ENF [35], EDM [18], GeoDiff [45], SMCDiff [42], and GEOLDM [46].

1.1 A RECAP ON EGNN
Given a graph G = (V, E) with m nodes vi ∈ V for i = 1, . . . ,m and edges eij ∈ E . Let h0

i ∈ Rd,
x0
i ∈ Rn be the input feature and spatial coordinate of vi, respectively. The authors of [36] propose

EGNN, which stacks the following E(n)-equivariant graph convolutional layers (EGCLs):

ml
ij = ϕe(h

l
i,h

l
j , ∥xl

i − xl
j∥2, aij),

xl+1
i = xl

i +
∑

j∈N (i)

(xl
i − xl

j)

∥xl
i − xl

j∥+ 1
ϕx(m

l
ij),

ml
i =

∑
j∈N (i)

ml
ij ,

hl+1
i = ϕh(h

l
i,m

l
i),

(1)

where xl
i,h

l
i are the coordinate and features of vi at the lth layer, N (i) := {vj ∈ V |

(vi, vj) ∈ E} is the set of neighbors of the ith node, aij represents edge attributes, and ϕe, ϕx, ϕh

1

Under review as a conference paper at ICLR 2024

are multi-layer perceptions (MLPs). The EGCL in (1) is adopted from [35; 18], which uses∑
j∈N (i)

(xl
i−xl

j)

∥xl
i−xl

j∥+1
ϕx(m

l
ij) rather than

∑
j∈N (i)(x

l
i−xl

j)ϕx(m
l
ij) for the coordinate update. The

normalized coordinate update can avoid drastic changes in coordinates during the generative process,
and thus mitigate instability of the forward propagation. [36] has shown that EGNN—comprised of
L EGCLs—is E(n)-equivariant w.r.t. the coordinates x = (x1, . . . ,xm) while E(n)-invariant w.r.t.
the features h = (h1, . . . ,hm), i.e., we have RxL,hL = EGNN(Rx0,h0), where R is an E(n)
transformation, RxL := (RxL

1 , . . . ,RxL
m), and hL := (hL

1 , . . . ,h
L
m).

1.2 EGNN FOR GENERATIVE MODELING AND ITS INSTABILITY ISSUE

In this subsection, we review E(n)-equivariant normalizing flows (ENF) [35] and E(3)-equivariant
diffusion models (EDM) [18]—two EGNN-assisted generative models. We then illustrate their train-
ing instability, which comes from the backpropagation of EGNNs—a fundamental issue in general
EGNN-assisted generative models. Despite the instability issue, we discuss the advantages of using
EGNN as the backbone of ENF and EDM over other symmetry-aware models in Section 2.

ENF. The generative process of ENF is defined by an invertible transformation g(zh, zx) = (h,x),
mapping from a simple distribution pz(zh, zx) defined over latent features zh ∈ Rd and latent
coordinates zx ∈ Rn to the data distribution p(h,x). To learn this invertible transformation, we
treat h,x as functions of time with h(t = 0) = h and x(t = 0) = x. Then we model their
dynamics towards latent representations, where h(1) = zh and x(1) = zx, by the following ODE:

dh(t)

dt
,
dx(t)

dt
= hL(t),xL(t)− x(t), (2)

where h(t),x(t) are the input to a L-layer EGNN model and hL(t),xL(t) are the output. Moreover,
we have the following continuous-time change of variables formula for the log-likelihood:

log pv(h,x) = log pz(zh,zx) +

∫ 1

0

TrJϕ

(
h(t),x(t)

)
dt, (3)

where TrJϕ

(
h(t),x(t)

)
denotes the trace of the Jacobian matrix Jϕ

(
h(t),x(t)

)
.

Notice that ENF directly considers the output hL from the last layer of the EGNN as the derivative
d
dth(t) of the node features since the representation is invariant. In contrast, the derivative of the
node coordinates w.r.t. time is computed as the difference between the EGNN’s output and input,
which guarantees the E(n)-equivariance of the coordinates.

EDM. EDM first defines a diffusion process to add noise to both node coordinates and features
following a schedule such that both positions and features become Gaussian noise eventually. Then
EDM learns a denoising process using a L-layer EGNN model to recover coordinates and features
from the Gaussian noise. After the model is trained, the denoising EGNN can be used for molecule
generation with Gaussian noise input. The technical details of EDM can be found in [18].

0 100 200 300
Epoch

5

15

25

35

EG
CL

-0
 ||

L
/
θ|
| ENF

ENF+ Reg

0 100 200 300
Epoch

2.5E3

5.0E3

7.5E3

EG
CL

-0
 ||

L
/
θ|
| EDM

EDM+ Reg

Figure 1: Norm of the gradient update of the input EGCL for ENF
(left) and EDM (right), with and without regularization, during train-
ing on DW4 with 100 training samples.

Instability of ENF and EDM. De-
spite using the normalized coor-
dinate update as in (1), we ob-
serve that the instability of ENF
and EDM remains. In particular,
the gradient can change abruptly
during the training. Let L be the
loss function used for training ENF
or EDM. Figure 1 plots the norm of
the gradient ∥∂L/∂θ∥ per training
iteration for ENF and EDM with θ being the parameters in the first layer of EGNN. This task was
performed on the DW4 dataset with 100 training samples described in Sections 5.1 and 5.2 for ENF
and EDM, respectively. Figure 1 shows that the gradient norm becomes very oscillatory as the
training proceeds, making training unstable. We discuss more details in Section 5.

1.3 OUR CONTRIBUTION

In both ENF and EDM, the graph node coordinates keep changing during the generative process.
Existing approaches that use the normalized coordinate update can effectively stabilize the forward
propagation by avoiding drastic coordinate changes due to large differences xl

i−xl
j for all j ∈ N (i).

2

Under review as a conference paper at ICLR 2024

However, there is no guarantee that this normalization stabilizes the backpropagation. As such,
we investigate the source of the instability of ENF and EDM by performing a sensitivity analysis,
focusing on how backpropagation responds to changes in ∥xl

i−xl
j∥; see Section 3 for details. From

this, we propose the following regularized loss LR to stabilize and improve training ENF and EDM:

LR := L+ λ

√√√√ ∑
i,j∈N (i),l

(
∂ϕx(ml

ij)

∂∥xl
i − xl

j∥2

)2

, (4)

where L denotes the original loss for training ENF or EDM, the second term is the proposed regular-
ization, and λ > 0 is a hyperparameter (details in Section 4). Minimizing the regularization loss LR

helps stabilize the training of ENF and EDM. Figure 1 shows that ENF+Reg and EDM+Reg (+Reg
denotes the model with our proposed regularization) are much more stable in ∥∂L/∂θ∥ compared
to the baseline models, stabilizing model training; see Section 5 for experimental results.

Furthermore, the regularization brings additional benefits: For ENF, it helps reduce the Lipschitz
constant of the forcing function within the ODEs, thereby accelerating the training process. In the
case of EDM, it enables stable learning even using EGNN with unnormalized coordinate updates,
making EDM more flexible with improved performance for generative modeling.

1.4 ADDITIONAL RELATED WORKS

To the best of our knowledge, our work is the first study of stabilizing and improving the perfor-
mance of ENF and EDM. Besides the most related work on proposing EGNN [36] and its appli-
cations in equivariant diffusion models [35; 18; 45; 42; 46]. A broader line of related works is
developing generative models for molecule generation. In particular, E(n)-equivariant layers have
been integrated into the autoregressive generative models; see e.g. [25; 13]. Variational autoencoder
(VAE)-based models have also been proposed to generate 3D atomic coordinates, e.g., the papers
[26; 32] propose to directly generate 3D atomic coordinates but they are not E(3)-equivariant. Con-
ditional VAEs [38], Wasserstein GANs [17], and normalizing flows [29] have also been used for
the molecular generation. Many other models have been proposed for molecule generation; see e.g.
[12; 11; 44; 38; 22; 9; 15].

1.5 ORGANIZATION

We organize the rest of this paper as follows: We discuss some rationale of using EGNN for genera-
tive modeling in Section 2. We analyze the instability of ENF and EDM in Section 3 and discuss the
proposed regularization in Section 4. We verify the efficacy of our proposed regularization on a few
benchmark tasks in Section 5. Technical proofs and additional details are provided in the appendix.

2 WHY DO WE USE EGNN FOR GENERATIVE MODELING?
Since the development of ENF and EDM, both models have gained remarkable attention. In this
section, we discuss some advantages of using EGNN with the normalized coordinate update for
ENF and EDM; the merits of both models have been thoroughly discussed in [35; 18]. To the best
of our knowledge, EGNN is the most popular architecture to ensure equivariance in the context of
Euclidean equivariant normalizing flows and diffusion models [35; 18; 45; 42; 46]. The remarkable
success and impact of EGNN—especially in the context of generative modeling—makes it important
to stabilize their training and improve it for better generative modeling.

2.1 EGNN VS. OTHER SYMMETRY-AWARE MODELS

There are three main classes of symmetry-aware GNNs under E(3): invariant models, equivariant
models that update only scalars and vectors, and steerable models that update tensor features in
message-passing. Firstly, invariant models do not learn positional features, and are therefore not
suitable for generative modeling since coordinates update is crucial in molecular generation. Ad-
ditionally, molecular generation inherently exhibits equivariance. Moreover, it has been shown that
most invariant GNNs have lower expressive power than equivariant GNNs [21]. Secondly, gener-
ative models, such as normalizing flows and diffusion models, often entail an excessive number of
evaluations of the neural network function and gradient computations. This prohibitive computa-
tional demand makes steerable models less practical for generative modeling. Indeed, the excessive
computational expense of steerable models has been discussed in existing papers; see e.g. [3; 31].

The simplicity, expressivity, and computational efficiency of EGNN make it appealing for serving as
the backbone of Euclidean equivariant generative models, resulting in ENF, EDM, and beyond. Be-
sides EGNN, applying other existing computationally efficient or designing new equivariant GNNs
for generative modeling can be an interesting future work.

3

Under review as a conference paper at ICLR 2024

2.2 NORMALIZED VS. UNNORMALIZED COORDINATE UPDATES IN ENF AND EDM

0 100 200 300
Training Epoch

5

15

25

35

EG
CL

-0
 ||

L
/
θ|
|

DNE
ENF(unnorm)

ENF

0 100 200 300
Epoch

1.0E4

5.0E4

7.5E4

EG
CL

-0
 ||

L
/
θ|
| DNE EDM(unnorm)

EDM

Figure 2: Norm of the gradient update of the input EGCL for ENF
(left) and EDM (right), using normalized or unnormalized coordi-
nate update, during training on DW4 with 100 training samples.
DNE is the point at which the model blows up.

This subsection shows that using the
normalized coordinate update can
improve ENF and EDM over us-
ing the unnormalized one. Fig-
ure 2 compares ENF and EDM us-
ing the normalized and the unnor-
malized coordinate updates for the
same task as in Figure 1. It shows
that using the normalized coordinate
update avoids the blowup problem
that occurs in the unnormalized one.
When using the unnormalized coordinate, all differences xl

i − xl
j for all j ∈ N (i) are used to get

the updated coordinate xl+1
i , which can result in drastic coordinate changes. The drastic coordi-

nate change will be further propagated during forward propagation, resulting in a potential blowup.
In contrast, normalizing coordinates can avoid abnormal coordinate updates from large differences
among coordinates of neighboring nodes. Nevertheless, the instability issue still occurs in back-
propagation using the normalized coordinate update, which is crucial to be addressed.

3 A THEORETICAL STUDY OF THE INSTABILITY ISSUES

In this section, we study the instability issue of training ENF and EDM by analyzing their backprop-
agation. In particular, we consider EGNN with L EGCLs in (1) or using the following unnormalized
coordinate updates:

xl+1
i = xl

i +
∑

j∈N (i)

(xl
i − xl

j)ϕx(m
l
ij). (5)

The analysis in this section can be easily adapted to EGCL with the normalized coordinate update.

3.1 BACKPROPAGATION

We study the cause of instability of ENF and EDM in their backpropagation. As we will see, the
instability issue not only occurs for ENF and EDM but also for other EGNN-assisted generative
models since the instability comes from the EGNN. Let vec(·) denote the vectorization of the input
matrix. Consider hl := vec

(
[hl

1,h
l
2, . . . ,h

l
m]

)
, xl := vec

(
[xl

1,x
l
2, . . . ,x

l
m]

)
, which consist of the

node features and spatial coordinates, respectively. We define f l := [(hl)⊤, (xl)⊤]⊤ as the feature
at the lth layer. Consider L(fL) to be the loss function or any function of fL and let θ be any weight
parameter appearing at the lth layer of EGNN. Applying the chain rule to the derivative ∂L(fL)

∂θ , we
see that

∂L(fL)

∂θ
=

∂L(fL)

∂f l

∂f l

∂θ
=

∂L(fL)

∂f l+1

∂f l+1

∂f l

∂f l

∂θ
=

∂L(fL)

∂fL

(
L−l−1∏
l′=0

∂fL−l′

∂fL−l′−1

)
∂f l

∂θ
. (6)

Notice that the derivative ∂L(fL)
∂f l propagates backward through ∂f l+1

∂f l , which motives us to investi-

gate ∂f l+1

∂f l ; it suffices to examine ∂hl+1
i

∂hl
j

, ∂xl+1
i

∂hl
j

, ∂hl+1
i

∂xl
j

, and ∂xl+1
i

∂xl
j

for any 1 ≤ i, j ≤ m since

∂f l+1

∂f l
=

[
∂hl+1

∂hl
∂hl+1

∂xl

∂xl+1

∂hl
∂xl+1

∂xl

]
.

Let Im denote the identity matrix of size m×m. In the following Proposition 1, we present the de-

tailed form of ∂hl+1
i

∂hl
j

, ∂xl+1
i

∂hl
j

, ∂hl+1
i

∂xl
j

, and ∂xl+1
i

∂xl
j

for EGCL with the unnormalized coordinate update.

Proposition 1. Consider EGCL using the unnormalized coordinate update in (5), let ∂ϕh(h
l
i|m

l
i)

∂hl
i

:=

limt→0
ϕh(h

l
i+t,ml

i)−ϕh(h
l
i,m

l
i)

t be the derivative of ϕh(h
l
i,m

l
i) w.r.t. the first input hl

i. Similarly,

let ∂ϕh(m
l
i|h

l
i)

∂ml
i

:= limt→0
ϕh(h

l
i,m

l
i+t)−ϕh(h

l
i,m

l
i)

t be the derivative of ϕh(h
l
i,m

l
i) w.r.t. the second

4

Under review as a conference paper at ICLR 2024

input ml
i. Then we have

∂hl+1
i

∂hl
j

=


∂ϕh(h

l
i|m

l
i)

∂hl
i

+
∂ϕh(m

l
i|h

l
i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂hl
i

if j = i,

∂ϕh(m
l
i|h

l
i)

∂ml
i

∂ml
ij

∂hl
j

if j ̸= i,

∂hl+1
i

∂xl
j

=


∂ϕh(m

l
i|h

l
i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂∥xl
i−xl

k∥2 · (xl
i − xl

k)
⊤ if j = i,

−∂ϕh(m
l
i|h

l
i)

∂ml
i

∂ml
ik

∂∥xl
i−xl

j∥2 · 2(xl
i − xl

j)
⊤ if j ̸= i,

∂xl+1
i

∂hl
j

=


∑

k∈N (i)(x
l
i − xl

k)
∂ϕx(m

l
ik)

∂ml
ik

∂ml
ik

∂hl
i

if j = i,

(xl
i − xl

j)
∂ϕx(m

l
ij)

∂ml
ij

∂ml
ij

∂hl
j

if j ̸= i,

∂xl+1
i

∂xl
j

=

{
I3 +

∑
k∈N (i) G

l
ik if j = i,

−Gl
ij if j ̸= i,

where Gl
ij := ϕx(m

l
ij)I3 +

∂ϕx(m
l
ij)

∂∥xl
i−xl

j∥2 · 2(xl
i − xl

j)(x
l
i − xl

j)
⊤.

Remark 1. By considering ϕx/(∥xl
i −xl

j∥+ 1) as ϕx in (5), similar studies can be carried out for
the EGCL with the normalization scheme in (1).

3.2 SENSITIVITY ANALYSIS

In this subsection, we investigate the sensitivity of the backpropagation—governed by the derivative
∂f l+1

∂f l —in response to ∥xl
i − xl

j∥. We aim to identify which part of ∂f l+1

∂f l is most sensitive to

∥xl
i − xl

j∥. We examine the sensitivities of the four partial derivatives ∂hl+1
i

∂hl
j

, ∂xl+1
i

∂hl
j

, ∂hl+1
i

∂xl
j

, and
∂xl+1

i

∂xl
j

in ∥xl
i − xl

j∥, and we characterize the extent of their sensitivity by determining the highest

degree of the norm ∥xl
i − xl

j∥ that can appear in the norm of these partial derivatives. We do not
consider the term ∥xl

i−xl
j∥2 that appears as the input to the function ϕe since one can use a bounded

activation function, such as tanh, to mitigate its causes of EGNN’s instability. Based on the explicit
forms of the partial derivatives in Propositions 1, we summarize their sensitivity as follows:

• ∂hl+1
i /∂hl

j does not contain xl
i − xl

j . It is not sensitive to ∥xl
i − xl

j∥.

• ∂xl+1
i /∂hl

j contains (xl
i − xl

j)
⊤. It is sensitive to ∥xl

i − xl
j∥ of degree 1.

• ∂hl+1
i /∂xl

j contains (xl
i − xl

j). It is sensitive to ∥xl
i − xl

j∥ of degree 1.

• ∂xl+1
i /∂xl

j contains (xl
i − xl

j)(x
l
i − xl

j)
⊤. It is sensitive to ∥xl

i − xl
j∥ of degree 2.

We see that ∂xl+1
i

∂xl
j

is the most sensitive term to ∥xl
i − xl

j∥, and (xl
i − xl

j)(x
l
i − xl

j)
⊤ is multiplied

by the scalar
2∂ϕx(m

l
ij)

∂∥xl
i−xl

j∥2 in the explicit expression of ∂xl+1
i

∂xl
j

. Thus,
∂ϕx(m

l
ij)

∂∥xl
i−xl

j∥2 is directly related to

the sensitivity of ∂xl+1
i

∂xl
j

and hence the sensitivity of the backpropagation w.r.t. ∥xl
i − xl

j∥.

4 REGULARIZED EGNN FOR GENERATIVE MODELING

Let L be the loss used for training ENF or EDM. We aim to stabilize the training process of ENF
and EDM by controlling the sensitivity of the gradient ∂L(fL)

∂θ w.r.t. ∥xl
i − xl

j∥, where θ denotes
any learnable parameter of the model. As discussed in Section 3.2, regularizing the magnitude of
∂ϕx(m

l
ij)

∂∥xl
i−xl

j∥2 can help us achieve this goal. Therefore, we propose a regularization scheme for ENF

and EDM by adding a penalty term to the loss function L, resulting in the following regularized loss

function LR in (4). Notice that the penalty term is an L2 regularization on all scalars
∂ϕx(m

l
ij)

∂∥xl
i−xl

j∥2 for

all i, j, l. Therefore, minimizing LR will encourage
∂ϕx(m

l
ij)

∂∥xl
i−xl

j∥2 for all i, j, l to be small. By using the
regularized loss function in (4), we expect the training of both ENF and EDM will be more stable

5

Under review as a conference paper at ICLR 2024

than using the unregularized loss function. In the rest of this section, we discuss some additional
benefits of using the proposed regularization.

4.1 OTHER BENEFITS OF REGULARIZATION TO ENF
In the following, we discuss the proposed regularization can accelerate training ENF, which requires
solving ODEs numerically. Let ϕ be an ENF in (2) with the right-hand side (forcing function)
modeled by a L-layer EGNN model. Again, let f l := [(hl)⊤, (xl)⊤]⊤ denotes the feature at the lth
layer of EGNN and ϕ(f0) := fL− [0, (x0)⊤]⊤. Notice that the stability and accuracy of numerical
solutions of the ODE are related to the Lipschitz constant of the forcing function of (2). In particular,
when using the benchmark and default DOPRI solver [5] or other adaptive stepsize solvers for
solving the ODEs, the error estimation of the ODE solver is controlled by the (local) Lipschitz
constant of the function, and such an estimated error will be used to determine the step size—
a smaller Lipschitz constant allows using larger step sizes [16], reducing the number of function
evaluations (NFEs) and improving computational efficiency. Moreover, the spectral norm of the
Jacobian matrix ∥Jϕ∥2 can be used to estimate the Lipschitz constant of ϕ. Maintaining a small and
stable spectral norm throughout the numerical solution of the ODE benefits stability, accuracy, and
computational efficiency. Our regularization can stabilize ∥Jϕ∥2; in particular, we observe that

Jϕ =
∂ϕ(f0)

∂f0
=

∂fL

∂f0
− ∂[0, (x0)⊤]⊤

∂f0
=

L∏
l=0

∂f l+1

∂f l
−
[
O O
O Im

]
(7)

where O denotes a matrix consisting of zeros. Since the regularized loss LR is designed to stabilize
each term ∂f l+1/∂f l, we conclude that our regularization can be beneficial for solving the ODE
in ENFs. It encourages a stable and well-behaved spectral norm ∥Jϕ∥2, resulting in improved
numerical stability, accuracy, and efficiency. We will numerically verify this in Section 5.1.

4.2 OTHER BENEFITS OF REGULARIZATION TO EDM
Proposition 1 shows that our proposed regularization can stabilize the backpropagation of EDM even
using EGNN with the unnormalized coordinate update in (5). Moreover, we notice empirically that
the regularization can also stabilize the forward propagation of EDM when using EGNN with the
unnormalized coordinate update. In practice, using the unnormalized coordinate update makes the
coordinate update more flexible in the generative process, which improves the performance of EDM;
see experimental results in Section 5.2. However, from our experiments, we do not see that the regu-
larization helps stabilize the forward propagation of ENF using the unnormalized coordinate update
since the complicated numerical integration is involved, and small instability can be propagated and
amplified.

5 EXPERIMENTS

In this section, we demonstrate that our regularization (1) improves the stability and computational
efficiency of ENF and (2) stabilizes EDM with improved accuracy and does not significantly raise
the computational cost. For normalizing flows, we compare ENF+Reg against ENF. For diffusion
models, we compare the performance of EDM, EDM(unnorm) (replacing the normalized coordi-
nate update with the unnormalized one), their regularized versions—denoted as EDM+Reg and
EDM(unnorm)+Reg, and a few very recent equivariant diffusion models. Three benchmark tasks
are used for comparison, namely, DW4 [22], LJ13 [22], and QM9 [34]. We train the model by
minimizing NLL and the regularized loss function (4) for the baseline and regularized models, re-
spectively, using the Adam optimizer. Experiments were run using NVIDIA RTX3090 and timing
experiments were run using Google Colab [24] A100 GPU. We provide additional experimental
details in Appendix B.

5.1 EQUIVARIANT NORMALIZING FLOWS

We demonstrate the benefits of regularization in improving the stability and computational efficiency
of ENF. We select the optimal regularization hyperparameter λ via grid search.

5.1.1 DW4 AND LJ13
The DW4 and LJ13 datasets introduced in [22] sample the positions—using double-well and
Lennard-Jones potential—of n atoms where n is 4 and 13 for DW4 and LJ13, respectively. We
use the fixed data splits of {102, 103, 104} training, 1000 validation, and 1000 testing data samples
for both datasets. Following the training procedure in [35], we use Adam with learning rate 5e-3,
weight decay 1e-12, and batch size 100. We utilize Hutchinson’s trace estimator [19] in the training

6

Under review as a conference paper at ICLR 2024

procedure. In validation and testing, we use the exact trace to estimate the negative log-likelihood
(NLL). The forcing function of ENF is selected to be an EGNN with 6 layers, 32 features per layer,
and SiLU activation. The optimal regularization hyperparameter from the grid search is λ = 0.02.

0 100 200 300
Epoch

8

10

12

Tr
ai

ni
ng

 L
os

s ENF ENF+ Reg

0 100 200 300
Epoch

30

35

40

45

Tr
ai

ni
ng

 L
os

s ENF ENF+ Reg

(a) DW4 (b) LJ13
Figure 3: Training loss for ENF and ENF+Reg on DW4 and
LJ13 using 104 training samples.

Stabilized training. Figure 1 shows that
the proposed regularization can avoid very
large gradients. We further show that us-
ing the proposed regularization can ef-
fectively alleviate large spikes in training
loss. As shown in Figure 3(a) and (b),
compared to the training curves of ENF
for DW4 and LJ13, the loss curves are
smoother for ENF+Reg; in particular, the
spikes are much larger in the loss curves
for unregularized ENF compared to the regularized ones.

0 100 200 300
Epoch

2E-3

8E-3

3E-2

St
ep

 S
ize

ENF ENF+ Reg

0 100 200 300
Epoch

300

600

NF
E

ENF ENF+ Reg

0 80 160 240
Epoch

1E-2

2E-2

5E-2

St
ep

 S
ize

ENF ENF+ Reg

0 100 200 300
Epoch

20

60

100

NF
E

ENF ENF+ Reg

(a) DW4 (b) DW4 (c) LJ13 (d) LJ13
Figure 4: Comparing ENF+Reg against ENF in averaged step size and number of function evaluations (NFEs)
per training epoch used by the ODE solver on DW4 (a,b) and LJ13 (c,d).

DW4 LJ13
Split 102 103 104 102 103 104

ENF 23.8 73.9 910.7 37.0 54.0 554.1
ENF+Reg 8.6 38.2 401.7 24.9 39.5 332.9

Table 1: Average time per epoch for ENF and ENF+Reg
for each split of DW4 and LJ13. Unit: second.

Accelerated training. Our analysis in Sec-
tion 4.1 indicates that the regularization al-
lows the use of larger step sizes for the ODE
solver and reduces NFEs and computational
time compared to training ENF without regu-
larization. We verify the benefit of regulariza-
tion using DW4 and LJ13 each with 104 train-
ing samples. Figure 4 plots the step size and
NFEs used by the ODE solver1, confirming that regularization can remarkably improve computa-
tional efficiency. We report the average time per epoch in Table 1.

DW4 LJ13
Split 102 103 104 102 103 104

ENF 12.28±0.2 8.35±0.2 7.68±0.1 31.52±0.1 31.02±0.2 30.30±0.3

ENF+Reg 12.02±0.2 8.47±0.2 7.65±0.1 31.19±0.2 31.05±0.2 29.66±0.3

Table 2: Negative log-likelihood for ENF and ENF+Reg for each split of DW4 and LJ13.

Performance. We compare the performance of ENF and its regularized version for DW4 and LJ13
generation. Table 2 reports the test NLL of ENF and ENF+Reg for different sizes of training data.
We report the test NLL at the best validation NLL after the model is trained for 300 epochs. These
results show that the regularization does not degrade the performance of ENF.

0 1 2 3 4 5 6
Relative Distance

0.01

0.02

0.03

Pr
ob

ab
ilit

y

True(1.36±0.71)
Sample(1.30±0.67)

0 1 2 3 4 5 6
Relative Distance

0.01

0.02

0.03

Pr
ob

ab
ilit

y

True(1.36±0.71)
Sample(1.38±0.71)

Figure 5: Probability distributions (mean±std dev) of the rela-
tive distance for 100 true and sampled molecules on LJ13 using
ENF(left) and ENF+Reg(right) with 100 training samples.

We further analyze the generative prop-
erties of ENF and ENF+Reg by con-
trasting the true and sampled molecules
on DW4 and LJ13 following [35]. Fig-
ure 5 shows the probability distribution
with mean and standard deviation of
the relative distances for true and sam-
pled molecules from LJ13 using ENF
and ENF+Reg trained with 100 sam-
ples. We see that ENF+Reg results in
a mean that is closer to the ground truth and the standard deviations are equivalent. We show similar
results for DW4 and the molecular energies in Appendix B.

1Here, for better visualization, we plot the averaged step size and NFE per epoch.

7

Under review as a conference paper at ICLR 2024

5.1.2 QM9
We consider QM9 [33]—a dataset contains molecular properties and atom coordinates for 130k
small molecules with up to 9 heavy atoms (29 atoms including hydrogens). We train ENF and
ENF+Reg to unconditionally generate molecules with 3D coordinates, atom types (H, C, N, O,
F), and integer-valued atom charges. We use the train/validation/test partitions introduced in [1],
consisting of 100K/18K/13K samples, respectively. We use Hutchinson’s trace estimator [19] in
training and use the estimated NLL in validation and testing. We set the learning rate as 2e-4 and
weight decay of 1e-12 for Adam with batch size 64. For regularization, we set λ = 1e-2. We train
both ENF and ENF+Reg for 300 epochs. We set the EGNN model using 6 layers, 256 features per
layer, and SiLU activation.

We use the distance between pairs of atoms and the atom types to predict bond types (single, double,
triple, or none). We measure atomic stability (the proportion of atoms that have the right valency)
and molecular stability (the proportion of generated molecules for which all atoms are stable) [35].
Table 4 compares the performance of ENF and ENF+Reg, showing that regularization improves ENF
by a noticeable margin in test NLL and atomic and molecular stability of the generated molecules.
Meanwhile, regularization also accelerates learning the model.

5.2 EQUIVARIANT DIFFUSION MODELS

In this subsection, we aim to show that regularization can stabilize EDM and improve its perfor-
mance. The regularized EDM requires some more computational cost than EDM but is more effi-
cient compared to some most recent models. Moreover, we show that regularization allows EDM to
use EGNN with the unnormalized coordinate update, resulting in better performance.

5.2.1 DW4 AND LJ13
We train EDM, EDM(unnorm), EDM+Reg, and EDM(unnorm)+Reg with different numbers of
training samples using Adam with learning rate 5e-4, weight decay 1e-12, and batch size 100 for 300
epochs, and using 1000 diffusion steps. In these experiments, the EDM contains 3 EGNN blocks
and each block consists of 2 EGCL layers and 1 coordinates equivariant update step, 32 features
per layer, and SiLU activation. The optimal regularization hyperparameters from the grid search are
1e-4 and 5e-4 for EDM+Reg and EDM(unnorm)+Reg, respectively.

0 100 200 300
Epoch

5E1

1E2

Tr
ai

ni
ng

 L
os

s
EDM EDM(unnorm) EDM+ Reg EDM(unnorm) + Reg

0 100 200 300
Epoch

5E1

1E2

Tr
ai

ni
ng

 L
os

s

0 100 200 300
Epoch

1E2

2E2

3E3

Tr
ai

ni
ng

 L
os

s

Figure 6: Training loss for EDM, EDM(Unnrom), EDM+reg and
EFN(Unnrom)+Reg over epochs on DW4 (left) and LJ13 (right).

Stabilized training. We show that
regularization can stabilize training
EDM even using EGNN with the un-
normalized coordinate update. Fig-
ure 6 compares the training curves
of the four models on both DW4
and LJ13 with 104 training data.
EDM(unnorm) blows up quickly as
the training proceeds. All the other
three models do not blow up and regularization makes the training curve smoother.

Performance and computational cost. Table 3 contrasts NLL and computational cost of the four
models, showing that regularization can improve the performance of both EDM and EDM(unnorm)
by a noticeable margin and does not significantly raise the computational cost. Moreover, except for
LJ13 with 104 training samples, EDM(unnorm)+Reg performs the best among all four models.

DW4 LJ13
Metrics Split 103 104 103 104

EDM(Unnorm) 25.05±1.9 (1.2) Nan (–) Nan (–) Nan (–)
EDM 22.73±1.7 (1.1) 14.26±0.6 (11.3) 46.77±5.2 (1.0) 15.05±1.5 (8.8)
EDM(Unnorm)+Reg 20.57±2.3 (1.5) 12.45±0.8 (16.1) 32.21±4.1 (1.4) 12.85±1.3 (13.6)
EDM+Reg 22.39±0.8 (1.6) 13.36±1.1 (15.3) 39.13±4.1 (1.3) 11.62±1.8 (13.6)

Table 3: Negative log likelihood (outside the parenthesis) and average time per epoch (in the parenthesis) for
EDM and EDM+Reg for each split of DW4 and LJ13. We denote the loss ’Nan’ if the training blows up and
denote the unavailable result by ’–’.
5.2.2 QM9
We further compare the four EDM models and some other most recent models, including GEOLDM
[46], GRAPHLDM [46], Bridge [43], and Bridge+Force [43], for QM9. We train EDM models
using Adam with learning rate 1e-4, weight decay 1e-12, and batch size 64. The regularization
parameter is 1e-4. We use 1000 diffusion steps and train for 1200 epochs for convergence. The four

8

Under review as a conference paper at ICLR 2024

EDM models all consist of 9 EGNN blocks and each has 6 EGCL layers and 1 time coordinates
equivariant update, 256 features per layer, and using SiLU activation. Following [18], we rescale
the distance between the latent variable distribution and the corresponding target normal distribution
at each diffusion time during the diffusion process to make the training more stable and efficient.

0 100 200 300
Epoch

5E1

1E2

Tr
ai

ni
ng

 L
os

s

EDM EDM(unnorm) EDM+ Reg EDM(unnorm) + Reg

0 400 800 1200
Epoch

2.52

2.53

Tr
ai

ni
ng

 L
os

s

DNE

0 400 800 1200
Epoch

-60

-100
-110

-120Va
lid

at
io

n
Lo

ss

DNE

Figure 7: Training and validation loss of EDM, EDM(unnorm),
EDM+Reg, and EDM(unnorm)+Reg for QM9. DNE represents
the point at which the model blows up.

Performance and computational
cost. Figure 7 plots the training
and validation loss vs. epochs; With
rescaling, the training loss achieves
a very small variance while the
validation loss has a large varia-
tion and thus we use a moving
average (over ten). We observe
that the regularized models outper-
form the baselines. The training of
EDM(unnorm) blows up quickly; in
contrast, EDM(unnorm)+Reg performs the best among all models.

Table 4 compares four EDM models and four other diffusion-based models for QM9 generation.
We compare the test NLL, the atomic and molecular stability estimation of 1000 molecules drawn
from the different models, and the computational time. The results in Table 4 show that regu-
larization can improve the baseline model by a significant margin in test NLL and atomic and
molecular stability. EDM(unnorm)+Reg performs the best among all four EDM-related models.
Though the training of regularized models requires some more computational time than the unreg-
ularized model, the computational overhead is not significant compared to the performance gain.
EDM(unnorm)+Reg even outperforms all models in atomic stability and performs second in molec-
ular stability. EDM(unnorm)+Reg does not outperform GEOLDM in molecular stability but it takes
only slightly more than half of the computational cost of the latter. In Figure 15, in the appendix,
we demonstrate a molecular generation process using EDM(unnorm)+Reg.

Metrics Test NLL (↓) Atomic Stab. (↑) Mol Stab. (↑) Time/Epoch(s) (↓)
ENF −59.7 85±0.1% 4.9±0.2% 4716±540

ENF+Reg −70.2±2.1 88±0.1% 5.5±0.2% 3348±360

EDM(Unnorm)+Reg −123.13±1.8 98.82±0.1% 85.28±0.5% 230±10

EDM(Unnorm) Nan Nan Nan Nan
EDM+Reg −114.40±1.5 98.78±0.1% 83.95±0.5% 230±10

EDM −110.92±1.5 98.73±0.1% 82.11±0.4% 165±10

GEOLDM [46] – 98.73% 89.40±0.5% 425±5

GRAPHLDM [46] – 97.90% 70.50±0.5% 415±5

Bridge [43] – 98.7±0.1% 81.8±0.2% –
Bridge + Force [43] – 98.8±0.1% 84.6±0.3% –
Data – 99% 95.2% –

Table 4: Contrasting the performance of different models for QM9 molecular generation. We compare the
performance of different models in the test negative log-likelihood (NLL), atomic and molecular stability, and
time per epoch. All experiments are running for over five random seeds. The atomic and molecular stability
results of GEOLDM, GRAPHLDM, Bridge, and Bridge+Force are adapted from the original paper. We report
the computational time of GEOLDM and GRAPHLDM by running the code released by the author of [46].
The results of ENF is taken from [35].

.
6 CONCLUDING REMARKS

In this paper, we perform a sensitivity analysis of the backpropagation of EGNN and identify a cause
of the instability issue in learning ENF and EDM. Inspired by our theory, we propose a simple yet
effective regularization to stabilize ENF and EDM. In addition, the regularization can improve the
computational efficiency of ENF and the performance of EDM by allowing more flexible coordi-
nate updates. We showcase the practical benefits of the proposed regularization scheme on various
molecule generation benchmark tasks. There are several avenues for future work: First, developing
Euclidean equivariant generative models using other equivariant GNNs. Second, developing a theo-
retical understanding of why the proposed regularization can stabilize forward propagation of ENF
and EDM even using EGNN with the unnormalized coordinate update. Third, the training instabil-
ity in ENF and EDM we study comes from the EGNN itself. Studying the efficacy of the proposed
regularization for other EGNN application settings can be an interesting future work.

9

Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

This paper focuses on understanding the instability issues of recently proposed equivariant gener-
ative models for molecular modeling. Based on our analysis, we propose a simple yet effective
regularization to stabilize and improve the performance of the ENF and EDM model for molecular
generation. We do not see any potential ethical issues in our research.

REPRODUCIBILITY STATEMENT

In pursuit of reproducible research, we have included comprehensive derivations to ease readers and
we have submitted the code in the supplementary materials, along with detailed documentation, to
ensure the experimental results can be easily reproduced.

REFERENCES

[1] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019.

[2] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature communications, 13(1):
1–11, 2022.

[3] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling.
Geometric and physical quantities improve E(3)-equivariant message passing. In International
Conference on Learning Representations, 2022.

[4] Jong Youl Choi, Pei Zhang, Kshitij Mehta, Andrew Blanchard, and Massimiliano Lupo Pasini.
Scalable training of graph convolutional neural networks for fast and accurate predictions of
homo-lumo gap in molecules. Journal of Cheminformatics, 14(1):1–10, 2022.

[5] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

[6] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. Advances in neural information processing systems, 28, 2015.

[7] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing con-
volutional neural networks for equivariance to Lie groups on arbitrary continuous data. In
International Conference on Machine Learning, pp. 3165–3176. PMLR, 2020.

[8] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-transformers: 3D
roto-translation equivariant attention networks. Advances in Neural Information Processing
Systems, 33:1970–1981, 2020.

[9] Octavian-Eugen Ganea, Lagnajit Pattanaik, Connor W. Coley, Regina Barzilay, Klavs Jensen,
William Green, and Tommi S. Jaakkola. Geomol: Torsional geometric generation of molec-
ular 3D conformer ensembles. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=af_hng9tuNj.

[10] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. arXiv preprint arXiv:2003.03123, 2020.

[11] Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3D
point sets for the targeted discovery of molecules. Advances in neural information processing
systems, 32, 2019.

[12] Niklas WA Gebauer, Michael Gastegger, and Kristof T Schütt. Generating equilibrium
molecules with deep neural networks. arXiv preprint arXiv:1810.11347, 2018.

10

https://openreview.net/forum?id=af_hng9tuNj
https://openreview.net/forum?id=af_hng9tuNj

Under review as a conference paper at ICLR 2024

[13] Niklas WA Gebauer, Michael Gastegger, Stefaan SP Hessmann, Klaus-Robert Müller, and
Kristof T Schütt. Inverse design of 3D molecular structures with conditional generative neural
networks. Nature communications, 13(1):973, 2022.

[14] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pp. 1263–1272. JMLR.org, 2017.

[15] Jiaqi Guan, Wesley Wei Qian, Wei-Ying Ma, Jianzhu Ma, Jian Peng, et al. Energy-inspired
molecular conformation optimization. In International Conference on Learning Representa-
tions, 2021.

[16] Ernst Hairer. Solving Ordinary Differential Equations II : Stiff and Differential - Algebraic
Problems. Springer Series in Computational Mathematics, 14. 1st ed. 1991.. edition, 1991.
ISBN 3-662-09947-0.

[17] Moritz Hoffmann and Frank Noé. Generating valid Euclidean distance matrices. arXiv preprint
arXiv:1910.03131, 2019.

[18] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3D. In International Conference on Machine Learning,
pp. 8867–8887. PMLR, 2022.

[19] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 19(2):433–
450, 1990.

[20] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

[21] Chaitanya K. Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the
expressive power of geometric graph neural networks. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 15330–15355. PMLR, 23–29 Jul 2023. URL https://
proceedings.mlr.press/v202/joshi23a.html.

[22] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative
learning for symmetric densities. In International conference on machine learning, pp. 5361–
5370. PMLR, 2020.

[23] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[24] Google LLC. Google colaboratory, 2023. URL https://colab.research.google.
com.

[25] Shitong Luo, Jiaqi Guan, Jianzhu Ma, and Jian Peng. A 3D generative model for structure-
based drug design. Advances in Neural Information Processing Systems, 34:6229–6239, 2021.

[26] Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho. Molecular geometry
prediction using a deep generative graph neural network. Scientific reports, 9(1):20381, 2019.

[27] Rocı́o Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hong-
ming Chen, and Esben Jannik Bjerrum. Graph Networks for Molecular Design. Machine
Learning: Science and Technology, 2020. doi: 10.1088/2632-2153/abcf91.

[28] Rocı́o Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hong-
ming Chen, and Esben Jannik Bjerrum. Practical Notes on Building Molecular Graph Gener-
ative Models. Applied AI Letters, 2020. doi: 10.1002/ail2.18.

11

https://proceedings.mlr.press/v202/joshi23a.html
https://proceedings.mlr.press/v202/joshi23a.html
https://colab.research.google.com
https://colab.research.google.com

Under review as a conference paper at ICLR 2024

[29] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457):eaaw1147,
2019.

[30] Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Boris
Kozinsky, and Jonathan P Mailoa. Accurate and scalable graph neural network force field
and molecular dynamics with direct force architecture. npj Computational Materials, 7(1):73,
2021.

[31] Saro Passaro and C Lawrence Zitnick. Reducing SO(3) convolutions to SO(2) for efficient
equivariant gnns. arXiv preprint arXiv:2302.03655, 2023.

[32] Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Learning a continuous representa-
tion of 3D molecular structures with deep generative models. arXiv preprint arXiv:2010.08687,
2020.

[33] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,
2014.

[34] Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):
140022, August 2014. ISSN 2052-4463. doi: 10.1038/sdata.2014.22. URL https://doi.
org/10.1038/sdata.2014.22.

[35] Victor Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E(n)
equivariant normalizing flows. Advances in Neural Information Processing Systems, 34:4181–
4192, 2021.

[36] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n)-equivariant graph neural
networks. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

[37] Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical
Physics, 148(24), 2018.

[38] Gregor NC Simm and José Miguel Hernández-Lobato. A generative model for molecular
distance geometry. arXiv preprint arXiv:1909.11459, 2019.

[39] Gregor NC Simm, Robert Pinsler, Gábor Csányi, and José Miguel Hernández-Lobato.
Symmetry-aware actor-critic for 3D molecular design. arXiv preprint arXiv:2011.12747, 2020.

[40] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN
2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October
4-7, 2018, Proceedings, Part I 27, pp. 412–422. Springer, 2018.

[41] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3D
point clouds. arXiv preprint arXiv:1802.08219, 2018.

[42] Brian L. Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay,
and Tommi S. Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the
motif-scaffolding problem. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=6TxBxqNME1Y.

[43] Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based
molecule generation with informative prior bridges. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=TJUNtiZiTKE.

12

https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/sdata.2014.22
https://openreview.net/forum?id=6TxBxqNME1Y
https://openreview.net/forum?id=TJUNtiZiTKE

Under review as a conference paper at ICLR 2024

[44] Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-
Bombarelli, and Jian Tang. An end-to-end framework for molecular conformation genera-
tion via bilevel programming. In International Conference on Machine Learning, pp. 11537–
11547. PMLR, 2021.

[45] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. GeoDiff: A
geometric diffusion model for molecular conformation generation. In International Conference
on Learning Representations, 2022.

[46] Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric
latent diffusion models for 3D molecule generation. In International Conference on Machine
Learning, pp. 38592–38610. PMLR, 2023.

[47] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

13

Under review as a conference paper at ICLR 2024

A TECHNICAL PROOFS

First, we have the following lemma.

Lemma 1. The following results hold:

∂[(xl
i − xl

j)ϕx(m
l
ij)]

∂xl
i

= ϕx(m
l
ij)I3 +

∂ϕx(m
l
ij)

∂∥xl
i − xl

j∥2
· 2(xl

i − xl
j)(x

l
i − xl

j)
⊤ and

∂[(xl
i − xl

j)ϕx(m
l
ij)]

∂xl
j

= −
∂[(xl

i − xl
j)ϕx(m

l
ij)]

∂xl
i

.

(8)

Proof. One can check the lemma follows from the computation below:

∂[(xl
i − xl

j)ϕx(m
l
ij)]

∂xl
i

=
∂(xl

i − xl
j)

∂xl
i

ϕx(m
l
ij) + (xl

i − xl
j)
∂ϕx(m

l
ij)

∂xl
i

= I3 · ϕx(m
l
ij) + (xl

i − xl
j)

∂ϕx(m
l
ij)

∂∥xl
i − xl

j∥2
∂∥xl

i − xl
j∥2

∂xl
i

= ϕx(m
l
ij)I3 +

∂ϕx(m
l
ij)

∂∥xl
i − xl

j∥2
· (xl

i − xl
j)
∂∥xl

i − xl
j∥2

∂xl
i

= ϕx(m
l
ij)I3 +

∂ϕx(m
l
ij)

∂∥xl
i − xl

j∥2
· 2(xl

i − xl
j)(x

l
i − xl

j)
⊤

(9)

∂[(xl
i − xl

j)ϕx(m
l
ij)]

∂xl
j

=
∂(xl

i − xl
j)

∂xl
j

ϕx(m
l
ij) + (xl

i − xl
j)
∂ϕx(m

l
ij)

∂xl
j

= −I3 · ϕx(m
l
ij) + (xl

i − xl
j)

∂ϕx(m
l
ij)

∂∥xl
i − xl

j∥2
∂∥xl

i − xl
j∥2

∂xl
j

= −ϕx(m
l
ij)I3 +

∂ϕx(m
l
ij)

∂∥xl
i − xl

j∥2
· (xl

i − xl
j)
∂∥xl

i − xl
j∥2

∂xl
j

= −ϕx(m
l
ij)I3 −

∂ϕx(m
l
ij)

∂∥xl
i − xl

j∥2
· 2(xl

i − xl
j)(x

l
i − xl

j)
⊤

(10)

Proof of Proposition 1. Firstly,

∂hl+1
i

∂hl
j

=
∂ϕh(h

l
i,m

l
i)

∂hl
j

=
∂ϕh(h

l
i|ml

i)

∂hl
i

∂hl
i

∂hl
j

+
∂ϕh(m

l
i|hl

i)

∂ml
i

∂ml
i

∂hl
j

(11)

If j = i, we have

∂hl+1
i

∂hl
i

=
∂ϕh(h

l
i|ml

i)

∂hl
i

+
∂ϕh(m

l
i|hl

i)

∂ml
i

∂ml
i

∂hl
i

=
∂ϕh(h

l
i|ml

i)

∂hl
i

+
∂ϕh(m

l
i|hl

i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂hl
i

(12)
If j ̸= i, then we have

∂hl+1
i

∂hl
j

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∂ml
i

∂hl
j

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂hl
j

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∂ml
ij

∂hl
j

(13)

Secondly,

∂hl+1
i

∂xl
j

=
∂ϕh(h

l
i,m

l
i)

∂xl
j

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∂ml
i

∂xl
j

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂xl
j

(14)

14

Under review as a conference paper at ICLR 2024

If j = i, we have

∂hl+1
i

∂xl
i

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂xl
i

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂∥xl
i − xl

k∥2
∂∥xl

i − xl
k∥2

∂xl
i

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂∥xl
i − xl

k∥2
· 2(xl

i − xl
k)

⊤

(15)

If j ̸= i, then we have

∂hl+1
i

∂xl
j

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∑
k∈N (i)

∂ml
ik

∂xl
j

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∂ml
ij

∂xl
j

=
∂ϕh(m

l
i|hl

i)

∂ml
i

∂ml
ij

∂∥xl
i − xl

j∥2
∂∥xl

i − xl
j∥2

∂xl
j

= −∂ϕh(m
l
i|hl

i)

∂ml
i

∂ml
ik

∂∥xl
i − xl

j∥2
· 2(xl

i − xl
j)

⊤

(16)

Thirdly,
∂xl+1

i

∂hl
j

=
∑

k∈N (i)

∂[(xl
i − xl

k)ϕx(m
l
ik)]

∂hl
j

=
∑

k∈N (i)

(xl
i − xl

k)
∂ϕx(m

l
ik)

∂hl
j

(17)

If j = i, then we have

∂xl+1
i

∂hl
i

=
∑

k∈N (i)

(xl
i − xl

k)
∂ϕx(m

l
ik)

∂hl
i

=
∑

k∈N (i)

(xl
i − xl

k)
∂ϕx(m

l
ik)

∂ml
ik

∂ml
ik

∂hl
i

(18)

If j ̸= i, then we have

∂xl+1
i

∂hl
j

= (xl
i − xl

j)
∂ϕx(m

l
ij)

∂hl
j

= (xl
i − xl

j)
∂ϕx(m

l
ij)

∂ml
ij

∂ml
ij

∂hl
j

(19)

Finally, notice that
∂xl+1

i

∂xl
j

=
∂xl

i

∂xl
j

+
∑

k∈N (i)

∂[(xl
i − xl

k)ϕx(m
l
ik)]

∂xl
j

(20)

It is evident that ∂xl
i

∂xl
j

= I3 if j = i and 0 if j ̸= i and ∂[(xl
i−xl

k)ϕx(m
l
ik)]

∂xl
j

= 0 if j ̸= i or k. Moreover,
applying Lemma 1 to (20), we obtain the following result:

∂xl+1
i

∂xl
j

=

{
I3 +

∑
k∈N (i) G

l
ik if j = i,

−Gl
ij if j ̸= i.

(21)

A.1 THE GRADIENT OF THE LOSS WITH RESPECT TO RELATIVE DISTANCES

In this subsection, we verify that the gradient of the loss with respect to the pairwise distance ex-
plodes when the training blows up. Figure 8 plots epochs vs. ∂L/∂∥xi − xj∥ for the DW4 task
with 100 training data. We observe that when vanilla EGNN is used, the norm of the gradient
∂L/∂∥xi − xj∥ explodes rapidly. Using normalized coordinate updates can mitigate the gradient
explosion and regularization can further stabilize the training process.

15

Under review as a conference paper at ICLR 2024

0 100 200 300
Training Epoch

0
20
40
60
80

100

EG
CL

-0
 ||

L
/
r i
j
||

DNE
ENF(unnorm)

ENF

0 100 200 300
Training Epoch

0.5

1.0

1.5

EG
CL

-0
 ||

L
/
r i
j
|| ENF ENF+ Reg

(a) (b)

0 100 200 300
Training Epoch

0.3

0.6

0.9

1.2

EG
CL

-0
 ||

L
/
r i
j
||

DNE
EDM(unnorm)

EDM

0 100 200 300
Training Epoch

0.3

0.6

0.9

1.2

EG
CL

-0
 ||

L
/
r i
j
|| EDM+ Reg

EDM

(c) (d)

Figure 8: The gradient of the loss L with respect to the relative distances rij = ∥xi −xj∥ for the 0-th EGCL
layer for ENF in (a) and (b) and for EDM in (c) and (d) when training on the DW4 task with 100 training
molecules. We observe that training with regularization provides the most stability in the loss of training.

B ADDITIONAL EXPERIMENTAL RESULTS AND EXPERIMENTAL DETAILS

B.1 ADDITIONAL DW4 RESULTS.

In Figure 9, we compare the sampled and ground truth energy probability density functions for
both ENF and ENF+Reg using the DW4 dataset. The results show that the sampled distribution by
using ENF+Reg is closer to the ground truth than the sampled distribution using ENF. Figure 10
further compares the mean relative distance of the samples generated by ENF and ENF+Reg with
the ground truth, showing that ENF+Reg can generate samples that are more in proximity to the
ground truth.

25 15 5 5
Energy

0.01

0.03

0.05

0.07

Pr
ob

ab
ilit

y

True(-22.51,1.91) Sampled(-17.57,5.77)

25 15 5 5
Energy

0.01

0.03

0.05

0.07

Pr
ob

ab
ilit

y

True(-22.51±1.91) Sampled(-19.02±4.85)

(a) ENF (b) ENF+Reg

Figure 9: Probability distributions (mean±standard deviation) of the molecular energy for 100 true and sam-
pled molecules on the DW4 dataset using ENF and ENF+Reg with 100 training samples.

16

Under review as a conference paper at ICLR 2024

2 3 4 5 6

0.01

0.02

0.03

0.04 True(4.04,1.35) Sampled(3.62,1.28)

2 3 4 5 6

0.01

0.02

0.03

0.04 True(4.04±1.35) Sampled(3.68±1.28)

(a) ENF (b) ENF+Reg

Figure 10: Probability distributions (mean±standard deviation) of the relative distances for 100 true and
sampled molecules on the DW4 dataset using ENF and ENF+Reg with 100 training samples.

B.2 ADDITIONAL LJ13 RESULTS

In Figure 11, we compare the sampled and ground truth energy probability density functions for
both ENF and ENF+Reg using the LJ13 dataset. The results show that the sampled distribution by
using ENF+Reg is closer to the ground truth than the sampled distribution using ENF.

70 65 60 55 50 45 40 35 30
Energy

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Pr
ob

ab
ilit

y

True(-53.22±6.6) Sampled(-46.30±6.4)

70 65 60 55 50 45 40 35 30
Energy

0.00
0.02
0.04
0.06
0.08
0.10

Pr
ob

ab
ilit

y

True(-50.78±5.9) Sampled(-48.96±5.8)

(a) ENF (b) ENF+Reg

Figure 11: Probability distributions (mean±standard deviation) of the molecular energy for 100 true and
sampled molecules on the LJ13 dataset using ENF and ENF+Reg with 100 training samples.

B.3 REGULARIZATION VS. GRADIENT CLIPPING AND GRADIENT PENALTY

In this subsection, we compare the performance of the proposed regularization against other com-
monly used techniques to stabilize the training, including gradient clipping and gradient penalty.
We compare the performance of three approaches in the context of both ENF and EDM in the DW4
generation task.

B.3.1 GRADIENT CLIPPING

Gradient clipping [47] involves capping the error derivatives before propagating them back through
the network. The capped gradients are used to update the weights, resulting in smaller weight
updates and stabilizing the training. In our experiments, we clip the gradient using the following
standard formula:

grad =
max{α, ||grad||}

||grad||
∗ grad (22)

with clipping threshold

α = QueueNormmean + β ∗QueueNormstd (23)

where grad is the gradient to be clipped, β ≥ 0 is the clipping parameter, and QueueNorm denotes
the norm of the gradients in the clipping queue in the training. Figure 12 and Table 5 compare

17

Under review as a conference paper at ICLR 2024

the performance of training ENF on the DW4 dataset—with the training set of size 100—using
gradient clipping with various hyperparameters β and our proposed regularization. These results
show that the proposed regularization outperforms gradient clipping by a remarkable margin in
terms of stabilizing the training, reducing the computational time, and improving the generation
quality.

0 100 200 300
Epoch

8

12

Tr
ai

ni
ng

 L
os

s

ENF+ GradClip(β= 0.5) ENF+ GradClip(β= 1) ENF+ GradClip(β= 2) ENF+ Reg

0 100 200 300
Epoch

8

12

Tr
ai

ni
ng

 L
os

s

0 100 200 300
Epoch

300

600

NF
E

(a) (b)

Figure 12: Comparing training ENF on the DW4 datasets (with 100 training data) using our pro-
posed regularization against gradient clipping (with various hyperparameters β). (a) shows that
regularization enables more stable training of ENF than using gradient clipping, and (b) shows that
regularization enables faster training of ENF than using gradient clipping.

Split Test NLL(↓) Time/Epoch(↓, second)
ENF+Reg 12.02±0.2 8.6
ENF+GradClip(β = 0.5) 12.93±0.1 21.3
ENF+GradClip(β = 1) 12.67±0.1 19.5
ENF+GradClip(β = 2) 12.23±0.3 18.7

Table 5: Comparing training ENF on the DW4 datasets (with 100 training data) using our pro-
posed regularization against gradient clipping (with various hyperparameters β) in test negative
log-likelihood and average time per epoch.

B.3.2 GRADIENT PENALTY

In this subsection, we further compare the performance of our proposed regularization against the
gradient penalty. In the gradient penalty, we add a scaled norm of the gradient to the loss function
to force the gradient to be relatively small to stabilize the training. The loss function with gradient
penalty can be written as follows:

L̃ = L+ γ
∥∥∥∂L
∂θ

∥∥∥, (24)

where L is the loss function, θ is the weights of the model under training, and γ is the penalty
parameter.

ENF on DW4: Figure 13 and Table 6 compare the performance of training ENF, using our proposed
regularization against gradient penalty with various γ, on the DW4 dataset with training size 100.

Split Test NLL(↓) Time/Epoch(↓, second)
ENF+Reg 12.02±0.2 8.6
ENF+GradPenalty(γ = 1e− 3) 12.24±0.2 22.7
ENF+GradPenalty(γ = 1e− 4) 12.53±0.2 28.6
ENF+GradPenalty(γ = 1e− 5) 12.39±0.3 17.9

Table 6: Comparing ENF+Reg against ENF+Gradient penalty in test negative log-likelihood and
average time per epoch in training process on the DW4 with 100 training samples.

EDM on DW4: Figure 14 and Table 7 compares the performance of EDM—training using our
proposed regularization or gradient penalty—on the DW4 dataset with training size 1000.

18

Under review as a conference paper at ICLR 2024

0 100 200 300
Epoch

20

60

100

Tr
ai

ni
ng

 L
os

s

ENF+ GradPenalty(γ= 1e− 3)

ENF+ GradPenalty(γ= 1e− 4)

ENF+ GradPenalty(γ= 1e− 5)

ENF+ Reg

0 100 200 300
Epoch

8

12

Tr
ai

ni
ng

 L
os

s

0 100 200 300
Epoch

300

600

NF
E

(a) (b)

Figure 13: Comparing ENF+Reg against ENF+Gradient penalty in (a) training loss and (b) the
number of function evaluations (NFEs) per training epoch used by the ODE solver on DW4 with
100 training data.

0 100 200 300
Epoch

20

60

100

Tr
ai

ni
ng

 L
os

s

0 100 200 300
Epoch

20

60

100

Tr
ai

ni
ng

 L
os

s

ENF+ GradPenalty(γ= 1e− 3)

ENF+ GradPenalty(γ= 1e− 4)

ENF+ GradPenalty(γ= 1e− 5)

ENF+ Reg

Figure 14: Comparing EDM+Reg against EDM+Gradient penalty in training loss on DW4 with
1000 training data.

Split Test NLL(↓) Time/Epoch(↓, second)
ENF+Reg 22.39±0.8 1.6
ENF+GradPenalty(γ = 1e− 3) 23.15±0.9 1.7
ENF+GradPenalty(γ = 1e− 4) 22.99±0.9 1.7
ENF+GradPenalty(γ = 1e− 5) 24.52±1.2 1.7

Table 7: Comparing EDM+Reg against EDM+Gradient penalty in test negative log-likelihood on
DW4 with 1000 training data.

B.4 ADDITIONAL DATASET DETAILS

DW4. The DW4 dataset contains molecules with 4 atoms each in 2-dimensional space. Node
information is a one-hot embedding of the atom, while edges denote atomic bonds. We train on two
sets of data, one with 100 training molecules and a second with 1000 training molecules.

LJ13. The LJ13 dataset contains molecules with 13 atoms each in 3-dimensional space. Node
information is a one-hot embedding of the atom, while edges denote atomic bonds. We train on two
sets of data, one with 100 training molecules and the other with 1000 training molecules.

QM9. The QM9 dataset consists of a collection of molecules containing up to nine heavy atoms,
including carbon (C), oxygen (O), nitrogen (N), and sulfur (S). Atom features include a one-hot en-
coding of the nodes as well as several additional atomic properties. Edges encode bond information.
This dataset is commonly used for molecular property prediction and graph classification. We use
two subsets of the data for training the molecular generation task.

19

Under review as a conference paper at ICLR 2024

B.5 A SAMPLE MOLECULE GENERATED BY EDM

Figure 15 shows the selected molecules generated by our regularized EDM and also shows the
process of how it generates a molecule from standard normal noise, which indicates that our model
is able to generate stable molecules.

Figure 15: Overview of EDM(unnorm)+Reg on QM9. The upper figures show the generating process. To
generate molecules, coordinates x and features h are generated by denoising variables zt starting from standard
normal noise zT . The lower figures show the selected samples generated by the denoising process of our
EDM(unnorm)+Reg trained on QM9.

20

	Introduction
	A recap on EGNN
	EGNN for generative modeling and its instability issue
	Our contribution
	Additional related works
	Organization

	Why Do We Use EGNN for Generative Modeling?
	EGNN vs. other symmetry-aware models
	Normalized vs. unnormalized coordinate updates in ENF and EDM

	A Theoretical Study of the Instability Issues
	Backpropagation
	Sensitivity analysis

	Regularized EGNN for Generative Modeling
	Other benefits of regularization to ENF
	Other benefits of regularization to EDM

	Experiments
	Equivariant normalizing flows
	DW4 and LJ13
	QM9

	Equivariant diffusion models
	DW4 and LJ13
	QM9

	Concluding Remarks
	Technical Proofs
	 The gradient of the loss with respect to relative distances

	Additional Experimental Results and Experimental Details
	Additional DW4 results.
	Additional LJ13 results
	Regularization vs. gradient clipping and gradient penalty
	Gradient clipping
	Gradient penalty

	Additional dataset details
	A sample molecule generated by EDM

