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ABSTRACT

Automated feature engineering (AutoFE) liberates data scientists from the burden
of manual feature construction, a critical step for tabular data prediction. While the
semantic information of datasets provides valuable context for feature engineer-
ing, it has been underutilized in most existing works. In this paper, we introduce
AutoFE by Prompting (FEBP), a novel AutoFE algorithm that leverages large lan-
guage models (LLMs) to process dataset descriptions and automatically generate
features. Incorporating domain knowledge, the LLM iteratively refines feature
construction through in-context learning of top-performing example features and
provides semantic explanations. Our experiments on real-world datasets demon-
strate the superior performance of FEBP over state-of-the-art AuoFE methods. We
also conduct ablation study to verify the impact of dataset semantic information
and examine the behavior of our LLM-based feature search process.

1 INTRODUCTION

Tabular data, a form of structured data comprising instances and attributes, have extensive use in vast
domains, e.g., credit assessment, market prediction, and quality control. Traditional machine learn-
ing models, especially tree-based models (Breiman, 2001; Ke et al., 2017), have strong performance
on tabular datasets of small and medium sizes (Grinsztajn et al., 2022) and good interpretability.
Feature engineering is the process of computing new features from feature attributes of a dataset to
enhance downstream model performance, which is crucial for traditional ML models as the new fea-
tures extract useful information for target prediction by capturing complex non-linear relationships.
Feature engineering by hand requires domain expertise to alleviate the significant human labor.

Automated feature engineering (AutoFE) uses high-level algorithms and models to automate the FE
process such that the performance is comparable to domain experts. Existing AutoFE methods, such
as (Zhu et al., 2022a;b; Zhang et al., 2023), compute and evaluate a large number of features in a
trial-and-error manner. While some learn to optimize the feature utility during the FE process, these
methods do not utilize domain knowledge to guide the feature search. The need to start from scratch
for new datasets or downstream models hampers their effectiveness and efficiency. Besides, these
methods do not offer explanation of the computed features, impairing the interpretability.

Figure 1: Overview of FEBP: (1) prompting the LLM
to construct new features by providing dataset descrip-
tions and example features; (2) evaluating the con-
structed features; (3) updating the prompt with top-
performing features and scores; and (4) selecting a set
of features and adding them to the dataset.

The descriptions contained in tabular datasets
provide rich context for feature engineering.
Domain experts consult attribute descriptions
to select relevant feature attributes and com-
pute new features useful for predicting the tar-
get. For example, the square footage of a house
times the average housing price per square foot
in the neighborhood can be a good predictor
of the market value of the house. Large lan-
guage models (LLMs) (Radford et al., 2019;
Brown et al., 2020; OpenAI, 2023; Touvron
et al., 2023a;b), pretrained on large volumes of
text data, handle general natural language pro-
cessing tasks and encapsulate extensive domain
knowledge. Under proper prompt instructions,
the LLM may process the dataset semantic in-
formation and utilize its knowledge to automatically compute features in a manner similar to domain
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experts. The work by Hollmann et al. (2023) demonstrates the potential of applying LLMs for Aut-
oFE, but it is not sufficiently effective in terms of feature search.

We propose AutoFE by Prompting (FEBP), a novel AutoFE algorithm that leverages LLMs for
effective, efficient, and interpretable feature engineering, as illustrated in Figure 1. By providing
dataset descriptions and example features in canonical Reverse Polish Notation (cRPN), we prompt
the LLM to generate new features. After evaluating the features, we update the prompt with top-
performing features and their evaluation scores and instruct the LLM to construct further features.
Through this iterative process, the LLM explores the feature space and improves solutions through
in-context learning of successful examples. The semantic information of data not only guides the
feature search, but helps the LLM understand and learn from the patterns in example features. Ap-
plying domain knowledge, the LLM generates semantically meaningful features and explains their
usefulness. Experiments on seven real-world datasets demonstrate that FEBP significantly outper-
forms state-of-the-art baselines, achieving over 5% performance gain on average across three down-
stream models. Additionally, our ablation study shows that incorporating dataset semantic context
improves the performance. We also analyze the behavior of the LLM-based feature search process
and examine the effects of hyperparameters.

Our main contributions are: (1) We introduce a novel LLM-based AutoFE algorithm that utilizes
dataset semantic information for automated feature search. This is the first method capable of gen-
erating features in string representations while providing semantic explanations. (2) We benchmark
the performance of our approach against state-of-the-art baselines using both GPT-3.5 and GPT-
4. (3) We investigate the impact of semantic context on our approach, analyze the behavior of the
LLM-based feature search process, and examine hyperparameter effects.

2 RELATED WORK

Large Language Models. LLMs are large-scale general-purpose neural networks pretrained on
large corpora of raw text data for natural language processing, typically built with transformer-
based architectures (Vaswani et al., 2017). Generative LLMs, such as the GPT family (Radford
et al., 2019; Brown et al., 2020; OpenAI, 2023) and the LLaMA family (Touvron et al., 2023a;b),
are pretrained to successively predict the next token given the input text and can be finetuned using
reinforcement learning from human feedback (Ziegler et al., 2019; Ouyang et al., 2022). By this
means, they acquire the knowledge about syntax and semantics of human languages and are able to
achieve state-of-the-art performance on various tasks like text generation, summarization, and ques-
tion answering. LLMs can be adapted to specific tasks without changing model parameters through
prompt engineering. Few-shot learning (Brown et al., 2020) includes examples in the prompt for
the language model to learn in-context. Leveraging such capability, the LLM may function as a
problem solver (Yang et al., 2024) that iteratively improves candidate solutions according to the task
description and feedback. Chain-of-though (Wei et al., 2022; Kojima et al., 2022) enables complex
reasoning capabilities of LLMs through intermediate reasoning steps.

Automated Feature Engineering. AutoFE computes new features for the input data and augments
or replaces portions of the existing features, to enhance the performance of downstream models.
Common AutoFE approaches include expansion-reduction (Kanter & Veeramachaneni, 2015; Horn
et al., 2020; Zhang et al., 2023), evolutionary algorithms (Smith & Bull, 2005; Zhu et al., 2022a), and
reinforcement learning (Khurana et al., 2018; Li et al., 2023; Wang et al., 2023). DIFER (Zhu et al.,
2022b) utilizes neural networks to learn the utility of constructed features and optimize features in
the embedding space. OpenFE (Zhang et al., 2023) introduces a feature boost algorithm to speedup
feature evaluation. Nonetheless, these approaches do not utilize the semantic information of data,
which impedes the performance and interpretability of engineered features.

AutoFE with Domain Knowledge. The benefits of incorporating domain knowledge in AutoFE
include: (1) improving the effectiveness; and (2) reducing the cost of learning an AutoFE model,
especially the feature evaluation overhead. Prior works take different directions. One direction is to
transfer the knowledge through pretraining. LFE (Nargesian et al., 2017) represents features with
quantile sketches transferable across datasets and inputs them to a feature transformation recom-
mendation model. FETCH (Li et al., 2023) is an RL-based AutoFE framework taking tabular data
as the state and generalizable to new data. E-AFE (Wang et al., 2023) pretrains a feature evaluator
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to efficiently learn the RL-based AutoFE model. The other direction is to leverage the semantic
information of datasets. KAFE (Galhotra et al., 2019) leverages knowledge graphs to identify se-
mantically informative features relevant to the prediction task. CAAFE (Hollmann et al., 2023)
manipulates Pandas data frames using the code generated from the LLM based on dataset descrip-
tions. In our work, we adopt a compact form of feature representation in strings with pre-defined
transformation operators. Our approach reduces the search space and helps the LLM learn the pat-
terns of useful features, leading to stronger and more robust performance. We further discuss the
differences between our approach and CAAFE in Appendix G.

3 NOTATIONS

We denote a tabular dataset as D = ⟨X,y⟩, where X = {x1, . . . ,xd} is the set of raw features with
xi ∈ Rn for i = 1, . . . , d and y ∈ Rn is the target. We construct a new feature x̃ = t(xj1 , . . . ,xjo)
by transforming existing features xj1 , . . . ,xjo via some operator t ∈ Rn × . . .×Rn → Rn of arity
o. Given a set of transformation operators T, we define the feature space XT recursively as: for any
x̃ ∈ XT, either x̃ ∈ X; or ∃t ∈ T, s.t., x̃ = t(x̃j1 , . . . , x̃jo), where x̃j1 , . . . , x̃jo ∈ XT. To measure
feature complexity, we compute the order of a feature x̃ ∈ XT as:

α(x̃) =

{
0 if x̃ ∈ X,
1 + maxj α(x̃j) if x̃ = t(x̃j1 , . . . , x̃jo) for some t ∈ T.

(1)

The constrained feature space with the order upper bounded by k is denoted as X(k)
T = {x̃ ∈ XT |

α(x̃) ≤ k}.
We denote the performance of a downstream machine learning model algorithm M on the dataset
as EM (X,y). Our objective of AutoFE is to construct a set of features X̃∗ to optimize the model
performance by adding them to the dataset, specifically:

X̃∗ = argmax
X̃⊂XT

EM (X ∪ X̃,y). (2)

4 METHODOLOGY

In this section, we present AutoFE by Prompting (FEBP), a novel AutoFE algorithm leveraging the
power of LLMs, particularly, the GPT models (Radford et al., 2019; Brown et al., 2020; OpenAI,
2023). The high-level idea is to provide the LLM with descriptive information of the dataset in the
prompt and guide it to search for effective features using examples.

Figure 2: We obtain the canonical RPN (cRPN) by
reordering nodes of the expression tree.

We represent features in a compact form in our
prompt. A feature x̃ ∈ XT is expressible as a
tree, where the leaf nodes are raw features and
the internal nodes are operators. However, the
expression trees of features containing commu-
tative operators (like addition and multiplication)
are not unique since the child nodes of these op-
erators are unordered. We introduce a canonical-
ization scheme: arranging operator nodes before
feature nodes for left skewness and lexicograph-
ically sorting the nodes within each group. We
then serialize the canonical expression tree into the postorder depth-first traversal string, i.e., canon-
ical reverse Polish notation (cRPN), ensuring the one-to-one mapping between features and string
representations. We denote the feature corresponding to an RPN string f as x̃f and the set of features
corresponding to a set of RPN strings F as X̃F. We refer to Appendix A for further discussion.

Our prompt contains: (1) a meta description of the dataset (optional); (2) an indexed list of the dataset
attributes, with attribute types, value ranges, and descriptions; (3) lists of transformation operators
with descriptions, grouped by the arity; (4) a ranked list of example features with performance
evaluation scores; and (5) an output template for new features and explanations. Figure 3 outlines the
structure of our prompt. The descriptions of the dataset and attributes provide contextual information
for the LLM to understand the data and apply domain knowledge. The value ranges of attributes
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(1) Dataset description:
This dataset contains information on default payments, demographic factors, credit data, and history of payment of credit card clients ...
(2) Dataset contains the following columns:
col-0 (int) [10000, 800000]: LIMIT BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
col-1 (category) {1, 2}: SEX: Gender (1=male, 2=female) . . .
col-23 (category) {0, 1}: default.payment.next.month: Default payment (1=yes, 0=no)
(3) We have the following unary operators:
sqrt abs: taking the square root of the absolute value . . .
We have the following binary operators:
+: summing two columns . . .
Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset. Each feature string constructs an extra
column that is useful for the downstream model Random Forests to predict the target col-23. The model will be trained on the dataset with the
constructed columns and evaluated on a holdout set. The best columns will be selected.
(4) Below are feature strings arranged in ascending order based on their performance scores. Higher scores are better.
Feature
col-17,col-21,*,col-20,+,sqrt abs
Score
0.0011 . . .
Feature
col-4,col-6,*,col-12,col-16,-,sqrt abs,*
Score
0.0014
Give me a new feature string that is different from all strings above and has a higher score. Use no more than five operators. Make sure all
columns and operators exist and do not include the target column. Follow the syntax of RPN.
(5) Output format:
Feature
(Feature name and description)
Usefulness
(Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset description)

Figure 3: Prompt template. Sections requiring dataset information are highlighted in blue. The ranked list of
feature examples and scores that gets updated in our feature search algorithm is highlighted in orange.

Feature
col-11,col-11,col-12,-,log,*
This feature calculates the log of the difference between the September bill statement (col-11) and the August bill statement (col-12), then
multiplies it by the September bill amount.

Usefulness
This feature captures the change in the bill amount from August to September in a logarithmic scale, which can effectively highlight
significant changes in spending patterns. Large fluctuations in credit card bills could be indicative of financial distress, which may impact the
likelihood of defaulting on payments, while the logarithmic transformation allows for handling potential skewness in the data distribution. By
incorporating this feature, the model can better understand how temporal changes in spending behavior relate to the probability of default,
providing richer contextual information beyond static features.

Figure 4: The LLM constructs a new feature in RPN and explains its usefulness from the semantic perspective.

are useful for selecting appropriate feature transformations, e.g., min-max normalization when the
scale is too large. We include the descriptions of transformation operators as they help the LLM
parse example features in RPN syntax and construct syntactically valid feature strings. The output
template not only structures the output but instructs the LLM to reason about the usefulness of the
proposed features and offer semantic explanations, utilizing the chain-of-thought technique (Wei
et al., 2022; Kojima et al., 2022). We additionally add a constraint instruction to use no more
than a certain number of operators, which reduces the search space and regularizes the solutions.
Figure 4 shows an example LLM output. The prompt can further include attribute statistics like
mean, standard deviation, and skewness, and we leave that for future work.

We initialize the prompt with k random features from the constrained feature space x̃1, . . . , x̃k ∈
X(2)

T represented in cRPN for demonstration. This lets the LLM start search from a small feature
space where it is easier to identify the basic patterns of promising features. Optionally, we can import
external example features. We prompt the LLM to construct a fixed number of m new feature in an
iteration. For each constructed feature string f , we first try to obtain the cRPN expression f c to check
whether f c is syntactically valid and not a duplicate of existing features. If both criteria are met, we
evaluate the performance score of adding the single feature to the dataset s = EM (X ∪ {x̃fc},y)
through cross validation on the training data and add ⟨f c, s⟩ to the candidate set Fcand. When f c is
among the top-k candidate features in terms of the score s, we update prompt examples with the top-
k pairs ⟨f ′, s′⟩ ∈ Fcand ranked in the ascending order, taking score increment s′ − EM (X,y) from
the baseline. We then instruct the LLM to construct additional features using the updated prompt.
To select candidate features, we successively add candidate features to the dataset from the best to
the worst and determine the optimal number of features to add based on validation performance,
which is evaluated over sets of candidate features and thus takes feature interactions into account.
Algorithm 1 summarizes our methodology. The size of the prompt scales linearly with the number
of features in the dataset d and the number of example features k and stays roughly constant across
feature construction iterations. Thus, the cost of an LLM generation step in line 3 is almost constant.
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Algorithm 1: AutoFE by Prompting
Input : Dataset D = ⟨X,y⟩, downstream model M , large language model LLM , and optionally an

external set of features with evaluation scores Fext

Output: A set of engineered features F
1 Initialize prompt P with dataset descriptions and example features; Fcand ← Fext if Fext is available,

otherwise Fcand ← ∅; Fset ← ∅
2 repeat
3 FLLM = {f1, . . . , fm} ← LLM(P ) ▷ Feature generation
4 for each f ∈ FLLM do
5 fc ← Canonicalize f
6 if fc is valid and fc /∈ Fcand then ▷ Feature evaluation
7 Evaluate cross validation performance score s← EM (X ∪ {xfc},y) on training data
8 Fcand ← Fcand ∪ {⟨fc, s⟩}
9 end

10 end
11 Update P such that P contains the top-k ⟨f ′, s′⟩ ∈ Fcand as ordered by s′

12 if feature selection then
13 for n← 1 to |Fcand| do ▷ Feature selection
14 Fn ← The top-n features in Fcand as ordered by s

15 Evaluate performance score sn ← EM (X ∪ X̃Fn ,y) on validation data
16 end
17 Fset ← Fset ∪ {⟨Fn∗ , sn∗⟩}, where n∗ ← argmaxnsn
18 end
19 until stopping criteria are met
20 return F in Fset with the maximum validation score

The computation cost of feature evaluation in line 7 is also constant, preserving the efficiency and
scalability of our algorithm. The evaluations in line 7 and at lines 13-16 are parallelizable.

Methodologically, we instruct the LLM to act as a problem solver (Yang et al., 2024) within our
algorithm. Similar to evolutionary algorithms (Smith & Bull, 2005; Zhu et al., 2022a; Morris et al.,
2024) that generate new solutions through crossover and mutations on high-fitness candidates, we
maintain a pool of top-performing candidate features as examples. By learning examples and scores
in-context (Brown et al., 2020), the LLM can recognize patterns of promising features and propose
new features that are likely to be effective. For instance, it may make analogies to, modify, or
combine example features (Appendix F.2). Early in the search, we expect greater exploration due
to the diversity of initial examples. As iterations progress, the LLM focuses more on exploiting
promising feature spaces, gradually refining the search until convergence. The dataset semantic in-
formation serves as a prior that guides the selection of feature attributes and operators to enhance
the effectiveness of feature search. The sampling temperature of the LLM can be adjusted to bal-
ance exploration and exploitation, with higher temperatures encouraging more diverse solutions and
lower temperatures favoring incremental changes to existing examples.

We adopt the same set of transformation operators T as those in (Zhu et al., 2022b), including:
• Unary transformations: logarithm, reciprocal, square root, and min-max normalization;

• Binary transformations: addition, subtraction, multiplication, division, and modulo.
When computing min-max normalization, we take the minimum and maximum from the training
data. Other transformations require only the information of an individual example. Hence, all our
transformation operations can be performed instance by instance on each individual test example
without leaking the information of other test examples. As discussed by Overman et al. (2024), data
leakage is an issue that has not been properly addressed in many existing AutoFE works.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We benchmark performance on seven public real-world datasets from Kaggle and UCI reposito-
ries covering different domains. The descriptive information of datasets and attributes is retrieved

5
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Table 1: Dataset statistics. The selected datasets cover different domains and vary in size. Four of them are for
regression tasks and three for classification tasks.

Name Task # Samples # Features # Numerical # Categorical

Airfoil (AF) Regression 1,503 5 5 0
Boston Housing (BH) Regression 506 13 12 1
Bikeshare (BS) Regression 731 10 6 4
Wine Quality Red (WQR) Regression 1,599 11 11 0
AIDS Clinical Trials (ACT) Classification 2,139 23 9 14
Credit Default (CD) Classification 30,000 23 14 9
German Credit (GC) Classification 1,000 20 10 10

from the sources without further processing. The downstream models we evaluate include lin-
ear models (LASSO for regression tasks and logistic regression for classification tasks), Random
Forests (Breiman, 2001), and LightGBM (Ke et al., 2017). For linear models, we target-encode
categorical features and min-max scale all features. We tune downstream model parameters by ran-
domized search prior to and post AutoFE, because the model algorithm may need reconfiguration
to accommodate the added features. Data are randomly split into training (64%), validation (16%),
and test (20%) sets. We evaluate regression performance with 1 − (relative absolute error)1 and
classification performance with accuracy. A higher evaluation score indicates better performance.

We compare our FEBP with the following state-of-the-art AutoFE methods:

• DIFER (Zhu et al., 2022b): A neural network-based method that optimizes features in the
embedding space utilizing LSTMs to encode and decode features;

• OpenFE (Zhang et al., 2023): An expansion-reduction method that evaluates and ranks
features up to a certain order using a feature boost algorithm;

• CAAFE (Hollmann et al., 2023): An LLM-based method that produces Python code based
on dataset descriptions to manipulate Pandas data frames.

We employ gpt-3.5-turbo-01252 and gpt-4-06132 as the LLMs in our experiments. For FEBP, we
include k = 10 example features in the prompt and set the temperature of GPT models to 1 based
on validation performance. We prompt the LLM to construct m = 1 feature in each generation
step for more accurate control of feature generation. We perform feature selection each time 10
new candidate features are constructed and terminate the algorithm once we have 200 candidate
features. Parameters of the baseline AutoFE methods are initialized per the corresponding papers.
For CAAFE (Hollmann et al., 2023), we raise the number of iterations from 10 to 20. Drastically
increasing this limit causes failures due to the context window size of GPT models. We report results
from five repeated runs unless stated otherwise.

5.2 PERFORMANCE COMPARISON

Table 2 compares the performance between FEBP and baseline methods. While there is no sin-
gle method that dominates all test cases, FEBP achieves the best mean performance score and the
lowest mean rank. FEBP yields over 5% average performance gain over downstream models us-
ing raw features, with over 15% gain for linear models and around 2% gain for Random Forests
and LightGBM. Greater performance gain is observed using linear models because Random Forests
and LightGBM can model complex non-linear relationships themselves. The Friedman-Nemenyi
test shows that the performance difference between FEBP and baseline methods other than DIFER
is statistically significant at the p = 0.01 level. We note that the post-AutoFE parameter tuning
improves the performance of DIFER the most, as DIFER adds many more features to the datasets
(Appendix D.7). FEBP is considerably more efficient as it evaluates only 200 candidate features
during feature search, whereas DIFER evaluates over 2000 candidate features (Appendix D.8).

Additionally, we observe that the performance of FEBP or CAAFE with GPT-4 is not significantly
different from that with GPT-3.5. On FEBP, GPT-4 yields better performance for linear models but
slightly worse performance for Random Forests. We speculate that the stronger in-context learning
capability of GPT-4 increases the likelihood of overfitting to the training samples.

11−
∑

i|yi−ŷi|∑
i|yi−ȳ| , where y is the target and ŷ is the prediction.

2https://platform.openai.com/docs/models
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Table 2: Summary of experimental results. For each compared method, the left and right columns show the
results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively. The
best results are highlighted in boldface, and the second best results are underlined.

Model Dataset Raw DIFER OpenFE CAAFE FEBP (ours)
GPT-3.5 GPT-4 GPT-3.5 GPT-4

Linear
Model

AF 0.3474 0.5870 0.6090 0.4300 0.4303 0.4011 0.4016 0.4376 0.4378 0.6612 0.6616 0.6649 0.6647
BH 0.3776 0.5013 0.4994 0.3900 0.3880 0.4788 0.4765 0.4503 0.4506 0.4995 0.5025 0.5184 0.5289
WQR 0.2696 0.2475 0.2630 0.2713 0.2736 0.2742 0.2757 0.2776 0.2776 0.2722 0.2745 0.2713 0.2748
ACT 0.8505 0.8715 0.8799 0.8729 0.8729 0.8519 0.8514 0.8565 0.8570 0.8729 0.8794 0.8766 0.8762
CD 0.8267 0.8273 0.8280 0.8265 0.8268 0.8265 0.8267 0.8238 0.8238 0.8282 0.8282 0.8288 0.8288
GC 0.7100 0.7140 0.7420 0.7320 0.7280 0.7350 0.7330 0.7210 0.7210 0.7570 0.7460 0.7590 0.7420

Mean 0.5636 0.6248 0.6369 0.5871 0.5866 0.5946 0.5941 0.5945 0.5946 0.6485 0.6487 0.6532 0.6526

Mean Rank 12.00 8.17 5.50 9.25 8.50 8.67 8.17 8.83 8.17 4.75 3.17 3.00 2.83

Random
Forests

AF 0.7677 0.7650 0.7786 0.7579 0.7682 0.7711 0.7693 0.7696 0.7720 0.7709 0.7787 0.7681 0.7749
BH 0.5426 0.5718 0.5701 0.5658 0.5620 0.5556 0.5556 0.5512 0.5492 0.5549 0.5533 0.5543 0.5522
BS 0.9446 0.9865 0.9871 0.9901 0.9901 0.9916 0.9916 0.9818 0.9816 0.9873 0.9881 0.9845 0.9848
WQR 0.3662 0.3838 0.3832 0.3753 0.3729 0.3718 0.3718 0.3693 0.3693 0.3862 0.3845 0.3810 0.3810
ACT 0.8808 0.8897 0.8897 0.8832 0.8841 0.8827 0.8855 0.8827 0.8827 0.8925 0.8921 0.8893 0.8864
CD 0.8293 0.8285 0.8291 0.8287 0.8285 0.8291 0.8289 0.8294 0.8287 0.8295 0.8294 0.8295 0.8276
GC 0.7450 0.7550 0.7500 0.7650 0.7570 0.7690 0.7620 0.7660 0.7630 0.7640 0.7620 0.7680 0.7680

Mean 0.7252 0.7400 0.7411 0.7380 0.7376 0.7387 0.7378 0.7357 0.7352 0.7408 0.7412 0.7392 0.7393

Mean Rank 11.57 7.29 5.14 7.07 7.64 5.71 6.93 8.43 9.79 4.14 4.29 6.00 7.00

Light-
GBM

AF 0.8375 0.8285 0.8411 0.8188 0.8244 0.8364 0.8348 0.8430 0.8426 0.8311 0.8392 0.8366 0.8395
BH 0.5537 0.5607 0.5636 0.5693 0.5618 0.5540 0.5571 0.5478 0.5501 0.5619 0.5644 0.5642 0.5595
BS 0.9429 0.9763 0.9786 0.9751 0.9797 0.9555 0.9565 0.9449 0.9487 0.9737 0.9754 0.9801 0.9813
WQR 0.3825 0.4145 0.4182 0.3898 0.3884 0.4131 0.4035 0.3902 0.3952 0.4118 0.4171 0.4021 0.4042
ACT 0.8832 0.8794 0.8827 0.8808 0.8799 0.8822 0.8860 0.8827 0.8818 0.8888 0.8925 0.8902 0.8925
CD 0.8300 0.8283 0.8277 0.8293 0.8287 0.8296 0.8298 0.8301 0.8294 0.8301 0.8297 0.8303 0.8294
GC 0.7250 0.7650 0.7600 0.7550 0.7700 0.7490 0.7550 0.7450 0.7720 0.7680 0.7720 0.7760 0.7700

Mean 0.7364 0.7504 0.7531 0.7454 0.7476 0.7457 0.7461 0.7405 0.7457 0.7522 0.7558 0.7542 0.7538

Mean Rank 9.43 8.29 5.86 8.86 8.57 8.43 7.71 8.29 7.93 5.71 3.57 3.57 4.79
Mean 0.6806 0.7091 0.7140 0.6953 0.6958 0.6979 0.6976 0.6950 0.6967 0.7171 0.7185 0.7187 0.7183
Mean Rank 10.95 7.90 5.50 8.35 8.23 7.55 7.58 8.50 8.65 4.88 3.70 4.25 4.98

Table 3: Performance comparison of FEBP with and without semantic blinding. For each compared version,
the left and middle columns show the results without and with parameter tuning of the downstream model
algorithm post AutoFE, respectively, and the right column shows the number of LLM responses. The results
where the full version outperforms the blinded version are highlighted in boldface.

Model Dataset Raw GPT-3.5 GPT-4
Blinded Full Blinded Full

Linear
Model

AF 0.3474 0.6613 0.6602 450.0 0.6612 0.6616 339.8 0.6678 0.6672 275.0 0.6649 0.6647 371.4
BH 0.3776 0.4678 0.4794 438.0 0.4995 0.5025 378.6 0.4869 0.4996 295.6 0.5184 0.5289 335.4
WQR 0.2696 0.2643 0.2733 442.8 0.2722 0.2745 328.4 0.2645 0.2702 244.6 0.2713 0.2748 312.6
ACT 0.8505 0.8790 0.8799 442.8 0.8729 0.8794 372.2 0.8720 0.8729 238.8 0.8766 0.8762 377.4
CD 0.8267 0.8283 0.8283 454.8 0.8282 0.8282 342.0 0.8282 0.8289 238.2 0.8288 0.8288 250.4
GC 0.7100 0.7460 0.7390 432.2 0.7570 0.7460 379.0 0.7430 0.7410 231.2 0.7590 0.7420 310.6

Mean 0.5636 0.6411 0.6433 443.4 0.6485 0.6487 356.7 0.6437 0.6461 253.9 0.6532 0.6526 326.3

Random
Forests

AF 0.7677 0.7644 0.7743 425.2 0.7709 0.7787 393.2 0.7610 0.7690 274.2 0.7681 0.7749 314.2
BH 0.5426 0.5483 0.5483 479.2 0.5549 0.5533 374.4 0.5507 0.5491 238.4 0.5543 0.5522 278.6
BS 0.9446 0.9628 0.9628 510.0 0.9873 0.9881 386.8 0.9535 0.9543 247.4 0.9845 0.9848 255.0
WQR 0.3662 0.3749 0.3738 461.4 0.3862 0.3845 362.6 0.3666 0.3674 253.0 0.3810 0.3810 283.2
ACT 0.8808 0.8864 0.8841 475.8 0.8925 0.8921 357.6 0.8874 0.8841 222.4 0.8893 0.8864 424.0
CD 0.8293 0.8283 0.8282 497.0 0.8295 0.8294 349.8 0.8291 0.8286 375.2 0.8295 0.8276 304.0
GC 0.7450 0.7630 0.7580 459.2 0.7640 0.7620 368.2 0.7510 0.7490 229.6 0.7680 0.7680 471.8

Mean 0.6806 0.7326 0.7328 472.5 0.7408 0.7412 370.4 0.7285 0.7288 262.9 0.7392 0.7393 333.0

Light-
GBM

AF 0.8375 0.8304 0.8356 479.6 0.8311 0.8392 380.2 0.8185 0.8266 284.6 0.8366 0.8395 360.6
BH 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 342.0 0.5500 0.5609 238.4 0.5642 0.5595 345.6
BS 0.9429 0.9693 0.9691 480.2 0.9737 0.9754 380.0 0.9539 0.9536 312.6 0.9801 0.9813 236.8
WQR 0.3825 0.4087 0.4151 493.0 0.4118 0.4171 322.8 0.4057 0.4050 246.8 0.4021 0.4042 293.6
ACT 0.8832 0.8864 0.8883 513.0 0.8888 0.8925 367.4 0.8813 0.8748 229.0 0.8902 0.8925 359.6
CD 0.8300 0.8284 0.8292 490.8 0.8301 0.8297 352.2 0.8295 0.8299 218.6 0.8303 0.8294 371.2
GC 0.7250 0.7620 0.7620 482.4 0.7680 0.7720 376.6 0.7550 0.7550 225.0 0.7760 0.7700 382.2

Mean 0.6806 0.7479 0.7494 490.0 0.7522 0.7558 360.2 0.7420 0.7437 250.7 0.7542 0.7538 335.7
Mean 0.6806 0.7105 0.7118 469.9 0.7171 0.7185 362.7 0.7078 0.7092 255.9 0.7187 0.7183 331.9

5.3 EFFECT OF SEMANTIC CONTEXT

To examine the impact of dataset semantic context, we compare the full version of FEBP with
the semantically blinded version where the descriptions of datasets are removed (Appendix C.2).
From Table 3, the full version outperforms the blinded version in terms of the mean performance
score using all three downstream models. The Friedman-Nemenyi test shows that the performance
difference is statistically significant at the p = 0.01 level. The performance difference is more
pronounced for Random Forests and LightGBM, likely because the inclusion of non-semantically
meaningful features consumes model capacity and causes greater overfitting to the training data.
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Figure 5: The cross validation score of candidate features on training data across iterations.
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Figure 6: The order of candidate features across iterations.

We also report the number of LLM responses to help assess feature construction efficiency. As
shown in Table 3, GPT-4 constructs features more efficiently than GPT-3.5 due to its broader knowl-
edge. While incorporating dataset semantic information improves the feature construction efficiency
of GPT-3.5, it reduces that of GPT-4. This is because the semantic information introduces bias, lead-
ing GPT-4 to generate more similar responses.

5.4 PERFORMANCE ANALYSIS

We analyze our LLM-based feature search process for deeper insights. Here, we present experi-
mental results on the ACT, BH, GC, and WQR datasets using linear models from ten repeated runs
with gpt-3.5-turbo-0125. The plots display the slope and p-value from one-tailed t-tests in OLS
regressions, with the shaded area representing one standard deviation above and below the mean.

Feature Learning. We examine the cross validation score of candidate features on the training data
across feature construction iterations. Figure 5 shows a general upward trend in the score as the
number of iterations increases. This demonstrates that FEBP effectively improves the quality of
constructed features through in-context learning of top-performing examples during feature search.

Feature Complexity. We analyze the order of candidate features across feature construction it-
erations. Figure 6 shows that the feature order increases more rapidly in the early iterations and
stabilizes over time. On the one hand, FEBP effectively explores more complex features within
promising feature spaces. On the other hand, our constraint instruction regularizes the process,
preventing the generation of overly complex features.

Feature Divergence. We analyze the divergence of a new candidate features from previous ones
during feature search. To measure this, we compute the edit distance between canonical feature
expression trees using the algorithm from (Zhang & Shasha, 1989), normalizing the distance by
the total number of nodes in both trees. Figure 7 displays the mean normalized tree edit distance
between the current feature and the previous five features across iterations. The observed downward
trend indicates that the feature search is converging.

Feature Construction Efficiency. We examine the number of LLM responses required to construct
new candidate features. Figure 8 shows an upward trend over iterations, indicating that more re-
sponses are discarded. This is due to the increasing difficulty of constructing non-duplicate features
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Figure 7: The mean normalized tree edit distance between a new candidate feature and previous five features.
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Figure 8: The number of LLM responses to construct a new candidate feature across iterations.

and the higher likelihood of syntactical errors as features become more complex. However, since
the increase is small, FEBP remains scalable across a large number of iterations.

5.5 HYPERPARAMETER EFFECT

Number of Iterations. Figure 9 shows the validation scores on the AF and CD datasets, which
contain the smallest and largest numbers of features, respectively, using Random Forests and Light-
GBM. The validation score is evaluated after adding the selected set of candidate features to the
dataset, as indicated by sn∗ in line 17 of Algorithm 1. We terminate our algorithm once we have
200 candidate features, as constructing additional features does not substantially enhance the per-
formance, but constructing fewer features degrades the performance in some cases.

Temperature. Table 4 reports the maximum validation score across iterations along with the number
of LLM responses, under different temperature settings. We observe that the best performance and
feature construction efficiency are achieved when the temperature is set to 1. Lower temperatures
increase the likelihood of the LLM repeating existing features, while higher temperatures make the
LLM more prone to generating errors in responses, both reducing feature construction efficiency.

Number of Examples in Prompt. Table 5 reports the maximum validation score across iterations
along with the number of LLM responses, using varying numbers of example features in the prompt.
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Figure 9: The validation score across iterations using Random Forests and LightGBM.
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Table 4: Effect of the LLM temperature. For each compared setting, the left column shows the validation
score, and the right column shows the number of LLM responses.

Model Dataset Temperature
0.5 1 1.5

RF AF 0.7875 794.4 0.7914 393.2 0.7916 609.2
CD 0.8211 823.2 0.8219 349.8 0.8218 672.6

LGBM AF 0.8365 1313.2 0.8430 380.2 0.8418 627.6
CD 0.8225 519.8 0.8226 352.2 0.8223 662.6

Mean 0.8169 862.7 0.8197 368.9 0.8194 643.0

Table 5: Effect of the number of example features in the prompt. For each compared setting, the left column
shows the validation score, and the right column shows the number of LLM responses.

Model Dataset Number of Examples
1 5 10 20

RF
AF 0.7910 464.0 0.7930 409.2 0.7914 393.2 0.7860 372.8
WQR 0.3897 339.4 0.3937 329.8 0.3948 362.6 0.3940 330.0
CD 0.8215 429.6 0.8213 371.2 0.8219 349.8 0.8218 343.2

LGBM
AF 0.8421 440.4 0.8433 404.6 0.8430 380.2 0.8420 384.2
WQR 0.4265 336.6 0.4294 334.8 0.4301 322.8 0.4333 330.4
CD 0.8228 449.4 0.8224 361.2 0.8226 352.2 0.8228 321.2

Mean 0.6823 409.9 0.6839 368.5 0.6840 360.1 0.6833 347.0

We observe that the best performance is achieved with 10 examples. Additionally, we observe that
feature construction efficiency improves as the number of examples increases, as this helps the LLM
reduce errors and generate more diverse responses. However, providing too many examples can
hinder the in-context learning of optimal feature patterns, as shown by the performance decline.

6 CONCLUSION

We propose a novel LLM-based AutoFE algorithm for effective, efficient, and interpretable fea-
ture engineering that leverages the semantic information of datasets. Our approach provides the
LLM with dataset descriptions and example features represented in canonical RPN, prompting it
to construct new features. The LLM iteratively explores the feature space and improves feature
construction by learning from top-performing examples. Experimental results demonstrate that our
approach significantly outperforms state-of-the-art AutoFE methods and the inclusion of seman-
tic context from dataset descriptions enhances performance. We also analyze the behavior of our
LLM-based feature search process. Our work paves the way for further LLM-driven applications on
automated machine learning pipelines and underscores the potential of utilizing semantic informa-
tion. In the future, we plan to incorporate adaptive techniques for prompt design.
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A DISCUSSION ON CANONICAL RPN FEATURE REPRESENTATION

A.1 WHY RPN

RPN provides a compact and unambiguous form of feature representation. In contrast, infix expres-
sion requires extra information such as brackets to determine operator precedence. Without brackets,
the feature in infix expression col-0 − ( col-1 + col-2 ) would be indistinguishable from the feature
( col-0 − col-1 ) + col-2, while both features are distinctively encoded in RPN. Such compactness
and unambiguity of RPN facilitate sequential modeling since there is no need to model the extra
information, e.g., the positions of brackets.

Compared with other forms of feature representation such as prefix expression of depth-first traversal
or breadth-first traversal, RPN better encodes the recursive structure of the expression tree. The
bottom-up enumeration of tree nodes makes it easy for the LLM to evaluate the feature expression
by scanning the sequence from left to right, for instance, ((col-0 col-1 −) col-2 +) (parentheses
denote recursion). Using the prefix expression (+ (− col-0 col-1) col-2) or breadth-first expression
(+ (− [col-2] col-0 col-1)), however, the LLM always needs to look back to find the operator, which
undermines sequential modeling. We find in our experiments that when using prefix expression, the
LLM encounters difficulty in generating syntactically valid feature expressions.

A.2 WHY CANONICALIZATION

While there is one-to-one mapping between feature expression trees and RPN expressions, a fea-
ture that contains commutative operators (like addition and multiplication) can be represented by
different RPN expressions, since the child nodes of these operators are unordered. We introduce
a canonicalization scheme: arranging operator nodes before feature nodes and lexicographically
sorting the nodes within each group. Through canonicalization, we create one-to-one mapping be-
tween features and cRPN expressions. This ensures the consistency of our feature representation
and facilitates the in-context learning of feature patterns.

By arranging operator nodes before feature nodes, we also introduce left skewness to the expression
tree that enhances the clarity of the recursive structure in cRPN. As illustrated in Figure 10, the
original feature expression (col-2 (col-1 col-0 +) ∗) becomes ((col-0 col-1 +) col-2 ∗) after canon-
icalization, so that the LLM does not need to look back for col-2 when evaluating the expression.
We refer to Appendix E for additional experiments.

Figure 10: Our canonicalization scheme introduces left skewness to the expression tree.
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B CONVERSION BETWEEN FEATURE EXPRESSION TREE AND RPN

Algorithms 2 and 3 detail the process of conversion between a feature expression tree and an RPN
feature string. We check the RPN syntactical validity of a feature string in Algorithm 3 by checking
whether there is enough child node in the stack in line 6 and the size of the stack is exactly one (the
root) in line 13 returning the output.

Algorithm 2: Feature Expression Tree to RPN
Input : A feature expression tree T
Output: An RPN feature string f

1 r ← the root of T
2 Initialize string f ← ϵ, stack S ← [r], and visited← ∅
3 repeat
4 u← S.peek()
5 if u ∈ visited then
6 f.append(u)
7 S.pop()
8 end
9 else

10 for each child v of u in the reverse order do
11 S.push(v)
12 end
13 visited← visited ∪ {u}
14 end
15 until S is empty
16 return f

Algorithm 3: RPN to Feature Expression Tree
Input : An RPN feature string f
Output: The root of a feature expression tree T

1 Initialize stack S ← []
2 for i← 1 to |f | do
3 u← the i-th element of f
4 if u is an operator then
5 o← the arity of u
6 for j ← 1 to o do
7 v ← S.pop()
8 Prepend v to the list of children of u
9 end

10 end
11 S.push(u)
12 end
13 return S.pop()
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C EXAMPLE PROMPTS

C.1 FULL PROMPT

Figure 11 shows an example of full prompts used in our main experiments.

Figure 11: Example full prompt on the Credit Default dataset.

Dataset description:
This dataset contains information on default payments, demographic factors, credit data, history of
payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.
Dataset contains the following columns:
col-0 (int) [10000, 800000]: LIMIT BAL: Amount of given credit in NT dollars (includes individual and
family/supplementary credit
col-1 (category) {1, 2}: SEX: Gender (1=male, 2=female)
col-2 (category) {0, 1, 2, 3, 4, 5, 6}: EDUCATION: (1=graduate school, 2=university, 3=high school,
4=others, 5=unknown, 6=unknown)
col-3 (category) {0, 1, 2, 3}: MARRIAGE: Marital status (1=married, 2=single, 3=others)
col-4 (int) [21, 79]: AGE: Age in years
col-5 (category) {-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8}: PAY 0: Repayment status in September, 2005 (-1=pay
duly, 1=payment delay for one month, 2=payment delay for two months, . . . 8=payment delay for eight
months, 9=payment delay for nine months and above)
. . .
col-23 (category) {0, 1}: default.payment.next.month: Default payment (1=yes, 0=no)
We have the following unary operators:
log: taking the log of the absolute value
sqrt abs: taking the square root of the absolute value
min max: min-max normalization
reciprocal: taking the reciprocal
We have the following binary operators:
+: summing two columns
−: subtracting two columns
∗: multiplying two columns
/: taking the division of two columns
mod column: taking the modulo of two columns
Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset.
Each feature string constructs an extra column that is useful for the downstream model Random Forests
to predict the target col-23. The model will be trained on the dataset with the constructed columns and
evaluated on a holdout set. The best columns will be selected.
Below are feature strings arranged in ascending order based on their performance scores. Higher scores
are better.

Feature
col-17,col-21,*,col-20,+,sqrt abs
Score
0.0011
. . .
Feature
col-4,col-6,*,col-12,col-16,-,sqrt abs,*
Score
0.0014

Give me a new feature string that is different from all strings above and has a higher score. Use
no more than five operators. Make sure all columns and operators exist and do not include the target
column. Follow the syntax of RPN.

Output format:
Feature

(Feature name and description)

Usefulness
(Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset
description)
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C.2 SEMANTICALLY BLINDED PROMPT

Figure 12 shows an example of semantically blinded prompts used in our experiments in Section 5.3.

Figure 12: Example semantically blinded prompt on the Credit Default dataset.

Dataset contains the following columns:
col-0
col-1
col-2
col-3
col-4
col-5
. . .
col-23
We have the following unary operators:
log: taking the log of the absolute value
sqrt abs: taking the square root of the absolute value
min max: min-max normalization
reciprocal: taking the reciprocal
We have the following binary operators:
+: summing two columns
−: subtracting two columns
∗: multiplying two columns
/: taking the division of two columns
mod column: taking the modulo of two columns
Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset.
Each feature string constructs an extra column that is useful for the downstream model Random Forests
to predict the target col-23. The model will be trained on the dataset with the constructed columns and
evaluated on a holdout set. The best columns will be selected.
Below are feature strings arranged in ascending order based on their performance scores. Higher scores
are better.

Feature
col-17,col-21,*,col-20,+,sqrt abs
Score
0.0011
. . .
Feature
col-4,col-6,*,col-12,col-16,-,sqrt abs,*
Score
0.0014

Give me a new feature string that is different from all strings above and has a higher score. Use
no more than five operators. Make sure all columns and operators exist and do not include the target
column. Follow the syntax of RPN.

Output format:
Feature

(Feature name and description)

Usefulness
(Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset
description)
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D EXPERIMENTAL DETAILS

D.1 DATA SOURCES

Table 6 summarizes the sources of datasets used in our experiments. Datasets are selected such that
they cover different domains and both regression and classification tasks. Most of them have been
used in previous works (Zhu et al., 2022a;b; Zhang et al., 2023; Hollmann et al., 2023).

Table 6: Sources of datasets.

Name Source

Airfoil (AF) https://archive.ics.uci.edu/dataset/291/airfoil+self+noise
Boston Housing (BH) https://www.kaggle.com/datasets/arunjangir245/boston-housing-dataset
Bikeshare (BS) https://www.kaggle.com/datasets/marklvl/bike-sharing-dataset
Wine Quality Red (WQR) https://archive.ics.uci.edu/dataset/186/wine+quality
AIDS Clinical Trials (ACT) https://archive.ics.uci.edu/dataset/890/aids+clinical+trials+group+study+175
Credit Default (CD) https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
German Credit (GC) https://archive.ics.uci.edu/dataset/573/south+german+credit+update

D.2 EXPERIMENTAL PLATFORM

All experiments are conducted on the Ubuntu 22.04.4 LTS operating system, 16 Intel(R) Core(TM)
i7-7820X CPUs, and 4 NVIDIA GeForce RTX 2080 Ti GPUs, with the framework of Python 3.11.9
and PyTorch 1.12.1.

D.3 FEATURE TRANSFORMATION OPERATORS

We list the details of all feature transformation operators below.

Unary transformations:

• Logarithm: Element-wise logarithm of the absolute value;
• Reciprocal: Element-wise reciprocal;
• Square root: Element-wise square root of the absolute value;
• Min-max normalization: Element-wise min-max normalization, with the min and max val-

ues from the training data.

Binary transformations:

• Addition: Element-wise addition;
• Subtraction: Element-wise subtraction;
• Multiplication: Element-wise multiplication;
• Division: Element-wise division;
• Modulo: Element-wise modulo.
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D.4 PARAMETER TUNING OF DOWNSTREAM MODELS

We tune the parameters of downstream models prior to and post AutoFE using randomized search
implemented in an Sklearn package3. Table 7 lists the configurations of parameter tuning for each
downstream model. We set the number of randomized search iterations to 100.

Table 7: Hyperparameter search space for downstream models.

Model Parameter Search Space

Linear Model regularization loguniform(0.00001, 100)

Random
Forests

num estimators randint(5, 250)
max depth randint(1, 250)
max features uniform(0.01, 0.99)
max samples uniform(0.1, 0.9)

LightGBM

num estimators randint(10, 1000)
num leaves randint(8, 64)
learning rate loguniform(0.001, 1)
bagging fraction uniform(0.1, 0.9)
feature fraction uniform(0.1, 0.9)
reg lambda loguniform(0.001, 100)

D.5 STANDARD DEVIATIONS

Tables 8-11 report the sample standard deviations corresponding to the experimental results in Ta-
bles 2-5, respectively.

D.6 STATISTICAL TESTS

We perform the Friedman test (Friedman, 1937) to determine whether there is statistically signifi-
cant difference among the compared AutoFE methods. The Friedman test p-values for the results
in Tables 2 and 3 are 1.16 × 10−47 and 3.95 × 10−34, respectively. Hence, we can reject the null
hypothesis that the performance is the same for all methods. We perform the Nemenyi post-hoc
test (Nemenyi, 1963) to further determine which AutoFE methods have different performance. Ta-
bles 12 and 13 summarize the p-values for the pairwise comparisons in Tables 2 and 3, respectively.
From Table 12, the performance difference between our method FEBP and baseline methods other
than DIFER (Zhu et al., 2022b) is statistically significant at the p = 0.01 level. From Table 13, the
performance difference between the full version of FEBP and the semantically blinded version is
statistically significant at the p = 0.01 level.

To highlight the performance difference when using Random Forests and LightGBM, we perform
additional statistical tests for the results in Table 2 excluding the linear model results. The Friedman
test p-value is 6.14 × 10−23. Table 14 summarizes the p-values from the Nemenyi post-hoc test
for pairwise comparison. We observe that FEBP with GPT-3.5 and post-AutoFE parameter tuning
significantly outperforms all baselines except DIFER at the p = 0.05 level. With GPT-4, the perfor-
mance difference between FEBP and CAAFE (Hollmann et al., 2023) is still statistically significant
at the p = 0.05 level.

3https://scikit-learn.org/1.5/modules/generated/sklearn.model_
selection.RandomizedSearchCV.html
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Table 8: Standard deviations of Table 2, summary of experimental results.

Model Dataset Raw DIFER OpenFE CAAFE FEBP (ours)
GPT-3.5 GPT-4 GPT-3.5 GPT-4

Linear
Model

AF – 0.2559 0.2012 0.0015 0.0014 0.0099 0.0102 0.0511 0.0513 0.0101 0.0100 0.0267 0.0268
BH – 0.0092 0.0153 0.0169 0.0188 0.0196 0.0184 0.0408 0.0419 0.0111 0.0149 0.0254 0.0184
WQR – 0.0305 0.0223 0.0058 0.0055 0.0046 0.0038 0.0060 0.0060 0.0135 0.0112 0.0068 0.0044
ACT – 0.0179 0.0073 0.0140 0.0105 0.0035 0.0021 0.0054 0.0053 0.0085 0.0051 0.0040 0.0062
CD – 0.0014 0.0006 0.0006 0.0002 0.0006 0.0007 0.0057 0.0051 0.0013 0.0007 0.0006 0.0009
GC – 0.0272 0.0104 0.0097 0.0076 0.0100 0.0125 0.0134 0.0108 0.0120 0.0213 0.0108 0.0152

Random
Forests

AF – 0.0054 0.0044 0.0032 0.0036 0.0032 0.0034 0.0108 0.0084 0.0090 0.0086 0.0059 0.0095
BH – 0.0142 0.0131 0.0034 0.0068 0.0050 0.0050 0.0084 0.0113 0.0057 0.0077 0.0059 0.0046
BS – 0.0128 0.0113 0.0003 0.0003 0.0003 0.0003 0.0208 0.0207 0.0088 0.0070 0.0157 0.0154
WQR – 0.0108 0.0109 0.0030 0.0076 0.0022 0.0022 0.0051 0.0051 0.0034 0.0069 0.0022 0.0026
ACT – 0.0048 0.0058 0.0037 0.0087 0.0030 0.0055 0.0020 0.0030 0.0055 0.0051 0.0043 0.0054
CD – 0.0010 0.0011 0.0003 0.0004 0.0005 0.0004 0.0008 0.0001 0.0011 0.0010 0.0009 0.0017
GC – 0.0184 0.0177 0.0154 0.0110 0.0082 0.0076 0.0065 0.0164 0.0114 0.0067 0.0097 0.0097

Light-
GBM

AF – 0.0029 0.0029 0.0058 0.0036 0.0067 0.0027 0.0072 0.0077 0.0129 0.0054 0.0061 0.0041
BH – 0.0147 0.0260 0.0128 0.0150 0.0114 0.0111 0.0145 0.0188 0.0169 0.0076 0.0134 0.0073
BS – 0.0092 0.0070 0.0007 0.0004 0.0159 0.0198 0.0056 0.0139 0.0151 0.0139 0.0033 0.0034
WQR – 0.0134 0.0164 0.0072 0.0133 0.0084 0.0080 0.0116 0.0134 0.0123 0.0085 0.0097 0.0092
ACT – 0.0048 0.0042 0.0068 0.0094 0.0061 0.0045 0.0045 0.0027 0.0027 0.0017 0.0050 0.0077
CD – 0.0009 0.0013 0.0004 0.0010 0.0008 0.0005 0.0010 0.0007 0.0004 0.0004 0.0004 0.0008
GC – 0.0141 0.0184 0.0184 0.0184 0.0222 0.0166 0.0079 0.0199 0.0076 0.0045 0.0096 0.0146

Table 9: Standard deviations of Table 3, performance comparison of FEBP with and without semantic blinding.

Model Dataset Raw GPT-3.5 GPT-4
Blinded Full Blinded Full

Linear
Model

AF – 0.0147 0.0156 36.1 0.0101 0.0100 28.8 0.0162 0.0161 25.8 0.0267 0.0268 92.3
BH – 0.0444 0.0519 39.0 0.0111 0.0149 42.2 0.0161 0.0131 66.7 0.0254 0.0184 58.6
WQR – 0.0133 0.0032 48.9 0.0135 0.0112 15.3 0.0128 0.0046 23.5 0.0068 0.0044 80.6
ACT – 0.0088 0.0107 15.4 0.0085 0.0051 17.5 0.0056 0.0085 15.5 0.0040 0.0062 54.8
CD – 0.0014 0.0003 27.6 0.0013 0.0007 13.1 0.0021 0.0011 13.2 0.0006 0.0009 14.8
GC – 0.0114 0.0042 32.3 0.0120 0.0213 14.3 0.0125 0.0114 11.0 0.0108 0.0152 36.4

Random
Forests

AF – 0.0086 0.0058 60.3 0.0090 0.0086 47.3 0.0092 0.0079 27.9 0.0059 0.0095 93.6
BH – 0.0068 0.0068 45.3 0.0057 0.0077 14.5 0.0142 0.0132 24.7 0.0059 0.0046 23.0
BS – 0.0186 0.0181 112.1 0.0088 0.0070 47.8 0.0103 0.0088 38.8 0.0157 0.0154 39.2
WQR – 0.0078 0.0081 40.5 0.0034 0.0069 18.5 0.0092 0.0075 19.1 0.0022 0.0026 45.2
ACT – 0.0099 0.0035 33.7 0.0055 0.0051 13.1 0.0100 0.0093 16.6 0.0043 0.0054 85.7
CD – 0.0015 0.0008 53.3 0.0011 0.0010 14.5 0.0005 0.0008 83.4 0.0009 0.0017 56.9
GC – 0.0067 0.0057 28.9 0.0114 0.0067 17.3 0.0210 0.0143 12.8 0.0097 0.0097 113.1

Light-
GBM

AF – 0.0104 0.0060 66.8 0.0129 0.0054 21.7 0.0142 0.0155 39.6 0.0061 0.0041 73.1
BH – 0.0131 0.0170 60.7 0.0169 0.0076 20.7 0.0119 0.0121 25.7 0.0134 0.0073 36.1
BS – 0.0152 0.0178 76.3 0.0151 0.0139 31.8 0.0048 0.0049 74.5 0.0033 0.0034 32.1
WQR – 0.0151 0.0028 36.9 0.0123 0.0085 17.3 0.0195 0.0190 21.1 0.0097 0.0092 46.3
ACT – 0.0021 0.0030 44.2 0.0027 0.0017 28.5 0.0042 0.0128 15.7 0.0050 0.0077 49.6
CD – 0.0011 0.0011 59.4 0.0004 0.0004 15.7 0.0007 0.0010 5.6 0.0004 0.0008 85.7
GC – 0.0130 0.0148 41.7 0.0076 0.0045 23.0 0.0117 0.0094 13.7 0.0096 0.0146 46.9

Table 10: Standard deviations of Table 4, effect of temperature.

Model Dataset Temperature
0.5 1 1.5

RF AF 0.0071 160.9 0.0042 47.3 0.0040 34.7
CD 0.0005 324.3 0.0004 14.5 0.0005 64.1

LGBM AF 0.0042 523.3 0.0044 21.7 0.0022 59.8
CD 0.0008 174.7 0.0007 15.7 0.0005 73.0

Table 11: Standard deviations of Table 5, effect of the number of example features in the prompt.

Model Dataset Number of Examples
1 5 10 20

RF
AF 0.0054 55.8 0.0035 45.0 0.0042 47.3 0.0056 24.0
WQR 0.0088 19.6 0.0038 11.4 0.0027 18.5 0.0096 29.6
CD 0.0005 46.5 0.0007 19.1 0.0004 14.5 0.0006 17.8

LGBM
AF 0.0065 103.2 0.0031 21.6 0.0044 21.7 0.0044 56.4
WQR 0.0048 16.9 0.0057 32.4 0.0064 17.3 0.0064 26.5
CD 0.0003 71.2 0.0002 39.0 0.0007 15.7 0.0005 17.5
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Table 12: The Nemenyi post-hoc test p-values for pairwise comparison of the methods in Table 2. Results that
are significant at the p = 0.05 confidence level are highlighted in boldface.

Raw DIFER OpenFE CAAFE FEBP (ours)
GPT-3.5 GPT-4 GPT-3.5 GPT-4

Raw 1.0000 0.0010 0.0010 0.0203 0.0086 0.0010 0.0010 0.0409 0.0179 0.0010 0.0010 0.0010 0.0010

DIFER
0.0010 1.0000 0.3235 0.4051 0.5626 0.9000 0.9000 0.2697 0.4310 0.0397 0.0010 0.0028 0.1535
0.0010 0.3235 1.0000 0.0010 0.0010 0.0343 0.0397 0.0010 0.0010 0.9000 0.7526 0.9000 0.9000

OpenFE
0.0203 0.4051 0.0010 1.0000 0.9000 0.9000 0.9000 0.9000 0.9000 0.0010 0.0010 0.0010 0.0010
0.0086 0.5626 0.0010 0.9000 1.0000 0.9000 0.9000 0.9000 0.9000 0.0010 0.0010 0.0010 0.0010

CAAFE
GPT-3.5

0.0010 0.9000 0.0343 0.9000 0.9000 1.0000 0.9000 0.8216 0.9000 0.0016 0.0010 0.0010 0.0105
0.0010 0.9000 0.0397 0.9000 0.9000 0.9000 1.0000 0.7929 0.9000 0.0019 0.0010 0.0010 0.0125

GPT-4
0.0409 0.2697 0.0010 0.9000 0.9000 0.8216 0.7929 1.0000 0.9000 0.0010 0.0010 0.0010 0.0010
0.0179 0.4310 0.0010 0.9000 0.9000 0.9000 0.9000 0.9000 1.0000 0.0010 0.0010 0.0010 0.0010

FEBP
GPT-3.5

0.0010 0.0397 0.9000 0.0010 0.0010 0.0016 0.0019 0.0010 0.0010 1.0000 0.9000 0.9000 0.9000
0.0010 0.0010 0.7526 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.9000 1.0000 0.9000 0.9000

GPT-4
0.0010 0.0028 0.9000 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.9000 0.9000 1.0000 0.9000
0.0010 0.1535 0.9000 0.0010 0.0010 0.0105 0.0125 0.0010 0.0010 0.9000 0.9000 0.9000 1.0000

Table 13: The Nemenyi post-hoc test p-values for pairwise comparison of the methods in Table 3. Results that
are significant at the p = 0.05 confidence level are highlighted in boldface.

Raw GPT-3.5 GPT-4
Blinded Full Blinded Full

Raw 1.0000 0.0010 0.0010 0.0010 0.0010 0.0017 0.0010 0.0010 0.0010

GPT-3.5
Blinded

0.0010 1.0000 0.9000 0.0062 0.0010 0.9000 0.9000 0.0010 0.0057
0.0010 0.9000 1.0000 0.1775 0.0066 0.3858 0.9000 0.0105 0.1677

Full
0.0010 0.0062 0.1775 1.0000 0.9000 0.0010 0.0069 0.9000 0.9000
0.0010 0.0010 0.0066 0.9000 1.0000 0.0010 0.0010 0.9000 0.9000

GPT-4
Blinded

0.0017 0.9000 0.3858 0.0010 0.0010 1.0000 0.9000 0.0010 0.0010
0.0010 0.9000 0.9000 0.0069 0.0010 0.9000 1.0000 0.0010 0.0062

Full
0.0010 0.0010 0.0105 0.9000 0.9000 0.0010 0.0010 1.0000 0.9000
0.0010 0.0057 0.1677 0.9000 0.9000 0.0010 0.0062 0.9000 1.0000

Table 14: The Nemenyi post-hoc test p-values for pairwise comparison of the methods in Table 2, excluding
linear model results. Results that are significant at the p = 0.05 confidence level are highlighted in boldface.

Raw DIFER OpenFE CAAFE FEBP (ours)
GPT-3.5 GPT-4 GPT-3.5 GPT-4

Raw 1.0000 0.0010 0.0010 0.5006 0.3953 0.0010 0.0012 0.3875 0.2344 0.0010 0.0010 0.0010 0.0010

DIFER
0.0010 1.0000 0.9000 0.6382 0.7345 0.9000 0.9000 0.7414 0.8996 0.4263 0.0299 0.1392 0.9000
0.0010 0.9000 1.0000 0.0098 0.0171 0.9000 0.8308 0.0178 0.0412 0.9000 0.8377 0.9000 0.9000

OpenFE
0.5006 0.6382 0.0098 1.0000 0.9000 0.6175 0.7138 0.9000 0.9000 0.0010 0.0010 0.0010 0.0171
0.3953 0.7345 0.0171 0.9000 1.0000 0.7138 0.8102 0.9000 0.9000 0.0010 0.0010 0.0010 0.0289

CAAFE
GPT-3.5

0.0010 0.9000 0.9000 0.6175 0.7138 1.0000 0.9000 0.7207 0.8790 0.4493 0.0334 0.1516 0.9000
0.0012 0.9000 0.8308 0.7138 0.8102 0.9000 1.0000 0.8170 0.9000 0.3422 0.0199 0.1017 0.9000

GPT-4
0.3875 0.7414 0.0178 0.9000 0.9000 0.7207 0.8170 1.0000 0.9000 0.0010 0.0010 0.0010 0.0299
0.2344 0.8996 0.0412 0.9000 0.9000 0.8790 0.9000 0.9000 1.0000 0.0026 0.0010 0.0010 0.0661

FEBP
GPT-3.5

0.0010 0.4263 0.9000 0.0010 0.0010 0.4493 0.3422 0.0010 0.0026 1.0000 0.9000 0.9000 0.9000
0.0010 0.0299 0.8377 0.0010 0.0010 0.0334 0.0199 0.0010 0.0010 0.9000 1.0000 0.9000 0.7414

GPT-4
0.0010 0.1392 0.9000 0.0010 0.0010 0.1516 0.1017 0.0010 0.0010 0.9000 0.9000 1.0000 0.9000
0.0010 0.9000 0.9000 0.0171 0.0289 0.9000 0.9000 0.0299 0.0661 0.9000 0.7414 0.9000 1.0000
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D.7 NUMBER OF SELECTED FEATURES

Table 15 compares the number of features added to the datasets. Our method FEBP adaptively de-
termines the number of features and selects fewer features than DIFER (Zhu et al., 2022b), demon-
strating the effectiveness of the features generated by our method.

Table 15: The number of selected features.

Model Dataset DIFER OpenFE FEBP Blinded FEBP
GPT-3.5 GPT-4 GPT-3.5 GPT-4

Linear
Model

AF 310 10 167 165 162 183
BH 156 10 104 141 144 90
WQR 109 10 57 80 43 55
ACT 113 10 84 49 85 14
CD 157 10 92 68 74 74
GC 105 10 75 97 120 51

Random
Forests

AF 387 10 39 19 15 34
BH 186 10 4 6 19 77
BS 46 10 9 7 9 65
WQR 63 10 9 44 39 45
ACT 339 10 55 35 69 61
CD 178 10 97 74 94 89
GC 92 10 68 84 31 59

Light-
GBM

AF 325 10 30 55 42 24
BH 118 10 15 17 16 25
BS 287 10 119 48 68 116
WQR 454 10 64 29 129 128
ACT 132 10 54 46 16 51
CD 409 10 68 53 12 50
GC 501 10 61 86 16 35

Mean 223 10 64 60 60 66
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D.8 COMPUTATION COST

Table 16 compares the number of features evaluated during the feature search process. Guided by
domain knowledge, our method FEBP evaluates much fewer features than DIFER (Zhu et al., 2022b)
and OpenFE (Zhang et al., 2023).

Tables 17 and 18 summarize the computation time, using gpt-3.5-turbo-0125 as the LLM. For FEBP,
the computation time of LLM generation and feature evaluation is relatively stable across datasets
of varying sizes. We note that the LLM generation time can be substantially reduced by instructing
the LLM to generate multiple features in a generation step.

Table 16: The number of evaluated features.

Model Dataset DIFER OpenFE FEBP

Linear
Model

AF 2083 224 200
BH 2081 1167 200
WQR 2083 929 200
ACT 2077 4310 200
CD 2088 3385 200
GC 2076 4169 200

Random
Forests

AF 2085 224 200
BH 2079 1051 200
BS 2082 310 200
WQR 2085 929 200
ACT 2079 1636 200
CD 2086 1801 200
GC 2078 2139 200

Light-
GBM

AF 2084 224 200
BH 2080 1051 200
BS 2083 310 200
WQR 2084 929 200
ACT 2079 1636 200
CD 2087 1801 200
GC 2078 2139 200

Mean 2082 1518 200
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Table 17: Comparison of computation time, in minutes.

Model Dataset DIFER OpenFE CAAFE FEBP

Linear
Model

AF 33.49 0.21 1.73 42.80
BH 41.17 0.21 1.18 41.28
WQR 34.94 0.25 1.21 42.33
ACT 44.18 0.40 1.25 43.60
CD 433.94 1.49 3.17 57.82
GC 29.30 0.37 1.68 43.71

Random
Forests

AF 178.50 0.23 4.22 63.30
BH 89.07 0.24 5.52 51.70
BS 98.50 0.23 4.05 51.13
WQR 298.46 0.29 9.35 63.12
ACT 78.44 0.28 3.82 44.66
CD 571.33 1.12 14.05 94.08
GC 60.41 0.28 3.24 45.06

Light-
GBM

AF 301.56 0.25 5.81 63.06
BH 62.30 0.24 3.01 44.84
BS 74.59 0.24 2.55 45.23
WQR 361.19 0.29 5.68 58.97
ACT 36.39 0.28 1.73 42.71
CD 102.04 1.07 2.49 46.34
GC 48.63 0.28 2.97 43.03

Mean 148.92 0.41 3.94 51.44

Table 18: Computation time of different components of FEBP, in minutes.

Model Dataset LLM Generation Feature Evaluation Feature Selection

Linear
Model

AF 16.73 22.98 3.08
BH 18.50 20.18 2.60
WQR 19.07 20.24 3.02
ACT 18.92 20.97 3.71
CD 16.73 25.14 15.95
GC 17.01 23.24 3.47

Random
Forests

AF 15.34 25.32 22.64
BH 18.60 23.69 9.41
BS 15.12 25.16 10.87
WQR 12.75 23.81 26.56
ACT 13.79 21.67 9.20
CD 12.48 25.89 55.71
GC 14.80 21.91 8.35

Light-
GBM

AF 17.37 21.06 24.63
BH 19.70 20.40 4.74
BS 17.03 22.18 6.02
WQR 16.27 21.19 21.51
ACT 19.18 20.24 3.29
CD 16.53 21.68 8.13
GC 17.00 20.40 5.63

Mean 16.65 22.37 12.43
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E ADDITIONAL ABLATION STUDY

To examine the impact of our canonicalization scheme, we compare the full version of FEBP with
the reduced version without RPN canonicalization. From Table 19, the full version outperforms
the reduced version in terms of the mean performance score using all three downstream models.
The Friedman test p-value is 1.29 × 10−28. Table 20 summarizes the p-values from the Nemenyi
post-hoc test for pairwise comparison, which shows that the performance difference is statistically
significant at the p = 0.05 level for the cases with GPT-3.5 and post-AutoFE parameter tuning as
well as GPT-4 without post-AutoFE parameter tuning. We also observe a decrease in the number
of LLM responses without canonicalization. This is because the expression becomes more flexible,
reducing the likelihood of duplication with existing features during feature generation.

Additionally, we find that when switching to prefix feature expressions, the LLM encounters diffi-
culty generating syntactically valid feature expressions, leading to a failure to complete one single
run in our experiments.

Table 19: Performance comparison of FEBP with and without RPN canonicalization. For each compared
version, the left and middle columns show the results without and with parameter tuning of the downstream
model algorithm post AutoFE, respectively, and the right column shows the number of LLM responses. The
results where the full version outperforms the reduced version are highlighted in boldface.

Model Dataset Raw GPT-3.5 GPT-4
w/o Canonicalization Full w/o Canonicalization Full

Linear
Model

AF 0.3474 0.6679 0.6688 338.6 0.6612 0.6616 339.8 0.6538 0.6529 321.2 0.6649 0.6647 371.4
BH 0.3776 0.5048 0.5076 351.2 0.4995 0.5025 378.6 0.4987 0.5030 310.8 0.5184 0.5289 335.4
WQR 0.2696 0.2702 0.2735 336.2 0.2722 0.2745 328.4 0.2690 0.2706 279.0 0.2713 0.2748 312.6
ACT 0.8505 0.8748 0.8794 366.4 0.8729 0.8794 372.2 0.8738 0.8752 298.0 0.8766 0.8762 377.4
CD 0.8267 0.8280 0.8290 350.4 0.8282 0.8282 342.0 0.8270 0.8271 285.4 0.8288 0.8288 250.4
GC 0.7100 0.7370 0.7330 352.0 0.7570 0.7460 379.0 0.7550 0.7490 447.2 0.7590 0.7420 310.6

Mean 0.5636 0.6471 0.6486 349.1 0.6485 0.6487 356.7 0.6462 0.6463 323.6 0.6532 0.6526 326.3

Random
Forests

AF 0.7677 0.7628 0.7762 358.0 0.7709 0.7787 393.2 0.7743 0.7843 340.2 0.7681 0.7749 314.2
BH 0.5426 0.5573 0.5573 364.0 0.5549 0.5533 374.4 0.5491 0.5460 322.4 0.5543 0.5522 278.6
BS 0.9446 0.9804 0.9807 372.2 0.9873 0.9881 386.8 0.9778 0.9777 284.4 0.9845 0.9848 255.0
WQR 0.3662 0.3776 0.3726 334.6 0.3862 0.3845 362.6 0.3739 0.3719 269.8 0.3810 0.3810 283.2
ACT 0.8808 0.8879 0.8841 353.4 0.8925 0.8921 357.6 0.8841 0.8864 327.6 0.8893 0.8864 424.0
CD 0.8293 0.8283 0.8285 381.6 0.8295 0.8294 349.8 0.8290 0.8287 297.2 0.8295 0.8276 304.0
GC 0.7450 0.7660 0.7620 342.2 0.7640 0.7620 368.2 0.7680 0.7610 368.2 0.7680 0.7680 471.8

Mean 0.6806 0.7372 0.7373 358.0 0.7408 0.7412 370.4 0.7366 0.7366 315.7 0.7392 0.7393 333.0

Light-
GBM

AF 0.8375 0.8322 0.8365 343.6 0.8311 0.8392 380.2 0.8280 0.8350 376.0 0.8366 0.8395 360.6
BH 0.5537 0.5599 0.5556 339.2 0.5619 0.5644 342.0 0.5577 0.5548 315.2 0.5642 0.5595 345.6
BS 0.9429 0.9643 0.9664 368.8 0.9737 0.9754 380.0 0.9597 0.9609 276.2 0.9801 0.9813 236.8
WQR 0.3825 0.4075 0.4042 346.4 0.4118 0.4171 322.8 0.4036 0.4032 288.2 0.4021 0.4042 293.6
ACT 0.8832 0.8813 0.8860 342.4 0.8888 0.8925 367.4 0.8822 0.8879 313.2 0.8902 0.8925 359.6
CD 0.8300 0.8302 0.8291 355.8 0.8301 0.8297 352.2 0.8295 0.8291 301.6 0.8303 0.8294 371.2
GC 0.7250 0.7640 0.7650 346.2 0.7680 0.7720 376.6 0.7620 0.7650 428.8 0.7760 0.7700 382.2

Mean 0.6806 0.7485 0.7490 348.9 0.7522 0.7558 360.2 0.7461 0.7480 328.5 0.7542 0.7538 335.7
Mean 0.6806 0.7141 0.7148 352.2 0.7171 0.7185 362.7 0.7128 0.7135 322.5 0.7187 0.7183 331.9

Table 20: The Nemenyi post-hoc test p-values for pairwise comparison of the methods in Table 19. Results
that are significant at the p = 0.05 confidence level are highlighted in boldface.

Raw GPT-3.5 GPT-4
w/o Full w/o Full

Raw 1.0000 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

GPT-3.5
w/o

0.0010 1.0000 0.9000 0.2977 0.0060 0.9000 0.9000 0.0224 0.4293
0.0010 0.9000 1.0000 0.6618 0.0433 0.8811 0.8889 0.1230 0.7871

Full
0.0010 0.2977 0.6618 1.0000 0.9000 0.0341 0.0355 0.9000 0.9000
0.0010 0.0060 0.0433 0.9000 1.0000 0.0010 0.0010 0.9000 0.8028

GPT-4
w/o

0.0010 0.9000 0.8811 0.0341 0.0010 1.0000 0.9000 0.0010 0.0635
0.0010 0.9000 0.8889 0.0355 0.0010 0.9000 1.0000 0.0010 0.0659

Full
0.0010 0.0224 0.1230 0.9000 0.9000 0.0010 0.0010 1.0000 0.9000
0.0010 0.4293 0.7871 0.9000 0.8028 0.0635 0.0659 0.9000 1.0000
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F ADDITIONAL ANALYSIS

F.1 FEATURE ANALYSIS

Figure 13 shows the proportion of constructed features containing each feature attribute across dif-
ferent datasets and downstream models, for both the full and semantically blinded versions of FEBP.
In the blinded version, we observe that the LLM tends to prioritize earlier feature attributes in the
dataset while paying less attention to later ones, reflecting an inherent bias of the language model. In
contrast, in the full version, the selection of feature attributes is guided by the semantic information
of the dataset rather than the positional order of the attributes. This highlights the role of dataset
semantic information in our feature construction process.
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(b) ACT+LR, blind
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(c) ACT+RF
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(d) ACT+RF, blind
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(e) BH+LR
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(f) BH+LR, blind
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(g) BH+RF
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(h) BH+RF, blind
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(i) GC+LR
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(j) GC+LR, blind
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(k) GC+RF
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(l) GC+RF, blind
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(m) WQR+LR
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(n) WQR+LR, blind
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(o) WQR+RF
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Figure 13: The proportions of constructed features containing each feature attribute.
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F.2 FEATURE SEARCH EXAMPLE

Figure 14 shows examples of the LLM-based feature search process from a single run. In iteration
155, the generated feature is a combination of three examples. In iteration 158, the generated feature
is a combination of two examples and columns are modified. Iteration 160 shows a modification of
the example feature. Iteration 161 shows an analogy of the example feature.

Figure 14: Examples of feature search.

Iteration 155
Feature:
6, 12, division, 18, *, min max
Prompt examples:
4, log, 13, *, 17, min max, sqrt abs, +
6, 12, *, 21, sqrt abs, +
4, 14, +, 18, *, min max
11, 21, +, 6, *, sqrt abs
2, 4, +, 6, division, log
4, 6, +, 16, *, 17, +, min max
6, 21, division, 17, log, *
12, min max, 18, *, 5, mod column
2, 6, mod column, 17, +, sqrt abs
2, 3, +, 4, sqrt abs, *
4, 12, division, 16, *, min max, sqrt abs

Iteration 158
Feature:
5, log, 19, *, 15, +, min max
Prompt examples:
4, log, 13, *, 17, min max, sqrt abs, +
6, 12, *, 21, sqrt abs, +
4, 14, +, 18, *, min max
11, 21, +, 6, *, sqrt abs
2, 4, +, 6, division, log
4, 6, +, 16, *, 17, +, min max
6, 21, division, 17, log, *
12, min max, 18, *, 5, mod column
2, 6, mod column, 17, +, sqrt abs
2, 3, +, 4, sqrt abs, *
4, 12, division, 16, *, min max, sqrt abs

Iteration 160
Feature:
11, 21, *, 4, +, 14, mod column
Prompt examples:
4, log, 13, *, 17, min max, sqrt abs, +
6, 12, *, 21, sqrt abs, +
4, 14, +, 18, *, min max
11, 21, +, 6, *, sqrt abs
2, 4, +, 6, division, log
4, 6, +, 16, *, 17, +, min max
6, 21, division, 17, log, *
12, min max, 18, *, 5, mod column
2, 6, mod column, 17, +, sqrt abs
2, 3, +, 4, sqrt abs, *
4, 12, division, 16, *, min max, sqrt abs

Iteration 161
Feature:
6, 12, +, 17, *, min max
Prompt examples:
6, 12, *, 21, sqrt abs, +
4, 14, +, 18, *, min max
11, 21, *, 4, +, 14, mod column
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11, 21, +, 6, *, sqrt abs
2, 4, +, 6, division, log
4, 6, +, 16, *, 17, +, min max
6, 21, division, 17, log, *
12, min max, 18, *, 5, mod column
2, 6, mod column, 17, +, sqrt abs
2, 3, +, 4, sqrt abs, *
4, 12, division, 16, *, min max, sqrt abs

G DIFFERENCES TO CAAFE

While our work FEBP and CAAFE (Hollmann et al., 2023) both utilize LLMs to construct new
features incorporating dataset semantic information, they differ in several key aspects. We design
FEBP such that it taps into the in-context learning capability of LLMs and performs effective fea-
ture search. In FEBP, we provide top-performing constructed features in the prompt as learning
examples, label them with performance scores, and rank them by score. We demonstrate that the
LLM learns to optimize feature construction over the course of algorithm. CAAFE instead stores
all previous instructions and code snippets in the conversation history, which hinders the in-context
learning of optimal feature patterns. It quickly consumes the LLM’s context as the algorithm it-
erates, incurring more and more LLM generation costs. In comparison, the LLM generation cost
of FEBP stays constant across iterations, without a maximum limit on the number of iterations it
can perform. Therefore, our method FEBP has stronger capability of feature search in large search
spaces requiring more iterations, such as datasets with numerous feature attributes.

We also represent features in a different form in FEBP, i.e., canonical RPN (cRPN). We refer to
Appendix A for further discussion. Compared with the Python code representation in CAAFE,
cRPN is more compact, which not only reduces LLM generation costs but also makes the in-context
learning of feature patterns easier, and more human interpretable. The use of pre-defined operators
reduces the search space and simplifies the learning process for optimizing feature construction.
Together, our approach gives better control than code representation and helps avoid undesirable or
unexpected LLM outputs. Another benefit of cRPN is that it is convenient to import external features
(as outlined in Algorithm 1) and export the results as individual features, providing compatibility
with other feature engineering methods.

More fundamentally, we demonstrate in this work that general-purpose LLMs like GPTs can ef-
fectively model recursive tree structures in the form of cRPN feature expressions and reason the
structures in the context of semantic information, paving the way for further LLM-driven applica-
tions. We hereby underscore the importance of adopting proper representation for the downstream
task to tap into LLMs’ potential.
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